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Abstract 
 
In his treatise on light, written in about 1225, Robert Grosseteste describes a cosmological model in 
which the Universe is created in a big-bang like explosion and subsequent condensation. He 
postulates that the fundamental coupling of light and matter gives rises to the material body of the 
entire cosmos. Expansion is arrested when matter reaches a minimum density and subsequent 
emission of light from the outer region leads to compression and rarefaction of the inner bodily 
mass so as to create nine celestial spheres, with an imperfect residual core. In this paper we 
reformulate the Latin description in terms of a modern mathematical model. The equations which 
describe the coupling of light and matter are solved numerically, subject to initial conditions and 
critical criteria consistent with the text. Formation of a universe with a non-infinite number of 
perfected spheres is extremely sensitive to the initial conditions, the intensity of the light and the 
transparency of these spheres. In this “medieval multiverse”, only a small range of opacity and 
initial density profiles lead to a stable universe with nine perfected spheres. As in current 
cosmological thinking, the existence of Grosseteste’s universe relies on a very special combination 
of fundamental parameters. 
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Introduction 
 
An early proponent of the newly rediscovered works of Aristotle, the methodology of Robert 
Grosseteste (ca. 1170-1253) was sufficiently revolutionary that some twentieth-century scholars 
claimed him as the first modern scientist and the antecessor of the scientific method. Among his 
scientific writings (1), his treatise on light (De luce) [2,3] is the most famous and extensively quoted, 
with (misplaced, but thought-provoking) claims [4] that he predicted the “Big Bang” theory of 
cosmological expansion eight centuries ahead of Lemaitre [5] and Hubble [6]. In this article, we 
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express Grosseteste’s model of how light interacts with matter in terms of modern mathematics and 
show that it can indeed generate his claimed structure of the Universe.  
 
While it is crucial to avoid superposing a modern world view into Grosseteste’s thought, throughout 
his work there pervades an interest in the nature of the created world, the existence of order within 
it, the mechanisms whereby it is sustained and a search for unity of explanation. These ideas are 
common in medieval thinking; nonetheless the originality of Grosseteste was to think about unity, 
order and causal explanation of natural phenomena as being due to light, its properties and the 
mechanism by which we perceive it. Because of his contribution to the development of scientific 
thought in the early 13th century, underpinned by belief in an ordered universe, Grosseteste has been 
the focus of collaboration between medievalists and scientists to examine his works using modern 
analytical techniques and methodology. Examination of Grosseteste’s shorter treatise on colour (De 
colore) using palaeographic, linguistic, contextual and scientific reasoning has resulted in 
reinterpretation of Grosseteste’s model of colour formation [7] and its explanation within the 
framework of modern colour theory [8]. We are not trying to “correct” Grosseteste’s thinking in the 
light of modern physics, nor are we claiming Grosseteste’s ideas as a precedent for modern 
cosmological thinking. Rather, we are making a translation, not just from Latin into English but 
from the new critical Latin edition [9] and English translation [10] of his De luce into mathematical 
language. We aim to write down the equations, as he might have done had he access to modern 
mathematical and computational techniques, solve the equations numerically and explore the 
solutions. There are benefits here from both an historical and a scientific perspective. The 
application of mathematics and computation generate, as we shall see, a closer and more 
comprehensive examination of a medieval scientific text and the mind behind it.  However, there 
are scientific benefits as well, as the medieval cosmos constitutes a quite novel arena to compute 
radiation/matter interactions and dynamics, and in which to discover new physical structure.  
 

Grosseteste’s model of light and its interaction with matter 
 
De luce was probably written about 1225, almost contemporaneously with De colore, although 
almost nothing is known of Grosseteste’s whereabouts at this time in his life. Grosseteste began De 
luce by immediately making the bold postulates that light (lux in the Latin) is the first corporeal 
form and that it multiplies itself infinitely, expanding instantaneously from a point into a sphere of 
any size. He argued that neither the attribute of corporeal form nor matter has dimension but that, 
because form and matter are inseparable, by its expansion into all directions light introduces the 
three dimensions into matter. In the beginning of time, light extended matter, drawing it out along 
with itself into a sphere the size of the material universe.  
 
It is this initial expansion of the universe which has attracted most attention but Grosseteste’s really 
innovative intellectual construction was to link cosmology with his light-based conception of how 
ordinary material bodies become extended. He realised that as light drags matter outwards, and 
implicitly postulating conservation of matter, the density must decrease as the radius increases. As a 
vacuum is impossible within the Aristotelian framework, there must be a minimum density beyond 
which matter cannot be rarefied and this sets the boundary of the Universe. Grosseteste asserted that 
at this minimum density, there is a phase change (or perfection) of matter-plus-light and this perfect 
state can undergo no further change, forming the first celestial sphere of the cosmos. He then 
asserted that this perfect body, consisting only of first form (lux) and first matter, itself emits light 
of a different kind (lumen in the Latin) towards the centre of the sphere which is now the boundary 
of the universe. As it propagates, it sweeps up the (imperfect) matter, or body [10] (Latin corpus), 
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compressing it. Because the first sphere is perfect and cannot change its status, and because there 
cannot be space that is empty, the lumen it emits sweeps up and compresses the matter inside the 
sphere as it propagates inwards. Grosseteste argued that the lumen propagated almost 
instantaneously towards the centre of the sphere, and in doing so rarefied matter in the outer region, 
which consequently became perfected and could no longer undergo change. The swept up material 
generates the second of the heavenly spheres, namely that of the fixed stars, corresponding to the 
first sphere of the Aristotelian cosmology. The light (lux) present in the first sphere is doubled in the 
second. Similarly, lumen is emitted from the second perfected sphere, sweeps up matter until there 
is further rarefaction and compression leading to a third perfected sphere. This continues until the 
ninth sphere, that of the moon, whose lumen emission is not sufficient to completely perfect the 
spheres of the elements (fire, air, water, earth) and these thus do not allow circular motion, which 
pertains only to perfect bodies, but just radial motion, and the latter two have the attribute of weight, 
due to their extremal density and compression.  
 
Mathematical statement of Grosseteste’s model  
 
We will not focus on the initial expansion of the universe as Grosseteste’s description was too brief 
to arrive at a particular model, specifying only the spherical symmetry of the distribution and the 
greater rarefaction of matter at greater radii.  As there is at this point also nothing within the cosmos 
setting any special length-scale, it is reasonable to take a scaling (power-law) form for this 
distribution.  We therefore write the initial condition for matter density in Grosseteste’s universe as,  
 
      rtr c0)0;(       (for  r < rmax(t))    [1]  

 
The matter at the outer radius (rmax) is at the minimum density ρc0. The radius at which this happens 
determines the size of the universe. With no loss of generality, we will set our length scale so that 
this occurs at r=1. To describe how the formation of the first “perfected” matter sets off a chain of 
events that eventually leads to the formation of the terrestrial world, we must provide a 
mathematical description of how lumen propagates and formulate its interaction with matter. 
 
We require a computable set of field equations for body [Latin moles, English translation mass] or 
density (r,t) and intensity of lumen (r,t) written as functions of the time t since the formation of 
the firmament and the radial distance r from the centre.  (It is not evident from the text that 
Grosseteste envisaged that it took time for the lumen to propagate, but his description of the 
formation of the celestial spheres definitely describes a sequence of events, which we interpret in 
terms of time. We too assume that the lumen propagates instantly but that it takes time to generate 
the associated wave of matter.)  
 

The equation describing the propagation of matter has three terms which describe firstly the 
geometric concentration of light in a spherical geometry, secondly the absorption of light as it 
passes through “imperfect” matter; and thirdly the generation of lumen by perfected matter. 
Grosseteste was clear that matter is moved by the force of light upon it, but by the same token, that 
this interaction reduces the intensity of lumen (and so its capacity to rarefy matter further). This 
effectively introduces the notion of opacity (although Grosseteste does not require a single Latin 
term for it). He does not possess a Newtonian conception of action and reaction, but it he is clear 
that the combined effect of the work done (assembly and rarefaction of matter) by lumen is, by the 
time it attains the sphere of the moon, such that “this luminosity did not have sufficient power”. 
Indeed, the process of inwardly propagating concentration requires that the opacity of imperfect 
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matter is significant for, as it turns out, if this were not the case, the geometric concentration of light 
generates a hole in the centre of the universe before the outer spheres have crystallised, or as 
Grosseteste would have put it, become perfected. A concept of incomplete transparency of the 
perfected spheres is hinted at in the text in relation to Grosseteste’s discussion of diurnal motion. He 
argues that the lower spheres are lower in purity and therefore they receive diurnal motion in a 
weakened state ‘since the lower a sphere the less pure and the more weak is the first corporeal light 
in it’.    Following Grosseteste’s identification of perfected matter as the source for lumen, we make 
the assumption that the intensity of the lumen is increased in proportion to the density of perfected 
matter.  Thus the intensity of lumen pushing inwards increases as more and more of the outer parts 
of the universe reach the critical density.  
 
We therefore write for the field of lumen the differential equation: 
 

   
rdr

d
c


 )(       [2] 

    
The parameter  quantifies the notion of opacity we introduced above, and so gauges the degree of 
interaction of lumen with imperfect (or not-yet-perfected) matter, while  controls the degree of 
lumen generation in perfected matter (we allow the presence of this third term only in regions where 
matter is perfected). The term  defines the transparency of ‘perfected’ matter, which we will see 
later is critical to production of a stable solution with a finite number of perfected shells. (=1 
corresponds to perfect transparency of perfected matter to lumen, lesser values permit even 
perfected matter to contribute to its absorption).  Note that the first term, due to opacity, is positive, 
meaning that the lumen intensity  decreases as the radius decreases, but the next two terms are 
negative, increasing the intensity of lumen as the radius decreases due to the geometry and 
additional emissivity respectively.  
 
We have been careful to distinguish the density of perfected matter (ρc) from that of the total matter 
(ρ), the imperfect matter density being the difference of ρ and ρc.  Initially, we will assume that 
perfected matter is completely transparent (but will reconsider this assumption later). The last term 
describes the natural focussing of intensity in spherical geometry, where the dimensional parameter 
 =2 in a three-dimensional cosmos.  Allowing  to change allows us to investigate other 
symmetries such as cylindrical (=1) and planar (=0).  
 
Now we have an equation for the lumen intensity, we can consider its effect on the matter. The 
motion of matter is driven by the force of lumen but we will assume that Grosseteste envisaged that 
matter, in an Aristotelian framework, responds to this pressure instantaneously and does not feel 
any form of inertia. Therefore we assume that the velocity of the matter is simply proportional to 
the local intensity of lumen: 

 
   ),(),( trtrv        [3] 
 

The proportionality constant can be unity without loss of generality, since it only sets the timescale 
on which the system evolves. For inward motion v is positive. The conservation of matter implicit 
in the text of De luce then implies that the velocity drives changes in the distribution of matter 
according to the continuity equation  
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Finally, we must set the criterion at which matter becomes perfected by the inward propagation of 
lumen. It is evident that simple use of the minimum density criterion ρc0 will result in a “snow-
plough” effect with no discrete shells being formed. Closer reading of Grosseteste’s text indicates 
that he recognised that for discrete shells to be perfected, the density of the inner shells must be 
greater than that of the outer ones. In order to explain diurnal motion, Grosseteste devised a model 
in which, ‘the lower a sphere the less pure and more weak is the first corporeal light in it’ and  ‘…. 
that [light] of higher bodies is more spiritual and simple, while that of lower bodies is more 
corporeal and multiplied.’. The physical and textual problems are largely removed by interpreting 
Grosseteste’s model in terms of a quantised critical ratio of the densities of light (lux and lumen) to 
matter.  
 
Of course it is entirely possible that the problems that we have identified with the fixed minimal 
density hypothesis are simply and strongly related, because Grosseteste understood that this would 
not naturally give rise to discontinuous spheres and so deliberately sought after a rule that would.  
He stated that a ‘greater density arose’ in the inner parts of the second sphere, and furthermore light, 
‘which is simple in the first sphere is doubled in the second’. The duplication [Latin: duplicata] and 
subsequent higher ratios of the nested spheres correspond to his articulation of a more subtle rule 
that would permit a ‘quantization’ of perfected matter into a finite number of spheres. We interpret 
Grosseteste’s text describing the formation of the inner spheres as requiring that the density must 
exceed one of a series of quantised thresholds (i.e. a ρc is in subsequent shells a factor 1, 2, 3, 4… 
greater than the lowest possible density ρc0)  and that there must be sufficient combined lux and 
lumen to perfect the matter. Note that we could equivalently assume that the lumen must come in 
multiples of the intensity of lux, and that a critical ratio of matter to intensity was required. Our 
choice of discretisation criterion is also supported by a remarkable discussion in the early part of the 
text in which Grosseteste discusses how finite, numerical ratios may result from the quotients of 
infinite series (which he then links to infinite multiplication of light and matter). 
 
Numerical Solution 
  
In computing the solution of the above differential equations, we initially investigated the structure 
of the universes simulated when we varied the parameters  ,  and . As in modern cosmology, the 
initial state of the universe will profoundly influence its subsequent development and thus, the 
initial density distribution with radius following the universe’s expansion is chosen as a key 
variable. Choice of the opacity parameter   reflects the critical importance of the strength of the 
interaction between lumen and mass, the important coupling constant in Grosseteste’s cosmology. 
The parameter   too is related to the strength of the lumen-mass interaction and is also critical to 
the evolution of the universe from its initial condition.  
 
When we solve numerically the mathematical formulation of the problem, we find that there is a 
complex interaction between the initial density profile, the intensity of the lumen (and the coupling 
of lumen to matter) and the opacity. It is very unlikely that this would have been apparent to 
Grosseteste. If the lumen intensity is high, or the initial density profile shallow, a large opacity is 
required to prevent sufficient lumen reaching the inner parts and triggering a disorderly “perfection” 
in which the spheres are discontinuous. For example, there are regions of the parameter space of 
high  and low  where our models generate fragments of the third sphere interspersed among the 
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inner parts of the second. We could arbitrarily invent a new “rule” to prevent this, but that would 
not be supported by the text. We prefer simply to identify those regions of parameter space 
corresponding to cosmologies in which the opacity is sufficiently high that such a break-down is 
avoided.  
 
The 3-D problem was solved numerically, the code being verified in one dimension, where an 
analytic solution is possible (see Appendix A). Because of the strong delta-function spike seen in 
the analytic solution, designing an appropriate numerical method was not straight-forward. 
Attempts to use an Eulerian mesh revealed that any simple scheme was too diffusive to accurately 
capture the narrow width of the delta-function spike. We found that a Lagrangian particle-based 
scheme was much more successful (see Appendix B), and follows the analytic derivation quite 
accurately.   
 
The generic behaviour of the three dimensional model is illustrated in Fig. 1. The initial behaviour 
does not depend on the choice of parameters. After the actualisation of the outer shell, lumen 
propagates inwards sweeping up a wave of matter and leaving behind it a thick perfected sphere. 
Because of the opacity of matter, the lumen is more intense at the outer part of the wave. As the 
thickness of the outer sphere grows, the inwardly propagating lumen becomes more intense, 
speeding up the wave and making its crest sharper. The speed at which this sharpening occurs 
depends on the intensity of the lumen and the opacity of the matter. (Animated demonstrations are 
included in Electronic Supplementary Material.) 
 
As the sweeping up of matter continues, the intensity of the lumen increases. Eventually the matter 
is dense enough and the lumen sufficiently intense that a second sphere, (i.e. in addition to the two-
dimensional firmament,) can form.  For suitable choice of parameters, the sweeping continues, 
eventually leading to the formation of the third sphere.  As the process continues more and more 
spheres form; the initial steep profile of the matter density causing the shells to become ever more 
closely spaced (Fig. 2). The form of the universe predicted using this model is best visualised as a 
circularly symmetric two-dimensional pseudo-colour plot of the data (Fig. 3).   
 
There is a major problem, however, as immediate examination of Fig. 3 shows that the model has 
generated too many spheres. In fact if we leave the computer model to run it generates an arbitrary 
number of spheres. This runs contrary to one of the fundamental ideas of Grosseteste’s universe: 
that the lumen intensity will eventually be insufficient to crystallise the inner-most shells, leaving 
them imperfect and only partially separated. To be faithful to the significance invested by 
Grosseteste, as all medieval authors, in the perfected substance of the spheres, we should 
differentiate between the properties of lumen-mass interaction in the case of perfected and 
unperfected matter.  We have termed the absorption of lumen in its passing through, and work on, 
unperfected mass as opacity – defined by the parameter .  Additionally, there is the possibility of 
absorption of lumen by already-perfected matter.  This property we might term transparency, and 
use the symbol τ in order to be clear that it is a different physical issue.  De luce permits 
interpretations of both complete transparency (τ=1) and incomplete transparency (τ<1). (In all cases 
we assume that the first sphere is completely transparent). In our numerical exploration, we have 
found that it is impossible to build a cosmos with a finite number of spheres if the perfected spheres 
are completely transparent. As the outer spheres are perfected, the intensity of lumen in the inner 
parts increases to arbitrarily high values, allowing the perfection of matter at ever higher densities.  
This is not how Grosseteste imagined the earth and the other sublunar spheres were formed. 
Eventually, he argued, the lumen is too weak compared to the matter density that perfection is not 



 7

possible and only a partial separation of earth, water, fire and air occurs. This is how he explains the 
phenomenon of weight of water and earth, and the existence of radial motion. 
 
In order to reproduce this effect in our model, we must assume that the “actualised” outer spheres 
are not completely transparent. This is done by setting a value for the parameter   of less than unity 
and it does enable us to find situations under which the lumen intensity shows an overall decrease 
with decreasing radius. Such conditions can lead to the intensity dropping sufficiently so that the 
perfection process stalls. This is the type of universe in which Grosseteste imagines we live. 
Although a non-unity value of   is required for simulation of a small number of perfected spheres, 
we have limited the reduction in transparency so as not to conflict with 13th century ideas and 
remain faithful to Grosseteste’s text. 
 
It is necessary that the lumen from the outer parts is absorbed faster than the intensity increases but 
even so, a careful balance of the model parameters is required to ensure that the process creates 
more than one or two spheres before the lumen intensity becomes insufficient. An example of a 
cosmos with nine actualised spheres is shown below in Fig. 4. At a radius of 0.6, the absorption of 
lumen from the other spheres is such that the lumen intensity actually declines as the innermost shell 
is perfected and the process of actualisation stalls. However long we run the calculation, the inner 
core of matter will never be perfected.  We note that the radius of the four sub-lunar spheres, (which 
Grosseteste considers as a single unperfected sphere,) is much too large in comparison with the 
other celestial spheres. The universe depicted does not correspond to the geometry envisaged by 
medieval philosophers. 
 
The required condition for the lumen intensity to show an overall decrease with decreasing radius is 
 


 

rc

2
))1((   [5] 

 
Note that the left hand side is a function of the perfected density, not the initial density, and that it is 
larger as more shells are formed. On the other hand, it becomes increasingly difficult to satisfy this 
condition as r decreases, so that the process can only stall if the left-hand term is sufficiently large 
immediately a new sphere starts to form.   
 
Since the formation of a new sphere must be limited by the lumen intensity (otherwise the spheres 
become disordered), we have c. For sufficiently, large  and small r, the first term dominates the 
right hand side and we can see that there is a minimum radius at which the stall can occur 
 

c
stallr

 )1(

2


    [6] 

 
In order to have the process stall after generating a large number of spheres, this condition needs to 
be satisfied only when c is large. As the opacity varies, the balance of these terms shifts, 
generating bands of stalled models with different numbers of perfected spheres. 
 
A medieval multiverse 
 
Stable universes with a finite number of spheres are very much the exception. The lumen intensity 
and the opacity both need to be very high. If the lumen intensity is low, the spheres form at small 
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radius where the geometric concentration is dominant. If the opacity of the matter is too small, the 
formation of the second sphere begins before sufficient mass has been swept up and then the inward 
propagation of lumen results in non-monotonic density with radius. The result is a strange cosmos 
in which the spheres are disordered and mixed up with each other.  
 
A familiar concept in modern cosmology is to consider the universe we live in to be just one of 
many possible universes, each individual universe differing in the value of its fundamental 
parameters. We can then attempt to determine if the universe we live in is in some way special, or 
the result of taking a random selection from many possibilities. We can apply the same logic to 
Grosseteste’s universe, and quickly discover that the organised Aristotelian universe, with nine 
perfected spheres and a tenth sphere of only partially separated elements requires a very special 
combination of the fundamental parameters.  
 
Within the (,,,) parameter space, it is possible to generate cosmologies (Appendix C) with any 
number of spheres, encompassing both zero and an infinite number. Only in a very limited part of 
parameter space are universes with over six perfected shells predicted. Examination of the solutions 
in (,,) space at specific values of  reveals that this occurs when both the initial density gradient 
and lumen generation parameters,  and  are very high.  
 
The nature of universes predicted by Grosseteste’s model as a function of the (,,) parameter 
space, for  = 35, is displayed in Fig. 5. (An animated version is included in the Electronic 
Supplementary Material.) Here we see that the model does generate a ten-sphere universe but only 
in a very limited region of parameter space. As indicated in the discussion above, the lumen 
generation intensity parameter  has to be very high. Parameters relating to opacity/transparency ( 
and ) and interaction of mass and light () have to be finely tuned in order to yield the type of 
universe that Grosseteste envisaged ( must also be sufficiently large). Although ten-sphere 
solutions can be found for a wide range of  and  values, the manifold is extremely thin. 
 
Following the same logic as modern cosmologists, we are forced to conclude that some additional 
physical law is at work that singles out points in the parameter space corresponding to the universe 
we inhabit.  A contemporary example would be the “anthropic principle”. Grosseteste resorted to a 
Pythagorean numerology in the closing section of the De luce, arguing that the number 10 has 
special qualities of perfection and thus there were nine spheres, including an unperfected sphere of 
the elements, below the firmament; ten in total. Although Grosseteste specified his cosmology 
remarkably closely – enough to enable us to map his physical axioms onto computable 
mathematical statements, this analysis shows that even this degree of precision leaves open (at 
least) a three-parameter family of universes.  This motivates a further question of his thinking – to 
what extent did he contemplate the possibility of different universes? If he did, did he imagine their 
existence as equivalent to the one he inhabited, following Anselm [11], who Cur Deus homo I.21, 
debates the theological implications of multiple worlds similar to our own in the context of sin? Or 
did he regard alternatives as simply potential? Debate on the subject existed throughout the 13th 
century over whether there might be multiple actual universes. Aristotle’s De caelo [12], which 
postulates an eternal and singular universe, had been available to western authors since the 12th 
century. Although the answer in Grosseteste’s day was negative, the notion of multiple universes 
became a subject closely bound up with the question of divine omnipotence. Article 34 of Bishop 
Stephen Tempier’s famous Condemnations of 1277, explicitly condemned the notion that God 
could not produce more than one world [13]. We cannot know Grosseteste’s view, but the computer 
simulations have revealed a fascinating depth to his model of which he was certainly unaware. In 
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particular, the sensitivity to initial conditions resonates with contemporary cosmological discussion 
and reveals a subtlety of the medieval model which historians of science could never have deduced 
from the text alone. The results provide a striking example of the benefits of our methodology of 
collaborative reading of texts by a team which contains medievalists, linguists and scientists.  The 
approach is uniquely different from traditional models of cooperation between humanities scholars 
and scientists, where each group operates strictly within its own discipline to address different 
questions of common interest. In our project, the groups work together on a single question, 
approaching it from different conceptual frameworks. 
 

Appendix A 
 
Comparison of analytical and numerical solutions in one dimension 
 
Let us consider solution in one dimension and assume that the initial density is constant (= 0 ). We 

ignore the crystallisation of matter at non-zero density, and we assume that lumen is generated only 
at the outer boundary. These simplifications allow us to assert the lumen acting on an element of the 
matter depends only on its initial position, 0r . 

 


0

0


dr

d
    [A1] 

 
For convenience, we here adopt a coordinate system in which r > 0 and the initial lumen 
intensity, 0 , is incident on the inner edge of the calculation, at r = 0. (This is different to the 

coordinate system used in solution of the spherical problem, but the two coordinate systems can be 
simply related by the mapping rr 1 .) 
 
We take a Lagrangian approach, tagging each matter element by its initial position. As the matter 
elements move in response to the lumen, they retain their original ordering, and thus the lumen 
acting on them remains constant. The velocity of an element, v, therefore remains constant 
 

00
0

rev        [A2] 

 
If the particles do not overtake one another, their position at time t is simply 
 

vtrtr  0)(     [A3] 

 
but the situation is complicated because the speed of the particles with smaller 0r will be largest. 

Eventually, the particles at small r will sweep up the particles in front of them forming a delta 
function spike in the density distribution.  The delta function does not disperse, nor the initially 
faster particles overtake, because all particles in the delta function distribution experience the same 
lumen field, so travel with identical velocity. The position of the density spike is determined by the 
distance travelled by the particle that starts at 00 r . To determine the mass of the spike, we need 

to identify the initial radius of the last particles to be swept up, 2r . If sr is the position of the spike at 

time t,  
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This allows us to solve for 2r  by tabulating it as a function of time: 
  

201
2

0 re

r
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     [A5] 

 
The mass of the swept up spike is 20r . 

 
Particles initially more distant from the origin than 2r will be compressed increasing the density at 
position r. This creates a tail to the delta function. 
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An example solution is shown in Fig A1. (In order to simplify comparison with the other figures in 
the paper, we plot 1-r on the x axis so that the front of swept up matter moves from right to left.) 
The inset shows geometrically how the delta function arises. We assume that lumen is incident from 
the left, moving “particles” to the right. The particle velocity is represented by the slope of the line 
in the diagram. Because of the opacity, particles closer to the source of lumen move most quickly, 
and particle A will overtake particle B at point C. At this time the location of the spike will be point 
D (ADC is a right angle) and the mass of the swept-up shell is given by the length AB. In order to 
complete the problem we need only to specify how the angle CBD (i.e. the velocity of B) depends 
on the location of B. The reason that the faster particles do not actually overtake the slower, but 
instead cause the delta-function pile-up, is that when particles are swept up by the delta function 
they feel the full force of non-absorbed lumen for the first time so instantaneously accelerate to the 
velocity of the delta function.  

 
Appendix B 

 
Numerical Solution 

 
Because of the strong delta-function spike that is seen in the analytic solution, designing an 
appropriate numerical method is not straight-forward. We initially attempted to solve the problem 
using an Eulerian mesh. However, we found that any simple scheme was too diffusive to accurately 
capture the narrow width of the delta-function spike. Appropriate description of the perfection 
conditions then becomes problematic.   
 
We found that a Lagrangian particle based scheme was much more successful, and follows the 
analytic derivation quite accurately. At the start of each time step, we compute the local density 
from the particle separations and solve for the lumen intensity acting on each particle. We use this 
to derive particle velocities, and to determine the density at which a particle will become perfected.  
This is either the minimum matter density ( = 1), or the integer density just lower than the smaller 
of the lumen intensity or the matter density. In practice, the perfection must be limited by the lumen 
intensity if the formation of spheres is to proceed in an ordered manner. Particles that have already 
been perfected are given zero velocity. A time-step is then chosen so that the most fast moving 
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particles only move a fraction of the spatial resolution. Particles are then moved in order, starting 
from the outermost particle (which has not been perfected) and working inwards until the velocity is 
negligible. For each particle, a trial step is taken based on the velocity and global time-step. If this 
results in the new density of the particle falling below its perfection level, we sub-cycle in order to 
set the particle position from the perfection level. In this way we avoid over estimating particle 
movements and missing the correct level for the phase change. Once all the particles have been 
moved, we begin a new step by re-computing densities and phase transition levels.  The initial 
spacing and densities of the particles are set to sample the initial density profile. We have 
experimented with using both fixed spacing but strongly varying initial densities, and by generating 
the initial profile using an adaptation of the initial spacing. Given the very strong density contrasts 
in the problem we find that the best technique is to combine both approaches, although they do give 
equivalent answers. We quote the resolution in terms of a uniform spacing. 
  
We have verified the code by comparing with the analytic solution discussed in Appendix A (for the 
simplified problem), and by comparing the solution calculated with different spatial resolution (for 
the full problem). We adopt a Courant factor of 0.1 in order to set the global time-step. The code 
converges extremely well, even in complex cases. Fig. B1 illustrates an example where the 
perfection process eventually stalls because of the limited transparency of the perfected spheres. 
The three lines illustrate different initial particle spacing, ranging from 1% to 0.1% of the outer 
radius. The solutions are essentially identical. Typically we will run the code with an initial spacing 
of 0.2% in order to capture the fine details of the perfection process in the inner parts. 

 
Appendix C 

 
A technique for rapid solution 

 
While the numerical code we have built is fast enough for solving the equations for a few sets of 
parameters, it is not fast enough to explore the parameter space of the multiverse. Fortunately, if the 
initial density profile is sufficiently steep, the behaviour of the solution does not depend on the 
detail of the motion of the matter since the level at which perfection takes place is always set by the 
lumen intensity.  Under this assumption the final perfection of the matter can be determined from 
the lumen equation alone. We show below that this approach is extremely accurate. 
 
In order to solve for the perfected density, we first compute the lumen intensity on a uniformly 
spaced radial grid. We then determine the perfected density of the last unperfected radius by taking 
the integer part of the lumen; we are thus assuming that lumen not the matter density sets the 
perfection level. Perfecting this shell requires us to re-compute the lumen distribution, but we can 
then determine the level at which the next shell is perfected, assuming that sufficient matter has 
been swept up to permit completion at this level.  In this way we can quickly compute the final 
configuration, and identify whether the perfection process will stall, without following the matter 
flow. Figure C1 shows an example of the rapid solution, comparing it to the solution obtained with 
the full numerical method. We used an initial spacing of 5% for the numerical solution. 
Experiments with finer spacing show that the quick approach is the more accurate. 
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Figure Captions 
 
Fig. 1 (a-c) Time sequence illustrating the formation of the outer sphere and the wave of matter 
pushed inward by the lumen that it generates. Imperfect matter is shown in blue, while the outer 
shell of perfected matter is in red. The dotted green line represents the lumen density. The model 
parameters are  = 3,  = 5,  = 5 and  = 1

Fig. 2 (a-c) Time sequence showing the subsequent formation of the outer sphere and the wave of 
matter pushed inward by the lumen that it generates, in a “well-behaved” region of parameter space. 
Imperfect matter is shown in blue; the outer shell of perfected matter is in red. Again, the green 
dotted line represents the lumen density.  The model parameters are the same as Fig 1. 
 
Fig. 3. A two-dimensional representation of the celestial spheres generated by Grosseteste’s model 
(see Fig 2.)  The model here assumes complete transparency of the perfected spheres. 
 
Fig. 4. Two-dimensional representation of a convergent simulation of a universe with nine perfected 
spheres. The central sphere contains imperfect matter as the perfection process stalls as the model 
starts to generate a tenth sphere. Model parameters are  = 30,  = 55,  = 2.5 and  = 0.6. By 
adjusting the other parameters, similar results can be obtained with   as large as 0.9. 
 
Fig. 5.  The “medieval multiverse” showing the regions of stability in opacity , lumen intensity  
and transparency  space within which plausible universes exist. The colours correspond to the 
different numbers of spheres created by the model. An animated figure is included in Electronic 
Supplementary Material. 
 
Fig A1. The solution to the “Grosseteste equations” in the simplified case described above. The 
solid green line shows the analytic solution, while the solid blue line shows the numerical solution. 
The lumen intensity is shown as a dotted line. While the delta function spike is infinitely thin in the 
analytic model, it has finite width in the numerical solution but the numerical solution accurately 
tracks it and the tail that forms ahead of it. The model shown has  = 3 and a uniform initial density, 

1.10  . The lumen intensity at the left boundary is 10  . Inset: A geometric representation of the 

formation of the mass delta function. In this space-time representation, the slope of the lines 
represents particle velocities. The particle with initial position B is overtaken by A at point C. All 
the mass between A and B is swept up into a delta function spike.   
 
Fig B1. Illustration of the effect of different initial particle spacing on the numerical solution. The 
different (coloured) curves indicate the initial spacing of particles. The parameters used are  =5,  
= 20,  = 10. 
 
Fig C1. A comparison of the full numerical solution (blue and red) and the quick solution method 
(green) that solves directly for the lumen intensity. The parameters used are  = 5, = 20 (as in Fig 
B1). The initial density slope parameter  is 10, but this is not relevant to the quick solution. 
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Figures 
 

 
Fig 1(a) 

 
Fig 1(b) 

 
Fig 1(c) 
 

 
Fig 2(a) 
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Fig 2(b) 
 

 
Fig 2(c) 
 

 
Fig 3 
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Fig 4 
 

 
Fig 5 
 

 
 
 
Fig A1 
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Fig B1 

 
Fig C1 
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