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Abstract 

Background - The right posterior parietal cortex (rPPC) and the right frontal eye field (rFEF) 

form part of a network of brain areas involved in orienting spatial attention. Previous studies 

using transcranial magnetic stimulation (TMS) have demonstrated that both areas are 

critically involved in the processing of conjunction visual search tasks, since stimulation of 

these sites disrupts performance.  

 

Objective - This study investigated the effects of long term neuronal modulation to rPPC and 

rFEF using transcranial direct current stimulation (tDCS) with the aim of uncovering sharing 

of these resources in the processing of conjunction visual search tasks.  

 

Methods - Participants completed four blocks of conjunction search trials over the course of 

45 minutes. Following the first block they received 15 minutes of either cathodal or anodal 

stimulation to rPPC or rFEF, or sham stimulation.  

 

Results - A significant interaction between block and stimulation condition was found, 

indicating that tDCS caused differential effects according to the site (rPPC or rFEF) and type 

of stimulation (cathodal, anodal, or sham). Practice resulted in a significant reduction in 

reaction time across the four blocks in all conditions except when cathodal tDCS was applied 

to rPPC.  

 

Conclusions - The effects of cathodal tDCS over rPPC are more subtle than those seen with 

TMS, and no effect of tDCS was evident at rFEF. This suggests that rFEF has a more 

transient role than rPPC in the processing of conjunction visual search and is robust to longer 

term methods of neuro-disruption. Our results may be explained within the framework of 

functional connectivity between these, and other, areas. 
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1.  Introduction 

Two brain areas that are widely accepted to be engaged in the visual attentional 

network are the right frontal eye fields (rFEF, 1, 2-4) and the right posterior parietal cortex 

(rPPC, 3, 4, 5). A basic visual search paradigm can be manipulated to investigate issues 

relating to stimulus features, the identification and segmentation of targets and distractors, 

spatial localisation, and the allocation of attention. While imaging studies have shown that 

both the FEFs and rPPC are involved in visual search (6-8), TMS studies have gone on to 

demonstrate that their involvement is critical (9-15). However, while we know much about 

how rPPC and rFEF act in isolation we lack understanding of whether these regions 

communicate with each other, and evidence to date has been correlative at best (c.f. 16). Here 

we used transcranial direct current stimulation (tDCS) to investigate possible co-

dependencies between these two nodes on the attentional network. 

tDCS involves passing an electrical current between two electrodes positioned on the 

scalp which can modulate the excitability of cortex by decreasing (via anodal stimulation) or 

increasing (via cathodal stimulation) the threshold of activity of underlying neurons (17-19). 

More specifically, anodal stimulation results in decreased GABA concentrations and cathodal 

stimulation creates a reduction in glutamate (20). Thus, cathodal stimulation, after which 

neurons are less likely to fire, has been likened in its behavioural effect to TMS, albeit by 

different mechanisms (21, 22).  We chose to use tDCS to investigate communication between 

rPPC and rFEF for two reasons. Firstly, the effects of tDCS are not restricted to the site of the 

electrode but rather they extend to other functionally relevant and widespread brain areas (23-

26), therefore targeting the wider processing loops involved in visuospatial attention. 

Secondly, the electrophysiological effects of tDCS can outlast application (of 1mA for 9 - 13 

minutes) by up to 90 minutes (27-29), allowing us to assess the effect of long term neuro-

modulation at our sites of interest.  
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Based on observations with TMS it is predicted that cathodal stimulation will lead to a 

slowing in search times in a conjunction search task, while the tDCS literature indicates that 

faster search times will be observed following anodal stimulation. Furthermore, if rPPC and 

rFEF are communicating with each other on a task that we know they are both involved in 

then the same effect of tDCS will be seen regardless of which site the stimulation is applied 

to. Alternatively, if the effect of tDCS is different depending on the site of application, then 

the communication between rFEF and rPPC may be one directional.  
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2. Method 

2.1. Participants  

35 participants (12 male) from Durham University took part in this experiment (age 

range 19 to 52 years, mean age 26.1, SD = 8.5, 31 right handers). Participants were randomly 

assigned to one of five conditions. All participants were from Durham University and had 

normal or corrected-to-normal vision. Participant selection complied with the current 

guidelines for repetitive tDCS research. Participants gave their signed informed consent in 

accordance with the Declaration of Helsinki and with the approval of Durham University 

Ethics Advisory Committee. 

  

2.2. Visual search task 

The experiment was run on an IBM compatible personal computer with a 16-inch 

monitor (1024 by 768 resolution, refresh rate 60 Hz) and was programmed using E-prime 

(Psychology Software Tools Inc., Pittsburgh, PA, USA). The viewing distance was 57 cm 

and the centre of the screen was at eye level, with a chin rest used to ensure that this was 

maintained. The experiment was completed in a dark room.  

The search arrays consisted of red and green lines on a black background (Figure 1). 

The target was always a red forward slash (oriented at 45˚ from vertical) and distractors were 

green forward slashes and red backslashes (oriented at -45˚ from vertical). Search arrays 

contained 12 items: in target present trials there was one target and 11 distractors (five red 

backslashes and six green forward slashes), and in target absent trials there were 12 

distractors (six red backslashes and six green forward slashes). The target was present on 

50% of trials, with the target appearing on the left and right side of the array equally 

frequently. Each line measured 2.5˚ of visual angle in length and 0.4˚ of visual angle in 

width. The whole screen measured 32˚ of visual angle horizontally and 24˚ vertically. The 12 
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items in each search array were randomly placed into a 10 x 6 virtual grid to prevent them 

from overlapping.  

 

2.3. Procedure  

At the beginning of each trial a white fixation cross (0.5˚of visual angle) was 

presented centrally for 500 ms. This was followed by the presentation of a search array. 

Participants had to decide as quickly and as accurately as possible whether the target was 

present or absent, and make the corresponding key-press response (Cedrus RB-620 button 

box, San Pedro, California). The search array remained on the screen until participants 

responded. A blank screen was then presented for a variable duration (from 3000 ms to 5000 

ms) before the next trial was initiated. No feedback was provided about the accuracy of the 

response. Participants completed four blocks of visual search trials (30 target present and 30 

target absent trials per block), each block taking approximately six minutes to complete. 

Upon completion of block 1, the 15 minutes of tDCS (or sham stimulation) started. With the 

exception of block 2, which participants started after five minutes of stimulation and 

completed during the stimulation period, participants completed the blocks of trials at 15 

minute intervals, with block 3 starting immediately after the 15 minutes of stimulation had 

finished (see Figure 1). In the time between blocks participants sat quietly in the darkness 

until they were instructed to start the next block.  

 

2.4. Transcranial direct current stimulation  

The two rubber electrodes were placed in two sponge pouches (7 cm x 5 cm) which 

had been soaking in a physiologically active saline solution. A rubber strap was used to hold 

the two electrodes in place. tDCS was applied using a Magstim Eldith DC stimulator for 15 

minutes at a current intensity of 1.0 mA. This level of stimulation was selected given 
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previous reports that 1.0mA is sufficient at inducing measureable changes in performance 

(30-33). Stimulation protocol complied with the current safety guidelines for tDCS (34). 

There were three stimulation conditions (Cathodal, Anodal, and Sham) and two stimulation 

sites (rFEF and rPPC). Thus, there were five conditions in total, only one of which each 

participant received: cathodal stimulation to rPPC (C_rPPC), cathodal stimulation to rFEF 

(C_rFEF), anodal stimulation to rPPC (A_rPPC), anodal stimulation to rFEF (A_rFEF), or 

sham stimulation (Sham). Pilot work confirmed previous reports that search performance 

improves across testing sessions (35); therefore, a between groups design was used whereby 

participants only completed one of the five stimulation conditions to remove this potential 

confound. 

In the cathodal stimulation condition the cathode was placed over either the rFEF or 

rPPC and the anode electrode was placed above the participant’s left eye. Likewise, in the 

anodal condition, the anode electrode was placed over the rFEF or rPPC and the cathode was 

placed above the left eye. A contralateral reference position was used on account that this is 

most frequently used in the literature (see Table 1 in 36). In the Sham condition, participants 

received stimulation for only 30 seconds; consequently, they experienced the initial tingling 

sensation associated with real stimulation but insufficient current for any neuronal 

modulation. As such, participants were not aware which stimulation condition they were 

experiencing.  

The rPPC location was measured as being 9 cm dorsal and 6 cm lateral to the right of 

the mastoid-inion, as this corresponds with the angular gyrus known for its role in visual 

search tasks using TMS (14, 37). The rFEF site was located 5 cm lateral towards the right and 

4 cm anterior from the vertex, corresponding with the confluence of the right pre-central and 

superior frontal gyri, the location of rFEF (38). The locations of the two brain sites are shown 

in Figure 2. The area of stimulation was defined by the size of the electrodes (39) with 
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maximum current being discharged directly below the electrodes (40), thus, precise 

functional localisation of the sites of interest was not necessary and centring the electrode 

over the known regions was sufficient. 

 

< Figure 1 > 

< Figure 2 > 

3. Results 

3.1. Data analysis 

Analyses were concerned with participants’ reaction times to target present trials only. 

Responses to incorrect trials were removed: participants were correct on 94.6% of target 

present trials and accuracy did not differ across the five stimulation conditions (p = 0.151, 

Kruskal-Wallis test). Reaction times for trials that were more than two standard deviations 

above or below the individual’s mean were also excluded (11.0% of correct trials were 

excluded); however, the number of trials carried out was robust to such attrition with respect 

to the matter of power. All data were tested for normality using the Shapiro–Wilk statistic; 

the data were normal unless otherwise stated. Inferential statistics used a significance level of 

p < 0.05, except when multiple comparisons were performed, when a Bonferonni correction 

was applied. 

 

 

3.2. Global analysis 

The mean reaction times for the four blocks of trials in each stimulation condition are 

shown in Figure 3. A one-factor ANOVA comparing reaction times in Block 1 for the five 

Stimulation Conditions (C_rPPC, C_rFEF, Sham, A_rPPC, A_rFEF)  found no difference 

between the Stimulation Conditions (M = 873.87, SD = 177.1, p = 0.989).  
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A 4 x 5 ANOVA with the within subject variable of Block (1 - 4) and the between 

subject variable of Stimulation Condition (C_rPPC, C_rFEF, Sham, A_rPPC, A_rFEF) 

revealed a statistically significant main effect of Block, F(3, 90) = 16.82; p < 0.05, and a non-

significant main effect of Stimulation Condition (p = 0.930). However, the Block by 

Stimulation Condition interaction was significant, F(12, 90) = 1.94; p < 0.05, indicating that 

tDCS effects were modulated by site (rFEF or rPPC) and type of stimulation (Cathodal, 

Anodal, or Sham). The cathodal and anodal data were therefore analysed separately, with 

each being compared to the Sham condition.  

 

< Figure 3 > 

 

3.3. Cathodal stimulation 

A 4 x 3 ANOVA with the within subject variable of Block (1 - 4) and the between 

subject variable of Stimulation Condition (C_rPPC, C_rFEF, Sham) revealed a statistically 

significant main effect of Block, F(3, 54) = 9.00; p < 0.05, and a non-significant main effect of 

Stimulation Condition (p = 0.505). The Block by Stimulation Condition interaction was 

significant, F(6, 54) = 3.78; p < 0.05, suggesting that reaction time patterns across the four 

blocks of trials varied between the Stimulation Conditions. The main effect of Block was 

significant in the Sham and rFEF conditions (F(3, 18) = 6.82; p < 0.017; F(3, 18) = 7.68; p < 

0.017, respectively) but not in the rPPC condition (p = 0.151, repeated measures ANOVA for 

each Stimulation Condition). 

To get immediate and overall measures of search performance, reaction time 

comparisons were made between the first and second blocks and between the first and fourth 

blocks of trials. In the Sham condition participants became faster between both the first two 

blocks of trials (reduction of 67.1 ms, t(6) = 2.99; p < 0.025), and between the first and fourth 
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blocks of trials (reduction of 89.8 ms, t(6) = 3.92; p < 0.025, paired sample t-tests). In the 

rFEF condition, the same pattern was seen (reduction of 72.4 ms between blocks 1 and 2, t(6) 

= 4.41; p < 0.025; reduction of 132.9 ms between blocks 1 and 4, t(6) = 3.42; p < 0.025, see 

Figure 3B). Conversely, in the rPPC condition there was a trend for an increase in reaction 

times between blocks 1 and 2 (increase of 40.1 ms, t(6) = 1.48; p = 0.188), and across the four 

blocks of trials there was no change in reaction times (reduction of 7.8 ms, t(6) = .25; p = 

0.813, see Figure 3A). Thus, while cathodal stimulation had no effect when applied to rFEF, 

the same stimulation negated the speeding associated with practice when applied to rPPC. 

 

3.3.1. Normalised effects  

Reaction times in the two cathodal stimulation conditions were normalised with 

respect to sham reaction times in order to compare the relative effect of tDCS at these sites 

using the following equation: (Cathodal_site y Block y – Sham_site x Block y)/ Sham Block 

x) * 100/1. These percentage effects of tDCS are shown in Figure 4, with a positive number 

indicating reaction times were slower when tDCS was applied than in the Sham condition. A 

mixed ANOVA with the within subject variable of Block (2 - 4) and the between subject 

variable of Stimulation Condition (C_rPPC, C_rFEF) revealed a significant main effect of 

Stimulation Condition, F(1,12) = 4.95; p < .05, indicating that tDCS had a differential effect 

over the two sites (main effect of Block: p = 0.270; Block x Stimulation Condition 

interaction: p = 0.618). 

 

3.4. Anodal stimulation 

A 4 x 3 ANOVA with the within subject factor of Block (1 - 4) and the between 

subject variable of Stimulation Condition (A_rPPC, A_rFEF, Sham) revealed a statistically 

significant main effect of Block, F(3, 54) = 12.96; p < 0.05; a non-significant main effect of 
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Stimulation Condition (p = 0.991); and a non-significant Block by Stimulation Condition 

interaction (p = 0.656): reaction times decreased across the four blocks of trials in all three 

stimulation conditions (A_rPPC, A_rFEF, Sham, see Figures 3C and 3D). Owing to the non-

significant interaction between Block and Stimulation Condition, comparison of normalised 

effects is not required (see Figure 4). 

 

< Figure 4 > 
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4. Discussion 

The experiment reported here sought to define the effects of cathodal and anodal 

tDCS on the processing of an attentional task when current was applied separately to two 

brain regions known to be involved in this task, namely rPPC and rFEF (12, 15, 41).  

 

4.1. Cathodal stimulation 

The results show that only cathodal tDCS over rPPC affects visual search 

performance. Furthermore, the effects were limited in duration: performance was impaired by 

cathodal tDCS relative to the sham condition only when the task was performed concurrently 

or immediately following stimulation (blocks 2 and 3). This is in contrast to other studies 

with the less conservative measure of motor evoked potential (MEP) that show effects up to 

90 minutes later (27, 28). Differences between block 2 (concurrent stimulation) and blocks 3 

and 4 (post-stimulation) would be expected given that the effects of online tDCS and offline 

tDCS are mediated by different mechanisms: online cathodal stimulation alters the resting 

membrane potential, while effects following a period of cathodal stimulation are driven by 

the modulation of glutamatergic synapses (42). 

Practice in visual search typically leads to a reduction in search times (43). However, 

following cathodal stimulation to rPPC (block 4) search times were no different to those 

before stimulation (block 1). It was expected that cathodal tDCS would have the same 

behavioural effect as TMS owing to the decrease in activity of the underlying neurons, and 

thus increasing the threshold of activation (TMS in contrast introduces neural “noise” 

resulting in the same functional effect of a deficit in performance if that area is involved). 

Therefore, cathodal tDCS would seem to have a more subtle effect on behaviour by negating 

the decrease in reaction time seen with ensuing blocks (the practice effect). Whilst the 

practice effect in this experiment cannot be equated with plasticity associated with perceptual 
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learning, since this typically requires longer term learning over days separated by episodes of 

REM sleep (35), it is possible that the short-term practice effects are mediated by the distal 

effect of cathodal tDCS on sub-cortical networks. Using functional connectivity MRI, Eldaief 

and colleagues (44) have shown that low frequency TMS to the left inferior parietal lobule 

can modulate connectivity with the hippocampal formation. Although tDCS and rPPC were 

involved in the current experiment, it remains possible that cortical intervention can lead to 

effects that are mediated by subcortical mechanisms. 

In contrast to the effects we observed at rPPC, we found that cathodal tDCS applied to 

rFEF had no significant effect of any kind. We considered the possibility that our reaction 

time measure was not sufficiently sensitive to detect very subtle changes in search 

performance by conducting a second experiment, this time focusing solely on cathodal 

stimulation of rFEF. Such a view is supported by a recent study by Muggleton et al. (45) 

which dissociated the role of rFEF and rPPC with respect to responses involving eye 

movements and manual responses. We recorded eye movements in a dot localisation task and 

again found no difference between stimulation conditions: eye movement execution in terms 

of the speed of onset and duration was not different in the cathodal and sham stimulation 

conditions (see Supplementary Material). Therefore, it would appear that the involvement of 

rFEF in conjunction visual search is less clear when investigated with tDCS. This is in 

contrast to event related TMS which has a detrimental effect on visual search reaction times 

when applied to rFEF (9-12). The lack of neuro-modulation of rFEF with cathodal tDCS here 

suggests that rFEF is not amenable to tDCS modulation. Both this, and the findings from 

TMS that disruption to search performance is observed when stimulation is applied at the 

point of stimulus onset (12) and after a very brief delay (40 – 80 ms post stimulus onset, 41), 

indicate that rFEF works transiently. As we have demonstrated here, prolonged stimulation of 

this region does not have a demonstrable effect on behaviour. This suggests that this region 
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can overcome such disruption either due to its relatively short and transient input to 

processing or via hitherto uncovered neuroplastic mechanisms which ensures normal 

function. Theoretically, such mechanisms could include the recruitment of or compensation 

by other regions (as seen between v5 and PPC when processing at V5 is disrupted, Ellison et 

al., 2007). However, we can discount rPPC as a potential substrate since extended stimulation 

should affect rPPC activity and therefore affect performance, and this was not observed in 

our study. 

Anatomically, both rFEF and rPPC are highly interconnected with other brain regions 

and each other (4, 46), and in our experiment cathodal tDCS had a functional effect at one 

site (rPPC) but not the other (rFEF). This leads us to speculate about the complex nature of 

communication between the two. The effects observed during and following cathodal 

stimulation to rPPC may be on account of either disruption to rPPC itself or to other 

components of the network, including FEF or hippocampal regions. The data suggest that 

rPPC disruption, or disruption along its communication network, cannot be compensated for. 

Conversely, owing to the lack of behavioural effect following cathodal stimulation to rFEF it 

is likely that the decrease in neuronal activity at rFEF did not spread to disrupt rPPC (or 

indeed other regions). Alternatively, other regions, such as left FEF, may have taken over its 

function (12). These possibilities are currently being examined with functional imaging. 

Thus, our pattern of results shows that whilst rPPC may interact with rFEF and other regions, 

tDCS to rFEF does not suggest that this region acts in the same way. Although our findings 

are less clear than those resulting from an event related TMS study, the more prolonged 

polarity-dependant neuro-stimulation employed here allows us to make inferences as to the 

role of the areas of interest within the context of their wider processing loops.  
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4.2. Anodal Stimulation 

Visual search performance was not modulated by anodal stimulation at either site. 

Anodal stimulation increases the likelihood of neuronal firing, which typically leads to 

improvements in task performance (for example, 47, 48, 49). With regards to visual search, 

under non-stimulation conditions performance typically improves after practice (the sham 

condition here but see also 43, 50), with reaction time eventually plateauing (35, 51). The 

absence of a difference between the two anodal conditions and the sham condition here 

suggests that practice plus anodal stimulation did not enhance performance further than 

would be expected with practice alone: in the neurotypical brain, performance may be at 

ceiling. However, it is possible that differences may appear between the anodal and sham 

stimulation conditions after search times have stabilised, that is, in a second testing session 

where further reductions in search times may be selectively seen in the anodal condition. 

Supporting this proposal, Dockery et al. (52) found that while cognitive planning ability 

improved following anodal stimulation, this effect was only observed when anodal 

stimulation was applied in a later session. Equally, anodal stimulation may only affect 

performance in more difficult tasks in which practice was not so quick to improve behaviour 

(53). 

 

On the face of it our findings appear to contradict the “cathodal impairs and anodal 

improves” dichotomy; however, it is increasingly becoming clear that this may not be the 

best way to characterise the effects of cathodal and anodal stimulation. tDCS research has 

focused on the motor and visual cortices, and for example how stimulation affects the 

amplitude of MEPs or thresholds of phosphene detection (19, 27, 54-58). A meta-analysis of 

tDCS effects reports that that typical dissociation between anodal enhancing and cathodal 

impairing performance is consistently observed for motor tasks (59). Conversely, tDCS has 
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only more recently been used to manipulate cognitive performance (52, 60, 61), with the 

effects being more variable and with little effect of cathodal stimulation being reported (59). 

However, based on our findings here for rPPC, solely comparing performance before and 

after participants undergo tDCS could be misleading about the effectiveness of the 

stimulation. At first glance it may be tempting to conclude that cathodal stimulation had no 

effect on search performance when applied to rPPC. However, upon closer inspection, 

coupled with an understanding of the characteristics of search behaviour with increasing 

practice and familiarity, it is clear that cathodal tDCS negates the practice effect. While a 

stronger intensity of stimulation may have given us greater effects and those that match the 

anodal enhances and cathodal impairs pattern (e.g. 33, 62, 63), we chose to use 1.0mA as this 

is sufficient to induce measureable changes in performance and allows direct comparison 

with other studies (30-33).   

 

4.3. Conclusion 

We have found that the application of cathodal tDCS to two nodes on the visual 

attentional network had a functional effect at one site but not the other.  Given this difference, 

and the fact that both rFEF and rPPC are highly interconnected with other brain regions and 

each other, we can speculate about the complex nature of communication between the two. 

The effects observed during and following cathodal stimulation to rPPC may be as a 

consequence of either disruption to rPPC itself or to other components of the network, 

including FEF or hippocampal regions. The data suggest that rPPC disruption, or disruption 

along its communication network, cannot be compensated for. Conversely, owing to the lack 

of behavioural effect following cathodal stimulation to rFEF it is likely that the decrease in 

neuronal activity at rFEF did not spread to disrupt rPPC (or indeed other regions). 
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Alternatively, other regions, such as left FEF, may have taken over its function. These 

possibilities are currently being examined with functional imaging.  
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Figures 

 

Figure 1. Schematic of the experimental procedure and timing information used and an example 

visual search display.  

 

 

 

Figure 2. Locations of rPPC and rFEF. 
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Figure 3. Graphs depicting the mean reaction time (ms) for the four blocks of visual search 

trials with each stimulation condition compared to the sham condition. (A) Cathodal rPPC, 

(B) Cathodal rFEF, (C) Anodal rPPC, (D) Anodal rFEF.  Error bars represent +/- 1 standard 

error of the mean for each condition. The grey dashed line denotes the sham condition, and 

likewise the error bars for the sham condition are represented by a grey dashed line.   
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Figure 4. Normalised reaction times for each site expressed as a percentage of sham reaction 

times. This allows for efficient comparison of tDCS effects across sites. A positive number 

indicates slower reaction times when tDCS was applied. * denotes p < .05. Error bars 

represent +/- 1 standard error of the mean for each condition.   
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Supplementary material – EOG and cathodal stimulation to rFEF 

 

Participants  

14 participants (7 male) from Durham University took part in Experiment 2 (age 

range 20 to 53 years, mean age 29.0, SD = 8.0; 11 were right handed). Participants were 

randomly assigned to one of two stimulation conditions (Cathodal and Sham). 

 

Dot localisation task 

Participants were required to make an eye movement from a central fixation cross 

(0.5˚of visual angle) to a white circle (0.5˚ in diameter) presented at one of twelve possible 

locations. Circles were presented at one of two eccentricities (3.5˚ and 7˚ either to the left or 

the right of the fixation cross), and at three different heights (3.5˚ above and below the 

fixation cross and level with fixation cross). The whole screen measured 32˚ of visual angle 

horizontally and 24˚ vertically.  

 

Procedure  

At the beginning of each trial a white fixation cross was presented centrally for 1500 

ms. This was followed by the presentation of a dot at one of 12 locations for 2000 ms. 

Participants had to make an eye movement to the dot and press a button when they were 

fixating it. A blank screen was then presented for 2000 ms, before the next trial was initiated. 

Participants completed four blocks of trials, each block consisting of 60 trials and taking 

approximately six minutes to complete. The dot appeared at each of the 12 possible locations 

five times per block and the location was randomised across trials. The tDCS procedure was 

the same as that used in the main experiment (Figure 1).   
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Transcranial direct current stimulation 

The stimulation parameters were the same as those used before with the exception 

that there were only two stimulation conditions: Cathodal and Sham; and one stimulation site: 

rFEF. As before rFEF was measured as being 5 cm lateral towards the right and 4 cm anterior 

from vertex (Figure 2).   

 

Eye movement recording 

Electro-oculographic eye movement data were recorded throughout the trials using an 

MP35 acquisition unit and BSL Pro 3.7 software (Biopac Systems Inc., CA, USA). Six 

shielded 4 mm AgCl electrodes were attached to the participants’ skin using adhesive disks, 

and electrode gel was used to improve recording conductance. Both vertical and horizontal 

eye movements were measured. The two vertical recording electrodes were aligned above 

and below the participant’s right eye. The ground electrode for the vertical channel was 

placed on the right ear lobe of the participant. The two electrodes that measured the 

horizontal movements were placed adjacent to the temporal canthus of each eye, and the 

horizontal ground electrode was placed on the left ear lobe. The data was sampled at a rate of 

1000 Hz using the software channel presets (.05 – 35 Hz EOG). The first 4000 ms of each 

trial was recorded, which included the 1500 ms presentation of the central fixation point.  

 

Data analysis 

Data analysis was completed off-line using Biopac’s ACQKnowledge software. The 

saccadic response time (SRT) was recorded for each trial, and was defined as the time 

between the onset of the target dot and the point of the first steep increase relative to the 

baseline period (fixation) in the EOG record of at least one channel. Two researchers 

recorded SRT independently, one of whom was blind to condition, and the mean of the two 
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was then used for analysis. Trials where it was not possible to accurately mark the onset of 

the first saccade post-stimulus onset were excluded from the analysis. This resulted in the 

exclusion of 1.3% of all trials (44 out of 3360 trials).  

 

Results 

Saccadic response time (SRT) 

The mean SRT for both stimulation conditions are shown in the upper half of Table 1. 

The data were subjected to a mixed ANOVA (4 x 2) with the within subject factor of Block 

(1 – 4) and the between subject factor of Stimulation Condition (Sham, tDCS). Both the main 

effect of Block (p = 0.516) and the Block by Stimulus Condition interaction were not 

significant (p = 0.297). The main effect of Stimulus Condition was marginally non-

significant (p = 0.067), with SRT being faster in the Sham condition (M = 192.57, SD = 15.6) 

compared to the tDCS condition (M = 216.65, SD = 27.5). Comparing left and rightward 

saccades, a global ANOVA with the within subject factors of Block (1 – 4) and Side (Left, 

Right), and the between subject factor of Stimulation Condition (Sham, tDCS) revealed no 

significant main effects or interactions.  

 

Saccadic duration  

 The average duration of the first saccade of each trial was calculated for the two 

stimulation conditions and is shown in the lower part of Table 1. A mixed ANOVA with the 

within subject factor of Block and the between subject factor of Stimulation Condition was 

performed. The main effects of both Block (p = 0.407) and Stimulation Condition (p = 0.152) 

were non-significant, as was the interaction (p = 0.637). Likewise, no significant main effects 

or interactions were found when the data considered left and rightward saccades. 
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Table 1. Mean saccadic response time and duration (ms) for both stimulation conditions as a 

function of block and broken down by side of presentation. Standard deviations are in 

parentheses. 

 

  

Block 1 

 

Block 2 

 

Block 3 

 

Block 4 

 

SRT - Sham  

         Left 

         Right 

 

 

194.79 (16.8) 

197.50 (21.6) 

 

 

192.76 (13.8) 

188.76 (16.9) 

 

 

189.95 (16.8) 

192.27 (20.5) 

 

 

190.20 (16.1) 

194.34 (16.5) 

 

SRT - tDCS 

         Left 

         Right 

 

 

217.38 (24.1) 

215.58 (21.0) 

 

 

218.79 (35.0) 

220.72 (19.4) 

 

 

222.10 (51.9) 

217.20 (30.5) 

 

 

207.91 (25.9) 

213.54 (27.5) 

     

Duration - Sham 

         Left 

         Right 

 

44.91 (4.5) 

45.20 (3.2) 

 

44.89 (3.9) 

43.87 (4.1) 

 

45.35 (3.2) 

44.63 (2.5) 

 

45.89 (2.9) 

45.61 (4.0) 

 

Duration - tDCS 

         Left 

         Right 

 

 

51.66 (11.2) 

51.14 (14.0) 

 

 

49.09 (4.7) 

46.84 (7.4) 

 

 

49.53 (3.8) 

49.16 (6.6) 

 

 

48.91 (3.9) 

49.77 (9.2) 

 

 

 

 

 
 

 

 

 

 


