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Abstract

In this paper we revisit the cross-fund learning method suggested by Jones and Shanken (2005)
and construct a linear hierarchical model to consider the learning across funds within the fund
family during the performance evaluation. We provide a full Bayesian treatment on all the factors
of the pricing model and allow both the fund family and the individual manager to have
dependent prior information regarding funds’ alphas. The simulation results suggest that returns
from peer funds within the family significantly affect investors’ updating on fund alphas since the
posterior distribution on fund alphas experience a faster shrinkage than those reported in the
previous literature. The model can also be simulated with specific prior belief on different factors
of the pricing model, i.e. fund alphas, betas and factor loadings of each pricing benchmark, to
better address the learning issue.
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Information from the fund family can provide additional insight when evaluating the
performance of its underlying funds. It is often the case that funds affiliated to the same fund
family share the same investment advisor. Fund family and the fund manager combined
contribute to the returns gained by a certain fund. The family can influence the performance of
the individual funds not only from the administration perspective, but also in terms of the quality
of analysis and information flows (Baks, 2003). In addition, the fund family conducts various
investment strategies to affect the performance of its underlying funds (see for example Nanda,
Wang and Zheng, 2004; Kempf and Ruenzi, 2008; Gaspar, Massa and Matos, 2006). However,
standard performance evaluation literature usually examines the fund performance independently,
neglecting the return information provided by the other parties. This research aims to conduct the
performance evaluation procedure taking into consideration information provided by other funds
as well as the fund family.

Jensenalpha, widely used as the risk adjusted performance of a mutual fund (Jensen, 1968),
is conventionally calculated by applying the OLS estimation on the intercept of the capital asset
pricing model (CAPM) by Sharpe (1964) and Lintner (1965). This performance evaluation has
evolved to incorporate additional benchmark portfolios (see Fama and French, 1993; Jegadeesh
and Titman, 1993; Carhart, 1997; Elton, Gruber and Blake, 1996). Other researches adopt
alternative techniques to understand funds’ abnormal performance. For example, studies by
Kosowski, Timmermann, Wermers and White (2006) and Cuthbertson, Nitzsche and O’Sullivan
(2008) apply a bootstrapping method to distinguish alphas that can be attributed to managers’
genuine stock selecting skills from those resulting from sample variation.

More recently, a growing number of studies have shifted their interest to the additional

information provided by benchmark (non-benchmark) pricing factors, investors’ opinion and



returns from other funds. The Bayesian framework provides the opportunity to include
information other than funds’ historical data in the performance evaluation. Baks, Metrick and
Wachter (2001) find that certain prior beliefS on managers’ skill might justify the investment
decision. Pastor and Stambaugh (2002) (PS hereafter) consider a seemingly unrelated model
(SURE hereafter) with the Bayesian estimation to include the correlation between the pricing
factors and the other non-benchmark portfolios, which incorporates the idea that information
given by non-benchmark portfolios with longer return history provides more precise estimates
(Stambaugh, 1997). Such Bayesian settings not only overcome the limited datasets in the
estimation, but also improve understanding of how the so-called seemingly unrelated assets affect
the performance evaluation of a certain fund. Busse and Irvine (2006) further conduct the
performance persistence test based on the SURE in a similar Bayesian model suggested by PS.
Their results indicate that higher predication power of the SURE model is more likely to be
associated with the diffuse skill prior.

However, the independent prior based Bayesian settings considered in the previous
research raise the issue of ignorance about cross-sectional influences from the peer funds. Such
dependent nature of the variability of funds’ alphas can be modelled in a hierarchical setting in
which a dependent prior is designated on the cross-sectional mean. Jones and Shanken (2005) (JS
hereafter) first consider a multilevel structure in the performance evaluation, with a dependent
prior which can then be assigned to represent the investors’ opinion on the mean of the
cross-sectional fund returns distribution. They suggest that the alpha of a fund can be drawn from
a common population distribution which is defined to describe the general belief on the
cross-sectional performance. They find that the investors are more likely to believe that the

manager of a certain fund is unskillful if more funds in the industry give them the same



impression. If the investors tend to have more homogeneous belief on the absence of fund
managers’ skill, i.e. the variance of the prior decreases, the shrinkage is also enhanced. In this
case, a learning prior provides a compromise between the fund’s own returns and the
cross-sectional performance in the entire industry. However, since their research only considers
the dependent nature of the prior belief on alpha, the evaluation model can be regarded as a
special case of the hierarchical varying intercept and varying slope model. In reality, investors
may also have heterogeneous belief on the pricing power of the certain factor model used in the
performance evaluation, or on the risk exposure to a particular market benchmark. These
concerns make it necessary to conduct a general case multilevel model.

We construct a linear hierarchical model to consider the learning across funds within the
fund family to estimate fund alphas. Although a general solution to the linear hierarchical model
is derived by Lindley and Smith (1972) and Smith (1973), the major problem encountered lies in
adding appropriate prior information onto the covariance matrix when giving full Bayesian
treatment on all the pricing factors in the model. In CAPM, only a general prior distribution, i.e.
an inverse Wishart prior, is applied, to represent all the additional information regarding both the
alpha and the market beta. However, given that the degree of freedom is the only variable used to
define the distribution, use of the inverse Wishart as the prior belief in the estimation of Bayesian
alphas is far from the situation in reality.

A separation strategy which decomposes the covariance matrix to produce the diagonal
matrix with variance of each pricing factor and the correlation matrix, as suggested by several
statistical studies, is able to overcome the restriction noted above and to include the return
information from the other pricing factors (see for example Barnard, McCulloch and Meng,

2000). An important feature of the separation technique is its consideration of specific prior



beliefs on certain parameters of interest, i.e. the ability to strengthen the informative level on
particular parameters and weaken it on others. In this research we apply a modified separation
technique which not only maintains the original key feature, but also improves its efficiency (see
Gelman and Hill, 2007; O’Malley and Zaslavsky, 2008). Specifically, a scaled inverse Wishart
distribution is denoted as the prior on the covariance matrix through over-parameterization, the
use of which enhances the convergence substantially. We can therefore define the prior
information on each of the pricing factors as well as the between-factor correlation.

Our results from the simulation suggest that the separation strategy powered performance
evaluation better addresses the learning issue. Firstly, we find that given a less dispersed prior
belief on managers’ inferior ability, the posterior mean on « of each of the underlying funds
converges faster than when using the method suggested by JS. Our findings suggest that returns
from peer funds within the same fund family can significantly affect investors’ updating on fund
alphas. Secondly, the covariance separation technique enables our method to provide a full
Bayesian treatment on each of the pricing factors to generalize the learning process. Specifically,
our model can grasp the specific prior information on the magnitude of funds’ pricing factors
deviating from the family mean. The results suggest that the posterior belief can provide a
compromise between the observed data and the prior belief. Strong cross-sectional dispersion in
the data can still mitigate the posterior shrinkage when a high skepticism prior is in place. Thirdly,
after decomposing the individual fund o into the combination of the family mean and the
idiosyncratic contribution from the manager, we find that the fund manager contributes positively
to the overall fund performance whenever prior belief is applied. Finally, we place no restriction
on the correlation matrix of different pricing factors in the pricing model. That is to say, we also

include prior information to allow cross-factor learning, which is often impossible in the



conventional OLS estimated alphas.

The rest of the research is organized as follows: The learning model is derived in the
following section. We also show the model given by JS, which can be regarded as a special case
of our model. Section 3 discusses the model simulation results by using the hypothetical data as
well as the real fund data. Conclusions and the implications of this research are summarized in

the final section.

2. The Performance Evaluation Model

2.1 The general learning model

The learning process considered in this section is similar to the settings of JS, but in a more
general framework. We adapt the Bayesian treatment for each of the pricing benchmarks in the
factor model. In our evaluation model no restriction is applied on the correlation of different
pricing factors, thus the co-movements can be viewed as an unknown variable which is decided
by the information mixture of the prior belief and the true data, whereas the conventional OLS
estimations might suffer substantial imprecision due to multicollinearity between different
regressors. Another important feature of the general learning model is that the dependent prior on
the pricing factors enables the model to explain the heterogeneous opinion on the pricing power
of a particular factor model. Different prior beliefs on the pricing benchmarks can then be
included to address the sensitivity issue of how funds’ alphas respond to divergent views on the
pricing power of benchmark portfolios. Thus the evaluation model of JS can be regarded as a
special case of the general learning model. Meanwhile, instead of gaining information from the

entirety of cross-sectional funds in the evaluation, we sort funds into different fund families,



since funds within the same family often share the same investment adviser, and they are more
likely to set a similar market benchmark to compete with. In addition, fund companies often
adopt various family strategies, such as reallocating capital or increasing cross-sectional variance,
to achieve better performance for their underlying funds or entire fund families. Therefore, we
construct the learning model from a family perspective to incorporate additional return
information offered by funds within the same fund family.*

A hierarchical linear structure is applied to assess the manager’s ability when performance
is assumed to vary across the funds managed by the same fund company. To facilitate the
estimation of the variables in the multilevel structure a Bayesian system is constructed to conduct
the distribution of each variable as a weighted average of both prior belief and real data. We
assume in our model that the risk adjusted performance, can be attributed to the fund family and
the fund’s idiosyncratic risk exposure, which are all assumed to be unknown to both the fund
company and the investors. The posterior distribution is generated through Markov Chain Monte
Carlo algorithm (MCMC hereafter). We derive the Gibbs sampler and the Metropolis-Hastings
algorithm for each of the unknown variables in the Bayesian hierarchical linear model, since the
posterior distribution of all the variables can be written in a closed form except that for the within
variability in fund family. Gibbs sampler can update each variable directly at a time when its
posterior distribution can be derived in a closed form, while a proposed distribution is needed for

the Metropolis-Hastings algorithm to act as a reference for drawing.

2.1.1 Likelihood function

' Our model can be easily adapted to the research context of JS, where a diffuse prioris designated to each of the
pricing factors. Meanwhile, the prior belief can be set to represent the opinion on the performance of the entirety
of cross-sectional funds



Consider a fund family with M fund, for each of the fund j we assume that the excess
retuns R; follows:

R,=fb+u;, (j=1...M) (1)
where R;is a n; dimensional vector of fund’s excess returns where n; is the number of
observation for fund j, and f; isa n;xK matrix of the excess returns from K -1 market
benchmark portfolio(s), of which the first column is all1. b, is K dimensional factor loadings
which include the risk adjusted return and pricing factors for each of the K -1 benchmark
portfolio(s), i.e. b, = (a;, B;,,--.. B;«) - We assume that u; ~ N(0, ajz), in which u; is assumed
to be homoscedastic and independent of each other. The prior beliefon ajz are given by a scaled
inverse  »* distribution, ie. o ~Scale—inv— z*(v;,s}) .

The family level likelihood function for fund j can be shown as:

b=X @+e, (j=1...,M) @)
where X; =1, ®x; is a KxK matrix of family level predictors, X; . As suggested in the
following simulation study, we assume that x; equalsto 1 forall j.Additional factors canalso

be incorporated as family level predictors, i.e. the non-benchmark assets in the SURE model. ®

is a K dimensional vector which describes the family level mean for each of the K pricing

factors, specifically, @=(6,,,...,6;,)". The risk adjusted return for fund j can therefore be

2 Assuming Y follows an inversed Gamma distribution, i.e. Y ~ Inv—gamma(a, b), where a and b are shape

a
b _ b
and scale parameter, respectively. Thus the probability density function for Y is P(Y)=——Y @ +1exp(——) .
I'(a) Y
) , ) v vs'
The Scale—inv— z"(v,,s,) distribution has a density function by letting @ = — and b=——+.
2 2



given by «a; =0, +e;,. The between-fund dispersion of the k™ pricing factor is denoted as
o, 1&. Var(p;,)=0;, and k=1,...,K. Thus the covariance matrix of b; can be expressed

asa KxK matrix, 4,,ie. A, =diag(o,,,...,0,«)-
M
Given Eq (1), let R=(R",...,R",),F=diag(f,,..., fy),B=(b/.....b,Yand N=>n,,
j=1

then we can rewrite Eq (1) for M funds as

R=FB+U, U~N(0,%) 3)
where ¥ =diag(Z,,...,%,,) and Zj:aflnj.

The family level likelihood function for M funds can also been given by letting
X=(X,...Xy) and A=1,®%;in which I, is a MxM identity matrix. Eq(2) for M

funds then can be written as

B=X®+E, E~N(0,A) 4)
where @ represents the mean value which remains the same across M funds, while A s the
in-family dispersion level among the M funds. The prior on A can then be regarded as the
magnitude of how factor loadings of an individual fund deviate from its group mean. Thus, a
prior on fund’s alpha with a higher variance suggests a higher cross-sectional variability on alpha
within the fund family.

To address the dependence of the prior we further assume that @ is a random draw from a
common multivariate normal distribution, N(S,A), which represents the beliefs on the family’s
mean. In order to denote specific prior belief on each of the K pricing factors, we further
consider a separation strategy to define the prior on the in-family variation, A, in which the

family level covariance matrix is decomposed into a combination of diagonal scaled matrix and



an unscaled matrix that can describe the correlation of factor loadings among different funds
within the same fund family, i.e. A=Z®Z, where = is a diagonal scaled matrix and @® is

the unscaled matrix.®

2.1.2 Posterior distribution of B

In this section we derive the posterior distribution of the factor loadings for M funds
conditional on R, F and X. Assuming that X, ® and A are all updated, { and A are
the prior belief on B. The posterior belief of B can be derived as,

P(B|R,F,X,X,0,A) < P(R|B,F,X)P(B|X, A, A)
=N, (R|FB, )N, (B| X A + XAX)

o exp{—%[(R ~FB)E ' (R-FB)+(B-Xg)(A+XAX)(B-Xx5)]}
o« exp{—%[B’(F'ZlF +(A+XAX)HB - 2B(FER + (A + XAX) X0 |}

1 i
o exp[—E(B -D,V,)D, *(B-D,V,)]

So the posterior belief on the fund’s factor loadings follows a ¢ A dimensional multivariate

normal distribution,
B|R,E~ NMK(Dlvl’Dl) (5)
where

D, =[FZF+(A+XAX)'T? and V, = FE'R+ (A +XAX)) XS,

> Gelman and Hill (2007) argue that such over parameterization not only enables the control of the dispersion level
for the factor loadings within the same group, since ' is close to uniform, it also increases the convergence of the

chain. See for example Barnard et al. (2000) and O’Malley and Zaslavsky (2008) for further discussion on the
separation strategy and the scaledinverse Wishartdistribution.
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The posterior mean, D,V,, of B is a weighted average of the true return data and the
prior belief on B.We can further extend (A +XAX')™ as,
(A+XAXYE A1 A X KA X XA’
Thus, whenA™ —0andA™ — 0, the posterior mean of B becomesD,V, = (FZ'F)*(FZ'R),

that is, the posterior mean of B reduces to its OLS estimates given a diffuse prior on both the

cross-sectional variability and the variance of the family level mean.

2.1.3 Posterior distribution of X
Given B, ® and A, we have P(2|R,F,B) <« P(R|B,F,X)P(X). By assumption we have a
homoscedastic error term for each fund j, which we can write as =1, ® X;. The posterior

belief can then be shown as
P(O-J'2 IR;) OCHP(Rj | £ 8 jzgjap(aj)z
i=1

OCEIN(R” | £, ;,07)Scale—inv— y (o, fv;.s,)’

(M) 1
o« (of) ? exp[—

20°

J

(nS; +vjsf)]

Therefore, we have the posterior distribution for ajz as

. nS. +V.s?
U,-ZlR_J-,,B,-~Scale—|nv—;(2(n+vj,#) ©)
]
>R -8

where i=1,...n;,j=1..,Mand S;=-2

n;
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2.1.4 Posterior distribution of @

When B and A are both updated by the distribution described in the previous two
sections, the posterior belief on ® can then be derived in a similar fashion given the
information of prior distribution @ ~ N({,A),

P(O|R,F, X, X, A,5A)c P(R|FE,X,0 A)POA)
=N, (R|FX®,Z+FAF)N (©|¢ A)

oc exp{—%[(R —FXO)(Z+FAF)  (R-FX0)+(@-)'A*(0-0)]}
oc exp{—%[@’(Al + X'F(Z+FAF)'FX)0 - O'(XF(Z+ FAF) 'R+ A9)] }
Thus © can be shown to follow a K dimensional multivariate normal distribution:
O|X,F,A~N,(D,V,,D,) @)
where
D,=[A" +XF € RAF JFX ]and V,=XF(Z+FAF)'R+A
The posterior mean of @ has a similar form as those defined for B in the previous section.
However, if we have A™*—0 , the posterior mean of © equals to
[X'F(Z+FAF)'FX]'[X'F (X +FAF)'R], where the prior mean { has little effect and the

true data dominate the estimation of @®.

2.1.5 Posterior distribution of A
The family level covariance matrix for M funds can be writtenas A=1,, ®.. Only B

and O are related to the variation of A, and the covariance A can be written as a combination
of the diagonal matrix of standard deviations and a matrix of correlation, i.e. E®Z. Thus the

joint distribution of Z and d can be stated as,
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P(E,®|B,X,0) « P(B|E,®,0)P(Z)P(D)
=N« (B| XO,ZBE)W (@ | K,, I)log — N (E|v,s?)

We firstly derive the posterior distribution of the unscaled matrix that determines the correlation,

given the prior is ®~W (K1),

P(®|B,E) oclM[ N(B; | X,0,ZDE)W (K, 1)

Ko+K+1

oc|5q>5|*% exp[—%trSO(E(I)E)‘l]|(I)| 2 exp[—%tr(l(l)‘l)]

(Ko+M)+K+1

o ®| 2 exp[—%tr(a‘lsoa‘l + I)(I)‘l]

Therefore, we can show that

®|B,0,E K, M ~Scaled -W™*(K, + M,E"'SE" +1) (8)
M

where SO:Z(ﬂj—ij))(ﬂj—ij))’. For k™ factor in the learning model, its variance is
j=1

&, , where @, is the k™ value on the diagonal of @®. The posterior distribution on =

can be estimated by using the Metropolis-Hastings algorithm since the distribution function is not

in a convenient form. Given Z=diag(¢&,...,&), its conditional posterior distribution function

can be written as
M 2 2
P& 1B, @) oc [ [(B; | 1y,.05)109 =N (& |V,,s5)
j=1

where?

Hy = E(B,) +Cov(B, B, )Var([ﬂ—k])_l(ﬁ_k -E(5.))
oy, =Var(B,)-Cov(B,, . \Var([.,])"Cov(B,. B.)

* Since 4 isa KxK matrix,thus [, ] indicatesamatrixwithoutthe K" element.
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and the prior on & is givenby & ~log—N (v,,s’). We then use a log-normal distribution as

the proposed distribution to simulate the target distribution with the acceptance rate over 44%.°

2.2 The non-learning and partial learning models

After deriving the general learning model, we then look at the difference between the
non-learning model, the partial learning model and the general learning model. The non-learning
model can be regarded as an evaluation model with independent prior belief, while the partial
learning model considers dependent prior only on the fund alphas. Given the likelihood function
Eq (1), we can derive the non-learning model for fund | as,

R =q;+ f,B,+u;,, u;~N(0,0c°)
Then we can draw «; given R;, f, and p;, assuming o’ is drawn from another procedure.

The posterior belief then follows,

Nj
P(aj |R_J., f,ﬁj,O'z)ocl__!N(Rj |aj+ f,Bj,az)N(Otj |/1j,0'j2)

ocexp{— L (o0, — )’
202 ] J

ocexp[ a—a)]

where
- M S..,1 N
aj=(+3NF+=)"
O'J (2 (TJ- (o2
N .
2=+
O' O
SO=Z(R,-—fﬁ,-)
i=1

> Similar argumentcan be found in, for example, Gelman and Hill (2007) and O’Malley and Zaslavsky (2008).
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and assuming that «; follows a prior belief, «; ~ N(,uj,ajz), for fund j. Thus, each of the M

funds in the fund family is denoted with independent prior beliefs. In the simulation of the
non-learning model we denote a non-informative prior on the variance parameter of g, thus its
posterior distribution is the OLS estimation. For the prior distribution on «, we denote prior

beliefs independent of each other. Therefore, the non-learning model can be regarded as the no

pooling model, with specific prior on each of the funds.
JS applies a hierarchical model with dependent prior on individual funds’ «; . Their model

can therefore be regarded as a varying intercept model while the factor loadings of other market
benchmarks are left without Bayesian treatment. Given the same likelihood function Eq (1), the

prior belief of «; states
a,~N(4,,02), (j=1..,M)

The posterior mean of «; can be derived in the same fashion as the non-learning model:

Nj
P(aj |R,jl flﬂj!O-Z)OCHN(R,j |aj + fﬂj’UZ)N(aj |/,la,O'§)
n=1

ocexp{—?iz(a,- ) - Dl - (R - fﬂ,—)]Z}

a

oc eXp[_ZTi-Z(aj —dj)z]

a

where
~ u, Sp\, 1 N _
aj ( §+O_g)( 2 0_2)1
1 N,
~2 Jy-1
6 =(—=+—
a (O_Z 2)
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For the mean performance ., wedenote prior beliefas x, ~N(m_,V,), thus the posterior belief

of u, is given by

M
P(u, a,00,m,V,) o [ [N(e;, 62N (1, [M,,V,)

j=1

wexpf- 2 [+ Pt -2, (o 0]}

—exp[— 5 (o = ) ’]

and we have g, ~ N(i,,&2), where

~ Ma, m, M 1 ,
=+ Va)

a a a

1 M
MZ“J

i1

In the model derived above, foreach fund i1,acommonprior beliefis appliedto all the M
funds in the same fund family. Thus, the common prior canbe viewed as the additional information
on the mean performance of the entire fund family. In the simulation, we include a diffuse prior on

4, , i.e. apply a large value on V_ to eliminate the influence from m,. The precision parameter
o, is given a prior belief following inverse x* distribution. Since JS include no prior
information on other pricing factors in additionto «;, a diffuse prior is then denoted to each of the

factor loadings to let them converge to the OLS estimations, which is similar with the settings

considered by JS.°

2.3 Prior beliefs

® s rearrangeEq (1) to have Rj — fﬁj = o, +U;, and ﬁj is obtained directly from the OLS regression.
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In this section we discuss the prior distribution we use for drawing from the posterior
distribution of the parameters in the learning model. Although there are several possible choices
of prior beliefs on all unknown variables, we concentrate on the family level variance, A, since
it is closely related to the cross-sectional variability within the fund family. In particular, a diffuse
prior would allow the data to dominate the posterior distribution, while contracted prior leads to a
high degree of shrinkage.

We consider three log normal distributions as the prior belief on &, . Figure 1 shows our

first choice, log(&,) ~ N(—L1). The prior mean is then centered at around 0.25 suggesting &,

has a variance over 0.0625, which is far beyond the actual value observed in the data. This highly
informative prior maintains the degree of shrinkage at a low level for the reason shown in section
2.1.2, where extremely diffuse variance drives the posterior mean to approach the OLS
estimation. Thus, prior belief provides no information in this case.

The second and third choices of prior belief are illustrated in Figure 2. The dashed line
given by log(& )~ N(-5,1) is centered at 0.003, that is 9x10° for variance. This prior is
chosen to represent a plausible actual prior of alphas across funds within the fund family, since it
is close to the highest cross-sectional variance among alphas given by the data. But its long right
tail also enables the prior to provide sufficient deviation from the mean. The third choice of prior
is given by the solid line in Figure 2. It is centered at 2x10~°, which can match the lowest
between variability suggested by the data. Such a prior is expected to substantially increase the
shrinkage toward the prior mean in order to address the situation where information is heavily
shared within the fund family.

We also designate prior distribution to other parameters in the learning model. The prior on

17



0,, is centered at zero, as we assume that no manager is found to have superior stock selection

ability. This is consistent with the settings given by PS and JS. The prior on the rest of the k"
parameters in @ are centered at one. The prior on the correlation matrix @ is given by an
inverse Wishart distribution with a degree of freedom that is higher than the dimension of its
scale matrix. This setting allows @ to have a uniform prior distribution on the correlation
parameters, since information regarding the correlation among family- level predictors is normally

unknown by assumption. Moreover, the prior settings for the correlation matrix and the standard

deviation for the k™ pricing factor considered in our research are different from those discussed
in Barnard et al. (2000), where the group-level covariance matrix is decomposed into product of
the correlation matrix and the diagonal matrix of standard deviations. Then a certain prior can be
allocated on the particular predictor with a marginal uniform prior on the correlation parameters.
But our technique can achieve the same objective with simpler computation and faster
convergence.

<Please insert Figure 1 here>

<Please insert Figure 2 here>

3 Simulation analysis

3.1 Simulation with returns of hypothetical fund family

In this section we report the simulation results of the learning models under the various
prior beliefs chosen in section 2.3. We conduct the simulations based on hypothetical returns

generated by different compositions of the benchmark. For the CAPM model, the abnormal

performance « is assumed to have a normal distribution with mean of 7.1x10™ and standard
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deviation 0f2.23x 10°, and f, ... has a normal distribution with a mean value of 0.979 and

arket

standard deviation of 0.087. The standard deviation of the error term follows

log(o) ~ N(—4.044,0.398°) . The 3-factor model « follows a normal distribution with a mean
0f 0.0767% and standard deviation 0f0.226, and j3,,. follows N(1.02930.122%), while £,
and 2., follow N(-0.036,0.093°) and N(0.053,0.086%), respectively. The residual standard

deviation has log(c) ~ N(—4.079,0.378%). For the 4-factor model, « is drawn from a normal

distribution with mean of 0.0806% and standard deviation of 0.231%, and S, ... IS assumed to
follow N(1.029,0.121%). The other pricing factors are drawn independently from the following

distribution: A3, ~ N(-0.037,0.093°) , f.,,, ~ N(0.0523,0.0844%) , f,., ~ N(0.006,0.017%) .
The standard deviation of the error term log(c) is drawn from the log-normal distributed with

N (—4.086,0.376%) . The returns and pricing factors are then drawn independently of each other to

form returns for a particular fund.
Table 1 reports the posterior simulations from three types of learning model under the
chosen prior beliefs using hypothetical fund returns. All the three types of learning model exhibit

a substantial degree of shrinkage with a rapid decrease in dispersion of the cross-sectional

variability in funds’ o, that is, A, declines sharply under the chosen prior beliefs. The results

from the general learning model seem to have the highest degree of shrinkage, since the A, in

Panel C is lower than those in Panel A by over 60 basis points and lower than the partial learning
model by almost 90 basis points under the high skepticism prior. It is also worth noting that the

degree of shrinkage decreases considerably across the prior beliefs when using both the partial

learning model and the non-learning model. Specifically, 4, from the CAPM model drops by
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almost 1000 basis points in Panel B, from 0.1234 to 0.0101, while it behaves more stably in
Panel C with only an 80-basis point change. The general learning model incorporates the prior
belief on the variance from both the pricing factors and it also works as the scale factor in the
denominator of the posterior mean, thus the prior belief is more likely to have significant
influence on the cross-sectional variability of fund alphas.

Figures 3, 4 and 5 provide further evidence to confirm the shrinkage. Figure 3 illustrates the
boxplot of the posterior mean ofthe « for the 5 hypothetical funds. The value is quite dispersed
when log(&,) has a diffuse prior, and the median of each « ’s posterior distribution is close to
the OLS estimates since a highly close-diffuse prior would mitigate the influence from the prior
mean. The dispersion on « reduces significantly when turning to a less diffuse prior. In the
extreme case where log(&,) has the high skepticism prior, the funds’ « converges to a
common mean which is close to zero. There is also some evidence supporting the notion that the
shrinkage is sensitive to the evaluation model chosen. The boxplot shown in Figure 4 suggests
that the o estimated by the 3-factor model has a low degree of shrinkage under all three prior
beliefs compared to those from the CAPM. Similar results can also be found in Figure 5 where
the 4-factor model is considered.

Table 1 also reports the results of the mean performance for a particular fund family, 6, .
As shown in Section 2.1.4, the posterior meanof &, is weighted by both the OLS estimates and

prior information. Since we apply no predictors at the family level likelihood, Eq (2), X; is

assumed to be an identity matrix for all M funds. Thus Eq (2) is by design a sum of family’s
mean performance and the fund’s idiosyncratic performance. In the case where A has diffuse

prior beliefs on its diagonal, each of the elements in B should converge to its OLS estimates.
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On the other hand, when a least dispersed prior is considered for A and B should reduce to its
mean, ®. We therefore expect the factor loadings and the « within the same family to
converge to a common mean which can be attributed as the mean performance of the fund family.

One may argue that the fund manager can also contribute to the mean performance; thus a
feasible extension to the general learning model is to further decompose the mean value ® and
to designate particular predictors representing the difference between the contribution from the

manager and that from the fund family.

<Please insert Table 1 here>

The posterior mean of & reported in Table 1 seems to be very close to zero across all the
learning models considered. The results document some weak support for a decreasing pattern of
the value of @, witha diminishing dispersion on the prior variance, i.e. it reduces from 0.17% to
0.08% when the general learning model based on the 4-factor model is considered. The value is
even lower when using a CAPM based partial learning model. This may be explained with the
aid of Figure 3, in which the posterior o ofeach fund is more concentrated around zero and the

extreme values at both ends offset each other. The distribution ofeach fund’s « in Figure 4 has
a more extreme value at the positive end, implying a more positive &, in a 3-factor based
learning model. A similar situation can be found in Figure 5, where the 4-factor based learning
model is considered, i.e. the median of the posterior « is further from zero compared to the

others. Consequently, 6, provides additional information on the common performance across

funds within the same fund family. Our simulation results suggest that the abnormal performance
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can be attributed mainly to funds’ idiosyncratic behavior, since the common mean reduces to zero
under the least dispersed prior.

Figure 6 illustrates the posterior mean of market beta in the general learning model. Since
we put non-informative prior on B, its posterior mean is expected to converge to the OLS
estimates. The boxplot in Figure 6 shows a steady shrinkage across the chosen prior beliefs. We
further extend the simulation to incorporate the influence of informative prior beliefs on other

pricing factors. The results are discussed in Table 3.

<Please insert Figure 3 here>
<Please insert Figure 4 here>
<Please insert Figure 5 here>

<Please insert Figure 6 here>

3.2 Simulation with returns of hypothetical funds universe

We consider a more extreme case where, instead of considering a hypothetical family with
5 funds, we enlarge the sample size to incorporate 200 funds to analyze the degree of shrinkage
of funds’ o . Results are reported in Table 2. The posterior mean of 6, suggests that of the
three models, the general learning model exhibits the highest degree of shrinkage of funds’ «,
which is consistent with the results reported in Table 1. The posterior means of A, givenby the
non-learning and the partial learning models have a similar value under the same prior. Moreover,
compared to the results in Table 1, simulations with a larger group of funds produces smaller

value of A, fora given prior, indicating that it becomes easier to converge to the common mean
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when they are able to gain information from more funds. However, there is only weak evidence
to support the declining pattern of 4, with less dispersed prior beliefs. This is because the
growing sample size may lead to more heterogeneous beliefs among individual funds’ alpha,
which therefore slows down the efficiency of the convergence process.

The posterior means of ¢ reported in Panels A and B are higher than those in Table 1.
Meanwhile, we find that funds’ idiosyncratic performance seems to have limited impact on the
overall mean performance, since 6, remains almost unchanged across different prior beliefs
from both the partial learning and the general learning models. This implies that managers’
superior (inferior) performances offset each other in a large funds population, and such mean
performance is also independent of the prior information. The steady nature of 6, documented
in Panel B is apparently different from that discovered by JS. This is because we only incorporate
prior beliefs in the cross-sectional variability, and leave the prior on B non-informative,
whereas JS put decreasingly dispersed prior on the group mean, and find that the posterior mean
is driven toward zero.

Figure 7 plots the density of the posterior mean of the 200 funds’ alpha with respect to the

chosen prior beliefs. Not surprisingly, the solid line, which indicates the density of « given a
close-diffuse prior, has the lowest degree of kurtosis among the three densities, while the dashed

line has more values around its mean. However, Figure 7 shows there is a limited margin on the
shrinkage level between different prior beliefs, which is consistent with the results found in 4,
in Table 2. Furthermore, it seems that more funds are found to have a positive « given a left

skewed density no matter which prior belief is chosen. Our results in relation to the simulation of

returns of hypothetical fund universe suggest a low degree of shrinkage of the cross-sectional o
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compared to that found in fund families. But a steady mean performance, @, implies a feasible

estimate of the mean performance for the fund universe through the general learning model.

<Please insert Table 2 here>

<Please insert Figure 7 here>

The general learning model enables us to consider specific prior beliefs on factor loadings.
Using this property, we further extend our simulation to allocate information on all of the
elements in B inadditionto «. Inother words, the factor loadings of each market benchmark
in a particular pricing model are assumed with informative prior beliefs before undertaking the
estimation. Table 3 reports the results.

We find that the chosen prior belief on other pricing factors can influence the posterior

dispersion of «. For example, the posterior mean of A, increases from 0.035% to 0.118%

when the prior belief on k" pricing factors turns to a dispersed one. This finding is also
consistent when different pricing model is considered. From the fund family’s perspective, if
investors are only certain that funds in the same family have similar risk exposure to the market
benchmarks, they may choose more concentrated prior beliefs on the corresponding factor
loadings. On the other hand, investors might have limited knowledge on the overall skill of the
fund family, and hence they choose a more dispersed prior belief on « . Such a situation can be
represented by column 3 of Table 3 under the settings of CAPM. The results imply a slightly

lower degree of shrinkage of A, relative to those reported in Panel C of Table 1, indicating that

adding prior information from other pricing benchmarks can improve the shrinkage of the «
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value. In other words, if the prior information considered happens to be correct, the general
learning model can provide a more precise estimation of the cross-sectional mean performance of
the family. Intuitively, the situation discussed above could be a more common case in reality.
Since fund companies publish their top holdings frequently, investors are more likely to form
their own opinions on the co-movements between the fund and the market portfolio. Hence, a
less dispersed prior can be used to represent the investors’ belief before seeing the data. However,
it is often the case that the manager’s stock selection skill is unknown to the investors. Therefore
a diffuse prior on o could be a reasonable setting.

Moreover, we consider another extreme situation, in which investors are more convinced
that the fund family contains no skilled managers, but they are also unsure that the market
benchmark can completely price the fund return. Therefore, a highly concentrated prior is defined
on both the ¢ and the market beta. Such a scenario is considered in the second column of the

CAPM settings. The result shows a significant degree of shrinkage of the cross-sectional market

beta as 4, decreases with less dispersed priors than that in the fourth column. However,
compared with the results on A, given by Panel C of Table 1, where market beta has a diffuse
prior, we find that A, increases by over 10 bps. This is because the general learning model

provides a compromise estimation of A, between the real data and the prior belief, since the

hypothetical returns still contain evidence to support the existence of skilful managers. Thus, the
posterior cross-sectional variability on « increases to signal such concerns.’

In Table 4, we look further into the non-equal prior problem by computing the posterior

” Unlike the hypothetical returns generated by JS, in which the abnormal return has been centered to have a zero
mean, we draw the abnormal returns from N(O.O?l%,0.223%2) , which matches the general empirical findings
inthe real fund industry.
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correlation coefficients of the parameters considered in Table 3. In general the correlation
between the different pricing factors and the abnormal returns remains at a low level. However,
this does not contradict the results found in Table 3, since we place only a diffuse prior on the
correlation matrix of all the pricing factors. It is not only the correlation coefficient but also the
cross-sectional variability of a certain pricing factor that can decide the learning outcome.
Therefore, such low correlation coefficient can suggest a low level of cross-fund learning only in
the correlation itself. Our method provides a way to define an informative prior on the correlation
matrix. However, the construction of an efficient prior remains an open question in the statistics

literature.

<Please insert Table 3 here>

<Please insert Table 4 here>

3.3 Simulation with the universe of real funds

In this section, we consider the simulation using the returns from the actual mutual funds. We
select monthly returns of 220 unit trusts from 47 fund families in the UK fund industry from 2001
to 2010. All the sampled funds are UK equity unit trusts. We screen out the non-equity funds and
the mixed funds since our performance evaluation focuses only on fund managers' stock selection
skill. Within each of the fund families, we also screen out the new funds due to splitting and keep
funds with longest return history for each share class. To focus solely on the domestic funds, the

funds in our sample are all UK domicile equity funds, indicating that most of their capital should be
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invested in UK companies. Meanwhile, the UK domicile funds share the similar market
benchmarks, which facilitate estimation of the funds’ alphas by the factor models.

We employ three sets of benchmark returns to form the baseline performance evaluation
model. We choose the FTSE All Shares as the excess market return factor motivated by CAPM.
The returns of the additional size and book to market factors in the Fama French 3-factor model are
computed by two pairs of market portfolios: the size factor is generated by the difference between
the FTSE 100 index and the FTSE small capital index; the book to market factor is calculated by
taking the difference between the MSCI UK Growth index and the MSCI UK Value index. The
returns of the additional momentum factor in the 4-factor model are generated by using the 1-year
high return portfolio minus the low return portfolio.

Firstly, in Table 5 we consider the situation in which informative prior beliefs are only

given to the within variability of the cross-sectional alphas, o, . In other words, the investors are

presumed to have prior information on how individual alphas deviate from each other within the
same fund family, which is similar with the settings considered in the fake data simulation. We
include the simulation results given by the non-learning model with independent prior beliefs, the
partial learning model with dependent prior beliefs only on funds’ alphas, and the general
learning model, which we design to provide a full Bayesian treatment on each of the pricing
factors. For each type of learning model, we conduct the simulation through three different
baseline evaluation models, ie. CAPM, 3-factor model and 4-factor model. The prior beliefs

selected for A, are the same as those implemented in the fake data simulation. In addition, since

no information is given on the mean performance of the fund family or on the family mean value

of other pricing factors, we apply a diffuse prior distribution on the prior variance of 6,, 6,,
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O Oz @Nd - 6., , and the prior means are centered at 0. The scale parameters on each of
the pricing factors, except those on @ , all have diffuse priors.

The posterior mean of A, which indicates how individual funds deviate from the family
mean, decrease rapidly with the increase in skepticism on both the skill level and the within

variation. Compared with the value of 4, from the non-learning and partial learning models, the

general learning model seems to be more sensitive to the priors chosen. 4, in the partial

learning model is about 20 basis points higher than that from the general learning model under
the low skepticism prior. The difference is even larger under the diffuse prior, but they all turn to
zero when a high skepticism prior is given. The results in Table 5 also suggest that such a
decreasing pattern is not sensitive to the model specification, since the difference in magnitude is

robust in all the types of baseline evaluation models.
The posterior mean of the family mean performance 6,, and individual funds’ alphas
reported by Panels B and C of Table 5, also experience a decrease in value with the increasing

skepticism in the prior beliefs, indicating that the prior information on family’s mean

performance would alter investors’ view of individual funds’ performance. Particularly, the funds’
alphas reduce to 6, when the high skepticism prior belief is applied, because A, approaches 0
under the least dispersed variance and the cross-sectional variation among alphas is almost
eliminated within the same fund family. Although the prior mean of 6, is centered at O, its
diffuse prior variance mitigates the influence from the prior mean and allows the real data to
dominate the posterior distribution of &,. Meanwhile, Table 5 also provides some evidence to

support the presence of managers’ skill. By the assumption of the general learning model, the
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difference between @, and alphas under the diffuse and low skepticism priors can be regarded
as the gain from funds’ cross-sectional variation. Panels B and C both document that the funds’
average alphas exceed ¢  for more than 20 basis points under the diffuse and low skepticism
priors for all types of baseline evaluation model. However, since we provide no further
decomposition on the family mean performance, we presume that apart from the fund families,
6, might still incorporate a contribution by individual fund managers. But such a portion in 6,
should be limited, since for each fund family we keep only one fund for each share class, in order
to maintain the variety of funds with distinct investment objectives in a fund family. One may
argue that &, should maintain a stable value instead of decreasing with the skepticism prior.
Since Eq (7) suggests that the posterior belief of @ is a weighted average of prior information
and the real data, the posterior meanof @ is conditional only on the posterior distribution of the
in-family covariance matrix when A —0 and A™ —0. Thus, the posterior meanof @ may
also shift with the changing value of the prior belief. However, given a high skepticism prior the
prior variance approaches zero, and can hardly affect @, which drives the average alpha to 6, .
Baks (2003) provides an alternative way to extract the family contribution out of funds’
individual alphas through a Cobb-Douglas production function by denoting arbitrary weights on

the performance of managers and fund organizations, respectively. The performance attribution is

therefore sensitive to the weights chosen. Moreover, we are not surprised to see that the posterior

means of £ and 6, documented in Table 5 remain almost unchanged, since no informative

prior beliefs are applied to both 6, and 4, throughout the simulation.

<Please insert Table 5 here>
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We further investigate how prior information from other pricing factors affects the posterior
distribution of the cross-sectional alphas and @, by placing prior beliefs simultaneously on 6,
and the family mean and the scale parameters of all the other pricing factors. This is also an
important feature of the general learning model, given that it enables us to denote specific prior
beliefs on each of the pricing factors in the baseline evaluation model. The priors on the scale

parameters are similar to those discussed in Table 5. The family mean value of each of the pricing

factors (including &) are also assigned with prior beliefs to address the learning issue, i.e. the
k™ element in vector ® is set to have 6, ~(0,100) as the diffuse prior; for the low

skepticism prior we set 6, ~ (0,1); for the high skepticism prior we have 6, ~(0,0.001). Table 6
reports the posterior results of the parameters of interest.

We find a similar decreasing pattern in A, with the increasing level of skepticism in the

prior beliefs. Such a pattern is also robust throughout different baseline evaluation models.

However, the in-family variation on B seems to increase with the prior belief, e.g. 4, of

CAPM equals to 0.117 under the diffuse prior and it increases to 0.692 given the high skepticism
prior. A possible reason is that the prior beliefs we apply are far below the real in-family variance
of the market beta, which makes the MCMC simulation hard to converge. Because of the power
in place of the extreme priors, most of the posterior B shrinks towards the prior mean, leaving
several outliers which enlarge the posterior in-family variance. However, the posterior
correlations between each pair of the pricing factors in Table 7 are too low to affect the
convergence of other pricing factors.

The averaged alpha and beta both experience a decrease with the increasing level of

30



skepticism on a larger scale than those reported in Table 5, for the reason that prior information is

included on both the family mean and the in-family variation. For instance, alpha equals to 0.495%

in Panel C of Table 5 given a high skepticism prior, while it is 0.366% when prior beliefon 6,

is included. This finding is robust in all the types of baseline evaluation models we consider. Our
simulation in Table 6 validates that performance evaluation of individual funds can be affected
by including information on the prior view of the mean performance from the family as a whole,
as well as the variation of performance among funds within the fund family. Given the situation
that the sets of prior beliefs on the pricing factors do provide additional information regarding the
population of returns for a particular fund family, i.e. risk shifting in different market condition,
adjustment in investment strategy when facing new information or engaging in tournament
among fund managers within the family, the general learning model can incorporate this

information so as to provide a more precise evaluation result.

<Please insert Table 6 here>

However, we find no strong evidence to support the presence of cross-factor learning in the
general learning model during the simulation. The averaged posterior correlations between alphas

and market betas under the three sets of prior beliefs are reported in Table 7. The posterior

correlation, Pa, 5, remains at a very low level at all times, indicating that the prior information

of other pricing factors has no substantial impact on the changes of the posterior family mean
performance. But such a low correlation does not affect the outcome of learning, since as

mentioned previously, the posterior mean of 4, is conditional on the covariance matrix, which

includes the prior information on the in-family variation and family mean value of all pricing
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factors. Therefore, if correlation among the mean value of different pricing factors can be omitted,
the prior information can be applied to family mean value directly, which can significantly speed
up the convergence of the Markov chain, but bears the loss of the co-movements of the pricing
factors. On the other hand, we place no informative prior on the correlation matrix in the
simulation, ie. an inverse Wishart distribution, W(K +1,1,,.), is applied on the correlation
matrix to represent a uniform prior on the correlation. It would certainly be possible to include an
informative prior on the correlation matrix to address the dependence issue of the pricing factors
if necessary. However, such a setting might involve denoting specific correlation among different

market portfolios, which is beyond the scope of this research.

<Please insert Table 7 here>

To provide further insight into the slow shrinkage on 4, detected above, we further

extend the research to analyze the posterior shrinkage from an empirical Bayes perspective. We
denote an informative prior on the family-level mean of both o« and each of the pricing factors
in ®. Such prior beliefs are initially given by the historical cross-section value and then
updated by the previous generated posterior mean. Specifically, we use the fund returns in 2001
to compute the OLS estimation of « and market beta for each fund, then the cross-sectional
in-family mean can be computed. These values are applied to the general learning model as the
initial prior for @ to simulate the posterior distribution in 2002, then the prior is updated by the
newly generated posterior mean of « and market beta for the simulation of the following year.

We also consider two groups of prior settings for the in-family shrinkage level on &, and &,
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to utilize the full Bayesian treatment of the general learning model, i.e. (1) low skepticism prior
on both cross-sectional « and market beta; (2) low (high) skepticism prior on « (market
beta).

Figures 8a and 8b illustrate the averaged posterior mean of 4, and A, for each year

under the two groups of prior settings. Both the cross-sectional in-family « and market beta
experience significant levels of shrinkage compared with the OLS estimation (solid line), since
the estimation is driven by the skepticism prior. The posterior mean of A, under both prior
settings indicates a similar pattern to that of the OLS value in Figure 8a, and the dotted line,
which represents the posterior belief under Prior setting (1), closely matches the estimated value
under Prior setting (2), the dashed line. Since a low skepticism prior is considered in the
simulationof «, we are not surprised to see that investors are more likely to believe ina similar
value of o within the same family. Meanwhile, given a moderate prior on A_, the actual data
still have substantial power to lead the posterior value to follow a similar changing pattern.
Unlike the results given by Figure 8a, the posterior mean of A, inFigure 8b deviates from
the conventional estimation when a high skepticism is considered, i.e. the dashed line moves
toward the opposite direction in the years 2003, 2004, 2007 and 2009. This is due to the fact that
the strong prior belief enables the posterior mean to mitigate the increasing volatility on the
cross-sectional market beta. However, it is often the case that the observed data strongly disagree
with the prior belief, particularly when the diffuse estimation experiences a significant deviation
from the family-level mean over the period 2005 to 2007 (solid line). The posterior distribution

of 4, therefore contains more value in the right tail to promote the increase in the mean. In

other words, the posterior simulation absorbs the information given by the observed data to
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provide a compromise with the strong prior. If the investors are more convinced that the funds
within the same family might have similar market risk exposure, but the observed return delivers
highly dispersed market beta due to risk shifting or portfolio reconstruction. We then expect the
model to present a decreasing level of shrinkage, in order not to overstate the influence of the

learning process.

<Please insert Figure 8 here>

4. Conclusion

In this research, we devote our attention to the analysis of how returns from other parallel
funds affect the alpha of particular funds within the same fund family. We consider a general
learning model in a Bayesian framework to incorporate the additional information given by other
funds in the prior beliefs. We decompose the Jenson alpha as well as the loadings of each market
portfolio in the factor pricing model into the combination of a family mean value and the fund’s
idiosyncratic variation. The family mean value represents the investors’ opinion on the
cross-sectional mean of both alpha and factor loadings, while the in-family variation addresses
how parameters from the individual fund deviate from the family mean.

To simulate this general learning model we construct the combined Gibbs samplers with
the Metropolitan Hastings algorithm by using data given by the monthly NAV from the UK
domicile equity fund. We incorporate three sets of prior belief to simulate the possible prior
information on the family mean of each pricing factor and their in-family deviation. The
simulation results suggest that the posterior mean of in-family variation decreases given a less

dispersed prior belief, indicating that individual funds’ alphas might concentrate around their

34



family means if prior information implies a serious lack of skilful managers. Moreover, we find
that the general learning model is more sensitive to the chosen prior belief, compared to the
non-learning and the partial learning model discussed by JS. Thus, the higher level of shrinkage
from our model can better address cross-fund learning.

The general learning model can also provide a compromise of performance evaluation
between the observed returns delivered by funds and additional information on how other funds
behave in the same fund family. The proposed model utilizes the full Bayesian treatment by
specifying the prior information on the certain pricing factors, which enables the incorporation of
investors’ view on different family strategies in the performance evaluation. Since most of the
family strategies would involve allocating more capital to certain funds or encouraging fund
managers to compete with each other, i.e. family tournament, star fund phenomenon, and family
favoritism, which may lead to an increase of the cross-sectional variability among alphas and
other factor loadings, the prior beliefs can be used to simulate these strategies or to capture the
pattern of in-family risk shifting implied by the historical data.

While a separation strategy is considered to enable the full Bayesian treatment, a uniform
prior is denoted on the correlation matrix of the family mean to simplify the algorithm. One
extension of the research therefore, would be to further incorporate the prior belief on the
strength of the correlation among the family-level means of fund alphas and different pricing
factors. This would require more advanced settings for the correlation matrix, which could take
the form of those discussed in Liechty, Liechty and Miuller (2004).

Despite the efforts to consider a simple empirical Bayes setting in forming the prior beliefs,
as shown in Figure 8, our research could also be extended by incorporating the process of prior

elicitation discussed in several studies, i.e. PS, Baks et al. (2001) and Busse and Irvine (2006).
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Certain prior beliefs, representing investors’ specific views regarding the managers’ risk taking,
performance persistence, external market conditions or managers’ style, might provide further

insights into the interplay between investors’ behavior and fund performance.

References

ALLEN, D. E. and TAN, M. L. (1999) A Test of the Persistence in the Performance of UK
Managed Funds. Journal of Business Finance & Accounting 26(5-6): 559-593.

BAKS, K.P. (2003) Onthe Performance of Mutual Fund Managers. US: Emory University.

BAKS, K. P., METRICK, A. and WACHTER, J. (2001) Should Investors Avoid All Actively
Managed Mutual Funds? A Study in Bayesian Performance Evaluation. The Journal of
Finance 56(1): 45-85.

BARNARD, J.,, MCCULLOCH, R. and MENG, X.-L. (2000) Modeling Covariance Matrices in
Terms of Standard Deviations and Correlations, with Application to Shrinkage. Statistica
Sinica 4(10): 1281-1311.

BOLLEN, N. P. B. and BUSSE, J. A. (2005) Short-Term Persistence in Mutual Fund
Performance. Review of Financial Studies 18(2): 569-597.

BUSSE, J. A. and IRVINE, P. J. (2006) Bayesian Alphas and Mutual Fund Persistence. The
Journal of Finance 61(5): 2251-2288.

CARHART, M. M. (1997) On Persistence in Mutual Fund Performance. The Journal of Finance
52(1): 57-82.

CUTHBERTSON, K., NITZSCHE, D. and O'SULLIVAN, N. (2008) UK mutual fund
performance: Skill or luck? Journal of Empirical Finance 15(4): 613-634.

ELTON, E. J., GRUBER, M. J. and BLAKE, C. R. (1996) The Persistence of Risk-Adjusted
Mutual Fund Performance. Journal of Business 69(2): 133-157.

FAMA, E. F. and FRENCH, K. R. (1993) Common risk factors in the returns on stocks and
bonds. Journal of Financial Economics 33(1): 3-56.

GASPAR, J.-M., MASSA, M. and MATOS, P. (2006) Favoritism in Mutual Fund Families?
Evidence on Strategic Cross-Fund Subsidization. The Journal of Finance 61(1): 73-104.

36



GELMAN, A. and CARLIN, J. B. (2011) Bayesian data analysis. Boca Raton: CRC Press.

GELMAN, A. and HILL, J. (2007) Data analysis using regression and multilevel/hierarchical
models. Cambridge: Cambridge University Press.

GRUBER, M. J. (1996) Another Puzzle: The Growth in Actively Managed Mutual Funds. The
Journal of Finance 51(3): 783-810.

JEGADEESH, N. and TITMAN, S. (1993) Returns to Buying Winners and Selling Losers:
Implications for Stock Market Efficiency. The Journal of Finance 48(1): 65-91.

JENSEN, M. C. (1968) THE PERFORMANCE OF MUTUAL FUNDS IN THE PERIOD 1945—
1964. The Journal of Finance 23(2): 389-416.

JONES, C. S. and SHANKEN, J. (2005) Mutual fund performance with learning across funds.
Journal of Financial Economics 78(3): 507-552.

KEMPF, A. and RUENZI, S. (2008) Tournaments in Mutual-Fund Families. Review of Financial
Studies 21(2): 1013-1036.

KOSOWSKI, R., TIMMERMANN, A., WERMERS, R. and WHITE, H. A. L. (2006) Can
Mutual Fund “Stars” Really Pick Stocks? New Evidence from a Bootstrap Analysis. The
Journal of Finance 61(6): 2551-2595.

LIECHTY, J. C., LIECHTY, M. W. and MULLER, P. (2004) Bayesian correlation estimation.
Biometrika 91(1): 1-14.

LINDLEY, D. V. and SMITH, A. F. M. (1972) Bayes Estimates for the Linear Model. Journal of
the Royal Statistical Society. Series B (Methodological) 34(1): 1-41.

LINTNER, J. (1965) The Valuation of Risk Assets and the Selection of Risky Investments in
Stock Portfolios and Capital Budgets. The Review of Economics and Statistics 47(1):
13-37.

NANDA, V., WANG, Z. J. and ZHENG, L. (2004) Family Values and the Star Phenomenon:
Strategies of Mutual Fund Families. Review of Financial Studies 17(3): 667-698.
O’MALLEY, A. J. and ZASLAVSKY, A. M. (2008) Domain-Level Covariance Analysis for
Multilevel Survey Data With Structured Nonresponse. Journal of the American Statistical

Association 103(484): 1405-1418.

PASTOR, I. and STAMBAUGH, R. F. (2002) Mutual fund performance and seemingly
unrelated assets. Journal of Financial Economics 63(3): 315-349.

PASTOR, L. and VERONESI, P. (2009) Learning in Financial Markets. Annual Review of

37



Financial Economics 1(1): 361-381.

SHARPE, W. F. (1964) CAPITAL ASSET PRICES: A THEORY OF MARKET
EQUILIBRIUM UNDER CONDITIONS OF RISK. The Journal of Finance 19(3):
425-442.

SMITH, A. F. M. (1973) A General Bayesian Linear Model. Journal of the Royal Statistical
Society. Series B (Methodological) 35(1): 67-75.

STAMBAUGH, R. F. (1997) Analyzing investments whose histories differ in length. Journal of
Financial Economics 45(3): 285-331.

38



10 15
v

K
Figure 1: Prior distribution on & for log(&,)~ N(-1,1)
This figure illustrates the choice of the prior distribution considered for the
cross-sectional variability parameter, & . Its logarithm value has a normal distribution
with mean as -1 and variance as 1.

Figure 2: Prior distribution on &,  for log(é,)~ N(-51) and
log(&,) ~ N(-10,1)

This figure illustrates the choice of the prior distribution considered for the cross-sectional
variability parameter, #i. The dashed line represents the distribution of log(& ) ~ N(-5,1),

while the solid line is for log(¢&,) ~ N(-10,1) .
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Table 1: Simulation of learning within fund family

CAPM 3-factor model 4-factor model
Prior Beliefs Diffuse Low High Diffuse Low High Diffuse Low High
Panel A Non-learning model
2, 0.0969 0.0574 0.0092 0.0858 0.0411 0.0077 0.0927 0.0529 0.0079
oy 0.0157 0.0157 0.0159 0.0194 0.0194 0.0194 0.0168 0.0168 0.0169
Panel B Partial learning model
A, 0.1234 0.0631 0.0101 0.1117 0.0434 0.0076 0.1169 0.0515 0.0079
0, 0.0003 0.0001 0.0000 0.0007 0.0008 0.0008 0.0017 0.0017 0.0015
oy 0.0157 0.0157 0.0159 0.0194 0.0194 0.0194 0.0167 0.0168 0.0168
Panel C General learning model
A, 0.0082 0.0034 0.0001 0.0058 0.0012 0.0001 0.0069 0.0017 0.0001
0, 0.0001 0.0001 0.0002 0.0007 0.0008 0.0004 0.0017 0.0017 0.0008
o 0.0157 0.0157 0.0159 0.0194 0.0194 0.0194 0.0168 0.0168 0.0169

This table presents the simulation results from three evaluation models: the non-learning model, the partial learning model and the general
learning model. The posterior mean of the variables, i.e. the in-family variability A_, the family level mean performance & , and the fund’s
individual risk level o, are reported. We control the prior belief on the scaled parameter of the cross-sectional variability in «, & to be
three distinct distributions, ie. diffuse prior, log(¢ )~ N(-11) ; low skepticism, log(é )~ N(-51) and high skepticism,
log(&,) ~ N(-10,1). The prior belief on the mean value of the k" pricing factor, 6, , is centered at zero with a diffuse variance. The scaled

parameter of 6,

B

is also assumed to have a diffuse distribution. Panels A, B and C report the simulation results from the CAPM, Fama French

3-factor model and the 4-factor model. The posterior distributions of the variables considered are simulated by the MCMC technique by using
hypothetical returns from 5 funds. The fund returns are generated through Eq (1), in which the factor loadings and the market benchmarks are
drawn independently across funds. The distribution parameters are chosen to match the empirical results.
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Figure 3: Boxplot of Posterior Draws of CAPM «
This figure illustrates 6000 posterior draws from 5 hypothetical funds’ « given the decreasingly dispersed prior beliefs on A in the
CAPM formed general learning model.
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Figure 5: Boxplot of Posterior Draws of 4-factor model «
This figure illustrates 6000 posterior draws from 5 hypothetical funds’ « given the decreasingly dispersed prior beliefs on A

4-factor based general learning model.
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Figure 6: Boxplot of Posterior Draws of CAPM ...

This figure illustrates 6000 posterior draws from 5 hypothetical fund’s S, given the decreasingly dispersed prior beliefs on A in the

CAPM formed general learning model.
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Table 2: Simulation of learning across funds universe

CAPM 3-factor model 4-factor model
Prior Beliefs Diffuse Low High Diffuse Low High Diffuse Low High
Panel A Non- learning model
A, 0.05020  0.04956 0.04876 0.04950 0.04888 0.04819 0.05188 0.05135 0.05058
o 0.02111  0.02111 0.02111 0.01887 0.01887 0.01887 0.01855 0.01856 0.01855
Panel B Partial learning model
A, 0.05002  0.04928 0.04844 0.04792 0.04734 0.04655 0.04979 0.04919 0.04844
0, 0.00039  0.00040 0.00040 0.00086 0.00086 0.00087 0.00106 0.00105 0.00106
o 0.02111  0.02111 0.02111 0.01887 0.01887 0.01887 0.01856 0.01855 0.01856
Panel C General learning model
A, 0.00248  0.00242 0.00238 0.00228 0.00222 0.00217 0.00247 0.00242 0.00236
0, 0.00040  0.00040 0.00039 0.00086 0.00087 0.00086 0.00106 0.00105 0.00105
o 0.02111  0.02111 0.02111 0.01887 0.01887 0.01887 0.01856 0.01856 0.01856

This table presents the simulation results from three evaluation models: the non-learning model, the partial learning model and the general learning model. The
posterior mean of the variab les, i.e. the in-family variability A_, the family level mean performance & ,and the fund’s individual risk level o, , are reported.

We control the prior belief on the scaled parameter of the cross-sectional variability in o, & to be three distinct distributions, i.e. diffuse prior,

log(&,) ~ N(=L1); low skepticism, log(< ) ~ N(=5,1) and high skepticism, log(&,) ~ N(-10,1). The prior belief on the mean value of the k" pricing

factor, 6, ,is centered at zero with a diffuse variance. The scaled parameter of ¢, is also assumed to have a diffuse distribution. Panels A, Band C report the

simu lation results from the CAPM, Fama French 3-factor model and the 4-factor model. The posterior distributions of the varables considered are simulated
using the MCMC technigque based on hypothetical returns of 200 funds. The fund returns are generated through Eq (1), in which the factor loadings and the

market benchmarks are drawn independently across funds. The distribution parameters are chosen to match the empirical results.
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Figure 7: Density of the posterior draws of CAPM «
This figure illustrates 6000 posterior draws from the CAPM « by applying the general learning model to the hypothetical fund
population with decreasingly dispersed prior beliefs on A .
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Table 3: Simulation of leaming across funds with non-equal prior

CAPM 3-factor model 4-factor model

aprior  N(-10,1) N(-1,1) N(-10,1) N(-10,1) N(-1,1) N(-10,1) N(-10,1)  N(-1,1) N(-10,1)
k™ prior N(-10,1) N(-10,1) N(-5,1) N(-10,1) N(-10,1) N(-5,1) N(-10,1) N(-10,1) N(-5,1)
A, 0.00118 0.00779  0.00035 0.00093 0.00553 0.00016 0.00057  0.00598 0.00018
Ay 0.09256 0.08614  0.09813 0.03127 0.02678  0.05620 0.14649  0.14246  0.15307
0, 0.00020 0.00001 -0.00003 -0.00046 0.00058  0.00015 0.00096  0.00157  0.00100
6, 0.98026  0.98038 0.98394 1.01606 1.00374  1.00852 1.10090 1.09377 1.09721
o - - - 0.02350 0.04729  0.05253 0.00209  0.00092 0.02231
Asve - - - 0.11161 0.10807  0.10445 0.05469  0.03193 0.06296
Ot - - - -0.04559 -0.06392 -0.13764 -0.00153 0.00021 -0.01518
O - - - 0.02872 0.08703  0.09251 0.04877  0.06429  0.06808
Aviom - - - - - - 0.00096  0.00071  0.00804
Oyom - - - - - - 0.00117  -0.00020 -0.00251

This table presents the simulation results from the general learning model. The posterior mean of the variables, i.e. the in -family variability on all
the pricing factors, A, and the mean performance of all the pricing factors, &, are reported. We control the prior belief on the scaled parameters of

the cross-sectional variability in factor loadings, & . The prior beliefs on the mean value of the k" pricing factor, 6, , are centered at 1 with

various prior beliefs. We report results based on three pricing models: CAPM, the 3-factor and the 4-factor models. The posterior distributions of
the variables considered are simulated by the MCMC technique by using hypothetical returns of 5 funds. The fund returns are generated through
equation 1, in which the factor loadings and the market benchmarks are drawn independently across funds. The distribution parameters are chosen
to match the empirical results.

47



Table 4: Posterior correlation coefficients

CAPM 3-factor model 4-factor model
a prior N(-1,1) N(-1,1) N(-10,1) N(-1,1) N(-1,1) N(-10,1) N(-1,1) N(-1,1) N(-10,1)
k"™prior  N(-1,1) N(-10,1) N(-51) N(-1,1) N(-10,1) N(-51) N(-1,1) N(-10,1)  N(-5,1)
Py 0.19 0.26 0.17 0.01 -0.07 0.02 -0.08 -0.09 -0.02
Lo ML - - - 0.08 0.07 -0.08 -0.01 0.01 -0.07
Lo sms - - - 0.10 0.17 -0.09 0.09 0.07 0.04
PaMom - - - - - - 0.11 0.03 0.04

This table reports the posterior correlation coefficients from the general learning model. We control the prior belief on the scaled parameters of
the cross-sectional variability in factor loadings, £ . The prior beliefs on the mean value of the k" pricing factor, 6, ,are centered at 1 with

various prior beliefs. We report results based on three pricing models: CAPM, the 3-factor and the 4-factor models. The posterior distributions of
the variables considered are simulated by the MCMC technique by using hypothetical returns of 5 funds. The fund returns are generated through
equation 1, in which the factor loadings and the market benchmarks are drawn independently across funds. The distribution parameters are

chosento match the empirical results.
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Table 5: Simulation of leaming within fund family

CAPM 3-factor model 4-factor model

Prior belief  Diffuse Low High Diffuse Low High Diffuse Low High
Panel A Non-learning model

a (%) 0.782 0.512 -0.040 0.854 0.592 -0.038 0.904 0.637 -0.035

B 0.977 0.977 0.977 1.025 1.025 1.025 1.025 1.025 1.025

A, 0.142 0.050 0.008 0.142 0.050 0.008 0.142 0.050 0.008
Panel B Partial learning model

a (%) 0.838 0.835 0.156 0.913 0.909 -0.050 0.961 0.961 0.223

B 0.977 0.977 0.971 1.025 1.025 1.025 1.025 1.025 1.021

0, (%) 0.618 0.519 0.156 0.658 0.507 -0.050 0.982 0.963 0.223

A, 0.210 0.052 0.008 0.211 0.053 0.008 0.211 0.053 0.008
Panel C General learning model

a (%) 0.845 0.837 0.495 0.913 0.904 0.408 0.967 0.973 0.503

B 0.977 0.977 0.977 1.025 1.025 1.025 1.025 1.025 1.025

0, (%) 0.704 0.636 0.495 0.671 0.538 0.408 0.763 0.674 0.501

A, 0.023 0.002 0.000 0.024 0.002 0.000 0.024 0.002 0.000

0y 0.976 0.977 0.977 1.024 1.013 1.023 1.025 1.023 1.025

Ay 0.117 0.116 0.133 0.134 0.148 0.132 0.138 0.138 0.136

This table presents the simulation results from three evaluation models: the non-learning model, the partial learning model and the general
learning model. The posterior mean of the variables, i.e. the in-family variability, ¢ , the family level annualized mean performance, € , and
the cross-sectional averaged annualized alpha, are reported. We control the prior belief on the scaled parameter of the cross -sectional variability
in a, £ and priors on @ to be three distinct distributions, ie. a diffuse prior has log(¢ ) ~ N(=11) ; the low skepticism has
log(¢&,) ~ N(-5,1); the high skepticism has log(¢,) ~ N(-10,1). &, , 6, and the scaled parameter of 6, is assumed to have diffuse prior

distribution. Panels A, B and C report the simulation results from the CAPM, 3-factor model and 4-factor model. The posterior distributions are
generated by applying the MCMC method on monthly returns from 220 UK unit trusts (47 fund families).
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Table 6: Simulation of learning within fund family

CAPM 3-factor model 4-factor model
A, prior Diffuse Low High Diffuse Low High Diffuse Low High
General learning model
o (%) 0.845 0.726 0.366 0.913 0.815 0.492 0.967 0.859 0.627
yis 0.977 0.974 0.736 1.025 1.016 0.933 1.025 1.016 0.963
0, (%) 0.704 0.511 0.000 0.671 0.412 0.000 0.763 0.374 0.000
A, 0.023 0.002 0.001 0.024 0.002 0.001 0.024 0.002 0.001
0, 0.976 0.757 0.000 1.024 0.706 0.000 1.025 0.745 0.000
Ay 0.117 0.321 0.692 0.134 0.391 0.874 0.138 0.363 0.902

This table presents the simulation results from the general learning model. The posterior mean of the variables, i.e. the cross-sectional annualized
averaged alpha, the cross-sectional averaged /£, the annualized mean performance of alpha (6, ), the mean performance of g (6, ) and the in-family

variability ( A,) are reported. We control the prior belief on the scaled parameters of the cross -sectional variability in factor loadings, £ . The prior

beliefs on the mean value of the k" pricing factor, 6, , are centered at zero with a diffuse variance. The scaled parameter of 6, is also assumed to

have a diffuse prior. Panels A, B and C report the simulation results from the CAPM, the 3-factor and the 4-factor models. The posterior distributions of

the variables considered are simulated by the MCMC technique by using monthly returns from 220 UK unit trusts.
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Table 7: Posterior correlation coefficients

CAPM 3-factor model 4-factor model
Panel A
A, prior  Diffuse Low High Diffuse Low High Diffuse Low High
Pa, 5, -0.025  -0.046 -0.005 0.018 0.030 0.007 0.025 0.041 0.011
Panel B
Prior beliefs Diffuse Low High Diffuse Low High Diffuse Low High
Pe, 0, -0.025  0.011 0.065 0.018 0.078 0.038 0.025 0.089 0.201

This table reports the posterior correlation coefficients from the general learning model. We control the prior belief on the scaled parameters of
the cross-sectional variability in factor loadings, & . The prior beliefs on the mean value of the k" pricing factor, @ _,are centered at 1 with

various prior beliefs. We report results based on three pricing models: CAPM, the 3-factor and the 4-factor models. The posterior distributions
of the variables considered are simulated by the MCMC technique by using monthly returns from 220 UK unit trusts.
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Figure 8: Posterior cross sectional in-family dispersion
Figure (a) and (b) present the posterior meanof A, and 4, froma CAPM based general learning model, respectively. Both of
the parameters are generated by the mean value of 6000 draws from their posterior distribution.
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