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In this work we prove congruences between special values of L-functions of elliptic curves with CM
that seem to play a central role in the analytic side of the non-commutative Iwasawa theory. These
congruences are the analogue for elliptic curves with CM of those proved by Kato, Ritter and Weiss
for the Tate motive. The proof is based on the fact that the critical values of elliptic curves with CM,
or what amounts to the same, the critical values of Grössencharacters, can be expressed as values of
Hilbert-Eisenstein series at CM points. We believe that our strategy can be generalized to provide con-
gruences for a large class of L-values.

a

1. Introduction

In [8,15] a vast generalization of the Main Conjecture of the classical (abelian) Iwasawa
theory to a non-abelian setting is proposed. As in the classical theory, the non-abelian
Main Conjecture predicts a deep relation between an analytic object (a non-abelian p-adic
L-function) and an algebraic object (a Selmer group or complex over a non-abelian p-
adic Lie extension). However, the evidences for this non-abelian Main Conjecture are still
very modest. One of the central difficulties of the theory seems to be the construction
of non-abelian p-adic L-functions. Actually, the only known results in this direction are
mainly restricted to the Tate motive over particular p-adic Lie extensions as, for example, in
[16,22,23,27]. We should also mention here that for elliptic curves there are some evidences
for the existence of such non-abelian p-adic L-functions offered in [4,10] and also some
computational evidences offered in [11,14]. Finally, there is some recent progress, achieved
in [5], for elliptic curves with complex multiplication defined overQwith repsect the p-adic
Lie extension obtained by adjoing to Q the p-power torsion points of the elliptic curve.

The main aim of the present work is to address the issue of the existence of the non-
abelian p-adic L-function for an elliptic curve with complex multiplication (but see also
the remark later in the introduction) with respect specific p-adic Lie extension as for ex-
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ample, the so-called false Tate type extension or the Heisenberg type extensions. Actually,
we prove congruences, under some assumptions, that are the analogue for elliptic curves
with CM of those proved by Ritter and Weiss in [27] for the Tate motive. We remark that
such type of congruences is the main input from the analytic theory in order to prove the
existence of the non-abelian p-adic L-function as done, for example, in [23] or in [22] for
the Tate motive. We start by making our setting concrete.

Let E be an elliptic curve defined over Q with CM by the ring of integers R0 of a
quadratic imaginary field K0. We fix an isomorphism R0

∼= End(E) and we write Σ0

for the implicit CM type of E. Let us write ψK0 for the Grössencharacter attached to E.
That is, ψK0 is a Hecke character of K0 of (ideal) type (1, 0) with respect to the CM type
Σ0 and satisfies L(E, s) = L(ψK0 , s). We fix an odd prime p where the elliptic curve has
good ordinary reduction. We fix an embedding Q̄ ↪→ Q̄p and, using the selected CM type,
we fix an embedding K0 ↪→ Q̄. The ordinary assumption implies that p splits in K0, say
to p and p̄ where we write p for the prime ideal that corresponds to the p-adic embedding
K0 ↪→ Q̄ ↪→ Q̄p. We write NE for the conductor of E and f for the conductor of ψK0 .

We consider a finite totally real extension F (resp. F ′ ⊃ F ) of Q which we assume
unramified at the primes ofQ that ramify in K0 and at p. We write r (resp. r′) for its ring of
integers and we fix an integral ideal n of r that is relative prime to p and to NE . Let K (resp
K ′) be the CM-field FK0 (resp. F ′K0 = F ′K) and let R (resp. R′) be its ring of integers.
Let F (p∞n) be the ray class field of conductor p∞n and let F ′ be ramified only at primes
above p, hence F ⊂ F ′ ⊂ F (p∞n). Furthermore, assume F ′/F to be cyclic of order p

and that the primes of F ′ that ramify in F ′/F are split in K ′. That is if we write θF ′/F for
the relative different of F ′/F then θF ′/F = PP̄ in K ′. We write Γ for the Galois group
Gal(F ′/F ) ∼= Gal(K ′/K). Note that in both F and F ′ all primes above p split in K and
K ′ respectively. Finally we write τ for the nontrivial element (complex conjugation) of
Gal(K/F ) ∼= Gal(K ′/F ′) and we set g := [F : Q].

We now consider the base changed elliptic curves E/F over F and E/F ′ over F ′. We
note that the above setting gives the following equalities between the L functions,

L(E/F, s) = L(ψK , s), L(E/F ′, s) = L(ψK′ , s) (1.1)

where ψK := ψK0 ◦ NK/K0 and ψK′ := ψK ◦ NK′/K = ψK0 ◦ NK′/K0 , that is the
base-changed characters of ψK0 to K and K ′.

We write GF for the Galois group Gal(F (p∞n)/F ) and GF ′ := Gal(F ′(p∞n)/F ′)
for the analogue for F ′. Note that the above setting (the ramification of F ′ over F ) intro-
duces a transfer map ver : GF → GF ′ . Moreover we have an action of Γ = Gal(F ′/F ) on
GF ′ by conjugation. We consider the measures µE/F of GF and µE/F ′ of GF ′ that inter-
polate the critical value at s = 1 of the elliptic curve E/F and E/F ′ respectively twisted
by finite order characters of conductor dividing p∞n. The precise interpolation property is
a delicate issue in our setting that we will discuss in the next section. However we can state
now the main theorem of our work. We write j for the smallest ideal of r which contains
nfR∩F and such that its prime factors are inert or ramified in K. If we write J := jR then
we denote by ClK(J) the ray class group of the ray class field K(J). We define Cl−K(J) as
the quotient of ClK(J) by the natural image of (r/j)×. Similarly, we make the analogous
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definitions for K ′.

Theorem 1.1. We make the assumptions

(1) The natural map Cl−K(J) → Cl−K′(J)Γ is an isomorphism,
(2) The natural map ClF (1) → ClF ′(1) is an injection,
(3) The relative different θF ′/F of F ′ over F is trivial in Cl+F ′ , the strict ideal class group

of F ′. That is, there is a totally positive ξ ∈ F ′ such that θF ′/F = (ξ).

Then,
∫

GF

ε ◦ ver dµE/F ≡
∫

GF ′
ε dµE/F ′ mod pZp (1.2)

for all ε locally constant Zp-valued functions on GF ′ such that εγ = ε for all γ ∈ Γ, where
εγ(g) := ε(γ̃gγ̃−1) for all g ∈ GF ′ and for some lift γ̃ ∈ Gal(F ′(p∞n)/F )) of γ. More
generally, if we relax the assumption (1) and assume only that ı : Cl−K(J) ↪→ Cl−K′(J)Γ is
injective, then equation (1) reads

∫

GF

ε ◦ ver dµE/F ≡
∫

GF ′
ε dµE/F ′ + ∆(ε) mod pZp, (1.3)

where ∆(ε) is an “error term” that depends on the cokernel of the map ı.

Remarks:

(1) It can be shown, see for example [27], that the above congruences imply the following
congruences between measures. If we write fE/F for the element in the Iwasawa al-
gebra Zp[[GF ]] that corresponds to the measure µE/F and similarly fE/F ′ for that in
Zp[[G′F ]], then we obtain the congruences

ver(fE/F ) ≡ fE/F ′ mod T, (1.4)

where T is the trace ideal in Zp[[G′F ]]Γ generated by elements Σp−1
i=0 aγi

for a ∈
Zp[[G′F ]]. Note that fE/F ′ is in Zp[[G′F ]]Γ as it comes from base change from F . It is
exactly this implication that motivates our work. The aim is to use this kind of congru-
ences to establish the existence of non-commutative p-adic L-functions for our elliptic
curve with respect to specific p-adic Lie groups, as for example Heisenberg type Lie
groups, very much in the same spirit as done by Kato for the Tate motive Zp(1) in [23]
and by Kakde for false Tate curve extensions also for the Tate motive in [22].

(2) Our assumption that the elliptic curve is defined over Q is made mainly for simplicity
reasons. Our considerations could be applied in a more general setting. One can con-
sider as starting “object” a Hilbert-modular form over F with CM by K. The delicate
issue however is the understanding of the various motivic periods that are associated to
it. However the “philosophy” of our proof applies also in this setting.

(3) We believe that the term ∆(ε) always vanishes but we cannot prove it yet.
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(4) The assumption that ε is Zp-valued can be relaxed and consider any integrally-valued
locally constant function. Then simply one obtains the congruences

∫

GF

ε ◦ ver dµE/F ≡
∫

GF ′
ε dµE/F ′ mod pZp[ε], (1.5)

where Zp[ε] is the ring of integers of the smallest extension of Qp that contains the
values of ε.

(5) The assumption that F ′/F is ramified only at p could be modified and in general
consider F ′ such that F ⊆ F ′ ⊆ F (p∞n) and all the primes of F that ramify in F ′ are
split in K.

On the strategy of the proof: Let us finish the introduction by briefly explaining the
main idea of the proof. As we will shortly explain we are going to construct the measures
µE/F and µE/F ′ by using the so-called Katz measure for Hecke characters of CM fields.
The reason for this should be intuitively clear from the above equation of L functions.
These measures are constructed by using the fact (going back to Damerell’s theorem) that
the special values of the L-functions of Grössencharacters of a CM field K can be expressed
as values of Hilbert-Eisenstein series on particular CM points. The modular meaning of
these CM points is that they correspond to Hilbert-Blumenthal abelian varieties (HBAV)
with CM by K of the same type as the character under consideration. In our relative setting
we have that the Grössencharacter ψK′ is the base change of ψK . In particular, as we will
explain in the next section, if we write (K, Σ) for the CM type of ψK , then the CM type
of ψK′ is (K ′,Σ′) where Σ′ is the lift of Σ to K ′. But now the key observation is that
the HBAV with CM of type (K ′,Σ′) are isogenous to [K ′ : K]-copies of HBAV with CM
(K, Σ). In particular this says that the CM points that we need to evaluate our Eisenstein
series over F ′ are in some sense coming from F through the natural diagonal embedding
∆ : HF ↪→ HF ′ of the Hilbert upper half planes. Note here the importance of Σ′ being
lifted from Σ. Hence we can pull-back the Hilbert-Eisenstein series that is used over F ′

to obtain a Hilbert-Eisenstein series over F , so that its values on the CM points of HF

under consideration are the same with those of the one over F ′ evaluated on the image
of these CM points with respect to ∆. It is mainly this idea that we will use to prove the
above congruences. We note here that a similar strategy was used by Kato [23] and Ritter
and Weiss [27] for the cyclotomic character but in their works the L values appeared as the
constant term of Hilbert-Eisenstein series (or as “values” at the cusp at infinity). We believe
that this strategy is more general. We have applied similar considerations in [3] for other
L-values that can be understood either as values at CM points or at infinity of Eisenstein
series of the unitary group. Actually, what we are doing here could be rephrased in the
unitary group setting, but we defer this discussion for our forthcoming work [3].

2. The Measures Attached to the Elliptic Curves E/F and E/F ′

The statement of our main theorem involves measures on GF (resp GF ′) with the property
that integrating these measures against finite characters of GF (resp GF ′ ) we obtain critical
values of E/F (resp E/F ′)) twisted with these characters up to some modification. Now
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we proceed in explaining the construction of these measures and their interpolation proper-
ties. We point right away that there are various construction of these measures; the modular
symbol construction, which we will not discuss at all, the construction of Katz, Hida and
Tilouine, which we will use in the present work and, finally, in our specific setting, the con-
struction of Colmez and Schneps which we also discuss shortly below. In order to explain
the definition of the above-mentioned measures we need to introduce some more notation.

Archimedean and p-adic periods: Since the elliptic curve E is defined of Q, we have
that the class number of K0 is one. In particular, we can fix a well-defined complex period
for E as follows. We write Λ for the lattice of E, that is E(C) ∼= C/Λ. Then we define
Ω∞(E) ∈ C×, uniquely up to elements in R×

0 , as Λ = Ω∞(E)σ0(R0), where σ0 : K ↪→
C is the selected embedding. Moreover we define a p-adic period Ωp(E) ∈ J×∞, where J∞
denotes the ring of integers of the p-adic completion of the maximal abelian unramified
extension of Qp. If we write Φ for the extension of Frobenious that operates on it, then it is
well-known that this period is uniquely determined, up to elements in Z×p , by the property

Ωp(E)Φ

Ωp(E)
= u ∈ Z×p , (2.1)

where u is the p-adic unit determined by the equation (note that, as p is good ordinary for
E, we have ap(E) := p + 1− ]Ẽp(Fp) ∈ Z×p )

1− ap(E)X + pX2 = (1− uX)(1− wX). (2.2)

CM-types: We fix some CM-types for the CM fields K0,K,K ′. We have already fixed
an embedding of K0 ↪→ C, say σ0 and defined the CM type of K0 by Σ0 = {σ0}. We
normalized things so that the character ψK0 is of infinite type 1 Σ0. Now we fix a CM type
Σ of K by taking the lift of Σ0 to K. That is, we pick embeddings that restrict to σ0 in K0.
We also define Σ′ to be the lift of Σ in K ′. We note two things for these CM-types. First
the characters ψK and ψ′K are of type 1Σ and 1Σ′. Second the types just picked are also
p-ordinary in the terminology of Katz, that simply amounts to picking the primes of K and
K ′ that are above p. We denote these sets of primes as Σp and Σ′p respectively. Of course
we set also Σ0,p = {p}. Finally, we note that all abelian varieties of dimension [F : Q] with
CM by K (resp dimension [F ′ : Q] and CM by K ′) and type Σ (resp. Σ′) are isogenous to
the product of [F : Q] (resp. [F ′ : Q]) copies of the elliptic curve E (see [26, Theorem 4.4.
page 19]).

The ∞-types of the Grössencharacters: For the Grössencharacter ψK0 we have that
ψK0 ψ̄K0 = NK0/Q and that ψK0(q̄) = ψK0(q). In particular,

L(ψ−1
K0

, 0) = L(ψ̄K0N
−1
K/Q, 0) = L(ψ̄K0 , 1) = L(ψK0 , 1). (2.3)

Moreover, if we consider twists by finite cyclotomic characters, that is characters of the
form χ = χ′ ◦NK0/Q for χ′ a finite Dirichlet character of Q, we have that L(ψK0χ, 1) =
L(ψ−1

K0
χ, 0). The same considerations apply of course for ψK and ψK′ . So from now on

we are going to consider characters of infinite type −kΣ0, −kΣ and −kΣ′ for the various
CM-types and k ≥ 1 and the critical values that we study are at s = 0. The above equation
explains why these are the values that we are interested in.
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We now recall the interpolation properties of a slight modification of a p-adic mea-
sure µKHT

δ for Hecke characters constructed by Katz [25] and later extended by Hida and
Tilouine in [17]. Let C be some integral ideal of K relative prime to p. Then, for a Hecke
character χ of GK := Gal(K(Cp∞)/K) of infinite type −kΣ, we have

∫
GK

χ(g)µKHT
δ (g)

ΩkΣ
p

= (R× : r×)Local(Σ, χ, δ)
(−1)kgΓ(k)g

√
DF ΩkΣ∞

×

∏

q|FJ

(1− χ̌(q̄))
∏

q|F
(1− χ(q̄))

∏

p∈Σp

(1− χ(p̄))(1− χ̌(p̄))L(0, χ),

where the ideals F, J are some factors of C and will be defined in the next section and χ̌

is a Hecke character defined by the equality χ(q)χ̌(q̄) = NK/Q(q)−1. Also, in the next
section, we will explain in details the construction of the above measure, but for the time
being we just want to indicate three points:

(1) The measure depends on a choice of totally imaginary element δ ∈ K, with Im(δσ) >

0 for σ ∈ Σ and such that its valuation at p ∈ Σp is equal with the valuation of the
absolute different of K.

(2) The periods (archimedean and p-adic) that appear above depend only on the CM type
Σ and not at all on the finite part of the Hecke character χ.

(3) The factor Local(χ, Σ, δ) is similar to some epsilon factor of χ, but not equal. We will
explain more on that shortly.

We have fixed above a Grössencharacter ψK (note that k = 1 for this character). We set,
with notation as in the introduction, C := nfR and we consider the measure of GK defined
for every finite character χ of GK by

∫

GK

χ(g)µKHT
ψK , δ (g) :=

∫

GK

χ(g)ψ̂−1
K (g)µKHT

δ (g), (2.4)

where ψ̂K is the p-adic avatar of ψK constructed by Weil, see for example [21, The-
orem 1.1 page 12]. We will show later that in this case we can set ΩΣ

p = Ωp(E)g

and ΩΣ
∞ = Ω(E)g. Then, we define the measure µE/F discussed above by (recall that

GF := Gal(F (np∞)/F ))
∫

GF

χ(g)µE/F (g) :=

∫
GK

χ̃(g)µKHT
ψK , δ (g)

Ωp(E)g
, (2.5)

where χ̃ is the base change of χ from F to K. Then, from our remarks on the critical value
L(E/F, 1), we see that this measure interpolates twists of this critical value of E/F . The
same considerations apply also for the datum (K ′, F ′, ψK′ , GF ′ , GK′). We now observe
that our main theorem above amounts to prove the following congruences, under of course
the same assumptions as in the theorem above,

∫
GK

ε ◦ ver dµKHT
ψK , δ

Ωp(E)g
≡

∫
GK′

ε dµKHT
ψK′ , δ′

Ωp(E)pg
mod pZp (2.6)
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for all ε locally constant Zp-valued functions on GK′ with εγ = ε, which belong to the
cyclotomic part of it, i.e. when it is written as a sum of finite order characters it is of the
form ε =

∑
cχχ with χτ = χ.

However, these congruences do not hold when the extension F ′/F is ramified. In or-
der to overcome this difficulty we will need to modify (twist) the measure of Katz-Hida-
Tilouine over K ′. The key question is whether the factor Local(χ,Σ, δ) is the “right” one.
We believe that this is not so when the extension F ′/F is ramified (in the appendix we offer
evidences for this) and actually with our modification we aim to overcome this problem. In
short, we will define for the datum (K ′, F ′, ψK′ , GF ′ , GK′) the measure µE/F ′ as

∫

GF ′
χ(g)µE/F ′(g) :=

∫
GK′

χ̃(g)µKHT,tw
ψK′ , δ,ξ (g)

Ωp(E)pg
:=

∫
GK′

χ̃(g)ψ̂−1
K′ (g)µKHT,tw

δ,ξ (g)

Ωp(E)pg
,

(2.7)
where the measure µKHT,tw

δ,ξ , called in this work the twisted Katz-Hida-Tilouine measure,
will be defined in section 4. Then we will show that

∫
GK

ε ◦ ver dµKHT
ψK , δ

Ωp(E)g
≡

∫
GK′

ε dµKHT,tw
ψK′ , δ,ξ

Ωp(E)pg
mod pZp (2.8)

for all ε locally constant Zp-valued functions on GK′ with εγ = ε which belong to the
cyclotomic part of it.

The measure of Colmez and Schneps: We close this section by making a few more
observations. In the setting that we consider we can apply the construction of [9]. Indeed,
in this work Colmez and Schneps construct a measure of GK := Gal(K(Cp∞)/K) such
that, for every Grössencharacter χ of K of infinite type χ((a)) = NK/K0(a))−k for a ≡ 1
modulo the conductor of χ,
∫

GK

χ(g)µCS(g) = (−1)kgΓ(k)g
∏

p∈Σp

ep(χ, ψ, dx1)
∏

q|C
(1−χ(q))

∏

p∈Σp

(1−χ(p̄))(1−χ̌(p̄))L(0, χ).

Although Colmez and Schneps do not work the algebraicity of the measure we see here that
their measure is normalized differently from that of Katz-Hida-Tilouine with respect to the
local factors. Here one gets the epsilon factors of Deligne as local factors. It is exactly this
construction that we explore in a common work with Filippo Nuccio [6] where we try to
obtain a different proof of the congruences hoping also to relax some of the assumptions
of the current work.

3. The (twisted-)Eisenstein Measure of Katz-Hida-Tilouine

We start by recalling some Eisenstein series appearing in the work of Katz [25] and Hida
and Tilouine [17]. For reasons that will become clear later we need to introduce a slight
modification of these series. We follow the notations of Hida and Tilouine and introduce
the setting described in their paper. We consider a totally real field F with ring of integers
r and write θ for the different of F/Q. We also fix an odd prime p. For an ideal a of F we
write a∗ = a−1θ−1. We fix a fractional ideal c and take two fractional ideals a and b such
that ab−1 = c. Let φ : {rp × (r/f′)} × {rp × (r/f′′)} → C be a locally constant function
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such that φ(ε−1x, εy) = N(ε)kφ(x, y), for all ε ∈ r×, k some positive integer and f′ and
f′′ integral ideals relative prime to p. We put f := f′ ∩ f′′.

On the ideals a, b and c we put the following restrictions. For the ideal a we always
assume that (a, pf) = 1, i.e. it is taken relative prime to pf. The ideal c will always be taken
of the form c1c2, where c1 and c2 are fractional ideals that satisfy,

(1) (c1, pf) = 1,
(2) c2 =

∏
pj |p papj , with apj ≥ 0. Here the pj’s denote the prime ideals of F above p.

This in turn implies that b is of the form b1b2 with (b1, pf) = 1 and b2 = c−1
2 . We

now define the spaces T1 := {rp × (r/f)} and T2 := {(c−1 ⊗r rp)× (r/f)}. Note that our
assumptions imply that rp ⊂ c−1 ⊗r rp and hence

T ⊆ T1 × T2,

where T := {rp × r/f} × {rp × r/f}. Using the canonical projection

T → {rp × (r/f′)} × {rp × (r/f′′)},
we may consider φ as a locally constant function on T . We extend φ by zero to a function
of T1 × T2. Actually, in our applications, we will be given functions on T× := {r×p ×
(r/f)×} × {r×p × (r/f)×}, which we will extend trivially by zero to functions on T1 × T2.
We define the partial Fourier transform of the first variable of φ and write

Pφ : {Fp/θ−1
p × f∗/θ−1} × T2 → C (3.1)

as

Pφ(x, y) = p−α[F :Q]N(f)−1 ∑

a∈Xα

φ(a, y)eF (ax), eF (ax) := exp(2πiTrF/Q(2ax)),

(3.2)
for φ factoring through Xα × T2 with Xα := rp/αrp × (r/f) and α ∈ N. We now attach
an Eisenstein series to φ. This is realized over the complex number as a rule on triples
(L, λ, ı), where L a lattice in C[F :Q] with real multiplication, λ-polarized with λ an iso-
morphism

∧2
r L ∼= θ−1c−1 and ı a p∞f2 level structure.

The partial Tate module: From the p∞f2 structure after restriction we obtain a pro-
jection π′

π′ : (L ⊗r rp)× L/fL → (c−1 ⊗r rp)× (r/fr) = T2. (3.3)

The second component of this projection, that is L/fL → r/fr is obtained as in [17, page
206]. For the first, we follow Katz [25, page 246] we note that we have a short exact
sequence of free rp-modules

0 → θ−1 ⊗r rp → L⊗r rp →? → 0. (3.4)

From the given polarization we obtain an isomorphism
2∧
rp

(L ⊗r rp) ∼= θ−1c−1 ⊗r rp. (3.5)
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We conclude that

? ∼= c−1 ⊗r rp, (3.6)

which explains the first part of the projection π′. Following Hida and Tilouine (loc. cit.)
we then define the partial Tate module PV (L) as a submodule of L ⊗r Fpf that contains
L ⊗r rpf such that

PV (L)/L ⊗r rpf
∼= Im(Fp/θ−1 × f∗/θ−1 → p−∞L/L × f−1L/L). (3.7)

Then, as explained in [17], one obtains the projections

π′ : PV (L) ³ T2 and, π : PV (L) ³ Fp/θ−1
p × f∗/θ−1. (3.8)

We set L(fp) := f−1p−∞L ∩ PV (L) and, for a w ∈ L(fp) we define Pφ(w) :=
Pφ(π(w), π′(w)). For an integer k ≥ 1 we define the c-polarized HMF Ek(φ, c) by

Ek(φ, c)(L, λ, ı) :=
(−1)kgΓ(k + s)g

√
(DF )

∑

w∈L(fp)/r×

Pφ(w)
N(w)k|N(w)2s| |s=0 . (3.9)

We now have the proposition:

Proposition 3.1. There exists a c-HMF Ek(φ, c) of level p∞f2 and weight k such that, if
k ≥ 2 or φ(a, 0) = 0 for all a, then its q-expansion at the cusp (a, b) (with our assumptions
on a and b) is given by

Ek(φ, c)(Tatea,b(q), λcan, ωcan, ican) = N(a){2−gL(1− k, φ, a)

+
∑

0¿ξ∈ab

∑

(a,b)∈(a×b)/r×,ab=ξ

φ(a, b)sgn(N(a))N(a)k−1qξ} (3.10)

where L(s;φ, a) =
∑

x∈(a−0)/r× φ(x, 0)sgn(N(x))k|N(x)|−s.

Proof. The proposition is in principle the one stated in [25, page 247, theorem (3.2.3)]
and [17, page 208]. Indeed, the fact that the defined series is a Hilbert modular form of
parallel weight k follows as in Katz. First, as Katz remarks, we can restrict ourselves to
work over C. Then (see also [25, page 236, equation (2.3.36)] for a moduli interpretation
of the following equation),

Ek(φ, c)(a−1L, aā < ·, · >, a−1 × ı) = N(a)k|N(a)2s|Ek(φ, c)(L, < ·, · >, ı), (3.11)

since for w′ = a−1w ∈ a−1L with w ∈ L we have Pφ(w′) = Pφ(w). Indeed the
projections πL and π′L of PV (L) and πa−1L and π′a−1L of PV (a−1L) are related by

πL(a× y) = πa−1L(y), y ∈ a−1L
and

π′L(a× y) = π′a−1L(y), y ∈ a−1L.

These last equalities follow by observing that the exact sequence

0 → θ−1 ⊗r rp
ı→ L⊗r rp

πL→ c−1 ⊗r rp → 0
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induces the exact sequence

0 → θ−1 ⊗r rp
a−1×ı→ a−1L ⊗r rp

πL(a×·)→ c−1 ⊗r rp → 0,

from which the partial Tate module PV (a−1L) is constructed.

Since both sides of the equation 3.11 have analytic continuation, evaluating at s = 0,
we see that the defined series have parallel weight k. The holomorphicity at s = 0 follows
as in Katz by studying the q-expansion. Now the proof of the q-expansion written above is
exactly as in Katz or in Hida and Tilouine (loc. cit.). However we have to comment on an
assumption that is made on both of these works with respect the ideals a, b and c. Namely,
there it is assumed that (a, pf) = 1 (as in our case) but also that (c, pf) = 1. However
this second assumption in both of these works is made not in order to establish the above
proposition but to prove the functional equation of the Eisenstein series (see [25, page 253]
and [17, page 225] where the assumption is crucially used). Indeed, one can follow the
proof in [25, pages 248-252] or [17, pages 207-208] to see that the assumption on c (and
hence also on b, given the restrictions on a and the equation ab−1 = c) does not play any
role at all. Indeed, for the proof of these propositions, one uses crucially that (a, pf) = 1.
That is, the cusp (a, b) must be unramified for the given numerical structure (see [12, page
259] for the definition of unramified cusps), since only in the first variable is taken the
Fourier transform (in the second variable there is nothing happening). Of course, if one
wants to prove the functional equation for the Eisenstein series, he has to interchange the
roles of a and b. In particular, in the case that (c, pf) 6= 1, the unramified cusp (a, b) will
be associated to the ramified cusp (b, a). Concluding, we have that our modification still
do give us the q-expansion stated above but not the functional equation stated in [25, page
254 theorem (3.3.13)] or [17, page 227 equation (5.2)].

Actually, in all of our applications we will have that the function φ will be supported in
{r×p × (r/f)×} × {r×p × (r/f)×} (i.e. it will be zero outside this domain). Hence, because
of the support assumption of the second variable, the sum that appear in [17, page 206] or
[25, page 249])

∑

(a,b)∈{(pnaf)∗×b}/r×

Pφ(a, b)
N(a + bz)k|N(a + bz)2s| ,

with (pnaf)∗ = p−na−1f−1θ−1, will be simplified to

∑

(a,b)∈{(pnaf)∗×b1}/r×

Pφ(a, b)
N(a + bz)k|N(a + bz)2s| ,

where we recall b = b1b2 with b1 and b2 as defined above. In particular (b1, pf) = 1
so one can redo the proof of Katz or Hida and Tilouine from this point on. Note that the
q-expansion then will be of the form

Ek(φ, c)(Tatea,b(q), λcan, ωcan, ican) =
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N(a){
∑

0¿ξ∈ab1

∑

(a,b)∈(a×b1)/r×,ab=ξ

φ(a, b)sgn(N(a))N(a)k−1qξ}.

Remark: The following remarks are in order:

(1) In the case that the locally constant function φ is supported on {r×p × (r/f)×}× {r×p ×
(r/f)×} then the Eisenstein series has constant term equal to zero at the cusp (a, b).

(2) Note that the p-integrality of the q-expansion follows from the values of the function φ

and from the fact that (a, p) = 1.

The Eisenstein Measure of Katz-Hida-Tilouine: Hida and Tilouine extended the
work of Katz to obtain measures of the Galois group Gal(K(Cp∞)/K) for K a CM field
and C an integral ideal of K. We briefly describe the construction and the interpolation
properties of these measures. We start with the decomposition C = FFcJ such that

F + Fc = R, F + Fc = R, Fc + Fc
c = R, Fc ⊃ Fc (3.12)

and J consists of ideals that are inert or ramify in K/F . We set f′ := FJ ∩ F and f′′ :=
FcJ∩F , f := f′∩ f′′ = f′, s = Fc∩F and j := J∩F . As in Hida and Tilouine, we consider
the homomorphism obtained from class field theory

i : {(r×p × (r/f)× × r×p × (r/s)×)/r×} → ClK(Cp∞). (3.13)

We write Cl−K(J) for the quotient of ClK(J) by the natural image of (r/j)×. If {Uj}j

are representatives of Cl−K(J), which we pick relative prime to pCCc, then we have that
ClK(Cp∞) =

∐
j Im(i)[Uj ]−1 where [Uj ] the image of Uj in ClK(Cp∞). We use the

surjection (r/f)× → (r/s)× to obtain a projection

T ′ := {(r×p × (r/f)×× r×p × (r/f)×)/r×} ³ {(r×p × (r/f)×× r×p × (r/s)×)/r×}. (3.14)

Given a continuous function φ of ClK(Cp∞) ∼= Gal(K(Cp∞)/K) =: G we define a
function φ̃j on Im(i) by φ̃j(x) := φ(x[U−1

j ]) and through the above projection we view
φ̃j as function on T ′. Moreover we write N for the function

N : {r×p × (r/f)×} × {r×p × (r/f)×} → Z×p (3.15)

given by N(x, a, y, b) =
∏

σ∈Σp
xσ. Then we define functions φj on {r×p ×(r/f)×}×{r×p ×

(r/f)×} by φj(x, a, y, b) := N(x)−1φ̃j(x−1, a−1, y, b). We view φj and N as functions
on T1 × T2 by extending them trivially by zero as we described at the beginning of the
section.

In order to define the measure of Katz, Hida and Tilouine we need to pick polarization
of HBAV with complex multiplication by R and CM type Σ. We pick an element δ ∈ K

such that

(1) δc = −δ and Im(δσ) > 0 for all σ ∈ Σ,
(2) The polarization < u, v >:= ucv−uvc

2δ on R induces the isomorphism R ∧r R ∼=
θ−1c−1 for c relative prime to p.
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After the above choice of δ, we can attach (see [17] page 211 for details) to the fractional
ideals Uj of K a datum (X(Uj), λ(Uj), ı(Uj)) consisting of a HBAV X(Uj) with CM of
type (K, Σ), a polarization cU−1

j U−c
j and a level structure ı(Uj) of type p∞f2. We define

the measure µKHT
δ as (see [25, pages 260-261])

∫

G

φ(g)µKHT
δ (g) :=

∑

j

∫

T

φ̃jdEj :=
∑

j

E1(φj , cj)(X(Uj), λ(Uj), ı(Uj)), (3.16)

where cj := c(UjU
c
j)
−1. We note here that, when φ is a character of infinite type −kΣ,

then we have that

E1(φj , cj)(X(Uj), λ(Uj), ı(Uj)) = φ
(
[Uj ]−1

)
Ek(φfinite, cj)(X(Uj), λ(Uj), ı(Uj), ωcan(Uj)),

(3.17)
where φfinite is as in [25] page 277 and the above equation is explained in (5.5.7) of (loc.
cit.). Using this equation we remark that for a character φ of infinite type −kΣ we have

∫

G

φ(g)µKHT
δ (g) =

∑

j

E1(φj , cj) (X(Uj), λ(Uj), i(Uj)) =

∑

j

φ
(
[U−1

j ]
)
E1

(
N(x)k−1φfinite(x−1, a−1, y, b), cj

)
(X(Uj), λ(Uj), i(Uj)) =

∑

j

φ
(
[U−1

j ]
)
Ek

(
φfinite(x−1, a−1, y, b), cj

)
(X(Uj), λ(Uj), i(Uj), ωcan(Uj)) .

For our later applications (in section 7) it is important for us to consider the integrals∫
G

φ(g)χ(g)µKHT
δ (g) where φ is a locally constant function on G and χ a character of

infinite type −kΣ. We may write χ(x, a, y, b) = N(x)−kχfinite(x, a, y, b) and hence

φ̃χj(t) = φ̃j(t)χ(t)χ(U−1
j ) = φ̃j(x, a, y, b)N(x)−kχfinite(x, a, y, b)χ(U−1

j ).

We write

(φχ)j(x, a, y, b) := N(x)−1φ̃χj(x
−1, a−1, y, b)

= φ̃j(x−1, a−1, y, b)N(x)k−1χfinite(x−1, a−1, y, b)χ(U−1
j ).

Then we have,
∫

G

φ(g)χ(g)µKHT
δ (g) =

∑

j

E1 ((φχ)j , cj) (X(Uj), λ(Uj), i(Uj))

=
∑

j

χ(U−1
j )E1

(
φ̃j(x−1, a−1, y, b)N(x)k−1χfinite(x−1, a−1, y, b), cj

)
(X(Uj), λ(Uj), i(Uj))

=
∑

j

χ(U−1
j )Ek

(
φ̃j(x−1, a−1, y, b)χfinite(x−1, a−1, y, b), cj

)
(X(Uj), λ(Uj), i(Uj), ωcan(Uj)) .
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In particular, setting (φχ)j,finite := φ̃j(x−1, a−1, y, b−1)χfinite(x−1, a−1, y, b)χ(U−1
j ),

∫

G

φ(g)χ(g)µKHT
δ (g) =

∑

j

Ek ((φχ)j,finite, cj) (X(Uj), λ(Uj), i(Uj), ωcan(Uj)) .

We now state the interpolation properties of the measure. For a reminder of the defini-
tion of the archimedean and p-adic periods appearing below the reader can check [25, page
269] or the definition right after the statement of proposition 3.5 in this paper.

Theorem 3.2 (Interpolation Properties). For a character χ of G := Gal(K(Cp∞)/K)
of infinite type −kΣ we have

∫
G

χ(g)µKHT
δ (g)

ΩkΣ
p

= (R× : r×)Local(Σ, χ, δ)
(−1)kgΓ(k)g

√
DF ΩkΣ∞

×

∏

q|FJ

(1− χ̌(q̄))
∏

q|F
(1− χ(q̄))

∏

p∈Σp

(1− χ(p̄))(1− χ̌(p̄))L(0, χ). (3.18)

Proof. This is in principle the measure constructed by Katz and Hida-Tilouine in [17,25].
The main difference of the above formula with the one in Theorem 4.1 of [17] is that we do
also the partial Fourier transform for the primes that divide FJ (this is why in our definition
we used φ and not φ0 as Hida and Tilouine do (page 209). Note that the computations in
their work are local, so what we do amounts simply moving some of the epsilon factors
away from p to the other part of the functional equation (compare with theorem 4.2 in Hida
and Tilouine).

The reason for doing this slight modification is related with the values of the measures
µE/F and µE/F ′ that we will define later. If we want these measures to take Zp values then
we have to make sure that we put the right epsilon factors (viewed as periods) also away
from p. We now explain the local factor Local(χ, Σ, δ) that shows up in the interpolation
formula above. So we let χ be a Grössencharacter of a CM field K of infinite type (after
fixing incl(∞) : Q̄ ↪→ C)

χ∞ : K× → Q̄ ↪→ C (3.19)

given by

χ∞(a) =
∏

σ∈Σ

1
σ(a)k

(
σ(ā)
σ(a)

)d(σ)

. (3.20)

We write c : A×K/K× → C× for the corresponding adelic character and we decompose
it to c =

∏
σ∈Σ cσ

∏
v cv . The infinite type of the character can be read from the parts at

infinite cσ : C× → C×. These are given by

cσ(reiθ) = cσ(z) =
zk+d(σ)

z̄d(σ)
= rkeiθ(k+2d(σ)). (3.21)
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Let as pick q, a prime ideal of K which we also take relative prime to 2. Then we define

Local(χ, δ)q :=
F̂q,1

( −1
2δa

)

cq(a)
, (3.22)

where a ∈ K is such that ordq(a) = ordq(cond(χ)). Here

F̂q,1(x) :=
1

N(q)ordqcond(χ)

∑

u∈(R/q)×
cq(y)exp(−2πi Trq(ux)), (3.23)

where Trq(y) := TrKq/Qq
(y) mod Zq and q := q ∩Q. Then in the formula we have

Local(χ, Σ, δ) :=
∏

q|FJ

Local(χ, δ)q

∏

p∈Σp

Local(χ, δ)p. (3.24)

The discrepancy of the ε-factors: Our next goal is to understand the relation of the
local factor Local(Σ, χ, δ) appearing in the interpolation properties of the Hida-Katz-
Tilouine measure and the standard epsilon factors of Tate-Deligne. We start by normalizing
properly the epsilon factors. We follow Tate’s article [29] for the definition and properties
of the epsilon factors of Deligne. We denote Deligne’s factor with ep(χ, ψ, dx) as is de-
fined in Tate’s article [29] where as ψ(·) we pick the additive character of Kp given by
exp(−2πiTrp(·)) (as above in the Gauss sum appearing in Katz’s work) and dx we pick
the Haar measure that gives measure 1 to the units of Rp. From the formula (3.6.11) in Tate
(there is a typo there!) we have that

ep(χ−1, ψ, dx) = c−1
p (α)N(θK(p))

∑

u∈(R/p)×
cp(y)exp(−2πi Trp(

u

α
)), (3.25)

where α is an element with ordp(α) = n(χ) + n(ψ), with n(χ) (resp. n(ψ)) the exponent
of the conductor of χ (resp. ψ) and θK(p) is the different of Kp/Qp and hence we have
also the equality N(θK(p)) = N(p)n(ψ) from the very definition of ψ and the different. In
particular we conclude that

ep(χ−1, ψ, dx) = N(p)ordpcond(χ)c−1
p (δ)N(θK(p))Local(χ, Σ, δ)p. (3.26)

We conclude

Lemma 3.3. The relation between Katz and Deligne’s epsilon factors is given by

ep(χ−1, ψ, dx) = N(p)ordpcond(χ)c−1
p (δ)N(θK(p))Local(χ, Σ, δ)p (3.27)

Now we take in the lemma above χ equal to χψ−1
K for χ a finite character of K. Then,

for πp a prime element of p, we have that

ep(χ−1ψK , ψ, dx) = ep(χ−1, ψ, dx)ψK(πn(χ)+n(ψ)
p ) (3.28)

In particular that implies

Local(χψ−1
K , Σ, δ)p = N(p)−n(χ)cp(δ)N(θK(p)−1)ep(χ−1ψK , ψ, dx) =

= N(p)−n(χ)cp(δ)N(θK(p)−1)ep(χ−1, ψ, dx)ψK(πn(χ)+n(ψ)
p ) =
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= cp(δ)ep(χ−1, ψ, dx)
ψK(πn(χ)

p )
N(p)n(χ)

ψK(πn(ψ)
p )

N(p)n(ψ)
, (3.29)

where cp(δ) is the value of the adelic counterpart of χψ−1
K at δ, with δ ∈ K ⊂ Kp as

introduced above (used to define polarization of the HBAV’s). But as ψK is unramified at
p we have that cp(δ) = ψK(π−n(ψ)

p )χp(δ). So we conclude that

Local(χψ−1
K ,Σ, δ)p = χp(δ)ep(χ−1, ψ, dx)

(
ψK(πp)
N(p)

)n(χ) 1
N(p)n(ψ)

. (3.30)

Remarks on the values of the measure of Katz-Hida-Tilouine and the periods: In
order to determine where the measures µE/F and µE/F ′ defined in section 2 above take
their values, we need first to explain where the measures µKHT

ψK ,δ and µKHT
ψK′ ,δ′

of Hida-Katz-
Tilouine take their values. The key point is to understand how the interpolation formulas of
these measures are related to the period conjectures of Deligne that were proved by Blasius
[1] in our setting. As mentioned above in Theorem 3.2, the interpolation properties of the
Katz-Hida-Tilouine measure for a character χ of G := Gal(K(mp∞)/K) of infinite type
kΣ are ∫

G
χ(g)µKHT

δ (g)
ΩkΣ

p

= (R× : r×)Local(Σ, χ, δ)
(−1)kgΓ(k)g

√
DF ΩkΣ∞

×

∏

q|FJ

(1− χ̌(q̄))
∏

q|F
(1− χ(q̄))

∏

p∈Σp

(1− χ(p̄))(1− χ̌(p̄))L(0, χ) (3.31)

and we have fixed a Grössencharacter ψK associated to E/F , unramified above p and
considered the measure of G defined for every locally constant function χ of G by

∫

G

χ(g)µKHT
ψKδ (g) :=

∫

G

χ(g)ψ̂−1
K (g)µKHT

δ (g), (3.32)

where ψ̂K is the p-adic avatar of ψK constructed by Weil. Then we consider the question

in which field the algebraic elements
∫

G
χ(g)ψ̂K(g)µKHT

δ (g)

ΩkΣ
p

belong, which is equivalent to
addressing the question where the values

Local(Σ, χψ−1
K , δ)

L(0, χψ−1
K )√

|DF |ΩΣ∞
(3.33)

exactly belong. As we will see later we can replace Local(Σ, χψ−1
K , δ) with Local(Σ, χ, δ)

as the two differ by an element in K×. Now we note that the element Ω∞ defined by Katz
depends only on the infinite type of ψK . However we will assume that Ω∞ is selected in
such a way that

√
|DF |ΩΣ

∞ is equal to Deligne’s period c+(ψ−1
K ). We note that this is not

always possible in Katz’s construction as one is restricted to pick abelian varieties with
CM by K that arise from fractional ideals of K. However in our setting, as everything will
be “coming” from an elliptic curve E/Q, we are allowed this assumption and actually we
will prove later that we are allowed to take ΩΣ

p = Ω(E)g
p and ΩΣ

∞ = Ω(E)g, where we

recall g = [F : Q]. So we may assume that L(0,ψ−1
K )√

|DF |Ωg(E)
∈ K. As we have mentioned
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above, Blasius has proved in [1] Deligne’s conjecture for Hecke characters of CM fields,
in particular we know that

L(0, χψ−1
K )

c+(χψ−1
K )

∈ K(χ), (3.34)

where c+(χψK) is Delinge’s period for the Hecke character χψ−1
K . In general one has that

c+(χψ−1
K ) 6= c+(χ)c+(ψ−1

K ). Indeed it is shown in [28] (page 107 formula 3.3.1) that

c+(χψ−1
K )

c+(ψ−1
K )

= c(Σ, χ) mod K(χ)×. (3.35)

Here c(Σ, χ) ∈ (K(χ)⊗Q̄)× is a period associated to the finite character χ and depending
on the CM-type of the Grössencharacter ψK . Actually it can be determined, up to elements
in K(χ)×, from the following reciprocity law. If we write F := K+ for the maximal totally
real subfield of K then one can associate to the CM type Σ the so-called half-transfer map
of Tate (see [28] page 106)

V erΣ : Gal(Q̄/F ) → Gal(Q̄/K). (3.36)

Then one has that

(1⊗ τ)c(Σ, χ) = (χ ◦ V erΣ)(τ)c(Σ, χ), τ ∈ Gal(Q̄/F ). (3.37)

So for our considerations we need to consider the question if Local(χ, Σ, δ) is equal to
c(Σ, χ) up to elements in K(χ)×. This is in general not the case (for a similar discus-
sion see also [5, page 399]). Indeed, as it is explained by Blasius in [2, page 66], if
we denote by E the reflex field of (K, Σ), this is a CM field itself, then the extension
EΣ := E(c(Σ, χ), χ), where we adjoin to E the values c(Σ, χ) for finite order characters
χ over K, is the field extension of E generated by values of arithmetic Hilbert modular
functions on CM points of H[F :Q] of type (K, Σ), i.e. correspond to Hilbert-Blumenthal
abelian varietes of dimension [F : Q] with CM of type (K, Σ). This extension of E is
not included in EQab. However we will see later that the elements Local(χψK , Σ, δ) are
almost equal to Gauss sums. In particular that implies that they can generate over E only
extentions that are included in EQab (see also the comment in [28] page 109). Hence
in general the two “periods” of χ are not equal up to elements in K(χ)×. That implies,
that in general the measures 1

Ωp(E)g µKHT
ψK ,δ and 1

Ωp(E)g′ µ
KHT
ψK′ ,δ′

are not elements of the
Iwasawa algebras Zp[[GK ]] and Zp[[GK′ ]] respectively. However if χ is cyclotomic i.e.
χ(τgτ−1) = χ(g) for all g ∈ GK then we have the following

Lemma 3.4. For χ cyclotomic we have
∫

GK
χ(g)µKHT

ψK , δ (g)

Ωp(E)g
∈ Zp[χ]. (3.38)

Proof. From the interpolation properties of the measure µKHT
ψK ,δ we have

∫
GK

χ(g)µKHT
ψK , δ (g)

Ωp(E)g
= (R× : r×)Local(Σ, χψ−1

K , δ)
(−1)kgΓ(k)g

√
DF Ω∞(E)pΣ

L(0, χψ−1
K )×
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∏

q|FJ

(1− χ̌ψ̌−1
K (q̄))

∏

q|F
(1− χψ−1

K (q̄))
∏

p∈Σp

(1− χψ−1
K (p̄))(1− χ̌ψ̌−1

K (p̄)). (3.39)

As the measure is integral valued [25, theorem (5.3.0)] we have only to show that

L(0, χψ−1
K )√

DF Ω∞(E)pΣ
Local(Σ, χψ−1

K , δ). ∈ Qp(χ) (3.40)

From the discussion above we have that Local(Σ, χψ−1
K , δ) is equal to∏

p∈Σp
ep(χ−1ψK)

∏
q|FJ eq(χ−1ψK) up to elements in K(χ). But then, if we write fψK

for the conductor of ψK , we have that
∏

q|fψK
eq(ψK) = ±1 as this is the sign of the func-

tional equation of E/F . In particular, up to elements in K(χ) (as ψK is unramified above
p and (cond(χ), cond(ψK)) = 1) we have that

∏
p∈Σp

ep(χ−1ψK)
∏

q|FJ eq(χ−1ψK) =∏
p∈Σp

ep(χ−1)
∏

q|FJ eq(χ−1). We write now fψK for the Hilbert modular form over F

that is induced by automorphic induction from ψK (i.e. the one that corresponds to the mod-
ular elliptic curve E/F ) and χ̃ for the finite character over F whom χ is the base change
of from F to K. Then, up to elements in K(χ),

∏
p∈Σp

ep(χ−1)
∏

q|FJ eq(χ−1) = e(χ̃−1)
where e(χ̃−1) the global epsilon factor of χ̃−1. Moreover we have that L(χψ−1

K , 0) =
L(fψK , χ̃−1, 1) (here is crucial that χ is cyclotomic). But it is known, as for example is
proved in [20, page 435 Theorem I], that

L(fψK , χ̃−1, 1)√
DF Ω∞(E)pΣ

e(χ̃−1) ∈ Qp(χ), (3.41)

which allows us to conclude the proof of the lemma.

Actually, using the full force of the results in [20], we have that
(

L(fψK
, χ̃−1, 1)√

DF Ω∞(E)pΣ
e(χ̃−1)

)σ

=
L(fψK

, χ̃−σ, 1)√
DF Ω∞(E)pΣ

e(χ̃−σ) (3.42)

for all σ ∈ Gal(Q̄/Q), which can be easily seen to imply that
(∫

GK
χ(g)µKHT

ψK , δ (g)

Ωp(E)g

)σ

=

∫
GK

(χ(g))σµKHT
ψK , δ (g)

Ωp(E)g
(3.43)

for all σ ∈ Gal(Q̄p/Qp).

The Twisted Katz-Hida-Tilouine Measure: Now we modify the KHT-measure in the
case where the relative different is principal. The interpolation properties of the twisted
measure are going to be different with respect with the “epsilon” factors. We explain now
this modification. We follow the construction that we presented above. We still consider the
relative situation F ′/F and the corresponding K ′/K extension and we remind the reader
that we consider extensions that are unramified outside p. Under our assumption we have
that (ξ) = θF ′/F where ξ is a totally positive element in F ′. Moreover our assumptions on
F ′/F imply that θF ′/F splits in K ′ to PP̄.
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Over K ′ we define the KHT -measure by picking instead of δ′ the element δ ∈ K ↪→
K ′. Note that, since the CM type (K ′,Σ′) is a lift of (K, Σ), this is a valid choice. The
polarization that the element δ induces to the lattice R′ is

2∧

r′
(R′) ∼= θ−1

F c−1r′ (3.44)

if the same element, seen as an element in K, induces the polarization

2∧
r

(R) ∼= θ−1
F c−1. (3.45)

Indeed, under our assumptions about the ramification of F ′ and F and K0 and the fact that
F ′/F and K/F are disjoint, we have that R′ = r′ ⊗Z R0 and similarly R = r ⊗Z R0,
from which we obtain R′ = R ⊗r r′ and the above claim follows. With respect to this
polarization we have, for fractional ideals of K ′ of the form U ⊗ ξ−1 = U ⊗ θ−1

F ′/F , the
polarization

2∧

r′
(U⊗ ξ−1) ∼= θ−1

F c−1UUcθ−2
F ′/F = θ−1

F ′ c
−1UUcθ−1

F ′/F . (3.46)

The twisted triples: Our twisted measure is going to be defined again by evaluating
Eisenstein series on the very CM abelian varieties as the measure of Katz-Hida-Tilouine
but we will twist them by ξ−1 and use the above mentioned polarization. In particular the
triples that we consider are

(1) The abelian varieties are X(Uξ
j) := X(Uj ⊗ θ−1

F ′/F ) ∼= X(Uj)/X(Uj)[θF ′/F ].

(2) The polarization λξ
δ(Uj ⊗ (θ−1

F ′/F )) := λδ(Uj ⊗ (θ−1
F ′/F )) i.e. the one defined above

and
(3) The p∞f2-arithmetic structure is explained below after stating proposition 3.5.

We then define the twisted measure as follows
∫

G′
φ(g)µKHT,tw

δ,ξ (g) :=
∑

j

∫

T

φ̃jdEj :=

∑

j

E1(φj , c
ξ
j)(X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F )) (3.47)

with cξ
j := c(UjU

c
j)
−1θF ′/F . For a character φ of infinite type −kΣ we have

∫

G′
φ(g)µKHT,tw

δ (g) =
∑

j

E1(φj , c
ξ
j)

(
X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F )

)
=

∑

j

φ
(
[U−1

j ]
)
E1

(
N(x)k−1φfinite(x−1, a−1, y, b), cξ

j

)(
X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F )

)
=
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∑

j

φ
(
[U−1

j ]
)
Ek

(
φfinite(x−1, a−1, y, b), cξ

j

)(
X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F ), ωcan(Uξ

j)
)

,

where for the last equation we note that since the character is of infinite type −kΣ′ we
do not need the theory of p-adic differential operators used in one of the equations of
[25, page 277, (5.5.7)] (the theory of p-adic differential operators is developed under the
assumption that the polarization ideal cj is relative prime to p). Similarly to the classical
(untwisted) Katz-Hida-Tilouine measure we have for a locally constant function φ on G′

and a character χ of infinite type −kΣ′∫

G′
φ(g)χ(g)µKHT,tw

δ (g) =
∑

j

Ek

(
(φχ)j,finite, c

ξ
j

)(
X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F ), ωcan(Uξ

j)
)

.

We next study the interpolation properties of the twisted measure. Let us write cond(χ)p =∏
pj∈Σ′p

p
aj

j p̄
bj

j for the p-part of the conductor of χ. We define ej := ordpj ξ for all pj ∈
Σ′p. We have already described a decomposition C = FFcJ.

Proposition 3.5 (Interpolation Properties of the “twisted” Katz-Hida-Tilouine mea-
sure). For a character χ of G′ := Gal(K ′(Cp∞)/K ′) of infinite type −kΣ′ we have

∫
G′ χ(g)µKHT,tw

δ,ξ (g)
ΩkΣ′

p

= (R′× : r′×)Local(Σ′, χ, δ, ξ)
∏

aj=0

χ(pj)−ej×

∏

qj |J
(1− χ̌(qj))


∏

qj |F
(1− χ̌(q̄j))(1− χ(q̄j))





 ∏

pj∈Σ′p

(1− χ̌(p̄j))(1− χ(p̄j))




(−1)kg′Γ(k)g′

√
DF ′ΩkΣ′∞

× L(0, χ). (3.48)

Here the factor Local(Σ′, χ, δ, ξ) =
∏

q|Cp Local(Σ′, χ, δ, ξ)q is a modification of the
local factor of the measure of Katz-Hida-Tilouine and it will be defined in the proof of the
proposition. However the modification will be only at the primes above p, that is for q|C
we have Local(Σ′, χ, δ, ξ)q = Local(Σ′, χ, δ′)q. We now explain shortly how the peri-
ods ΩkΣ′

∞ and ΩkΣ′
p appearing in the proposition are defined. These periods will be studied

more closely in section 6. We first define Ω∞ ∈ (r′ ⊗ C)× (resp. Ωp ∈ (r′ ⊗ Dp)×) by
ω(Uξ

j) = Ω∞ωtrans(U
ξ
j) (resp. ω(Uξ

j) = Ωpωcan(Uξ
j)). That this is well-defined, indepen-

dently of j, will become clear in section 6. Then we define ΩkΣ′
∞ as the image with respect

to the character (−)kΣ′ : (r′ ⊗C)× → C× of Ω∞ ∈ (r′ ⊗C)× . Similarly we define ΩkΣ′
p

as the image with respect to the character (−)kΣ′ : (r′⊗Dp)× → D×
p ) of Ωp ∈ (r′⊗Dp)×.

The p∞f2-arithmetic structure:Before we proceed to the proof of the above propo-
sition we must explain the arithmetic structure of the twisted HBAV used in the above
proposition. Note that since (f, θF ′/F ) = 1 holds, the f2-structure can be defined exactly as
in [17, page 211]. We now explain the p∞ part. As in Katz we use the ordinary type Σp to
obtain an isomorphism
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R′ ⊗Z Zp
∼=

∏

p∈Σp

R′
p ×

∏

p∈Σ̄p

R′
p
∼= r′p × r′p. (3.49)

And similarly, for any fractional ideal U of R′ relative prime to p, we can identify U⊗Zp =
R′ ⊗ Zp in K ′ ⊗ Zp. In particular we have an isomorphism for such ideals

U⊗Z Zp
∼=

∏

p∈Σp

R′
p ×

∏

p∈Σ̄p

R′
p
∼= r′p × r′p. (3.50)

Then, as Katz explains (see [25, page 265 and lemma 5.7.52]), the p∞ structure of X(U)
is defined by picking the isomorphism

r′p ∼= θ−1
F ′ ⊗ Zp, (3.51)

which is given by x 7→ δ0x, where δ0 is the image of (2δ′)−1 in K ′
p, and using it to define

the injection

θ−1
F ′ ⊗ Zp ↪→ U⊗Z Zp

∼= r′p × r′p (3.52)

by means of the isomorphism in the first component. Now the p∞ structure of the twisted
varieties U⊗ ξ−1 is defined using the isomorphisms

(U⊗ ξ−1)⊗Z Zp
∼=

∏

p∈Σp

1
ξ
R′

p ×
∏

p∈Σ̄p

1
ξ
R′

p
∼= 1

ξ
r′p ×

1
ξ
r′p (3.53)

and picking the isomorphism

1
ξ
r′p = θ−1

F ′/F ⊗ r′p ∼= θ−1
F ′ ⊗ Zp, (3.54)

given by x 7→ xδ−1
0 where δ0 is the image of δ in

∏
p∈Σ′p

K ′
p
∼= ∏

p F ′p. Now we proceed
to the proof of the proposition on the interpolation properties of the twisted Katz-Hida-
Tilouine measure.

Proof (of Proposition 3.5). We will follow closely the proof of Katz in [25]. Actually we
will mainly indicate the differences of our setting from his setting. We are going to prove
the proposition in the case of C = 1, which is enough in order to demonstrate the “new”
features of the twisted measure. One could generalize the calculations below (in the same
way that Hida and Tilouine [17] generalized the calculations of Katz [25]) to the more
general case of non trivial C. We only note here that since we are assuming that (ξ, C) = 1
(i.e. F ′/F ramifies only above p) the local factors at primes that divide C that appear in
the interpolation properties of the twisted measure are the same with those that appear in
the interpolation properties of the untwisted measure, that is we make no modifications
“outside p”. Hence, after setting F̃ (x, a, y, b) := χfinite(x−1, a−1, y, b), we have

∫
G′ χ(g)µKHT,tw

δ,ξ (g)
ΩkΣ′

p

=
1

ΩkΣ′
p

∑

j

χ([Uj ]−1)Ek(F̃ , cξ
j)

(
X(Uξ

j), λ
ξ
δ(U

ξ
j), i

ξ(Uξ
j), ω

can(Uξ
j)

)
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=
∑

j

χ([Uj ]−1)Ek(F̃ , cξ
j)

(
X(Uξ

j), λ
ξ
δ(U

ξ
j), i

ξ(Uξ
j), ω(Uξ

j)
)

=
1

ΩkΣ′∞

∑

j

χ([Uj ]−1)Ek(F̃ , cξ
j)

(
X(Uξ

j), λ
ξ
δ(U

ξ
j), i

ξ(Uξ
j), ω

trans(Uξ
j)

)
,

where the second and the third equalities follow from the fact that Ek has parallel weight
k. But now

Ek(F̃ , cξ
j)

(
X(Uξ

j), λ
ξ
δ(U

ξ
j), i

ξ(Uξ
j), ω

trans(Uξ
j)

)
= Ek(F̃ , cξ

j)
(
Uξ

j , < ·, · >λ
δξ

, iξ
)

.

By the definition of the Eisenstein series Ek we conclude
∫

G′ χ(g)µKHT,tw
δ,ξ (g)

ΩkΣ′
p

=
(−1)kg′Γ(k + s)g′

ΩkΣ′∞
√

DF ′

∑

j=1

χ(Uj)−1
∑

a∈Uj(ξ−1)[ 1p ]∩PVp(Uj(ξ−1))

PF̃ (a)∏
σ σ(a)k|NK′

Q (a)|s |s=0

Now we split the proof in two cases. We first consider the case where the character χ

is ramified in all primes p ∈ Σ′p and then we generalize. We start by writing the conductor
of the character χ as cond(χ) =

∏
i pai

i p̄bi
i . At this point we would like to warn the reader

that we use the notation pi instead of Pi of Katz. This is going to be the only significant
discrepancy from Katz’s notation in this paragraph. We now define an α ∈ K ′× by

∏

ai≥1

pai
i (

∏

aj≥1

p
ej

j ) = (α)B,

where B prime to p and ej := ordpj ξ. We also decompose (ξ) = PP̄ as ideals in K ′ with
P =

∏
j p

ej

j .

Special Case: χ ramified at all p in Σ′p: We follow Katz [25] as in page 279. In this
case we have P

∏
i pai

i = (α)B since ai ≥ 1 for all i. From the definition of the p∞-
structure we have that the function PF̃ is supported in

(
∏

i

p−ai
i )UjP

−1 = (α−1)B−1Uj . (3.55)

In particular the computations of Katz for the twisted values now read,

h∑

j=1

χ(Uj)−1
∑

a∈Uj(ξ−1)[ 1p ]∩PVp(Uj(ξ−1))

PF̃ (a)∏
σ σ(a)k|NK′

Q (a)|s = (3.56)

=
h∑

j=1

χ(Uj)−1
∑

a∈B−1Uj

PF̃ (α−1a)∏
σ σ(α−1a)k|NK′

Q (α−1a)|s = (3.57)

=
h∑

j=1

χ(Uj)−1
∑

a∈B−1Uj

PδF (α−1)χfinite(a)∏
σ σ(α−1a)k|NK′

Q (α−1a)|s = (3.58)
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=

(
PδF (α−1)|NK′

Q (α)|s
∏
σ

σ(α)k

)
h∑

j=1

χ(Uj)−1
∑

a∈B−1Uj

χfinite(a)∏
σ σ(a)k|NK′

Q (a)|s .

(3.59)
There is a special case where it is easy to see the difference of the new factors with

those of Katz. Let us assume that for the decomposition θF ′/F = PP̄ there exists ζ ∈ K ′

so that P = (ζ). We define α′ ∈ K ′× as in Katz by
∏

i pai
i = (α′)B′ for B′ prime to p

and we compare

Local(Σ′, χ, δ, ξ)p :=
PδF (α−1)

χ(B)

∏
σ

σ(α)k (3.60)

against the local factor of Katz

Pδ′F (α′−1)
χ(B′)

∏
σ

σ(α′)k. (3.61)

We consider

PδF (α−1)
χ(B)

∏
σ σ(α)k

Pδ′F (α′−1)
χ(B′)

∏
σ σ(α′)k

=
PδF (α−1)
Pδ′F (α′−1)

× χ(B′B−1)×
∏
σ

σ
( α

α′

)k

. (3.62)

Note that from our assumptions ξ = ζζ̄ hence we have α = α′ζ. This implies

PδF (α−1)
Pδ′F (α′−1)

=

∏
p∈Σ′p

F̂p,δ(α−1)Fp̄(α−1)
∏

p∈Σ′p
F̂p,δ′(α′−1)Fp̄(α′−1)

=
∏

p∈Σ′p

χp(ζ̄)χp̄(ζ−1). (3.63)

B = B′ and
∏

σ σ
(

α
α′

)k =
∏

σ σ(ζ)k.

The general case: Now we consider the case where some of the ai’s in cond(χ) =∏
i pai

i p̄bi
i may be zero. We start by stating the following (see [25] page 282 or [17] page

209),
∫

R×p

ψδ′(xy)dy = IRp(x)− 1
Np

Ip−1Rp
(x), (3.64)

where ψδ′ is the additive character of Kp given by

ψδ′(x) := exp ◦ Trp

( x

δ′

)
. (3.65)

In particular, if we denote by ψδ the additive character

ψδ(x) := exp ◦ Trp

(x

δ

)
(3.66)

we have
∫

R×p

ψδ(xy)dy = IRp(xξ)− 1
Np

Ip−1Rp
(xξ), (3.67)
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where we recall ξ = δ′
δ up to elements in R′

p
×. Now we follow the computations of Katz

as in ([25] page 281-282) and use the same notation. In our setting, after the observation
above, we have that the function PF̃ is supported in

∏

ai≥1

p−ai
i (

∏

aj≥1

p
−ej

j )(
∏

aj=0

p
−1−ej

j )Ui = (α−1)B−1(
∏

aj=0

p
−1−ej

j )Ui. (3.68)

Now for a ∈ B−1(
∏

aj=0 p
−1−ej

j )Ui we have,

PF̃ (α−1a) = PδF (α−1)χ2,finite(a)
∏

aj=0

ĉhar(p1+ej

j )(a), (3.69)

where

ĉhar(p1+ej

j )(a) =

{
1− 1

Npj
, if ordpj (a) ≥ −ej ;

− 1
Npj

, if ordpj (a) = −ej − 1.
(3.70)

Following Katz (note a typo in Katz’s definition! compare 5.5.31 with 5.5.35), we extend
the above function to the set I of fractional ideals I of K ′ of the form

I = (
∏

aj=0

p
−1−ej

j )Q, (3.71)

where Q is an integral ideal prime to those pi with ai 6= 0 and to all p̄k, by

ĉhar(p1+ej

j )(I) =

{
1− 1

Npj
, if Ip

ej

j is integral;
− 1

Npj
, if not.

(3.72)

Following Katz’s computations we have that the values that we are interested in are
h∑

j=1

χ(Uj)−1
∑

a∈B−1(
∏

aj=0(p
−1−ej
j ))Uj

PF̃ (α−1a)∏
σ σ(α−1a)k|NK′

Q (α−1a)|s = (3.73)

(
PδF (α−1)

χ(B)

∏
σ

σ(α)k

) ∑

I0∈I(p)

χ(I0)
N(I0)s

∏
aj=0

∑

n≥−1−ej

χ2(pj)n

N(pj)ns
ĉhar(p1+ej

j )(pn
j ).

(3.74)
We now set

Local(Σ′, χ, δ, ξ) := Local(Σ, χ, δ, ξ)p :=
PδF (α−1)

χ(B)

∏
σ

σ(α)k (3.75)

As in Katz, we compute now the inner sum
∞∑

n=−1−ej

χ2(pj)n

N(pj)ns
ĉhar(p1+ej

j )(pn
j ) =

−1
N(pj)

χ2(pj)−1−ej

N(pj)(−1−ej)s
+

(
1− 1

N(pj)

) ∞∑
n=−ej

χ2(pj)n

N(pj)ns

(3.76)

=
∞∑

n=−ej

χ2(pj)n

N(pj)ns
− 1

N(pj)


 χ2(pj)−1−ej

N(pj)(−1−ej)s
+

∞∑
n=−ej

χ2(pj)n

N(pj)ns


 (3.77)
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=
∞∑

n=−ej

χ2(pj)n

N(pj)ns
− 1

N(pj)

∞∑
n=−1−ej

χ2(pj)n

N(pj)ns
(3.78)

=
(

1− 1
N(pj)

χ2(pj)−1

N(pj)−s

) ∞∑
n=−ej

χ2(pj)n

N(pj)ns
(3.79)

=
(

1− N(pj)s

χ2(pj)N(pj)

)
χ2(pj)−ej

N(pj)−ejs

∞∑
n=0

χ2(pj)n

N(pj)ns
(3.80)

=
(

1− N(pj)s

χ2(pj)N(pj)

)
χ2(pj)−ej

N(pj)−ejs

(
1− χ2(pj)N(pj)−s

)−1
(3.81)

= (1−N(pj)sχ̌2(p̄j))
χ2(pj)−ej

N(pj)−ejs

(
1− χ2(pj)N(pj)−s

)−1
. (3.82)

So we conclude,
h∑

j=1

χ(Uj)−1
∑

a∈B−1(
∏

aj=0(p
−1−ej
j ))Uj

PF̃ (α−1a)∏
σ σ(α−1a)k|NK′

Q (α−1a)|s = (3.83)

= Local(Σ′, χ, δ, ξ)× L(s, χ1)
∏

aj=0

(
1−N(pj)sχ̌2(p̄j)

(1− χ2(pj)N(pj)−s)
× χ2(pj)−ej

N(pj)−ejs

)
,

whose value at s = 0 is equal to

Local(Σ′, χ, δ, ξ)× L(0, χ1)
∏

aj=0

(
1− χ̌2(p̄j)

(1− χ2(pj))
× χ2(pj)−ej

)
. (3.84)

But L(s, χ1) = L(s, χ)
∏

pi
(1− χ(pi)N(pi)−s) (1− χ(p̄i)N(p̄i)−s), which allow us to

conclude that the values are equal to

Local(Σ′, χ, δ, ξ)× L(0, χ)


 ∏

pj∈Σ′p

(1− χ̌(p̄j))(1− χ(p̄j))


 ∏

aj=0

χ(pj)−ej .

4. The Relative Setting: Congruences between Eisenstein Series.

Now we consider the following relative setting. We consider as in the introduction the to-
tally real field extension F ′ of F of degree p and write Γ = Gal(F ′/F ). In particular we
recall that θF ′/F is the relative different and that F ′/F is ramified only at primes above p.
We have fixed ideals a, b, c and f of F and consider also the corresponding ideals in F ′, that
is their natural image under F ↪→ F ′. We write T ′1 × T ′2 for the corresponding spaces in
the F ′ setting that we have introduced for the F setting. We note that Γ operates naturally
on this space. Moreover, the embedding F ↪→ F ′ induces a natural diagonal embedding
H[F :Q] ↪→ H[F ′:Q] with the property that the pull back of a Hilbert modular form of F ′ is a
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Hilbert modular form of F . We need to make this last remark more explicit.

The Tate-Abelian Scheme and the modular interpretation of the diagonal embed-
ding: We follow the book of Hida [19] as in chapter 4 (and especially section 4.1.5) and
the notation there. For fractional ideals a and b of the totally real field F and a ring R we
define the ring R[[(ab)+]] with (ab)+ := ab ∩ F+ to be the ring of formal series

R[[(ab)+]] := {a0

∑

ξ∈(ab)+

aξq
ξ| aξ ∈ R}. (4.1)

We pick the multiplicative set q(ab)+ := {qξ|ξ ∈ (ab)+} and define R{ab} as the lo-
calization of R[[(ab)+]] to this multiplicative set. Then, as explained in Hida, the Tate
semi-abelian scheme Tatea,b(q) is defined over the ring R{ab} (with R depending on the
extra level structure that we impose) by the algebraization of the rigid analytic variety

(Gm ⊗ a−1θ−1
F )/qb. (4.2)

Let X be a HBAV over a ring R with real multiplication by r. We may define a HBAV
X ′ over R with real multiplication by r′ by considering the functor from schemes S over
R to r′ modules defined by

S 7→ X ′(S) := X(S)⊗r θ−1
F ′/F . (4.3)

We define the map

∆ : M(c, Γ00(p∞f2)) → M(cθF ′/F , Γ00(p∞f2r′))

(X, λ, ω, ı) 7→ (X ⊗r θ−1
F ′/F , λ⊗r θ−1

F ′/F , ω ⊗r θ−1
F ′/F , ı⊗r θ−1

F ′/F ),

where we are using the notation M(c, Γ00(p∞f2)) (resp. M(cθ−1
F ′/F , Γ00(p∞f2))) for the

moduli stack of c (resp. cθF ′/F ) polarized HBAV of F (resp. of F ′) with a p∞f2-arithmetic
structure (resp. p∞f2r′-arithmetic structure). Before we proceed further, we would like to
see this map from the complex point of view. For fractional ideals a and b of F (resp. a′ and
b′ of F ′) with ab−1 = c (resp. a′b′−1 = c′ = cθF ′/F ) and (a, pf) = 1 (resp. (a′, pfr′) = 1)
we set H(a,b) := H[F :Q] (resp. H(a′,b′) := H[F ′:Q]). The embedding F ↪→ F ′ induces a
natural diagonal embedding

∆ : H(a,b) ↪→ H(a′,b′)

by ∆((zσ)σ∈Σ) := (zσ′)σ′∈Σ′ with zσ′ := zσ for σ′|F = σ. For any natural number n we
introduce the following congruence subgroups which are relevant to the moduli problem
that we consider (see [12, pages 259 and 262])

Γ00(pnf2; a, b) :=
{(

a b

c d

)
∈

(
r a−1b−1θ−1

F

pnf2abθF r

)
|ad− bc = 1, a− 1 ∈ pnf2r, d− 1 ∈ pnf2r

}
.

Similarly we define for F ′,

Γ00(pnf2; a′, b′) :=
{(

a b

c d

)
∈

(
r′ a′−1

b′−1
θ−1

F ′

pnf2a′b′θF ′ r′

)
|ad− bc = 1, a− 1 ∈ pnf2r′, d− 1 ∈ pnf2r′

}
.
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We now take above a′ := ar′ and b′ := bθ−1
F ′/F . In particular we have c′ = a′b′−1 =

ab−1θF ′/F = cθF ′/F . Then we note that the embedding SL2(F ) ↪→ SL2(F ′) induced by
F ↪→ F ′ gives an embedding

Γ00(pnf2; a, b) ↪→ Γ00(pnf2; a′, b′) = Γ00(pnf2; ar′, bθ−1
F ′/F )

since in this case we have

Γ00(pnf2; ar′, bθ−1
F ′/F ) :=

{(
a b

c d

)
∈

(
r′ a−1b−1θ−1

F r′

pnf2abθF r′ r′

)
|ad− bc = 1, a− 1 ∈ pnf2r′, d− 1 ∈ pnf2r′

}
,

because θF ′ = θF θF ′/F . In particular, this implies that the map ∆ induces by pull-back a
map

res∆ : Mk(cθF ′/F , Γ00(pnf2; ar′, bθ−1
F ′/F ), χ) → Mpk(c, Γ00(pnf2; a, b), χ◦ver), f 7→ f◦∆,

i.e. from the space of cθF ′/F - polarized complex Hilbert modular forms over F ′ of the
congruences group Γ00(pnf2; ar′, bθ−1

F ′/F ) of parallel weight k and Nebentype χ to the
space of c-polarized complex Hilbert modular forms over F of the congruences group
Γ00(pnf2; a, b) of parallel weight pk and Nebentype χ ◦ ver. As this holds for any n, we
obtain a map

res∆ : Mk(cθF ′/F , Γ00(p∞f2; ar′, bθ−1
F ′/F ), χ) → Mpk(c,Γ00(p∞f2; a, b), χ ◦ ver),

where

Mk(cθF ′/F , Γ00(p∞f2; ar′, bθ−1
F ′/F ), χ) :=

⋃

n≥0

Mk(cθF ′/F ,Γ00(pnf2; ar′, bθ−1
F ′/F ), χ)

and similarly

Mpk(c,Γ00(p∞f2; a, b), χ ◦ ver) :=
⋃

n≥0

Mpk(c,Γ00(pnf2; a, b), χ ◦ ver).

The map ∆ that we described above, that is X 7→ X ′ := X ⊗r θ−1
F ′/F , agrees with

the diagonal embedding when X is a complex HBAV. Indeed, in this case, X corresponds
to the lattice of the form La,b(τ) := 2πi(θ−1

F a−1 + bτ) for some τ ∈ H(a,b) (see [25,
page 215]). Then the lattice Lar′,bθ−1

F ′/F

(τ ′) that corresponds to the HBAV X ′ is given by

2πi(θ−1
F ′ a

−1 + bθ−1
F ′/F τ ′) with τ ′ = ∆(τ) ∈ H(ar′,bθ−1

F ′/F
). Further, the polarization λ on

La,b(τ) corresponds to an alternating r-pairing (see [25, page 214])

< ·, · >:
2∧
r

La,b(τ) ∼= θ−1
F c−1

and hence λ⊗r θ−1
F ′/F to an alternating r′-pairing

< ·, · >′:
2∧

r′
Lar′,bθ−1

F ′/F

(∆(τ)) =
2∧

r′
(La,b(τ)⊗rθ

−1
F ′/F ) ∼= θ−1

F c−1θ−2
F ′/F = θ−1

F ′ c
−1θ−1

F ′/F .

Further, ω gives an isomorphism [25, page 214]

ω : Lie(Xan) ∼= θ−1
F ⊗ C = F ⊗ C
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and hence

ω ⊗r θ−1
F ′/F : Lie(X ′an) ∼= θ−1

F ′ ⊗ C = F ′ ⊗ C.

Finally, the effect on the arithmetic structure follows from the fact that the p∞ induces an
exact sequence of free rp modules,

0 → θ−1
F ⊗r rp → L⊗r rp → c−1 ⊗r rp → 0

and hence, after tensoring with θ−1
F ′/F , we get

0 → θ−1
F ′ ⊗r′ r′p → L′ ⊗r′ r′p → c−1θ−1

F ′/F ⊗r′ r′p → 0,

where L = La,b(τ) and L′ = Lar′,bθ−1
F ′/F

(τ ′). Similarly follows the f2-structure.

Next we study the effect of the diagonal map on the q-expansion of Hilbert mod-
ular forms at particular cusps. If we assume that the Hilbert modular form f ∈
Mk(cθF ′/F , Γ00(pnf2; ar′, bθ−1

F ′/F )) has at the cusp (ar′, bθ−1
F ′/F ) the Fourier expansion

f(z′) =
∑

ξ′≥0,ξ′∈abθ−1
F ′/F

a(ξ′, f)q′ξ
′

with q′ = exp(2πi
∑

σ∈Σ′ z
′
σ′σ(ξ′)), then the form res∆(f) has at the cusp (a, b) the

Fourier expansion

res∆(f)(z) =
∑

ξ≥0,ξ∈ab


 ∑

ξ′,TrF ′/F (ξ′)=ξ

a(ξ′, f)


 qξ

with q = exp(2πi
∑

σ∈Σ zσσ(ξ)). Note that, as pointed also above, TrF ′/F (ξ′) ∈ ab

for ξ′ ∈ abθ−1
F ′/F . Algebraically these considerations can be expressed with the help of

the Tate HBAV. We consider the effect of our map on the Tate HBAV Tatea,b(q). That is
we consider the HBAV with real multiplication by r′ defined by Tatea,b(q) ⊗r θ−1

F ′/F =
(Gm ⊗ θ−1

F /qb) ⊗r θ−1
F ′/F . We consider the map trF ′/F : R{abθ−1

F ′/F } → R{ab} given

by qα 7→ qtrF ′/F (α).

Lemma 4.1.

(
Tatear′,bθ−1

F ′/F

(q), λ′can, ω′can, i′can

)
×R{abθ−1

F ′/F
} R{ab}

=
(
Tatea,b(q)⊗r θ−1

F ′/F , λcan ⊗r θ−1
F ′/F , ωcan ⊗r θ−1

F ′/F , ican ⊗r θ−1
F ′/F

)

Proof. Even though the lemma holds in general, we are going to use it while working
over number fields. Hence, after fixing embeddings in the complex numbers, we may just
prove it overC. Over the complex numbers this follows easily by observing that Tatea,b(q)
corresponds to that lattice 2πi(bz+a−1θ−1

F ) for z ∈ H(a,b) and hence Tatea,b(q)⊗rθ
−1
F ′/F

to the lattice

2πi(bz + a−1θ−1
F )⊗r θ−1

F ′/F = 2πi(bθ−1
F ′/F z′ + a−1θ−1

F ′ ), (4.4)
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with z′ ∈ H(ar′,bθ−1
F ′/F

) the image of z under the map ∆ introduced above. Moreover

in this case the map trF ′/F : R{abθ−1
F ′/F } → R{ab} given by qα 7→ qtrF ′/F (α) cor-

responds to setting the indeterminate q := exp(TrF ′(z′)) := exp(
∑

σ∈Σ′ z
′
σ) (where

σ ∈ Σ′ the embeddings σ : F ′ ↪→ C and z′ = (z′σ) ∈ H(a,bθ−1
F ′/F

)) equal to the in-

determinate q = exp(TrF ′(∆(z))). In particular that implies that the complex points of
Tatear′,bθ−1

F ′/F

(q)×R{abθ−1
F ′/F

} R{ab} correspond to the lattice 2πi(bθ−1
F ′/F z′ + a−1θ−1

F ′ )

for z′ = ∆(z).
Now we prove the statement about the polarization. We have that

λcan : Tatea,b(q)t ∼= Tatea,b(q)⊗r c

and hence

λcan ⊗r θ−1
F ′/F : Tatea,b(q)t ⊗r θ−1

F ′/F
∼= Tatea,b ⊗r θ−1

F ′/F ⊗r c.

But we know that we can identify Tatea,b(q)t = Tateb,a(q) (see for example [19, page
117]). We obtain

λcan ⊗r θ−1
F ′/F : Tateb,a(q)⊗r θ−1

F ′/F
∼= Tatea,b ⊗r θ−1

F ′/F ⊗r c.

Similarly we have that

λ′can : Tatear′,bθ−1
F ′/F

(q)t ∼= Tatear′,bθ−1
F ′/F

(q)⊗r′ cθF ′/F

and after identifying Tatear′,bθ−1
F ′/F

(q)t = Tatebθ−1
F ′/F

,ar′(q) we obtain

λ′can : Tatebθ−1
F ′/F

,ar′(q) ∼= Tatear′,bθ−1
F ′/F

(q)⊗r′ cθF ′/F ,

or equivalently

λ′can : Tatebθ−1
F ′/F

,ar′(q)⊗r′ θ−1
F ′/F

∼= Tatear′,bθ−1
F ′/F

(q)⊗r′ r′c.

Applying base change to the last isomorphism and denoting λ′can×R{abθ−1
F ′/F

}R{ab} with

λ̃can we obtain

λ̃can : Tatebθ−1
F ′/F

,ar′(q)×R{abθ−1
F ′/F

}R{ab}⊗r′θ
−1
F ′/F

∼= Tatear′,bθ−1
F ′/F

(q)×R{abθ−1
F ′/F

}R{ab}⊗r′r
′c.

But we have seen that

Tatear′,bθ−1
F ′/F

(q)×R{abθ−1
F ′/F

} R{ab} = Tatea,b(q)⊗r θ−1
F ′/F

and similarly we have that

Tatebθ−1
F ′/F

,ar′(q)×R{abθ−1
F ′/F

} R{ab} = Tateb,a(q)⊗r r′.

That is,

λ̃can : Tateb,a(q)⊗r θ−1
F ′/F

∼= Tatea,b(q)⊗r θ−1
F ′/F ⊗r′ r′c.

Now we claim that λ̃can = λcan ⊗r θ−1
F ′/F . We show this in the case of interest, namely

when the characteristic is zero (we are going to apply everything over number fields) and
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hence we can consider the complex analytic case. In this case it is easy to see what the
canonical polarizations λ′can and λcan are.

Indeed over C the HBAV Tatebθ−1
F ′/F

,ar′(q)(C) corresponds to the lattice

Lbθ−1
F ′/F

,ar′(τ
′) = 2πi(θ−1

F ′ b
−1θF ′/F + ar′τ ′) with q = exp(TrF ′(τ ′)) and

(Tatear′,bθ−1
F ′/F

(q)⊗r′ cθF ′/F )(C) to the lattice Lar′,bθ−1
F ′/F

(τ ′)⊗r′ cθF ′/F . But it is easily

seen that

Lbθ−1
F ′/F

,ar′(τ
′)⊗r′ θ−1

F ′/F = Lar′,bθ−1
F ′/F

(τ ′)⊗r′ r′c.

In particular after all these identifications we have that the map λ′can can be described by
the trivial map

z mod Lbθ−1
F ′/F

,ar′(τ
′)⊗r′ θ−1

F ′/F 7→ z mod Lbθ−1
F ′/F

,ar′(τ
′)⊗r′ θ−1

F ′/F ,

where z ∈ C[F ′:Q]. Similarly, it can be seen that the map λcan ⊗r θ−1
F ′/F can be described

by

z mod Lbr,ar(τ)⊗r θ−1
F ′/F 7→ z mod Lbr,ar(τ)⊗r θ−1

F ′/F .

But, as we have already seen, taking base change in this setting is nothing else than setting
τ ′ := ∆(τ). That is, the map λ̃can is nothing else than

z mod Lbθ−1
F ′/F

,ar′(∆(τ))⊗r′ θ−1
F ′/F 7→ z mod Lbθ−1

F ′/F
,ar′(∆(τ))⊗r′ θ−1

F ′/F .

Now we notice that Lbθ−1
F ′/F

,ar′(∆(τ)) = Lbr,ar(τ)⊗r r′ and hence λ̃can = λcan⊗r θ−1
F ′/F

or using the previous notation λ′can ×R{abθ−1
F ′/F

} R{ab} = λcan ⊗r θ−1
F ′/F .

For the statement about the differentials one has simply to observe that (see also [25,
page 210])

Lie(Tatear′,bθ−1
F ′/F

(q)×R{abθ−1
F ′/F

} R{ab}) ∼= Lie(Gm ⊗ a−1θ−1
F ′ )×R{abθ−1

F ′/F
} R{ab}

= θ−1
F ′ a

−1 ⊗R{abθ−1
F ′/F } ×R{abθ−1

F ′/F
} R{ab} = θ−1

F ′ a
−1 ⊗R{ab}.

On the other hand we have

Lie(Tatea,b(q))⊗r′ θ−1
F ′/F = R{ab} ⊗ a−1θ−1

F ⊗r′ θ−1
F ′/F = R{ab} ⊗ a−1θ−1

F ′ .

That is,

Lie(Tatear′,bθ−1
F ′/F

(q)×R{abθ−1
F ′/F

} R{ab}) ∼= Lie(Tatea,b(q))⊗r′ θ−1
F ′/F ,

which concludes the statement for the canonical differentials. Finally, the statement about
the numerical structures follows in the same way as we indicated above.

We can use the above lemma to study the effect of the diagonal embedding to the the
q-expansion, that is to the values of Hilbert modular forms on the Tate abelian scheme. For
a cθF ′/F -HMF φ of F ′ we have that

φ
(
Tatea,b(q)⊗r θ−1

F ′/F , λcan ⊗r θ−1
F ′/F , ωcan ⊗r θ−1

F ′/F , ican ⊗r θ−1
F ′/F

)
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= trF ′/F

(
φ

(
Tatear′,bθ−1

F ′/F

(q), λcan, ωcan, ican

))
. (4.5)

Note that this over the complex numbers follows directly from the description of the map
∆ as the diagonal embedding ∆ : Hc ↪→ HcθF ′/F

.
The next question that we need to clarify is what is happening under this diagonal map

for an HBAV with real multiplication by r that has CM by R, the ring of integers of a
totally imaginary quadratic extension K of F . It is well known that, up to isomorphism,
these are given by the fractional ideals of K. Let us write U for one of these and X(U) for
the corresponding HBAV with CM by R. We see that the above map gives us the HBAV
X(U)⊗r θ−1

F ′/F with real multiplication by r′. We set K ′ = KF ′ and write R′ for its ring
of integers. Then we have,

Lemma 4.2. Assume that R′ = R ⊗r r′. Then the HBAV X(U) ⊗r θ−1
F ′/F has CM by R′

and it corresponds to the fractional ideal Uθ−1
F ′/F .

Proof. We write K = F (d) and then K ′ = F ′(d). In particular, since X(U) has CM by
K, we conclude that X(U) ⊗r θ−1

F ′/F has CM by K ′, as we have d ∈ End(X(U)) ↪→
End(X(U))⊗r θ−1

F ′/F ). Moreover, we have

X(U)⊗rθ
−1
F ′/F = X(U)⊗rr

′⊗r′θ
−1
F ′/F = X(UR′)⊗r′θ

−1
F ′/F = X(UR′)/(X(UR′)[θF ′/F ]).

But we have that X(UR′)/(X(UR′)[θF ′/F ]) = X(Uθ−1
F ′/F R′), which concludes the

proof as a fractional ideal of K ′ has CM by R′.

We remark that the condition of the lemma, R′ = Rr′ holds in our setting. Indeed we
know that R = R0r as [K : Q] = [K0 : Q][F : Q] and F/Q and K0/Q have disjoint
ramification. Similarly we have R′ = R0r

′. But then we have R′ = R0r
′ = R0rr

′ = Rr′.
In order to proceed further we need to consider the action of Frobp on modular forms.

We refer to [25, page 224 (1.11.21)] for its definition. Here we simply recall its effect on
the q-expansion. It is

Frobp(f)(q) = f(qp),

which is explained in [25, page 224, (1.11.22)]. We then have the following proposition.

Proposition 4.3. (Congruences) Let c be a fractional ideal of F relative prime to fp and
assume that the prime factors of θF ′/F appear in the prime factors dividing pf. Then we
have the congruences of Eisenstein series

res∆(Ek(φ′, cθF ′/F )) ≡ Frobp(Epk(φ, c)) mod p (4.6)

where φ := φ′ ◦ ver and φ′ is a locally constant Zp-valued function on {r′×p × (r′/f)×} ×
{r′×p × (r′/f)×}, extended trivially by zero to {r′p× (r′/f)}×{c−1θ−1

F ′/F ⊗r′ r
′
p× (r′/f)},

which satisfy φ′γ = φ′ for all γ ∈ Γ.
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Proof. We consider the cusp (r′, bθ−1
F ′/F ) for b a fractional ideal of F equal to c−1. From

Proposition 3.1 we know that the q-expansion of the Eisenstein series Ek(φ′, cθF ′/F ) at
the cusp (r′, bθ−1

F ′/F ) is given by

Ek(φ′, cθF ′/F )(Tater′,bθ−1
F ′/F

(q), λcan, ωcan, ican) =
∑

0¿ξ′∈bθ−1
F ′/F

a(ξ′, φ′, k))qξ′ ,

(4.7)
with

a(ξ′, φ′, k) =
∑

(a,b)∈(r′×bθ−1
F ′/F

)/r′×,ab=ξ′

φ′(a, b)sgn(N(a))N(a)k−1. (4.8)

As the function φ′ is supported on r′×p × (r/f)× with respect to the second variable (i.e. the
b’s above), then our assumptions on the ramification of F ′/F (i.e. that the prime factors
of θF ′/F appear in the prime factors dividing pf) imply that the above q-expansion with
respect to the selected cusp is given by

Ek(φ′, cθF ′/F )(Tater′,bθ−1
F ′/F

(q), λcan, ωcan, ican) =
∑

0¿ξ′∈br′
a(ξ′, φ′, k))qξ′ , (4.9)

with

a(ξ′, φ′, k) =
∑

(a,b)∈(r′×br′)/r′×,ab=ξ′

φ′(a, b)sgn(N(a))N(a)k−1. (4.10)

From Lemma 4.1 and the discussion after that it follows that the q-expansion of the
restricted Eisenstein series res∆(Ek(φ′, cθF ′/F )) at the cusp (r, b) is given by

res∆(Ek(φ′, cθF ′/F ))(Tater,b(q), λcan, ωcan, ican) =
∑

0¿ξ∈b

a(ξ, φ′, k)qξ, (4.11)

where

a(ξ, φ′, k) =
∑

ξ′∈br′,TrF ′/F (ξ′)=ξ

a(ξ′, φ′, k). (4.12)

The q-expansion of the Eisenstein series Epk(φ, c) at the cusp (r, b) is given by

Epk(φ, c)(Tater,b(q), λcan, ωcan, ican) =
∑

0¿ξ∈b

a(ξ, φ, pk))qξ, (4.13)

with

a(ξ, φ, pk) =
∑

(a,b)∈(r×b)/r×,ab=ξ

φ(a, b)sgn(N(a))N(a)pk−1 (4.14)

and hence that of Frobp(Epk(φ, c)) is given by

Frobp(Epk(φ, c)(Tater,b(q), λcan, ωcan, ican) =
∑

0¿ξ∈b

a(ξ, φ, pk))qpξ. (4.15)
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We note here that, by the support assumptions on φ′ and hence also on φ, only the terms
a(ξ, φ, pk) with (ξ, p) = 1 in the sum above are non-zero. In order to establish the congru-
ences of the Eisenstein series it is enough, thanks to the q-expansion principle, to establish
the congruences between the q-expansions at the selected cusp (r, b).

We start by observing that the Eisenstein series Frobp(Epk(φ, c)) has non-zero terms
only at terms divisible by p, as we assume that the ideal b is prime to p. We consider the
ξth-term of res∆Ek(φ′, cθF ′/F ). It is equal to

a(ξ, φ′, k) =
∑

ξ′∈br′,TrF ′/F (ξ′)=ξ

∑

(a,b)∈(r′×br′)/r′×,ab=ξ′

φ′(a, b)sgn(N(a))N(a)k−1.

(4.16)
We observe that the group Γ = Gal(F ′/F ) acts on the triples (ξ′, a, b) of the summation
above by (ξ′, a, b)γ := (ξ′γ , aγ , bγ), as b is an ideal of F hence is preserved by Γ, where
the action on a and b is modulo the units in r′ to understand. We write γ for a generator of
Γ. We consider two cases, the case where (ξ′, a, b) is fixed by γ and the case where it is
not.

Let Sξ be the set of triples (ξ′, a, b) ∈ br′ × (r′ × br′)/r′× with TrF ′/F (ξ′) = ξ and
ab = ξ′. As Γ acts on Sξ, we may write

a(ξ, φ′, k) =
∑

(ξ′,a,b)∈Sξ

φ′(a, b)sgn(N(a))N(a)k−1

=
∑

j

∑

(ξ′,a,b)∈(ξ′j ,aj ,bj)Γ

φ′(a, b)sgn(N(a))N(a)k−1,

where we write Sξ =
∐

j(ξ
′
j , aj , bj)Γ, for a set {(ξ′j , a, b)} of representatives of the Γ-

action on Sξ. Since Γ is cyclic of order p, for every j we have that all the triples (ξ′, a, b) ∈
(ξ′j , aj , bj)Γ are conjugated and no one of them is fixed, or (ξ′j , aj , bj)Γ = {(ξ′, a, b)} and
(ξ′, a, b) is fixed. We set

Sj :=
∑

(ξ′,a,b)∈(ξ′j ,aj ,bj)Γ

φ′(a, b)sgn(N(a))N(a)k−1.

We first consider the case where (ξ′, a, b) ∈ (ξ′j , aj , bj)Γ is not fixed by Γ. In this case
we notice that, as φ′ is fixed under Γ, we have that φ′(aγ , bγ) = φ′(a, b). Hence we have

Sj =
p−1∑

i=0

φ′(aγi

j , bγi

j )sgn(N(aγi

j ))N(aγi

j )k−1 = p φ′(aj , bj)sgn(N(aj))N(aj)k−1 ≡ 0 mod p.

(4.17)
If (ξ′, a, b) is fixed by γ then that implies that (i) ξ′ ∈ F and (ii) the ideals generated by
a and b in r′ are coming from ideals in r since they are relative prime to θF ′/F , i.e. to the
primes where the extension is ramified. The last fact follows from the support assumption
on φ′. Moreover, as we assume that ClF ↪→ ClF ′ , we have that actually the elements
themselves are (up to units) equal to elements from F . In this case we first notice that
ξ = TrF ′/F (ξ′) = pξ′ and, as ξ′ ∈ br′ with b prime to p, we have that ξ is also divisible
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by p in the sense that is of the form pξ′ for ξ′ ∈ b. Further, we have the congruences
modulo p

Sj = φ′(aj , bj)sgn(NF ′(aj))NF ′(aj)k−1 = φ(aj , bj)sgn(NF (aj)p)NF (aj)p(k−1)

≡ φ(aj , bj)sgn(NF (aj))NF (aj)pk−1 mod p. (4.18)

We already remarked that, whenever there exists (ξ′, a, b) which is fixed, then ξ = pξ′ with
ξ′ ∈ F ∩ br′ = b, (this latter equality as we assume that (br′, θF ′/F ) = 1). Conversely,
whenever ξ = pξ′ with ξ′ ∈ b, such a fixed triple exists (for example (ξ′, 1, ξ′)). Hence, if
we do not have ξ = pξ′ for some ξ′ ∈ b, all triples are not fixed, Sj ≡ 0 mod p for every
j by the congruences in equation 4.17 and then a(ξ, φ′, k) ≡ 0 mod p. On the other hand
the ξ-Fourier coefficient in equation 4.15 is zero. Suppose now that ξ = pξ′ with ξ′ ∈ b.
By the congruences in equations 4.17 and 4.18 we have

a(ξ, φ′, k) ≡
∑

j fixed

Sj ≡
∑

(ξ′,a,b) fixed

φ(a, b)sgn(NF (a))NF (a)pk−1 (4.19)

Now we note that, in order to conclude the proposition, it is enough to show that, for all
ξ ∈ F of the form ξ = pξ′ with ξ′ relative prime to p, we have

SΓ
ξ = {(a, b) ∈ (r× b)/r× : ab = ξ′}, (4.20)

since then the right hand side of equation 4.19 is a(ξ′, φ, pk), which is indeed the ξ-Fourier
coefficient in 4.15. For the proof of equation 4.20 we first observe that the inclusion

SΓ
ξ ⊇ {(a, b) ∈ (r× b)/r× : ab = ξ′} (4.21)

follows directly. For the other direction we have to observe the following. As we have
already remarked, from our assumption that ClF ↪→ ClF ′ , it follows that for an element
(ξ′, a, b) ∈ SΓ

ξ there exists (a′, b′) ∈ r × b and ua, ub ∈ r′× such that a = uaa′ and
b = ubb

′. In particular, we have that ξ′ = ab = uauba
′b′. Note that, since ξ′ ∈ F and

a′b′ ∈ F , it follows that uaub ∈ F ∩ r′× = r×. But then we have that

(ξ′, a, b) = (ξ′, uaa′, ubb
′) = (ξ′, u−1

b ubuaa′, ubb
′) ∼ (ξ′, uauba

′, b′), (4.22)

since the equivalence relation (ξ′, x, y) ∼ (ξ′, x′, y′) is given by x = e−1x′ and y = ey′

for e ∈ r′×. But then we are done since

(uauba
′, b′) ∈ {(a, b) ∈ (r× b)/r× : ab = ξ′}

as uauba
′b′ = ab = ξ′, uaub ∈ r× and (a′, b′) ∈ r× b.

5. Using the Theory of Complex Multiplication

Before we prove our main theorem we need to make some preparation. In this section we
explain how we can use the theory of complex multiplication to understand how Frobenious
operates on values of Eisenstein series at CM points. We recall that we consider the CM
types (K0, Σ0) and its lift (K, Σ). Moreover by our setting we have that the reflex field for
both of these CM types is simply (K0,Σ0). We first note that, since we assume that p is
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unramified in F , then the triples (X(U), λ(U), i(U))) are defined over the ring of integers
of W = W (F̄p) (see [18] page 69). We write Φ for the extension of the Frobenious in
Gal(Qnr

p /Qp) to W . In this section we prove the following proposition, which is just a
reformulation of what is done in [24] (page 539) in the case of quadratic imaginary fields.

Proposition 5.1. (Reciprocity law on CM points) For every fractional ideal U of the CM
field K and φ a Zp valued locally constant function, we have the reciprocity law

Frobp(Epk(φ, c)(X(U), λ(U), i(U))) = (Epk(φ, c)(X(U), λ(U), i(U)))Φ. (5.1)

Proof. Let us write R for the ring of integers of W . As we are assuming that φ is Zp

valued and we know from above that the triple (X(U), λ(U), i(U)) is defined over R, then
we have by [25, page 247 (3.2.3)] that the value of the Eisenstein series is in R. From the
compatibility of p-adic modular forms with ring extensions and the fact that the Eisenstein
series is defined over Zp, we have that

(Epk(φ, c)(X(U), λ(U), i(U)))Φ = Epk(φ, c)((X(U), λ(U), i(U))⊗R,Φ R), (5.2)

where the tensor product is with respect to the map Φ : R→ R, i.e. the base change of the
triple (X(U), λ(U), i(U)) with respect to the Frobenious map. But then, from the theory of
complex multiplication see [26] (Lemma 3.1 in page 61 and Theorem 3.4 in page 66), the
fact that the reflex field of (K, Σ) is (K0, Σ0) and that p is ordinary we have that

(X(U), λ(U), i(U))⊗R,Φ R ∼= (X ′(U), λ′(U), i′(U)), (5.3)

where (X ′(U), λ′(U), i′(U)) is the quotient obtained by X/Hcan, with Hcan := i(θ−1
F ⊗

µp) as explained in Katz [25, page 222]. Moreover, as in Katz, we have that the Tate HBAV
(Tate′a,b(q), λ′can, i′can) is obtained from (Tatea,b(q), λcan, ican) by the map q 7→ qp,
from which we conclude the proposition.

6. Complex and p-adic Periods.

In this section we study the various periods (archimedean and p-adic) that appear in the
interpolation properties of the KHT -measure. We also consider the relative situation and
we focus especially in the case of interest with (K0, Σ0) < (K, Σ) < (K ′,Σ′).

The periods of Katz: We start by recalling the periods defined by Katz and then show-
ing that in the case of the twisted measure the periods used remain unchanged. We follow
Katz (see [25] page 268 and for a more detailed explanation see [13]) and fix a nowhere
vanishing differential over A := {a ∈ Q̄ : incl(p)(a) ∈ Dp} (here incl(p) is the embed-
ding of Q̄ in Dp induced from our fixed embedding Q̄ ↪→ Q̄p),

ω : Lie(X(R)) ∼= θ−1
F ⊗A. (6.1)

Then for any fractional ideal U of K that is relative prime to the place induced by incl(p)
we have an identification Lie(X((U)) = Lie(X(R)) and hence one may use the very same
ω to fix a nowhere differential of X(U) by

ω(U) : Lie(X((U)) = Lie(X(R)) ∼= θ−1
F ⊗A. (6.2)
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We use incl(∞) : A ↪→ C to define the standard complex nowhere vanishing differential
ωtrans(X(U)) associated to the torus CΣ/Σ(U). Then as in Katz ([25, Lemma 5.1.45]) we
have an element ΩKatz

K = (. . . , Ω(σ), . . .)) ∈ (C×)Σ such that, for all fractional ideals U

of K relative prime to p, we have

ω(U) = ΩKatz
K ωtrans(U). (6.3)

Of course the same considerations hold for K0 and K ′. Especially for K ′ we want to
compute also the periods for the twisted HBAV X(U ⊗ ξ). From the isomorphism ı :
X(U) ∼= X(U⊗ ξ−1) we have that we can pick the invariant differentials ω(U⊗ ξ−1) and
ωtrans(U⊗ ξ−1) as ξ · ω(U) and ξ · ωtrans(U) respectively. That is,

ω(U⊗ ξ−1) : Lie(X((U⊗ ξ−1)) → Lie(X(U)) = Lie(X(R′)) ∼= θ−1
F ′ ⊗A (6.4)

and

ωtrans(U⊗ ξ−1) : Lie(X((U⊗ ξ−1)an) → Lie(X(U)an) = Lie(X(R′)an) ∼= θ−1
F ′ ⊗ C,

(6.5)
where the first map is the isomorphism induced by ı and is given by multiplication by ξ.
In particular, we have that the selected periods are equal to ΩKatz

K′ . Similarly Katz ([25]
Lemma 5.1.47) defines p-adic periods in (D×

p )Σ relating the invariant differential ω(U) to
the invariant differential ωcan(U) obtained from the p∞-structure. As above we obtain that
the p-adic periods for the twisted HBAV are the same.

Picking the periods compatible:(See also [13] page 195 on the properties of the peri-
ods defined by Katz). Now we consider the more specific setting where (K, Σ) and (K ′, Σ′)
are lifted from the type (K0, Σ0). Moreover, as we assume that K0 is the CM field of an
elliptic curve defined over Q, we have that R0 has class number one, i.e. it is a P.I.D. That
means that the ring of integers R and R′ are free over R0. In particular we have

XΣ(R) = XΣ(R⊗R0 R0) = XΣ0(R0)⊗R0 R

and similarly

XΣ′(R′) = XΣ′(R′ ⊗R0 R0) = XΣ0(R0)⊗R0 R′.

These imply that we have

Lie(XΣ(R)) = ⊕g
j=1Lie(XΣ0(R0)) (6.6)

and similarly

Lie(XΣ′(R′)) = ⊕g′
j=1Lie(XΣ0(R0)). (6.7)

In particular that implies that

ΩKatz
K = (. . . , Ω(E), . . .), and ΩKatz

K′ = (. . . , Ω(E), . . .). (6.8)

Similarly for the p-adic periods we observe that X(R) ∼= E × . . . × E and hence
X(R)[p∞] ∼= E[p∞] × . . . × E[p∞], where E is the elliptic curve defined over Q that



February 11, 2011 10:58 WSPC/INSTRUCTION FILE CongruencesCMrevIV

36 Thanasis Bouganis

corresponds to the ideal R0 with respect to the CM type (K0, Σ0). These considerations
imply that

ΩKatz
p,K = (. . . , Ωp(E), . . .), and ΩKatz

p,K′ = (. . . , Ωp(E), . . .). (6.9)

In particular recalling the notation used in Theorem 3.2 and Proposition 3.5 we have
that ΩkΣ

∞ = Ω∞(E)kg , ΩkΣ
p = Ωp(E)kg ,ΩkΣ′

∞ = Ω∞(E)kg′ = Ω∞(E)kgp and
ΩkΣ

p = Ωp(E)kgp. Finally, we note that the definition of the periods of Katz is in gen-
eral independent of the Grössencharacter, since they depend only on its infinite type.
This is why it is important to pick the differentials ω(R) and ω(R′) properly. And actu-
ally in our setting we have a very natural choice by considering the elliptic curve E/Q
to whom the Grössencharacter ψ0 is attached (recall that ψK = ψK0 ◦ NK/K0 and
ψK′ = ψK0 ◦NK′/K0 ).

7. Congruences of Measures

We start this section by recalling various notations in force during this work. We recall that
in section 3 we have fixed an integral ideal C of K and a decomposition C = FFcJ such
that

F + Fc = R, F + Fc = R, Fc + Fc
c = R, Fc ⊃ Fc

and J consists of ideals that are inert or ramify in K/F . We set f′ := FJ ∩ F and f′′ :=
FcJ ∩ F , f := f′ ∩ f′′ = f′, s = Fc ∩ F and j := J ∩ F .

Then we have considered various fractional ideals of K ′. In particular, we have set
F′ := R′F, F′c := R′Fc, J′ := R′J so that C′ := R′C = F′F′cJ

′ with

F′ + F′c = R′, F′ + F′c = R′, F′c + F′c
c = R′, F′c ⊃ F′c

Similarly we define ideal of K ′ as (f′)′ := F′J′ ∩ F ′ and (f′′)′ := F′cJ
′ ∩ F ′, (f)′ :=

(f′)′∩ (f′′)′ = (f′)′, s′ = F′c∩F ′ and j′ := J′∩F ′, from which it follows that (f′)′ := f′R′,
(f′′)′ = f′′R′, s′ = sR′ and j′ = jR′.

In order to simplify our notation we are going to abuse the “ ′ ” symbol used in the
notation of the ideals over K ′ when it is clear over which field (K or K ′) we are working.
For example we are going to write ClK′(J) for ClK′(J′) or (Uj ⊗ ξ−1)(fp) for (Uj ⊗
ξ−1)(f′p) and so on. Finally we inform the reader that the symbol ψ (or ψ′) will denote a
Grössecharacter (see below) and not the additive character that was used in the definition
of the epsilon factors.

The goal of this section is to prove our main theorem. We recall that this amounts to
proving the following

Theorem 7.1. If (i) Cl−K(J) ∼= Cl−K′(J)Γ (ii) ClF (1) ↪→ ClF ′(1) and (iii) θF ′/F = (ξ)
with ξ À 0, then we have the congruences

∫
GK

ε ◦ ver dµKHT
ψK ,δ

Ωp(E)g
≡

∫
GK′

ε dµKHT,tw
ψK′ ,δ,ξ

Ωp(E)pg
mod pZp (7.1)
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for all ε locally constant Zp-valued functions on GK′ with εγ = ε and belonging to the
cyclotomic part of it, i.e. when they are written as a sum of finite order characters they are
of the form ε =

∑
cχχ with χτ = χ.

The strategy for proving the above theorem is as follows. By definition we have that the
twisted KHT -measure is given as∫

G′
φ(g)µKHT,tw

δ,ξ (g) :=
∑

j

∫

T

φ̃jdEj :=
∑

j

E1(φj , c
ξ
j)(X(Uξ

j), λ
ξ
δ(Uj⊗θ−1

F ′/F ), ıξ(Uj⊗θ−1
F ′/F )).

We consider the set of representatives {Uj} of Cl−K′(J). If we consider the map

ρ : Cl−K(J) → Cl−K′(J)Γ, (7.2)

we may pick representatives of Im(ρ) to be fractional ideals Uj with the property Uγ
j = Uj

for all γ ∈ Γ. Moreover we may pick the other representatives of Cl−K′(J) such that, if
Uj is a representative, then if Uγ

j is not in the same equivalent class as Uj then it is also
a representative (and this must hold for all γ ∈ Γ). We may split the twisted measure as
follows,∫

G′
φ(g)µKHT,tw

δ,ξ (g) =
∑

Uj∈Im(ρ)

E1(φj , c
ξ
j)(X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F ))

+
∑

Uj 6∈Im(ρ)

E1(φj , c
ξ
j)(X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F )). (7.3)

Our strategy is to compare the first summand (i.e those CM points that are coming from
K) with the KHT -measure of K through the diagonal embedding that we have worked
above. For the other part we will prove directly that, under the assumptions of our theorem,
it is in pZp. We start with the following proposition

Proposition 7.2. Let Uj be a fractional ideal of K ′. Then for φ a locally constant function
invariant under Γ we have,

Ek(φ, (cξ
j)

γ)(X(Uγ
j
(ξ)), λξ

δ(U
γ
j⊗θ−1

F ′/F ), ıξ(Uγ
j⊗θ−1

F ′/F ), ωcan(Uγ(ξ)
j )) = Ek(φ, cξ

j)(X(Uξ
j), λ

ξ
δ(Uj⊗θ−1

F ′/F ), ıξ(Uj⊗θ−1
F ′/F ), ωcan(Uξ

j))

for γ ∈ Γ.

Proof. The first thing that we note is that the following equality holds

Ek(φ, (cξ
j)

γ)(X(Uγ
j
(ξ)), λξ

δ(U
γ
j⊗θ−1

F ′/F ), ıξ(Uγ
j⊗θ−1

F ′/F ), ωcan(Uγ(ξ)
j )) = Ek(φ, (cξ

j)
γ)(X(Uγ

j
(ξγ)), λξ

δ(U
γ
j⊗θ−1

F ′/F ), ıξ(Uγ
j⊗θ−1

F ′/F ), ωcan(Uγ(ξ)
j ))

for all γ ∈ Γ. Indeed it is enough to observe that ξγ

ξ ∈ R× and hence we have the equality
of ideals Uγ

j ⊗ ξ−1 = Uγ
j ⊗ (ξ−γ). We now have, from the definition of the Eisenstein

series,

Ek(φ, cξ
j)(X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F ), ωcan(Uξ

j)) =

(
Ωp

Ω∞

)kΣ′ (−1)kg′Γ(k + s)g′

√
(DF ′)

∑

w∈(Uj⊗(ξ)−1)(fp)/r′×

Pφ(w)
N(w)k|N(w)2s| |s=0 . (7.4)
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As we assume that φγ = φ for all γ ∈ Γ we have that Pφ(wγ) = Pφ(w). Indeed, from
the definition of the partial Fourier transform, we have

Pφ(x, y) = pα[F ′:Q]N(f)−1 ∑

a∈Xα

φ(a, y)eF ′(ax), (7.5)

for φ factoring through Xα × r′p × (r′/f) with Xα := r′p/αr′p × (r′/f) with α ∈ N. But
then

Pφ(xγ , yγ) = pα[F ′:Q]N(f)−1 ∑

a∈Xα

φ(a, yγ)eF ′(axγ). (7.6)

As γ permutes Xα we have
∑

a∈Xα

φ(a, yγ)eF ′(axγ) =
∑

a∈Xα

φ(aγ , yγ)eF ′(aγxγ) =
∑

a∈Xα

φ(a, y)eF ′(ax), (7.7)

which concludes our claim.
Back to our considerations we have that

∑

w∈(Uj⊗(ξ))(fp)/r′×

Pφ(w)
N(w)k|N(w)2s| |s=0=

∑

w∈(Uj⊗(ξ)−1)(fp)/r′×

Pφ(wγ)
N(wγ)k|N(wγ)2s| |s=0 .

But the last sum is equal to
∑

w∈(Uγ
j⊗(ξ−γ))(fp)/r×

Pφ(w)
N(w)k|N(w)2s| |s=0, which concludes

the proof.

We know consider the measure µKHT,tw
ψK′ ,δ,ξ

. We recall that ψK′ is a Grössencharacter of
type −1Σ′. To simplify our notation we now write ψ′ := ψK′ and ψ := ψK . We write
ψ′finite for its finite part. From the computations that we have already done before theorem
3.5 we have∫

G′
φ(g)µKHT

ψK′ ,δ,ξ
=

∑

j

E1

(
(φχ)j,finite, c

ξ
j

) (
X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F ), ωcan(Uξ

j)
)

=
∑

j

Eψ′(φj , c
ξ
j)

(
X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F ), ωcan(Uξ

j)
)

,

where we set

Eψ′(φj , c
ξ
j) := E1((φψ′−1)j,finite, c

ξ
j).

Moreover we define the subset S of the selected representatives of Cl−K′(J) as the set of
ideals that represent classes in Cl−K′(J)Γ but not in Im(ρ). Of course, under our assump-
tions that ρ is an isomorphism, we have that this set is empty, but we introduce this notation
in order to prove the second form of the main theorem, where we relax the assumption that
ρ is an isomorphism.

Corollary 7.3. For the twisted KHT -measure we have the congruences
∫

G′
φ(g)µKHT,tw

ψ′,δ,ξ (g) ≡
∑

Uj∈Im(ρ)

Eψ′(φj , c
ξ
j)(X(Uξ

j), λ
ξ
δ(Uj⊗θ−1

F ′/F ), ıξ(Uj⊗θ−1
F ′/F ), ωcan(Uξ

j))
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+
∑

Uj∈S

Eψ′(φj , c
ξ
j)(X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F ), ωcan(Uξ

j)) mod p, (7.8)

for all Zp-valued locally constant functions φ of G′ such that φγ = φ for all γ ∈ Γ.

Proof. It follows directly from the fact that |Γ| = p and that φγ = φ for all γ ∈ Γ.

Our next aim is to prove the following proposition

Proposition 7.4. Under our assumption, for all Zp-valued locally constant φ with φγ = φ

for all γ ∈ Γ, we have the congruences

Φ(
∫

G

(φ◦ver)(g)µKHT
ψp,δ (g)) ≡

∑

Uj∈Im(ρ)

Eψ′(φj , c
ξ
j)(X(Uξ

j), λ
ξ
δ(Uj⊗θ−1

F ′/F ), ıξ(Uj⊗θ−1
F ′/F ), ωcan(Uξ

j)) mod p,

where Φ was the extension of the Frobenious element from its action on Qnr
p to its p-adic

completion J∞.

Proof. By definition we have that
∫

G

(φ◦ver)(g)µKHT
ψp,δ (g) =

∑

j

Ep

(
((φ ◦ ver)ψ−p)j,finite, cj

)
(X(Uj), λδ(Uj), i(Uj), ωcan(Uj))

= Ep

(
((φψ−p ◦ ver))j,finite, cj

)
(X(Uj), λδ(Uj), i(Uj), ωcan(Uj))

=
∑

j

E(ψp)(φ ◦ verj , cj)(X(Uj), λδ(Uj), ı(Uj), ωcan(Uj),

where the sum runs over a set of representatives of Cl−K(J) and

E(ψp)(φ ◦ verj , cj) := Ep((φψ′−1 ◦ ver)j,finite, cj),

where we note that ψ′ ◦ ver = ψp as ψ′ = ψ ◦ NK′/K . Now we claim that (φψ′−1 ◦
ver)j,finite = (φψ′−1)j,finite ◦ ver. Indeed from the definition of (φψ′−1)j,finite we
have

(φψ′−1)j,finite(x′, a′, y′, b′) = φ̃j(x′
−1

, a′−1
, y′, b′)ψ′−1

finite(x
′−1

, a′−1
, y′, b′)ψ′−1(U′j

−1).

Since the map ver(Uj) = UjR
′ = U′j we have φ̃j ◦ ver = (φ̃ ◦ ver)j (we recall that

φ̃j(t) = φ(t[U′j ]
−1)). We also have that (ψ′−1 ◦ ver)(U−1

j ) = ψ′−1(U−1
j R′). Hence in

order to conclude our claim we have to check that ψ′−1
finite ◦ ver = (ψ′−1 ◦ ver)finite. But

this last equality follows from the definition of the finite part as

ψ′(x′, a′, y′, b′) = ψ′finite(x
′, a′, y′, b′)N′(x′),

where on the left hand-side of the equation is the restriction of ψ′ to identity component
(i.e. Uj = R′) and N′ has the obvious meaning. But since ψ′ is of type −Σ′ we have that
ψ′ ◦ ver is a character of infinity type −pΣ hence

(ψ′ ◦ ver)(x, a, y, b) = (ψ′ ◦ ver)finite(x, a, y, b)Np(x).
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But by definition (ψ′ ◦ ver)(x, a, y, b) = ψ′(x, a, y, b) and Np(x) = (N′ ◦ ver)(x) =
N′(x) from which we conclude our claim. Now we have,

Frobp (Eψp(φ ◦ verj , cj)) = Frobp

(
Ep

((
φψ′−1 ◦ ver

)
j,finite

, cj

))

= Frobp

(
Ep

(
(φψ′−1)j,finite ◦ ver, cj

))
.

From the congruences between the Eisenstein series that we have proved in Proposition
4.3 we have that

Frobp(E(ψp)((φ ◦ ver)j , cj))(X(Uj), λδ(Uj), ı(Uj), ωcan(Uj)) ≡

Eψ′(φj , c
ξ
j)(X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F ), ωcan(Uξ

j)) mod p,

where of course in the right hand side Uj is understood as UjR
′. We sum over all represen-

tatives of Cl−K(J) and then, from Proposition 5.1 and our assumption that ρ is injective, we
obtain

Φ(
∫

G

(φ ◦ ver)(g)µKHT
ψp,δ (g)) ≡

≡
∑

Uj∈Im(ρ)

Eψ′(φj , c
ξ
j)(X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F ), ωcan(Uξ

j)) mod p.

Lemma 7.5. Let φ be a locally constant Zp-valued function of GK that is cyclotomic i.e.
φ is the restriction to GK of a locally constant function on GF . Then we have that

∫
G

φ(g)µKHT
ψk,δ (g)

Ωp(E)gk
∈ Zp (7.9)

for all k ∈ N

Proof. This follows almost directly Lemma 3.4 and the discussion after it. Indeed we may
write φ =

∑
χ cχχ, where χ are cyclotomic i.e. χ ◦ c = χ. For such characters it is known

(see for example [20]) that, for all σ ∈ Gal(Q̄p/Qp), we have
(∫

G
χ(g)µKHT

ψk,δ (g)

Ωp(E)gk

)σ

=

∫
G

(χ(g))σµKHT
ψk,δ (g)

Ωp(E)gk
. (7.10)

For all σ ∈ GQp and φ’s cyclotomic we have
(∫

G
φ(g)µKHT

ψk,δ (g)

Ωp(E)gk

)σ

=
∑

χ

cσ
χ

(∫
G

χ(g)µKHT
ψk,δ (g)

Ωp(E)gk

)σ

=
∑

χ

cσ
χ

∫
G

(χ(g))σµKHT
ψk,δ (g)

Ωp(E)gk
.

But then as φ(g) = (φ(g))σ =
∑

χ cσ
χχ(g)σ the last sum is equal to

∫
G

φ(g)µKHT

ψk,δ
(g)

Ωp(E)gk which
finishes the proof.

Note that a direct corollary of the proposition is
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Corollary 7.6. If φ is cyclotomic then,
∫

G′
φ(g)µKHT

ψ′,δ,ξ(g)− ug

∫

G

(φ ◦ ver)(g)µKHT
ψp,δ (g) ≡

≡
∑

Uj∈S

Eψ′(φj , c
ξ
j)(X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F )) mod p, (7.11)

where u ∈ Z×p is the element that has been fixed in section 2 by the property that Ωp(E)Φ

Ωp(E) =
u.

Proof. We have

Φ
(∫

G

(φ ◦ ver)(g)µKHT
ψp,δ (g)

)
= Φ

(
Ωp(E)gp

∫
G

(φ ◦ ver)(g)µKHT
ψp,δ (g)

Ωp(E)gp

)
= ugp

∫

G

(φ◦ver)(g)µKHT
ψp,δ (g)

since Ωp(E)Φ

Ωp(E) = u and, from the assumption on φ, we have by lemma 7.5 that
∫

G
(φ◦ver)(g)µKHT

ψp,δ (g)

Ωp(E)gp ∈ Zp. But as u := ψ0(π̄) ∈ Zp we have up ≡ u mod p. Then
the proof follows from Corollary 7.3 and Proposition 7.4.

Lemma 7.7. We have the congruences

ug

∫
G

φ(g)µKHT
ψp,δ (g)

Ωp(E)gp
≡

∫
G

φ(g)µKHT
ψ,δ (g)

Ωp(E)g
mod p (7.12)

for all locally constant Zp-valued functions φ of G.

Proof. As ψp ≡ ψ mod p we have that∫

G

φ(g)µKHT
ψp,δ (g) =

∫

G

φ(g)ψ̂−p µKHT
δ (g) ≡

∫

G

φ(g)ψ̂−1 µKHT
δ (g) =

∫

G

φ(g)µKHT
ψ,δ (g) mod p.

Dividing by the unit Ωp(E)pg and observing that u = Ωp(E)Φ

Ωp(E) ≡ Ωp(E)p

Ωp(E) mod p, we have
∫

G
φ(g)µKHT

ψp,δ (g)
Ωp(E)gp

≡
∫

G
φ(g)µKHT

ψ,δ (g)
Ωp(E)g

× Ωp(E)g

Ωp(E)pg
mod p,

which concludes the proof.

Now our assumptions of the main theorem imply that S = ∅. Then the last two state-
ments conclude the proof of the main theorem. Note that if we do not assume that S = ∅
then we obtain the congruences

∫

GF

ε ◦ ver dµE/F ≡
∫

GF ′
ε dµE/F ′ −∆(ε) mod pZp, (7.13)

where

∆(ε) :=
1

Ωp(E)pg

∑

Uj∈S

Eψ′(φj , c
ξ
j)(X(Uξ

j), λ
ξ
δ(Uj ⊗ θ−1

F ′/F ), ıξ(Uj ⊗ θ−1
F ′/F ), ωcan(Uξ

j)).

(7.14)
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The Fukaya-Kato conjecture and the measure of Katz: We would like to finish this
work by stating the question of whether the p-adic interpolation properties of the Katz-
Hida-Tilouine measure are canonical. In [15] (page 67, theorem 4.2.22) Fukaya and Kato
conjecture a general formula for p-adic L functions for motives over any field. Does this
formula agree with Katz-Hida-Tilouine’s formula in the case where the motive considered
is the one attached to a Grössencharacter over a CM field? We remark that our question is
more concerning the p-adic and archimedean periods that appear in the two formulas.
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Appendix A. Evidences for the Needed Modification.

In this appendix we would like to indicate that the twisting of the Katz-Hida-Tiluine mea-
sure is needed, at least when the extension is ramified at p, in order to establish the congru-
ences. We assume for simplicity that the character ψK is unramified (otherwise we have
to consider also epsilon factors at primes besides those above p but this will not modify
the main argument as these are always p-adic units) and we pick, with notation as in the
introduction, n = r. Let us pick as the locally constant function ε that appear in the congru-
ences the character φ̃ := φ ◦NK′/K for some finite Z×p -valued character of GK , which we
assume cyclotomic (for example φ := 1 or some of the p − 1 order characters factorizing
through the torsion of GF , base changed to GK). Then by the interpolation properties of
the measure we have∫

GK′
φ̃ dµψK′

Ωp(E)pg
=

∏

p∈Σ′p

Localp(φ̃ψK′ , Σ′, δ′)(1−φ̃ψ̌K′(p̄))(1−φ̃ψK′(p̄))
L(0, φ̃ψK′)√
|DF ′ |Ω(E)pg

=

∏
p∈Σ′p

Localp(φ̃ψK′ ,Σ′, δ′)
√
|DF ′ |

∏
χ

∏

p∈Σp

(1− φψ̌Kχ(p̄))(1− φψKχ(p̄))
L(0, φψKχ)

Ω(E)g
,

(A.1)
where χ runs over the characters of the extension K ′/K. Now we note that χ ≡ 1
mod (ζp − 1) and, since Gal(K ′/K) is a quotient of GK , we have that∫

GK
φχ dµψK

Ωp(E)g
≡

∫
GK

φ dµψK

Ωp(E)g
mod (ζp − 1) (A.2)

or equivalently, by [25, page 274, (5.3.5)]
∏

p∈Σp

Localp(φχψK , Σ, δ)
∏

p∈Σp

(1− φψ̌Kχ(p̄))(1− φψKχ(p̄))
L(0, φψKχ)√
|DF |Ω(E)g

≡
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≡
∏

p∈Σp

Localp(φψK , Σ, δ)(1− φψ̌K(p̄))(1− φψK(p̄))
L(0, φψK)√
|DF |Ω(E)g

mod (ζp − 1).

(A.3)
Taking the product over all χ’s we obtain
√
|DF ′ |√
|DF |p

∏
χ(

∏
p∈Σp

Localp(φχψK ,Σ, δ))
∏

p∈Σ′p
Localp(φ̃ψK′ , Σ′, δ′)

∫
GK′

φ̃ dµψK′

Ωp(E)pg
≡

(∫
GK

φ dµψK

Ωp(E)g

)p

mod (ζp−1)

Now we note that (∫
GK

φ dµψK

Ωp(E)g

)p

≡
∫

GK
φp dµψK

Ωp(E)g
mod p (A.4)

as the values of the integrals are in Zp since we assume that φ is cyclotomic. In particular
we have ∫

GK′
φ̃dµψK′

Ωp(E)gp
·Diff ≡

∫
GK

φ̃ ◦ verdµψK

Ωp(E)g
mod p. (A.5)

Our aim is to show that Diff 6= 1 in general. First we need to understand the factor√
|DF ′ |√
|DF |p

∏
χ(

∏
p∈Σp

Localp(φχψK ,Σ,δ))
∏

p∈Σ′p Localp(φ̃ψK′ ,Σ′,δ′)
and where the quantity

∫
G

K′
φ̃ dµψ

K′
Ωp(E)pg lies. We start

with the local factors. From Lemma 3.3 we have that

Local(φχψK ,Σ, δ)p = c
(χ)
p (δ)ep(φ−1χ−1, ψ, dx1)

(
ψ−1

K (πp)
N(p)

)np(φχ)+np(ψ)

(A.6)

and

Local(φ̃ψK , Σ′, δ′)p = c′p(δ
′)ep(φ̃−1, ψ′, dx1)

(
ψ−1

K′ (πp)
N(p)

)np(φ̃)+np(ψ′)

, (A.7)

where c
(χ)
p the local part of φχψK and dx1 is the Haar measure that assigns measure 1 to

the ring of integers of Kp (with similar notations for the second expression). Now we note
that (as easily seen from the functional equation and the fact that IndK′

K 1 = ⊕χχ) we have
that

∏

p∈Σ′
ep(φ̃, ψ′, dx′ψ) =

∏
χ

∏

p∈Σ

ep(φχ, ψ, dxψ) (A.8)

where we follow Tate’s notation as in [29] for the Tamagawa measures dxψ and dxψ′ . The
relation between the Tamagawa measure dxψ and the normalized measure dx1 of a place
p is given by dxψ = N(p)−np(ψ)/2dx1 (There is a typo in Tate’s [29] page 17, but see the
same article in page 18 or Lang’s Algebraic Number Theory page 277). That implies

∏

p∈Σ′
ep(φ̃, ψ′, dx′ψ) =

∏

p∈Σ′
ep(φ̃, ψ′, dx1)N(p)−np(ψ′)/2 (A.9)

and
∏
χ

∏

p∈Σ

ep(φχ, ψ, dxψ) =
∏
χ

∏

p∈Σ

ep(φχ, ψ, dx1)N(p)−np(ψ)/2 =
∏

p∈Σ

N(p)−pnp(ψ)/2
∏
χ

ep(φχ, ψ, dx1).
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So we conclude the equation
∏

p∈Σ′
ep(φ̃, ψ′, dx1)N(p)−np(ψ′)/2 =

∏

p∈Σ

N(p)−pnp(ψ)/2
∏
χ

ep(φχ, ψ, dx1) (A.10)

or, equivalently,

∏
χ

∏

p∈Σ

ep(φχ, ψ, dx1) =

∏
p∈Σ′ N(p)−np(ψ′)/2

∏
p∈Σ N(p)−pnp(ψ)/2

∏

p∈Σ′
ep(φ̃, ψ′, dx1). (A.11)

As we assume that Σ and Σ′ are ordinary and, for simplicity, we take the extension to be

ramified only at p, we have that
∏

p∈Σ′ N(p)np(ψ′)/2

∏
p∈Σ N(p)pnp(ψ)/2 =

√
|DF ′ |√
|DF |p

. Putting everything together

we see that the discrepancy factor in the congruences,

Diff :=

√
|DF ′ |√
|DF |p

×
∏

χ(
∏

p∈Σp
Localp(φχψK , Σ, δ))

∏
p∈Σ′p

Localp(φ̃ψK′ , Σ′, δ′)
, (A.12)

is equal to

Diff =

∏
χ

∏
p∈Σp

c
(χ)
p (δ)

(
ψ−1

K (πp)

N(p)

)np(φχ)+np(ψ)

∏
p∈Σ′p

c′p(δ′)
(

ψ−1
K′ (πp)

N(p)

)np(φ̃)+np(ψ′)
. (A.13)

Now we claim that the factor

∏
χ

∏
p∈Σp

(
ψ−1

K (πp)

N(p)

)np(φχ)+np(ψ)

∏
p∈Σ′p

(
ψ−1

K′ (πp)

N(p)

)np(φ̃)+np(ψ′)
= 1. (A.14)

Indeed we have

∏

p∈Σ′p

(
ψ−1

K′ (πp)
N(p)

)np(φ̃)+np(ψ′)

=
∏

p∈Σ′p

(
ψ−1

K ◦NK′/K(πp)
NK ◦NK′/K(p)

)np(φ̃)+np(ψ′)

. (A.15)

For those p′ ∈ Σ′p that are not ramified we have np′(ψ′) = np(ψ) for p ∈ Σp, the prime
below p′. Similarly np′(φ̃) = np(φχ) = np(φ) for all the χ, as these are ramified only at
the primes that ramify in K ′/K. Then we have

∏

p∈Σ′p, unram.

(
ψ−1

K ◦NK′/K(πp)
NK ◦NK′/K(p)

)np(φ̃)+np(ψ′)

=
∏

p∈Σp, unram.

(
ψ−1

K (πp)
N(p)

)p(np(φ)+np(ψ))

=

=
∏
χ

∏

p∈Σp, unram.

(
ψ−1

K (πp)
N(p)

)np(χφ)+np(ψ)

. (A.16)
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Now we consider the ramified primes. We have

∏

p∈Σ′p, ram.

(
ψ−1

K ◦NK′/K(πp)
NK ◦NK′/K(p)

)np(φ̃)+np(ψ′)

=
∏

p∈Σp

(
ψ−1

K (πp)
N(p)

)np(φ̃)+np(ψ′)

.

(A.17)
For every p′ ∈ Σ′p that is ramified (totally as we consider a p-order extension), we have
from the conductor-discriminant formula that

np′(ψ′) =
∑

χ

np(χ) + pnp(ψ), (A.18)

for the prime p ∈ Σp below p′. Moreover, as the conductor-function np(·) is additive and
inductive in degree zero, we have that

np′(φ̃) = np′(Res(φ)) = np′(Res(φ))−np′(1) = np′(Res(φ)ª1) = np(Ind(Res(φ))ªInd(1)) =

= np(IndRes(φ))− np(Ind(1)) = np(⊕χφχ)− np(⊕χχ) =
∑

χ

np(φχ)−
∑

χ

np(χ).

(A.19)
Putting all together we conclude our claim. Hence we have that

Diff =

∏
χ

∏
p∈Σp

c
(χ)
p (δ)

(
ψ−1

K (πp)

N(p)

)np(φχ)+np(ψ)

∏
p∈Σ′p

c′p(δ′)
(

ψ−1
K′ (πp)

N(p)

)np(φ̃)+np(ψ′)
=

∏
χ

∏
p∈Σp

c
(χ)
p (δ)∏

p∈Σ′p
c′p(δ′)

. (A.20)

Now we observe that
∏
χ

∏

p∈Σp

c
(χ)
p (δ) =

∏
χ

∏

p∈Σp

(φχψK)p(δ) =
∏

p∈Σp

(φψK)p(δp)
∏
χ

χp(δ)

=
∏

p∈Σp

(φψK)p(δ)
∏
χ

χp(δ) =
∏

p∈Σp

(φψK)p(δp), (A.21)

since
∏

χ χp(δ) = 1 because we multiply over all elements of the multiplicative group of
characters of Gal(K ′/K) and we know that χ 6= χ−1 for all χ 6= 1 as these are p-order
characters. Also we have that

∏

p∈Σ′p

c′p(δ
′) =

∏

p∈Σ′p

(φ◦NK′/K)p(ψK ◦NK′/K)p(δ′) =
∏

p∈Σp

(φψK)p(NK′/Kδ′). (A.22)

In particular, we observe that in general we have that
∏
χ

∏

p∈Σp

c
(χ)
p (δ) 6=

∏

p∈Σ′p

c′p(δ
′), (A.23)

as NK′/K(δ′) 6= δp when the extension K ′/K is ramified at p. Actually, the two expres-
sions may not even have the same valuation.
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