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Abstract 

In this paper we revisit the cross-fund learning method suggested by Jones and Shanken (2005) 
and construct a linear hierarchical model to consider the learning across funds within the fund 
family during the performance evaluation. We provide a full Bayesian treatment on all the factors 

of the pricing model and allow both the fund family and the individual manager to have 
dependent prior information regarding funds’ alphas. The simulation results suggest that returns 

from peer funds within the family significantly affect investors’ updating on fund alphas since the 
posterior distribution on fund alphas experience a faster shrinkage than those reported in the 
previous literature. The model can also be simulated with specific prior belief on different factors 

of the pricing model, i.e. fund alphas, betas and factor loadings of each pricing benchmark, to 
better address the learning issue.  
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Information from the fund family can provide additional insight when evaluating the 

performance of its underlying funds. It is often the case that funds affiliated to the same fund 

family share the same investment advisor. Fund family and the fund manager combined 

contribute to the returns gained by a certain fund. The family can influence the performance of 

the individual funds not only from the administration perspective, but also in terms of the quality 

of analysis and information flows (Baks, 2003). In addition, the fund family conducts various 

investment strategies to affect the performance of its underlying funds (see for example Nanda, 

Wang and Zheng, 2004; Kempf and Ruenzi, 2008; Gaspar, Massa and Matos, 2006). However, 

standard performance evaluation literature usually examines the fund performance independently, 

neglecting the return information provided by the other parties. This research aims to conduct the 

performance evaluation procedure taking into consideration information provided by other funds 

as well as the fund family. 

Jensen alpha, widely used as the risk adjusted performance of a mutual fund (Jensen, 1968), 

is conventionally calculated by applying the OLS estimation on the intercept of the capital asset 

pricing model (CAPM) by Sharpe (1964) and Lintner (1965). This performance evaluation has 

evolved to incorporate additional benchmark portfolios (see Fama and French, 1993; Jegadeesh 

and Titman, 1993; Carhart, 1997; Elton, Gruber and Blake, 1996). Other researches adopt 

alternative techniques to understand funds’ abnormal performance. For example, studies by 

Kosowski, Timmermann, Wermers and White (2006) and Cuthbertson, Nitzsche and O’Sullivan 

(2008) apply a bootstrapping method to distinguish alphas that can be attributed to managers’ 

genuine stock selecting skills from those resulting from sample variation. 

More recently, a growing number of studies have shifted their interest to the additional 

information provided by benchmark (non-benchmark) pricing factors, investors’ opinion and 
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returns from other funds. The Bayesian framework provides the opportunity to include 

information other than funds’ historical data in the performance evaluation. Baks, Metrick and 

Wachter (2001) find that certain prior beliefs on managers’ skill might justify the investment 

decision. Pástor and Stambaugh (2002) (PS hereafter) consider a seemingly unrelated model 

(SURE hereafter) with the Bayesian estimation to include the correlation between the pricing 

factors and the other non-benchmark portfolios, which incorporates the idea that information 

given by non-benchmark portfolios with longer return history provides more precise estimates 

(Stambaugh, 1997).  Such Bayesian settings not only overcome the limited datasets in the 

estimation, but also improve understanding of how the so-called seemingly unrelated assets affect 

the performance evaluation of a certain fund. Busse and Irvine (2006) further conduct the 

performance persistence test based on the SURE in a similar Bayesian model suggested by PS. 

Their results indicate that higher predication power of the SURE model is more likely to be 

associated with the diffuse skill prior.  

However, the independent prior based Bayesian settings considered in the previous 

research raise the issue of ignorance about cross-sectional influences from the peer funds. Such 

dependent nature of the variability of funds’ alphas can be modelled in a hierarchical setting in 

which a dependent prior is designated on the cross-sectional mean. Jones and Shanken (2005) (JS 

hereafter) first consider a multilevel structure in the performance evaluation, with a dependent 

prior which can then be assigned to represent the investors’ opinion on the mean of the 

cross-sectional fund returns distribution. They suggest that the alpha of a fund can be drawn from 

a common population distribution which is defined to describe the general belief on the 

cross-sectional performance. They find that the investors are more likely to believe that the 

manager of a certain fund is unskillful if more funds in the industry give them the same 



4 
 

impression. If the investors tend to have more homogeneous belief on the absence of fund 

managers’ skill, i.e. the variance of the prior decreases, the shrinkage is also enhanced. In this 

case, a learning prior provides a compromise between the fund’s own returns and the 

cross-sectional performance in the entire industry. However, since their research only considers 

the dependent nature of the prior belief on alpha, the evaluation model can be regarded as a 

special case of the hierarchical varying intercept and varying slope model. In reality, investors 

may also have heterogeneous belief on the pricing power of the certain factor model used in the 

performance evaluation, or on the risk exposure to a particular market benchmark. These 

concerns make it necessary to conduct a general case multilevel model. 

We construct a linear hierarchical model to consider the learning across funds within the 

fund family to estimate fund alphas. Although a general solution to the linear hierarchical model 

is derived by Lindley and Smith (1972) and Smith (1973), the major problem encountered lies in 

adding appropriate prior information onto the covariance matrix when giving full Bayesian 

treatment on all the pricing factors in the model. In CAPM, only a general prior distribution, i.e. 

an inverse Wishart prior, is applied, to represent all the additional information regarding both the 

alpha and the market beta. However, given that the degree of freedom is the only variable us ed to 

define the distribution, use of the inverse Wishart as the prior belief in the estimation of Bayesian 

alphas is far from the situation in reality.  

A separation strategy which decomposes the covariance matrix to produce the diagonal 

matrix with variance of each pricing factor and the correlation matrix, as suggested by several 

statistical studies, is able to overcome the restriction noted above and to include the return 

information from the other pricing factors (see for example Barnard, McCulloch and Meng, 

2000). An important feature of the separation technique is its consideration of specific prior 
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beliefs on certain parameters of interest, i.e. the ability to strengthen the informative level on 

particular parameters and weaken it on others. In this research we apply a modified separation 

technique which not only maintains the original key feature, but also improves its efficiency (see 

Gelman and Hill, 2007; O’Malley and Zaslavsky, 2008). Specifically, a scaled inverse Wishart 

distribution is denoted as the prior on the covariance matrix through over-parameterization, the 

use of which enhances the convergence substantially. We can therefore define the prior 

information on each of the pricing factors as well as the between-factor correlation.   

Our results from the simulation suggest that the separation strategy powered performance 

evaluation better addresses the learning issue. Firstly, we find that given a less dispersed prior 

belief on managers’ inferior ability, the posterior mean on   of each of the underlying funds 

converges faster than when using the method suggested by JS. Our findings suggest that returns 

from peer funds within the same fund family can significantly affect investors’ updating on fund 

alphas. Secondly, the covariance separation technique enables our method to provide a full 

Bayesian treatment on each of the pricing factors to generalize the learning process. Specifically, 

our model can grasp the specific prior information on the magnitude of funds’ pricing factors 

deviating from the family mean. The results suggest that the posterior belief can provide a 

compromise between the observed data and the prior belief. Strong cross-sectional dispersion in 

the data can still mitigate the posterior shrinkage when a high skepticism prior is in place. Thirdly, 

after decomposing the individual fund   into the combination of the family mean and the 

idiosyncratic contribution from the manager, we find that the fund manager contributes positively 

to the overall fund performance whenever prior belief is applied. Finally, we place no restriction 

on the correlation matrix of different pricing factors in the pricing model. That is to say, we also 

include prior information to allow cross-factor learning, which is often impossible in the 
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conventional OLS estimated alphas.      

The rest of the research is organized as follows: The learning model is derived in the 

following section. We also show the model given by JS, which can be regarded as a special case 

of our model. Section 3 discusses the model simulation results by using the hypothetical data as 

well as the real fund data. Conclusions and the implications of this research are summarized in 

the final section.    

 

2. The Performance Evaluation Model 

2.1 The general learning model 

The learning process considered in this section is similar to the settings of JS, but in a more 

general framework. We adapt the Bayesian treatment for each of the pricing benchmarks in the 

factor model. In our evaluation model no restriction is applied on the correlation of different 

pricing factors, thus the co-movements can be viewed as an unknown variable which is decided 

by the information mixture of the prior belief and the true data, whereas the conventional OLS 

estimations might suffer substantial imprecision due to multicollinearity between different 

regressors. Another important feature of the general learning model is that the dependent prior on 

the pricing factors enables the model to explain the heterogeneous opinion on the pricing power 

of a particular factor model. Different prior beliefs on the pricing benchmarks can then be 

included to address the sensitivity issue of how funds’ alphas respond to divergent views on the 

pricing power of benchmark portfolios. Thus the evaluation model of JS can be regarded as a 

special case of the general learning model. Meanwhile, instead of gaining information from the 

entirety of cross-sectional funds in the evaluation, we sort funds into different fund families, 
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since funds within the same family often share the same investment adviser, and they are more 

likely to set a similar market benchmark to compete with. In addition, fund companies often 

adopt various family strategies, such as reallocating capital or increasing cross-sectional variance, 

to achieve better performance for their underlying funds or entire fund families. Therefore, we 

construct the learning model from a family perspective to incorporate additional return 

information offered by funds within the same fund family.1 

A hierarchical linear structure is applied to assess the manager’s ability when performance 

is assumed to vary across the funds managed by the same fund company. To facilitate the 

estimation of the variables in the multilevel structure a Bayesian system is constructed to conduct 

the distribution of each variable as a weighted average of both prior belief and real data. We 

assume in our model that the risk adjusted performance, can be attributed to the fund family and 

the fund’s idiosyncratic risk exposure, which are all assumed to be unknown to both the fund 

company and the investors. The posterior distribution is generated through Markov Chain Monte 

Carlo algorithm (MCMC hereafter). We derive the Gibbs sampler and the Metropolis-Hastings 

algorithm for each of the unknown variables in the Bayesian hierarchical linear model, since the 

posterior distribution of all the variables can be written in a closed form except that for the within 

variability in fund family. Gibbs sampler can update each variable directly at a time when its 

posterior distribution can be derived in a closed form, while a proposed distribution is needed for 

the Metropolis-Hastings algorithm to act as a reference for drawing.  

 

2.1.1 Likelihood function 

                                                 
1
 Our model can be easily adapted to the research context of JS, where a diffuse prior is designated to each of the 

pricing factors. Meanwhile, the prior belief can be set to represent the opinion on the performance of the entirety 
of cross-sectional funds  
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Consider a fund family with M fund, for each of the fund j  we assume that the excess 

returns 
jR  follows: 

 j j j jf b u R ,  ( 1, , )j M                                     (1) 

where jR is a jn  dimensional vector of fund’s excess returns where jn  is the number of 

observation for fund j , and jf  is a jn K  matrix of the excess returns from 1K   market 

benchmark portfolio(s), of which the first column is all 1. jb  is K  dimensional factor loadings 

which include the risk adjusted return and pricing factors for each of the 1K   benchmark 

portfolio(s), i.e. ,2 ,( , , , )j j j j Kb      . We assume that 
2~ (0, )j ju N  , in which ju  is assumed 

to be homoscedastic and independent of each other. The prior belief on 
2

j  are given by a scaled 

inverse 2  distribution, i.e. 
2 2 2~ ( , )j j jScale inv v s   .2 

The family level likelihood function for fund j  can be shown as: 

  j j jb e X , ( 1, , )j M                                      (2) 

where j k jx X I  is a K K  matrix of family level predictors, jx . As suggested in the 

following simulation study, we assume that jx  equals to 1 for all j . Additional factors can also 

be incorporated as family level predictors, i.e. the non-benchmark assets in the SURE model.   

is a K  dimensional vector which describes the family level mean for each of the K  pricing 

factors, specifically, ,1 ,( , , )j j K   Θ . The risk adjusted return for fund j  can therefore be 

                                                 
2
 Assuming Y  follows an inversed Gamma distribution, i.e. ~ ( , )Y Inv gamma a b , where a and b are shape 

and scale parameter, respectively. Thus the probability density function for Y  is 
1

( ) ( )
( )

a
b b

P Y Y exp
Y





 
 


. 

The 
2 2
( , )

j j
Scale inv v s  distribution has a density function by letting 

2

j
v

   and 

2

2

j j
v s

b  .  
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given by 
,1 ,1j j je    . The between-fund dispersion of the thk  pricing factor is denoted as 

,j kò , i.e. 
, ,( )j k j kVar   ò  and 1, ,k K  . Thus the covariance matrix of 

jb  can be expressed 

as a K K  matrix, j , i.e. ,1 ,( , , )j j j Kdiag  ò ò . 

Given Eq (1), let 
1( , , )M    R R R ,

1( , , )Mdiag f f F ,
1( , , )Mb b    B and 

1

M

j

j

N n


 , 

then we can rewrite Eq (1) for M  funds as  

  R FB U ,  ~ (0, )N U                                       (3) 

where 1( , , )Mdiag      and 2

jj j n  I .  

The family level likelihood function for M  funds can also been given by letting

1( , , )M  X X X  and M j Λ I λ in which MI  is a M M identity matrix. Eq(2) for M  

funds then can be written as  

  B XΘ E , ~ (0, )NE Λ                                        (4) 

where Θ  represents the mean value which remains the same across M  funds, while Λ  is the 

in-family dispersion level among the M  funds. The prior on Λ  can then be regarded as the 

magnitude of how factor loadings of an individual fund deviate from its group mean. Thus, a 

prior on fund’s alpha with a higher variance suggests a higher cross-sectional variability on alpha 

within the fund family.  

To address the dependence of the prior we further assume that Θ  is a random draw from a 

common multivariate normal distribution, ( , )N  Δ , which represents the beliefs on the family’s 

mean. In order to denote specific prior belief on each of the K  pricing factors, we further 

consider a separation strategy to define the prior on the in-family variation, Λ , in which the 

family level covariance matrix is decomposed into a combination of diagonal scaled matrix and 
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an unscaled matrix that can describe the correlation of factor loadings among different funds 

within the same fund family, i.e. Λ ΞΦΞ , where Ξ  is a diagonal scaled matrix and Φ  is 

the unscaled matrix.3 

 

2.1.2 Posterior distribution of B  

In this section we derive the posterior distribution of the factor loadings for M funds 

conditional on R , F  and X . Assuming that ,Σ Θ  and Λ  are all updated, ζ  and Δ  are 

the prior belief on B . The posterior belief of B  can be derived as, 

 1 1

1 1 1 1

( | , , , , , ) ( | , , ) ( | , , , )

       ( | , ) ( | , )

1
       ( ) ( ) ( ) ( ) ( )

2

1
       ( ( ) ) 2 ( ( ) )

2

    

{ [ ]}

{ [ ]}

M MK

P P P

exp

exp

 

   



  

          

            

B R F Σ X Θ Λ R B F Σ B X Λ ζ Λ

R FB Σ B Xζ Λ XΛX

R FB Σ R FB B Xζ Λ XΔX B Xζ

B F Σ F Λ XΔX B B F Σ R Λ XΔX Xζ

N N

11
   ( ) ( )

2
[ ]exp     1 1 1 1 1B D V D B D V

 

 

So the posterior belief on the fund’s factor loadings follows a  dimensional multivariate 

normal distribution,  

  | , ~ ( , )MK 1 1 1B R Σ D V DN                                     (5) 

where 

1 1 1[ ( ) ]      1D F Σ F Λ XΔX  and 1 1( )     1V F Σ R Λ XΔX Xζ . 

 

                                                 
3
 Gelman and Hill  (2007) argue that such over parameterization not only enables the control of the dispersion level 

for the factor loadings within the same group, since  is close to uniform, it also increases the convergence of the 

chain. See for example Barnard et al. (2000) and O’Malley and Zaslavsky (2008) for further discussion on the 
separation strategy and the scaled inverse Wishart distribution. 
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The posterior mean, 
1 1D V , of B  is a weighted average of the true return data and the 

prior belief on B . We can further extend 1( ) Λ XΔX  as,    

         1 1 1 1 1 1( ) ( )          Λ XΔX Λ Λ X X Δ X X Λ         

Thus, when 1 0 Λ and 1 0 Δ , the posterior mean of B becomes 1 1 1( ) ( )    1 1D V F Σ F F Σ R , 

that is, the posterior mean of B  reduces to its OLS estimates given a diffuse prior on both the 

cross-sectional variability and the variance of the family level mean. 

 

2.1.3 Posterior distribution of Σ   

Given B , Θ  and Λ , we have ( | , , ) ( | , , ) ( )P P PΣ R F B R B F Σ Σ . By assumption we have a 

homoscedastic error term for each fund j , which we can write as  M jΣ I Σ . The posterior 

belief can then be shown as  

         

2 2 2

. , ,

1

2 2 2 2

, , ,

1

( 1 )
2 22

2

( | ) ( | , , ) ( )

                ( | , ) ( | , )

1
                ( ) ( )

2
[ ]

j

j

j

n

j j j i j i j j j

i

n

i j i j i j j j j j

i

n v

j j j j

j

P R P R f P

N R f Scale inv v s

exp nS v s

   

   









 



  

  



  

 

Therefore, we have the posterior distribution for 
2

j  as  

 

2

2 2

.| , ~ ( , )
j j j

j j j j

j

nS v s
R Scale inv n v

n v
  


  


                       (6) 

 where 1, , ji n  , 1, ,j M  and 

2

,

1

( )
jn

i j j j

i
j

j

R f

S
n









. 
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2.1.4 Posterior distribution of Θ  

When B  and Λ  are both updated by the distribution described in the previous two 

sections, the posterior belief on Θ  can then be derived in a similar fashion given the 

information of prior distribution ~ ( , )NΘ ζ Δ , 

1 1

1 1 1

( | , , , , , , ) ( | , , , , ) ( | , )

         ( | , ) ( | , )

1
         ( ) ( ) ( ) ( ) ( )

2

1
         ( ( ) ) ( ( )

2

{ [ ]}

{ [

MK K

P P P

exp

exp

 

  



  

          

              

Θ R F Σ X Λ ζ Δ R F Σ X Θ Λ Θ ζ Δ

R FXΘ Σ FΛF Θ ζ Δ

R FXΘ Σ FΛF R FXΘ Θ ζ Δ Θ ζ

Θ Δ X F Σ FΛF FX Θ Θ X F Σ FΛF R

N N

1 )]}Δ ζ

 

 

Thus Θ  can be shown to follow a K  dimensional multivariate normal distribution:  

 | , , ~ ( , )K 2 2 2Θ X F Λ D V DN                                               (7) 

where  

       1 1 1[ ( ) ]       2D Δ X F Σ FΛF FX  and 1 1( )      2V X F Σ FΛF R Δ ζ   

The posterior mean of Θ  has a similar form as those defined for B  in the previous section. 

However, if we have 
1 0 Δ , the posterior mean of Θ  equals to 

1 1 1[ ( ) ] [ ( ) ]         X F Σ FΛF FX X F Σ FΛF R , where the prior mean ζ  has little effect and the 

true data dominate the estimation of Θ . 

 

2.1.5 Posterior distribution of Λ  

The family level covariance matrix for M  funds can be written as M Λ I λ . Only B  

and Θ  are related to the variation of λ , and the covariance λ  can be written as a combination 

of the diagonal matrix of standard deviations and a matrix of correlation, i.e. ΞΦΞ . Thus the 

joint distribution of Ξ  and Φ  can be stated as, 
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1 2

0

( , | , , ) ( | , , ) ( ) ( )

                          ( | , ) ( | , ) ( | , )MK

P P P P

K log v s



 

Ξ Φ B X Θ B Ξ Φ Θ Ξ Φ

B XΘ ΞΦΞ Φ I ΞN W N
 

 
We firstly derive the posterior distribution of the unscaled matrix that determines the correlation, 

given the prior is 1

0~ ( , )K
Φ IW , 

      
0

0

1

0

1

1
 

1 12 2

( ) 1

1 1 12

( | , ) ( | , ) ( , )

1 1
                 | | ( ) | | ( )

2 2

1
                 | | ( )

2

[ ] [ ]

[ ]

M

j

j

K KM

K M K

P N K

exp tr exp tr

exp tr

 



 


 

  

  



  

  

 j

0

0

Φ B Ξ X Θ ΞΦΞ I

ΞΦΞ S ΞΦΞ Φ IΦ

Φ Ξ S Ξ I Φ

W

     

Therefore, we can show that  

1 1 1

0 0| , , , , ~ ( , )K M Scaled K M    0Φ B Θ Ξ Ξ S Ξ IW                         (8) 

where 
1

( )( )
M

j j j j

j

x x 


   0S Θ Θ . For 
thk  factor in the learning model, its variance is 

2

k kk  , where kk  is the 
thk  value on the diagonal of Φ . The posterior distribution on Ξ  

can be estimated by using the Metropolis-Hastings algorithm since the distribution function is not 

in a convenient form. Given 1( , , )Kdiag   Ξ , its conditional posterior distribution function 

can be written as  

2 2

,

1

( | , ) ( | , ) ( | , )
k k

M

k k j k k k

j

P log v s     


  B N   

where4 

1

2 1

( ) ( , ) ([ ]) ( ( ))

( ) ( , ) ([ ]) ( , )

k

k

k k k k k k

k k k k k k

E Cov Var E

Var Cov Var Cov





      

      



   



  

  

 
 

 

                                                 
4
 Since   is a K K  matrix, thus [ ]

k



 indicates a matrix without the 

th
k  element. 
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and the prior on 
k  is given by 2~ ( , )k k klog v s N . We then use a log-normal distribution as 

the proposed distribution to simulate the target distribution with the acceptance rate over 44%.5 

 

2.2 The non-learning and partial learning models 

After deriving the general learning model, we then look at the difference between the 

non- learning model, the partial learning model and the general learning model. The non- learning 

model can be regarded as an evaluation model with independent prior belief, while the partial 

learning model considers dependent prior only on the fund alphas. Given the likelihood function 

Eq (1), we can derive the non-learning model for fund j  as, 

j j j j jR f u    , 
2~ (0, )ju N    

Then we can draw j  given jR , jf  and j , assuming 
2  is drawn from another procedure. 

The posterior belief then follows, 

2 2 2

. .

1

2

2 2
1

2

2

2

.

( | , , , ) ( | , ) ( | , )

1 1
                               ( ) [

2 2

1
                               ( )

2

( )]

[ ]

j

j

N

j j j j j j j j j

n

N

j j j j

i

j j

j

P R f N R f N

exp f

exp

R




        

   
 

 






 

  
   

  

  

  



  

where 

10

2 2 2 2

2 1

2 2

0 .

1

1
( )( )

1
( )

( )
j

j

j

j j

j

j

N

j j

i

S N

N

S R f






   


 









  

 

 

 

                                                 
5
 Similar argument can be found in, for example, Gelman and Hill  (2007) and O’Malley and Zaslavsky (2008) . 
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and assuming that 
j  follows a prior belief, 

2~ ( , )j j jN   , for fund j . Thus, each of the M  

funds in the fund family is denoted with independent prior beliefs. In the simulation of the 

non- learning model we denote a non- informative prior on the variance parameter of j , thus its 

posterior distribution is the OLS estimation. For the prior distribution on  , we denote prior 

beliefs independent of each other. Therefore, the non- learning model can be regarded as the no 

pooling model, with specific prior on each of the funds.  

JS applies a hierarchical model with dependent prior on individual funds’ j . Their model 

can therefore be regarded as a varying intercept model while the factor loadings of other market 

benchmarks are left without Bayesian treatment. Given the same likelihood function Eq (1), the 

prior belief of j  states 

2~ ( , )j N     , ( 1, , )j M   

The posterior mean of j  can be derived in the same fashion as the non-learning model: 

2

.

2 2 2

. .

1

2

2 2
1

2

2

( | , , , ) ( | , ) ( | , )

1 1
                               ( ) [

2 2

1
                               ( )

2

( )]

[ ]

j

j

N

j j j j j j j

n

N

j j j

i

j j

j

P R f N

R

R f N

exp f

exp

 







        

   
 

 






 

  
   

  














  

where 

10

2 2 2 2

2 1

2 2

0 .

1

1
( )( )

1
( )

( )
j

j

j

N

j j

i

S N

N

S R f
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For the mean performance  , we denote prior belief as ~ ( , )N m V   , thus the posterior belief 

of   is given by 

2 2

1

2

2 2

2

2

( , , , , ) ( , ) ( | , )

1 1
                               ( ) 2 ( )

2

1
                               ( )

2

{ [ ]}

[ ]

M

j

j

j

P m V N N m V

MM m
exp

V V

exp

       


 

   

 



     


 

 

 






    

  



 

and we have 2~ ( , )N     , where 

1

2 2

2 1

2

1

1
( )( )

1
( )

1

j

M

j j

j

M m M

V V

M

V

M




   



 




 




 







  

 

 

 

 In the model derived above, for each fund i , a common prior belief is applied to all the M  

funds in the same fund family. Thus, the common prior can be viewed as the additional information 

on the mean performance of the entire fund family. In the simulation, we include a diffuse prior on 

 , i.e. apply a large value on V  to eliminate the influence from m . The precision parameter 

  is given a prior belief following inverse 2  distribution. Since JS include no prior 

information on other pricing factors in addition to j , a diffuse prior is then denoted to each of the 

factor loadings to let them converge to the OLS estimations, which is similar with the settings 

considered by JS.6 

2.3 Prior beliefs 

                                                 
6
 JS rearrange Eq (1) to have 

j j j j
R f u    , and 

j
  is obtained directly from the OLS regression. 
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In this section we discuss the prior distribution we use for drawing from the posterior 

distribution of the parameters in the learning model. Although there are several possible choices 

of prior beliefs on all unknown variables, we concentrate on the family level variance, Λ , since 

it is closely related to the cross-sectional variability within the fund family. In particular, a diffuse 

prior would allow the data to dominate the posterior distribution, while contracted prior leads to a 

high degree of shrinkage. 

We consider three log normal distributions as the prior belief on 
k . Figure 1 shows our 

first choice, ( ) ~ ( 1,1)klog N  . The prior mean is then centered at around 0.25 suggesting k  

has a variance over 0.0625, which is far beyond the actual value observed in the data. This highly 

informative prior maintains the degree of shrinkage at a low level for the reason shown in section 

2.1.2, where extremely diffuse variance drives the posterior mean to approach the OLS 

estimation. Thus, prior belief provides no information in this case. 

The second and third choices of prior belief are illustrated in Figure 2. The dashed line 

given by ( ) ~ ( 5,1)klog N   is centered at 0.003, that is 
69 10  for variance. This prior is 

chosen to represent a plausible actual prior of alphas across funds within the fund family, since it 

is close to the highest cross-sectional variance among alphas given by the data. But its long right 

tail also enables the prior to provide sufficient deviation from the mean. The third choice of prior 

is given by the solid line in Figure 2. It is centered at 
52 10 , which can match the lowest 

between variability suggested by the data. Such a prior is expected to substantially increase the 

shrinkage toward the prior mean in order to address the situation where information is heavily 

shared within the fund family. 

We also designate prior distribution to other parameters in the learning model. The prior on 
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,1j  is centered at zero, as we assume that no manager is found to have superior stock selection 

ability. This is consistent with the settings given by PS and JS. The prior on the rest of the thk  

parameters in Θ  are centered at one. The prior on the correlation matrix Φ  is given by an 

inverse Wishart distribution with a degree of freedom that is higher than the dimension of its 

scale matrix. This setting allows Φ  to have a uniform prior distribution on the correlation 

parameters, since information regarding the correlation among family- level predictors is normally 

unknown by assumption. Moreover, the prior settings for the correlation matrix and the standard 

deviation for the 
thk  pricing factor considered in our research are different from those discussed 

in Barnard et al. (2000), where the group- level covariance matrix is decomposed into product of 

the correlation matrix and the diagonal matrix of standard deviations. Then a certain prior can be 

allocated on the particular predictor with a marginal uniform prior on the correlation parameters. 

But our technique can achieve the same objective with simpler computation and faster 

convergence. 

<Please insert Figure 1 here> 

<Please insert Figure 2 here> 

 

3 Simulation analysis 

3.1 Simulation with returns of hypothetical fund family 

In this section we report the simulation results of the learning models under the various 

prior beliefs chosen in section 2.3. We conduct the simulations based on hypothetical returns 

generated by different compositions of the benchmark. For the CAPM model, the abnormal 

performance   is assumed to have a normal distribution with mean of 
47.1 10  and standard 
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deviation of 32.23 10 , and 
market  has a normal distribution with a mean value of 0.979 and 

standard deviation of 0.087. The standard deviation of the error term follows   

2( ) ~ ( 4.044,0.398 )log N  . The 3-factor model   follows a normal distribution with a mean 

of 0.0767% and standard deviation of 0.226, and 
market  follows 2(1.0293,0.122 )N , while 

hml  

and 
smb follow 2( 0.036,0.093 )N   and 2(0.053,0.086 )N , respectively. The residual standard 

deviation has 2( ) ~ ( 4.079,0.378 )log N  . For the 4-factor model,   is drawn from a normal 

distribution with mean of 0.0806% and standard deviation of 0.231%, and 
market  is assumed to 

follow 2(1.029,0.121 )N . The other pricing factors are drawn independently from the following 

distribution: 2~ ( 0.037,0.093 )hml N  , 2~ (0.0523,0.0844 )smb N , 2~ (0.006,0.017 )mom N . 

The standard deviation of the error term ( )log   is drawn from the log-normal distributed with

2( 4.086,0.376 )N  . The returns and pricing factors are then drawn independently of each other to 

form returns for a particular fund. 

Table 1 reports the posterior simulations from three types of learning model under the 

chosen prior beliefs using hypothetical fund returns. All the three types of learning model exhibit 

a substantial degree of shrinkage with a rapid decrease in dispersion of the cross-sectional 

variability in funds’  , that is,   declines sharply under the chosen prior beliefs. The results 

from the general learning model seem to have the highest degree of shrinkage, since the   in 

Panel C is lower than those in Panel A by over 60 basis points and lower than the partial learning 

model by almost 90 basis points under the high skepticism prior. It is also worth noting that the 

degree of shrinkage decreases considerably across the prior beliefs when using both the partial 

learning model and the non- learning model. Specifically,   from the CAPM model drops by 
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almost 1000 basis points in Panel B, from 0.1234 to 0.0101, while it behaves more stably in 

Panel C with only an 80-basis point change. The general learning model incorporates the prior 

belief on the variance from both the pricing factors and it also works as the scale factor in the 

denominator of the posterior mean, thus the prior belief is more likely to have significant 

influence on the cross-sectional variability of fund alphas. 

Figures 3, 4 and 5 provide further evidence to confirm the shrinkage. Figure 3 illustrates the 

boxplot of the posterior mean of the   for the 5 hypothetical funds. The value is quite dispersed 

when log( )k  has a diffuse prior, and the median of each  ’s posterior distribution is close to 

the OLS estimates since a highly close-diffuse prior would mitigate the influence from the prior 

mean. The dispersion on   reduces significantly when turning to a less diffuse prior. In the 

extreme case where log( )k  has the high skepticism prior, the funds’   converges to a 

common mean which is close to zero. There is also some evidence supporting the notion that the 

shrinkage is sensitive to the evaluation model chosen. The boxplot shown in Figure 4 suggests 

that the   estimated by the 3-factor model has a low degree of shrinkage under all three prior 

beliefs compared to those from the CAPM. Similar results can also be found in Figure 5 where 

the 4-factor model is considered. 

Table 1 also reports the results of the mean performance for a particular fund family,  . 

As shown in Section 2.1.4, the posterior mean of   is weighted by both the OLS estimates and 

prior information. Since we apply no predictors at the family level likelihood, Eq (2), jX  is 

assumed to be an identity matrix for all M  funds. Thus Eq (2) is by design a sum of family’s 

mean performance and the fund’s idiosyncratic performance. In the case where   has diffuse 

prior beliefs on its diagonal, each of the elements in B  should converge to its OLS estimates.  
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On the other hand, when a least dispersed prior is considered for Λ  and B  should reduce to its 

mean, Θ . We therefore expect the factor loadings and the   within the same family to 

converge to a common mean which can be attributed as the mean performance of the fund family. 

One may argue that the fund manager can also contribute to the mean performance ; thus a 

feasible extension to the general learning model is to further decompose the mean value Θ  and 

to designate particular predictors representing the difference between the contribution from the 

manager and that from the fund family. 

 

<Please insert Table 1 here> 

 

The posterior mean of   reported in Table 1 seems to be very close to zero across all the 

learning models considered. The results document some weak support for a decreasing pattern of 

the value of   with a diminishing dispersion on the prior variance, i.e. it reduces from 0.17% to 

0.08% when the general learning model based on the 4-factor model is considered. The value is 

even lower when using a CAPM based partial learning model. This may be explained with the 

aid of Figure 3, in which the posterior   of each fund is more concentrated around zero and the 

extreme values at both ends offset each other. The distribution of each fund’s   in Figure 4 has 

a more extreme value at the positive end, implying a more positive   in a 3-factor based 

learning model. A similar situation can be found in Figure 5, where the 4-factor based learning 

model is considered, i.e. the median of the posterior   is further from zero compared to the 

others. Consequently,   provides additional information on the common performance across 

funds within the same fund family. Our simulation results suggest that the abnormal performance 
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can be attributed mainly to funds’ idiosyncratic behavior, since the common mean reduces to zero 

under the least dispersed prior. 

Figure 6 illustrates the posterior mean of market beta in the general learning model. Since 

we put non-informative prior on B , its posterior mean is expected to converge to the OLS 

estimates. The boxplot in Figure 6 shows a steady shrinkage across the chosen prior beliefs. We 

further extend the simulation to incorporate the influence of informative prior beliefs on other 

pricing factors. The results are discussed in Table 3. 

 

<Please insert Figure 3 here> 

<Please insert Figure 4 here> 

<Please insert Figure 5 here> 

<Please insert Figure 6 here> 

 

3.2 Simulation with returns of hypothetical funds universe 

We consider a more extreme case where, instead of considering a hypothetical family with 

5 funds, we enlarge the sample size to incorporate 200 funds to analyze the degree of shrinkage 

of funds’  . Results are reported in Table 2. The posterior mean of   suggests that of the 

three models, the general learning model exhibits the highest degree of shrinkage of funds’  , 

which is consistent with the results reported in Table 1. The posterior means of   given by the 

non- learning and the partial learning models have a similar value under the same prior. Moreover, 

compared to the results in Table 1, simulations with a larger group of funds produces smaller 

value of   for a given prior, indicating that it becomes easier to converge to the common mean 
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when they are able to gain information from more funds. However, there is only weak evidence  

to support the declining pattern of   with less dispersed prior beliefs. This is because the 

growing sample size may lead to more heterogeneous beliefs among individual funds’ alpha, 

which therefore slows down the efficiency of the convergence process. 

The posterior means of   reported in Panels A and B are higher than those in Table 1. 

Meanwhile, we find that funds’ idiosyncratic performance seems to have limited impact on the 

overall mean performance, since   remains almost unchanged across different prior beliefs 

from both the partial learning and the general learning models. This implies that managers’ 

superior (inferior) performances offset each other in a large funds population, and such mean 

performance is also independent of the prior information. The steady nature of   documented 

in Panel B is apparently different from that discovered by JS. This is because we only incorporate 

prior beliefs in the cross-sectional variability, and leave the prior on B  non- informative, 

whereas JS put decreasingly dispersed prior on the group mean, and find that the posterior mean 

is driven toward zero. 

Figure 7 plots the density of the posterior mean of the 200 funds’ alpha with respect to the 

chosen prior beliefs. Not surprisingly, the solid line, which indicates the density of   given a 

close-diffuse prior, has the lowest degree of kurtosis among the three densities, while the dashed 

line has more values around its mean. However, Figure 7 shows there is a limited margin on the 

shrinkage level between different prior beliefs, which is consistent with the results found in   

in Table 2. Furthermore, it seems that more funds are found to have a positive   given a left 

skewed density no matter which prior belief is chosen. Our results in relation to the simulation of 

returns of hypothetical fund universe suggest a low degree of shrinkage of the cross-sectional   
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compared to that found in fund families. But a steady mean performance, 
 , implies a feasible 

estimate of the mean performance for the fund universe through the general learning model. 

 

<Please insert Table 2 here> 

<Please insert Figure 7 here> 

 

The general learning model enables us to consider specific prior beliefs on factor loadings. 

Using this property, we further extend our simulation to allocate information on all of the 

elements in B  in addition to  . In other words, the factor loadings of each market benchmark 

in a particular pricing model are assumed with informative prior beliefs before undertaking the 

estimation. Table 3 reports the results. 

We find that the chosen prior belief on other pricing factors can influence the posterior 

dispersion of  . For example, the posterior mean of   increases from 0.035% to 0.118% 

when the prior belief on 
thk  pricing factors turns to a dispersed one. This finding is also 

consistent when different pricing model is considered. From the fund family’s perspective, if 

investors are only certain that funds in the same family have similar risk exposure to the market 

benchmarks, they may choose more concentrated prior beliefs on the corresponding factor 

loadings. On the other hand, investors might have limited knowledge on the overall skill of the 

fund family, and hence they choose a more dispersed prior belief on  . Such a situation can be 

represented by column 3 of Table 3 under the settings of CAPM. The results imply a slightly 

lower degree of shrinkage of   relative to those reported in Panel C of Table 1, indicating that 

adding prior information from other pricing benchmarks can improve the shrinkage of the   
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value. In other words, if the prior information considered happens to be correct, the general 

learning model can provide a more precise estimation of the cross-sectional mean performance of 

the family. Intuitively, the situation discussed above could be a more common case in reality. 

Since fund companies publish their top holdings frequently, investors are more likely to form 

their own opinions on the co-movements between the fund and the market portfolio. Hence, a 

less dispersed prior can be used to represent the investors’ belief before seeing the data. However, 

it is often the case that the manager’s stock selection skill is unknown to the investors. Therefore 

a diffuse prior on   could be a reasonable setting.  

Moreover, we consider another extreme situation, in which investors are more convinced 

that the fund family contains no skilled managers, but they are also unsure that the market 

benchmark can completely price the fund return. Therefore, a highly concentrated prior is defined 

on both the and the market beta. Such a scenario is considered in the second column of the 

CAPM settings. The result shows a significant degree of shrinkage of the cross-sectional market 

beta as   decreases with less dispersed priors than that in the fourth column. However, 

compared with the results on   given by Panel C of Table 1, where market beta has a diffuse 

prior, we find that   increases by over 10 bps. This is because the general learning model 

provides a compromise estimation of   between the real data and the prior belief, since the 

hypothetical returns still contain evidence to support the existence of skilful managers. Thus, the 

posterior cross-sectional variability on   increases to signal such concerns.7   

In Table 4, we look further into the non-equal prior problem by computing the posterior 

                                                 
7
 Unlike the hypothetical returns generated by JS, in which the abnormal return has been centered to have a zero 

mean, we draw the abnormal returns from
2

(0.071%,0.223% )N , which matches the general empirical findings 

in the real fund industry. 
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correlation coefficients of the parameters considered in Table 3. In general the correlation 

between the different pricing factors and the abnormal returns remains at a low level. However, 

this does not contradict the results found in Table 3, since we place only a diffuse prior on the 

correlation matrix of all the pricing factors. It is not only the correlation coefficient but also the 

cross-sectional variability of a certain pricing factor that can decide the learning outcome. 

Therefore, such low correlation coefficient can suggest a low level of cross-fund learning only in 

the correlation itself. Our method provides a way to define an informative prior on the correlation 

matrix. However, the construction of an efficient prior remains an open question in the statistics 

literature.   

 

<Please insert Table 3 here> 

<Please insert Table 4 here> 

 

 

3.3 Simulation with the universe of real funds 

In this section, we consider the simulation using the returns from the actual mutual funds. We 

select monthly returns of 220 unit trusts from 47 fund families in the UK fund industry from 2001 

to 2010. All the sampled funds are UK equity unit trusts. We screen out the non-equity funds and 

the mixed funds since our performance evaluation focuses only on fund managers' stock selection 

skill. Within each of the fund families, we also screen out the new funds due to splitting and keep 

funds with longest return history for each share class. To focus solely on the domestic funds, the 

funds in our sample are all UK domicile equity funds, indicating that most of their capital should be 
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invested in UK companies. Meanwhile, the UK domicile funds share the similar market 

benchmarks, which facilitate estimation of the funds’ alphas by the factor models.   

We employ three sets of benchmark returns to form the baseline performance evaluation 

model. We choose the FTSE All Shares as the excess market return factor motivated by CAPM. 

The returns of the additional size and book to market factors in the Fama French 3-factor model are 

computed by two pairs of market portfolios: the size factor is generated by the difference between 

the FTSE 100 index and the FTSE small capital index; the book to market factor  is calculated by 

taking the difference between the MSCI UK Growth index and the MSCI UK Value index. The 

returns of the additional momentum factor in the 4-factor model are generated by using the 1-year 

high return portfolio minus the low return portfolio.  

Firstly, in Table 5 we consider the situation in which informative prior beliefs are only 

given to the within variability of the cross-sectional alphas,  . In other words, the investors are 

presumed to have prior information on how individual alphas deviate from each other within the 

same fund family, which is similar with the settings considered in the fake data simulation. We 

include the simulation results given by the non- learning model with independent prior beliefs, the 

partial learning model with dependent prior beliefs only on funds’ alphas, and the general 

learning model, which we design to provide a full Bayesian treatment on each of the pricing 

factors. For each type of learning model, we conduct the simulation through three different 

baseline evaluation models, i.e. CAPM, 3-factor model and 4-factor model. The prior beliefs 

selected for   are the same as those implemented in the fake data simulation. In addition, since 

no information is given on the mean performance of the fund family or on the family mean value 

of other pricing factors, we apply a diffuse prior distribution on the prior variance of  ,  , 
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HML , 
SMB  and 

MOM , and the prior means are centered at 0. The scale parameters on each of 

the pricing factors, except those on 
 , all have diffuse priors.  

The posterior mean of  , which indicates how individual funds deviate from the family 

mean, decrease rapidly with the increase in skepticism on both the skill level and the within 

variation. Compared with the value of   from the non- learning and partial learning models, the 

general learning model seems to be more sensitive to the priors chosen.   in the partial 

learning model is about 20 basis points higher than that from the general learning model under 

the low skepticism prior. The difference is even larger under the diffuse prior, but they all turn to 

zero when a high skepticism prior is given. The results in Table 5 also suggest that such a 

decreasing pattern is not sensitive to the model specification, since the difference in magnitude is 

robust in all the types of baseline evaluation models.  

The posterior mean of the family mean performance  , and individual funds’ alphas 

reported by Panels B and C of Table 5, also experience a decrease in value with the increasing 

skepticism in the prior beliefs, indicating that the prior information on family’s mean 

performance would alter investors’ view of individual funds’ performance. Particularly, the funds’ 

alphas reduce to   when the high skepticism prior belief is applied, because   approaches 0 

under the least dispersed variance and the cross-sectional variation among alphas is almost 

eliminated within the same fund family. Although the prior mean of   is centered at 0, its 

diffuse prior variance mitigates the influence from the prior mean and allows the real data to 

dominate the posterior distribution of  . Meanwhile, Table 5 also provides some evidence to 

support the presence of managers’ skill. By the assumption of the general learning model, the 
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difference between 
  and alphas under the diffuse and low skepticism priors can be regarded 

as the gain from funds’ cross-sectional variation. Panels B and C both document that the funds’ 

average alphas exceed   for more than 20 basis points under the diffuse and low skepticism 

priors for all types of baseline evaluation model. However, since we provide no further 

decomposition on the family mean performance, we presume that apart from the fund families, 

  might still incorporate a contribution by individual fund managers. But such a portion in   

should be limited, since for each fund family we keep only one fund for each share class, in order 

to maintain the variety of funds with distinct investment objectives in a fund family. One may 

argue that   should maintain a stable value instead of decreasing with the skepticism prior. 

Since Eq (7) suggests that the posterior belief of Θ  is a weighted average of prior information 

and the real data, the posterior mean of Θ  is conditional only on the posterior distribution of the 

in-family covariance matrix when 
1 0 Δ  and 

1 0 Λ . Thus, the posterior mean of Θ  may 

also shift with the changing value of the prior belief. However, given a high skepticism prior the 

prior variance approaches zero, and can hardly affect Θ , which drives the average alpha to  .         

Baks (2003) provides an alternative way to extract the family contribution out of funds’ 

individual alphas through a Cobb-Douglas production function by denoting arbitrary weights on 

the performance of managers and fund organizations, respectively. The performance attribution is 

therefore sensitive to the weights chosen. Moreover, we are not surprised to see that the posterior 

means of   and   documented in Table 5 remain almost unchanged, since no informative 

prior beliefs are applied to both   and   throughout the simulation.     

 

<Please insert Table 5 here> 
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We further investigate how prior information from other pricing factors affects the posterior 

distribution of the cross-sectional alphas and  , by placing prior beliefs simultaneously on   

and the family mean and the scale parameters of all the other pricing factors. This is also an 

important feature of the general learning model, given that it enables us to denote specific prior 

beliefs on each of the pricing factors in the baseline evaluation model. The priors on the scale 

parameters are similar to those discussed in Table 5. The family mean value of each of the pricing 

factors (including  ) are also assigned with prior beliefs to address the learning issue, i.e. the 

thk  element in vector Θ  is set to have ~ (0,100)k  as the diffuse prior; for the low 

skepticism prior we set ~ (0,1)k ; for the high skepticism prior we have ~ (0,0.001)k . Table 6 

reports the posterior results of the parameters of interest.      

We find a similar decreasing pattern in   with the increasing level of skepticism in the 

prior beliefs. Such a pattern is also robust throughout different baseline evaluation models. 

However, the in- family variation on B  seems to increase with the prior belief, e.g.   of 

CAPM equals to 0.117 under the diffuse prior and it increases to 0.692 given the high skepticism 

prior. A possible reason is that the prior beliefs we apply are far below the real in- family variance 

of the market beta, which makes the MCMC simulation hard to converge. Because of the power 

in place of the extreme priors, most of the posterior B  shrinks towards the prior mean, leaving 

several outliers which enlarge the posterior in-family variance. However, the posterior 

correlations between each pair of the pricing factors in Table 7 are too low to affect the 

convergence of other pricing factors. 

The averaged alpha and beta both experience a decrease with the increasing level of 
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skepticism on a larger scale than those reported in Table 5, for the reason that prior information is 

included on both the family mean and the in-family variation. For instance, alpha equals to 0.495% 

in Panel C of Table 5 given a high skepticism prior, while it is 0.366% when prior belief on    

is included. This finding is robust in all the types of baseline evaluation models we consider. Our 

simulation in Table 6 validates that performance evaluation of individual funds can be affected 

by including information on the prior view of the mean performance from the family as a whole, 

as well as the variation of performance among funds within the fund family. Given the situation 

that the sets of prior beliefs on the pricing factors do provide additional information regarding the 

population of returns for a particular fund family, i.e. risk shifting in different market condition, 

adjustment in investment strategy when facing new information or engaging in tournament 

among fund managers within the family, the general learning model can incorporate this 

information so as to provide a more precise evaluation result.  

 

<Please insert Table 6 here> 

 

However, we find no strong evidence to support the presence of cross-factor learning in the 

general learning model during the simulation. The averaged posterior correlations between alphas 

and market betas under the three sets of prior beliefs are reported in Table 7. The posterior 

correlation, ,    remains at a very low level at all times, indicating that the prior information 

of other pricing factors has no substantial impact on the changes of the posterior family mean 

performance. But such a low correlation does not affect the outcome of learning, since as 

mentioned previously, the posterior mean of k  is conditional on the covariance matrix, which 

includes the prior information on the in-family variation and family mean value of all pricing 
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factors. Therefore, if correlation among the mean value of different pricing factors can be omitted, 

the prior information can be applied to family mean value directly, which can significantly speed 

up the convergence of the Markov chain, but bears the loss of the co-movements of the pricing 

factors. On the other hand, we place no informative prior on the correlation matrix in the 

simulation, i.e. an inverse Wishart distribution, 1( 1, )K KK

 IW , is applied on the correlation 

matrix to represent a uniform prior on the correlation. It would certainly be possible to include an 

informative prior on the correlation matrix to address the dependence issue of the pricing factors 

if necessary. However, such a setting might involve denoting specific correlation among different 

market portfolios, which is beyond the scope of this research.        

 

<Please insert Table 7 here> 

 

To provide further insight into the slow shrinkage on   detected above, we further 

extend the research to analyze the posterior shrinkage from an empirical Bayes perspective. We 

denote an informative prior on the family- level mean of both   and each of the pricing factors 

in Θ .  Such prior beliefs are initially given by the historical cross-section value and then 

updated by the previous generated posterior mean. Specifically, we use the fund returns in 2001 

to compute the OLS estimation of   and market beta for each fund, then the cross-sectional 

in-family mean can be computed. These values are applied to the general learning model as the 

initial prior for Θ  to simulate the posterior distribution in 2002, then the prior is updated by the 

newly generated posterior mean of   and market beta for the simulation of the following year. 

We also consider two groups of prior settings for the in-family shrinkage level on   and   
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to utilize the full Bayesian treatment of the general learning model, i.e. (1) low skepticism prior 

on both cross-sectional   and market beta; (2) low (high) skepticism prior on   (market 

beta).  

Figures 8a and 8b illustrate the averaged posterior mean of   and   for each year 

under the two groups of prior settings. Both the cross-sectional in-family   and market beta 

experience significant levels of shrinkage compared with the OLS estimation (solid line), since 

the estimation is driven by the skepticism prior. The posterior mean of   under both prior 

settings indicates a similar pattern to that of the OLS value in Figure 8a, and the dotted line, 

which represents the posterior belief under Prior setting (1), closely matches the estimated value 

under Prior setting (2), the dashed line. Since a low skepticism prior is considered in the 

simulation of  , we are not surprised to see that investors are more likely to believe in a similar 

value of   within the same family. Meanwhile, given a moderate prior on  , the actual data 

still have substantial power to lead the posterior value to follow a similar changing pattern.    

Unlike the results given by Figure 8a, the posterior mean of   in Figure 8b deviates from 

the conventional estimation when a high skepticism is considered, i.e. the dashed line moves 

toward the opposite direction in the years 2003, 2004, 2007 and 2009. This is due to the fact that 

the strong prior belief enables the posterior mean to mitigate the increasing volatility on the 

cross-sectional market beta. However, it is often the case that the observed data strongly disagree 

with the prior belief, particularly when the diffuse estimation experiences a significant deviation 

from the family- level mean over the period 2005 to 2007 (solid line). The posterior distribution 

of   therefore contains more value in the right tail to promote the increase in the mean. In 

other words, the posterior simulation absorbs the information given by the observed data to 
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provide a compromise with the strong prior. If the investors are more convinced that the funds 

within the same family might have similar market risk exposure, but the observed return delivers 

highly dispersed market beta due to risk shifting or portfolio reconstruction. We then expect the 

model to present a decreasing level of shrinkage, in order not to overstate the influence of the 

learning process.   

 

<Please insert Figure 8 here> 

 

4. Conclusion 

In this research, we devote our attention to the analysis of how returns from other parallel 

funds affect the alpha of particular funds within the same fund family. We consider a general 

learning model in a Bayesian framework to incorporate the additional information given by other 

funds in the prior beliefs. We decompose the Jenson alpha as well as the loadings of each market 

portfolio in the factor pricing model into the combination of a family mean value and the fund’s 

idiosyncratic variation. The family mean value represents the investors’ opinion on the 

cross-sectional mean of both alpha and factor loadings, while the in-family variation addresses 

how parameters from the individual fund deviate from the family mean.  

To simulate this general learning model we construct the combined Gibbs samplers with 

the Metropolitan Hastings algorithm by using data given by the monthly NAV from the UK 

domicile equity fund. We incorporate three sets of prior belief to simulate the possible prior 

information on the family mean of each pricing factor and their in- family deviation. The 

simulation results suggest that the posterior mean of in-family variation decreases given a less 

dispersed prior belief, indicating that individual funds’ alphas might concentrate around their 
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family means if prior information implies a serious lack of skilful managers. Moreover, we find 

that the general learning model is more sensitive to the chosen prior belief, compared to the 

non- learning and the partial learning model discussed by JS. Thus, the higher level of shrinkage 

from our model can better address cross-fund learning. 

The general learning model can also provide a compromise of performance evaluation 

between the observed returns delivered by funds and additional information on how other funds 

behave in the same fund family. The proposed model utilizes the full Bayesian treatment by 

specifying the prior information on the certain pricing factors, which enables the incorporation of 

investors’ view on different family strategies in the performance evaluation. Since most of the 

family strategies would involve allocating more capital to certain funds or encouraging fund 

managers to compete with each other, i.e. family tournament, star fund phenomenon, and family 

favoritism, which may lead to an increase of the cross-sectional variability among alphas and 

other factor loadings, the prior beliefs can be used to simulate these strategies or to capture the 

pattern of in-family risk shifting implied by the historical data.  

While a separation strategy is considered to enable the full Bayesian treatment, a uniform 

prior is denoted on the correlation matrix of the family mean to simplify the algorithm. One 

extension of the research therefore, would be to further incorporate the prior belief on the 

strength of the correlation among the family- level means of fund alphas and different pricing 

factors. This would require more advanced settings for the correlation matrix, which could take 

the form of those discussed in Liechty, Liechty and Müller (2004). 

Despite the efforts to consider a simple empirical Bayes setting in forming the prior beliefs, 

as shown in Figure 8, our research could also be extended by incorporating the process of prior 

elicitation discussed in several studies, i.e. PS, Baks et al. (2001) and Busse and Irvine (2006). 
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Certain prior beliefs, representing investors’ specific views regarding the managers’ risk taking, 

performance persistence, external market conditions or managers’ style, might provide further 

insights into the interplay between investors’ behavior and fund performance.          
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Figure 1: Prior distribution on 

k  for ( ) ~ ( 1,1)klog N    

    This figure illustrates the choice of the prior distribution considered for the 

cross-sectional variability parameter,
k

 . Its logarithm value has a normal distribution 

with mean as -1 and variance as 1.  

 

 
Figure 2: Prior distribution on k  for ( ) ~ ( 5,1)klog N   and   

( ) ~ ( 10,1)klog N   

This figure illustrates the choice of the prior distribution considered for the cross -sectional 

variability parameter, . The dashed line represents the distribution of ( ) ~ ( 5,1)
k

log N  , 

while the solid line is for ( ) ~ ( 10,1)
k

log N  . 



40 
 

 

 

Table 1: Simulation of learning within fund family  

 CAPM   3-factor model  4-factor model 

Prior Beliefs Diffuse Low High Diffuse Low High Diffuse Low High 

Panel A  Non-learning model 

 

   0.0969   0.0574   0.0092   0.0858   0.0411   0.0077   0.0927   0.0529   0.0079  

R    0.0157   0.0157   0.0159   0.0194   0.0194   0.0194   0.0168   0.0168   0.0169  

Panel B  Partial learning model 

 

    0.1234   0.0631   0.0101   0.1117   0.0434   0.0076   0.1169   0.0515   0.0079  

   0.0003   0.0001   0.0000   0.0007   0.0008   0.0008   0.0017   0.0017   0.0015  

R   0.0157   0.0157   0.0159   0.0194   0.0194   0.0194   0.0167   0.0168   0.0168  

Panel C  General learning model  

 

    0.0082   0.0034   0.0001   0.0058   0.0012   0.0001   0.0069   0.0017   0.0001  

   0.0001   0.0001   0.0002   0.0007   0.0008   0.0004   0.0017   0.0017   0.0008  

R   0.0157   0.0157   0.0159   0.0194   0.0194   0.0194   0.0168   0.0168   0.0169  

This table presents the simulation results from three evaluation models: the non-learn ing model, the partial learn ing model and the general 

learning model. The posterior mean of the variables, i.e . the in-family variability 

 , the family  level mean performance 


 , and the fund’s 

individual risk level 
R

 , are reported. We control the prior belief on the scaled parameter of the cross -sectional variability in   , 

  to be 

three distinct distributions, i.e. d iffuse prior, ( ) ~ ( 1,1)log N

  ; low skepticism, ( ) ~ ( 5,1)log N


   and high skepticis m, 

( ) ~ ( 10,1)log N

  . The prior belief on the mean value of the 

th
k  pricing factor, 

k
 , is centered at zero with a diffuse variance. The scaled 

parameter of 


  is also assumed to have a diffuse distribution. Panels A, B and C report the simulation results from the CAPM, Fama French 

3-factor model and the 4-factor model. The posterior distributions of the variables considered are simulated by the MCMC technique by using 

hypothetical returns from 5 funds. The fund returns are generated through Eq (1), in which the factor loadings and t he market benchmarks are 

drawn independently across funds. The distribution parameters are chosen to match the empirical results. 
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Figure 3: Boxplot of Posterior Draws of CAPM   
This figure illustrates 6000 posterior draws from 5 hypothetical funds’   given the decreasingly dispersed prior beliefs on   in the 

CAPM formed general learning model. 

 

 



42 
 

    

            Figure 4: Boxplot of Posterior Draws of 3-factor model   
This figure illustrates 6000 posterior d raws from the 5 hypothetical funds’   given the decreasingly d ispersed prior beliefs on   in  the 

3-factor based general learning model. 
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    Figure 5: Boxplot of Posterior Draws of 4-factor model   
This figure illustrates 6000 posterior draws from 5 hypothetical funds’   given the decreasingly dispersed prior beliefs on   in the 

4-factor based general learning model. 
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Figure 6: Boxplot of Posterior Draws of CAPM market  

This figure illustrates 6000 posterior d raws from 5 hypothetical fund’s 
market

  given the decreasingly d ispersed prior beliefs on   in the 

CAPM formed general learning model. 
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Table 2: Simulation of learning across funds universe 

 CAPM   3-factor model  4-factor model 
Prior Beliefs Diffuse Low High Diffuse Low High Diffuse Low High 

Panel A  Non- learning model 

 

   0.05020   0.04956   0.04876   0.04950   0.04888   0.04819   0.05188   0.05135   0.05058  

R    0.02111   0.02111   0.02111   0.01887   0.01887   0.01887   0.01855   0.01856   0.01855  

Panel B  Partial learning model 

 

    0.05002   0.04928   0.04844   0.04792   0.04734   0.04655   0.04979   0.04919   0.04844  

   0.00039   0.00040   0.00040   0.00086   0.00086   0.00087   0.00106   0.00105   0.00106  

R   0.02111   0.02111   0.02111   0.01887   0.01887   0.01887   0.01856   0.01855   0.01856  

Panel C  General learning model  

 

    0.00248   0.00242   0.00238   0.00228   0.00222   0.00217   0.00247   0.00242   0.00236  

   0.00040   0.00040   0.00039   0.00086   0.00087   0.00086   0.00106   0.00105   0.00105  

R   0.02111   0.02111   0.02111   0.01887   0.01887   0.01887   0.01856   0.01856   0.01856  

This table presents the simulation results from three evaluation models: the non-learning model, the partial learning model and the general learn ing model. The 

posterior mean of the variab les, i.e. the in-family variability 

 , the family level mean  performance 


 , and the fund’s individual risk level 

R
 , are reported. 

We control the prior belief on the scaled parameter of the cross -sectional variability in  , 

  to be three distinct distributions, i.e. diffuse prior, 

( ) ~ ( 1,1)log N

  ; low skepticism, ( ) ~ ( 5,1)log N


   and high skepticis m, ( ) ~ ( 10,1)log N


  . The prio r belief on the mean value o f the 

th
k  pricing  

factor, 
k

 , is centered at zero with a diffuse variance. The scaled parameter of 


  is also assumed to have a diffuse distribution. Panels A, B and C report the 

simulation results from the CAPM, Fama French 3-factor model and the 4-factor model. The posterior distributions of the variables considered are simulated 

using the MCMC technique based on hypothetical returns of 200 funds. The fund returns are generated through Eq (1), in which the factor loadings and the 

market benchmarks are drawn independently across funds. The distribution parameters are chosen to match the empirical results. 
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          Figure 7: Density of the posterior draws of CAPM   
This figure illustrates 6000 posterior draws from the CAPM   by applying the general learn ing model to the hypothetical fund 

population with decreasingly dispersed prior beliefs on  . 
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Table 3: Simulation of learning across funds with non-equal prior 

 CAPM  3-factor model  4-factor model 

 prior N(-10,1)  N(-1,1)  N(-10,1)   N(-10,1)  N(-1,1)  N(-10,1)   N(-10,1)  N(-1,1)  N(-10,1)  
thk prior N(-10,1)  N(-10,1)  N(-5,1)   N(-10,1)  N(-10,1)  N(-5,1)   N(-10,1)  N(-10,1)  N(-5,1)  

            

   0.00118 0.00779 0.00035  0.00093 0.00553 0.00016  0.00057 0.00598 0.00018 

  0.09256 0.08614 0.09813  0.03127 0.02678 0.05620  0.14649 0.14246 0.15307 

  0.00020 0.00001 -0.00003  -0.00046 0.00058 0.00015  0.00096 0.00157 0.00100 

  0.98026 0.98038 0.98394  1.01606 1.00374 1.00852  1.10090 1.09377 1.09721 

HML  - - -  0.02350 0.04729 0.05253  0.00209 0.00092 0.02231 

SMB  - - -  0.11161 0.10807 0.10445  0.05469 0.03193 0.06296 

HML   - - -  -0.04559 -0.06392 -0.13764  -0.00153 0.00021 -0.01518 

SMB  - - -  0.02872 0.08703 0.09251  0.04877 0.06429 0.06808 

MOM  - - -  - - -  0.00096 0.00071 0.00804 

MOM  - - -  - - -  0.00117 -0.00020 -0.00251 

         

This table presents the simulation results from the general learning model. The posterior mean of the variables, i.e. the in -family variab ility on all 

the pricing factors,  , and the mean performance of all the pricing factors,  , are reported. We control the prior belief on the scaled parameters of 

the cross-sectional variability in factor loadings, 
k

 . The prior beliefs on the mean value of the 
th

k  pricing factor, 
k

 , are centered at 1 with 

various prior beliefs. We report results based on three pricing models: CAPM, the 3 -factor and the 4-factor models. The posterior d istributions of 

the variables considered are simulated by the MCMC technique by using hypothetical returns of 5 funds. The fund returns are generated through 

equation 1, in which the factor loadings and the market benchmarks are drawn independently across funds. The distribution parameters are chosen 

to match the empirical results. 
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Table 4: Posterior correlation coefficients 

 CAPM 3-factor model 4-factor model 

 prior N(-1,1) N(-1,1) N(-10,1) N(-1,1) N(-1,1) N(-10,1) N(-1,1) N(-1,1) N(-10,1) 
thk prior N(-1,1) N(-10,1) N(-5,1) N(-1,1) N(-10,1) N(-5,1) N(-1,1) N(-10,1) N(-5,1) 

          

,    0.19 0.26 0.17 0.01 -0.07 0.02 -0.08 -0.09 -0.02 

,HML  - - - 0.08 0.07 -0.08 -0.01 0.01 -0.07 

,SMB  - - - 0.10 0.17 -0.09 0.09 0.07 0.04 

,MOM  - - - - - - 0.11 0.03 0.04 

          

This table reports the posterior correlation coefficients from the general learning model. We control the prior belief on the  scaled parameters of 

the cross-sectional variability  in  factor loadings, 
k

 . The prior beliefs on the mean  value of the 
th

k   p ricing factor, 
k

 , are centered at 1 with 

various prior beliefs. We report results based on three pricing models: CAPM, the 3-factor and the 4-factor models. The posterior distributions of 

the variables considered are simulated by the MCMC technique by using hypothetical returns of 5 funds. The fund returns are g enerated through 

equation 1, in which the factor loadings and the market benchmarks are drawn independently across funds. The distribution parameters are 

chosen to match the empirical results. 
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        Table 5: Simulation of learning within fund family  

 CAPM   3-factor model  4-factor model 

Prior belief Diffuse Low High Diffuse Low High Diffuse Low High 

Panel A  Non-learning model 
 

 (%) 0.782 0.512 -0.040 0.854 0.592 -0.038 0.904 0.637 -0.035 

  0.977 0.977 0.977 1.025 1.025 1.025 1.025 1.025 1.025 

  0.142 0.050 0.008 0.142 0.050 0.008 0.142 0.050 0.008 

Panel B Partial learning model 
 

 (%) 0.838 0.835 0.156 0.913 0.909 -0.050 0.961 0.961 0.223 

  0.977 0.977 0.971 1.025 1.025 1.025 1.025 1.025 1.021 

 (%) 0.618 0.519 0.156 0.658 0.507 -0.050 0.982 0.963 0.223 

   0.210 0.052 0.008 0.211 0.053 0.008 0.211 0.053 0.008 
Panel C General learning model 

 
 (%) 0.845 0.837 0.495 0.913 0.904 0.408 0.967 0.973 0.503 

  0.977 0.977 0.977 1.025 1.025 1.025 1.025 1.025 1.025 

 (%) 0.704 0.636 0.495 0.671 0.538 0.408 0.763 0.674 0.501 

   0.023 0.002 0.000 0.024 0.002 0.000 0.024 0.002 0.000 

   0.976 0.977 0.977 1.024 1.013 1.023 1.025 1.023 1.025 

   0.117 0.116 0.133 0.134 0.148 0.132 0.138 0.138 0.136 

This table presents the simulation results from three evaluation models: the non-learn ing model, the partial learn ing model and the general 

learning model. The posterior mean of the variables, i.e. the in -family variability, 


 , the family level annualized mean performance, 


 , and 

the cross-sectional averaged annualized alpha, are reported. We control the prior belief on  the scaled parameter of the cross -sectional variability 

in  , 

  and priors on 


  to be three distinct distributions, i.e. a diffuse prior has  ( ) ~ ( 1,1)log N


  ; the low skepticism has 

( ) ~ ( 5,1)log N

  ; the high skepticism has ( ) ~ ( 10,1)log N


  . 


 , 


 and the scaled parameter of 


  is assumed to have diffuse prior 

distribution. Panels A, B and C report  the simulat ion results from the CAPM, 3-factor model and 4-factor model. The posterior d istributions are 

generated by applying the MCMC method on monthly returns from 220 UK unit trusts (47 fund families). 
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Table 6: Simulation of learning within fund family 

 CAPM   3-factor model  4-factor model 

k prior Diffuse Low High Diffuse Low High Diffuse Low High 

  General learning model  
 (%) 0.845 0.726 0.366 0.913 0.815 0.492 0.967 0.859 0.627 

  0.977 0.974 0.736 1.025 1.016 0.933 1.025 1.016 0.963 

 (%) 0.704 0.511 0.000 0.671 0.412 0.000 0.763 0.374 0.000 

   0.023 0.002 0.001 0.024 0.002 0.001 0.024 0.002 0.001 

   0.976 0.757 0.000 1.024 0.706 0.000 1.025 0.745 0.000 

   0.117 0.321 0.692 0.134 0.391 0.874 0.138 0.363 0.902 

This table presents the simulat ion results from the general learning model. The posterior mean of the variables, i.e. the cro ss-sectional annualized  

averaged alpha, the cross-sectional averaged  , the annualized mean performance of alpha (


 ), the mean performance of   (


 ) and the in-family 

variability (

 ) are reported. We control the prior belief on the scaled parameters of the cross -sectional variability in factor loadings, 

k
 . The prior 

beliefs on the mean value of the 
th

k  pricing factor, 
k

 , are centered at zero with a diffuse variance. The scaled parameter of 


  is also assumed to 

have a diffuse prior. Panels A, B and C report the simulation results from the CAPM, the 3 -factor and the 4-factor models. The posterior distributions of 

the variables considered are simulated by the MCMC technique by using monthly returns from 220 UK unit trusts .  
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Table 7: Posterior correlation coefficients 

 CAPM   3-factor model  4-factor model 

Panel A          

 prior Diffuse Low High Diffuse Low High Diffuse Low High 

,    -0.025 -0.046 -0.005 0.018 0.030 0.007 0.025 0.041 0.011 

Panel B          

Prior beliefs  Diffuse Low High Diffuse Low High Diffuse Low High 

,    -0.025 0.011 0.065 0.018 0.078 0.038 0.025 0.089 0.201 

This table reports the posterior correlation coefficients from the general learn ing model. We control the prior belief on the  scaled parameters of 

the cross-sectional variab ility in factor loadings, 
k

 . The prior beliefs on the mean value of the 
th

k  pricing factor, 
k

 , are centered at 1 with 

various prior beliefs. We report results based on three pricing models: CAPM, the 3-factor and the 4-factor models. The posterior d istributions 

of the variables considered are simulated by the MCMC technique by using monthly returns from 220 UK unit trusts.  
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Figure 8: Posterior cross sectional in-family dispersion 

Figure (a) and (b) present the posterior mean of   and   from a CAPM based general learning model, respectively. Both of 

the parameters are generated by the mean value of 6000 draws from their posterior distribution.  
  


