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We present new methodology for exploring the energy landscapes of molecular systems, using
angle-axis variables for the rigid-body rotational coordinates. The key ingredient is a distance
measure or metric tensor, which is invariant to global translation and rotation. The metric is
used to formulate a generalized nudged elastic band method for calculating pathways, and a full
prescription for normal mode analysis is described. The methodology is tested by mapping the
potential energy and free energy landscape of the water octamer, described by the TIP4P potential.

I. INTRODUCTION

Simulations of molecular systems may involve a fully
atomistic description, a coarse-grained approach that of-
ten relies upon the molecular shape, or a combination of
the two. For atomistic potentials, a rigid-body descrip-
tion of a molecule can reduce the number of degrees of
freedom, while retaining all the interatomic interactions.
For example, rigid water molecules are commonly em-
ployed to speed up molecular dynamics simulations.1 Ap-
plications of such rigid-body representations in compu-
tational science are wide-ranging, from crystal structure
prediction of small organic molecules,2–4 to local rigid-
ification of secondary structures in proteins and other
biomolecules.5,6 For simulations on longer length scales,
coarse-grained descriptions are typically used, which may
involve orientation-dependent potentials to describe non-
spherical molecules with convex shapes.7–12

To represent an anisotropic molecule or interaction po-
tential, six degrees of freedom are required (unless the
molecule is linear): three for the translation of the center
of mass, and three for the orientation. The treatment of
translational degrees of freedom is straightforward: they
are usually represented by orthogonal Cartesian coordi-
nates. The treatment of rotational degrees of freedom
is, on the other hand, more cumbersome, and a number
of possible approaches have been proposed, each with
its own advantages and disadvantages. For example, the
use of Euler angles suffers from singularities at the north
and south poles, giving rise to the so-called gimbal lock
problem;13 quaternions are free from singularities, but
involve a four-parameter description with a unit norm
constraint for three orientational degrees of freedom.13

Recent work has explored the use of angle-
axis variables to represent the rigid-body rotational
coordinates.9,14 In the angle-axis representation, the ori-
entation of a rigid body relative to a reference geometry
is described by a rotation vector p, which denotes the
axis of rotation, and the magnitude is the rotation angle
around this axis. The main benefits of using this angle-
axis representation in the context of energy landscape
exploration are that singularities are avoided without

involving additional parameters, constrained optimiza-
tion is not required, it is straightforward to compute the
first and second derivatives of the potential energy for
a variety of intermolecular potentials,14 and all calcula-
tions may be carried out in a single (laboratory) frame
of reference (see appendix A for possible frames of ref-
erence). In particular, derivatives with respect to the
angle-axis coordinates are system-independent, and can
be programmed efficiently.14

In the present work, we further develop the angle-axis
framework and present a number of advances in method-
ology. We derive a distance measure for angle-axis co-
ordinates, which is invariant to overall translation and
rotation. This measure is applied to define a conver-
gence criterion for gradient based geometry optimiza-
tion procedures to take into account the scaling prob-
lem arising from the presence of different types of coor-
dinates. We next consider chain of state methods,15,16

especially the doubly17-nudged elastic band (DNEB)
approach,18,19 which has proved to be particularly effec-
tive for finding transition states and constructing path-
ways between pairs of minima. Finally, we explain
how to compute normal mode frequencies in the angle-
axis framework using a generalized curvilinear coordinate
description.20 These frequencies are needed to calculate
thermodynamic properties within the harmonic superpo-
sition approximation.21–23

To provide proof of principle, we apply the angle-
axis framework to characterize the potential and free
energy landscape of a water cluster containing eight
molecules, described by the TIP4P potential.1 To map
the energy landscape, we first employ basin-hopping
global optimization24 to find the global minimum and
construct a database of low energy minima. We then
use a combination of the doubly17-nudged elastic band
method18,19 and hybrid eigenvector-following25,26 to ob-
tain minimum-transition state-minimum triplets. This
procedure provides a global survey of the potential en-
ergy landscape, which we visualize using disconnectiv-
ity graphs.27,28 Finally, we compute the free energy of
the minima and transition states using the harmonic su-
perposition approach,21,23 and construct the free energy
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disconnectivity graphs22,29 at several representative tem-
peratures.

II. A DISTANCE METRIC FOR ANGLE-AXIS

COORDINATES

Translational and rotational degrees of freedom have
different physical dimensions, and care is thus needed
to ensure they are treated on an equal footing. Fur-
thermore, neither a rotation vector, nor the difference
between two rotation vectors, is invariant under over-
all rotation. In the following sections we explain how
to handle rotation vectors consistently in the context of
minimization, chain of state methods, and normal mode
analysis.
First we show how to derive a distance measure, or

equivalently a metric tensor, as the first step to tackle
these problems. Lattmann30 and Evans13 have discussed
the use of a metric tensor and distance measure for Eu-
ler angles and quaternions in previous work. We follow a
generalized approach starting from an underlying atom-
istic description. Our discussion is based on the angle-
axis formulation. However, the generalization to other
descriptions of rotation is straightforward.

A. Metric tensor for infinitesimal distances

We first consider a single rigid body, which is composed
of N sites and associated masses, mi, with Cartesian co-
ordinates in the reference frame, xi. Sites are points in
space (e.g. atoms), which define the shape of the rigid
body. We denote the position of the rigid body by X,
which will usually correspond to the position of the cen-
ter of mass or center of geometry relative to the origin.
The rotation vector p describes the orientation relative
to the fixed reference geometry, and the rotation matrix
R is given by Rodrigues’ rotation formula14

R = I+ (1− cos θ)p̃p̃+ sin θ p̃, (1)

where I is a 3 × 3 identity matrix, and p̃ is the skew-
symmetric matrix obtained from p̂ = p/θ with θ = |p|:

p̃ =
1

θ




0 −p3 p2
p3 0 −p1
−p2 p1 0


 . (2)

The position of site i in the lab frame is then

yi = X+Rxi . (3)

It is convenient to define a weighted metric tensor

Gαβ =
∑

i

wi
∂yi

∂qα
·
∂yi

∂qβ
(4)

with the generalized coordinates q = {X,p}. The choice
of wi depends on the property of interest: typically wi =

mi for normal mode analysis, or alternatively wi = 1
for the DNEB procedure and the convergence criteria
involved in geometry optimisation. Inserting Eq. (3) into
Eq. (4) we obtain

Gtrans
αβ = Wδαβ , (5)

Grot
αβ = Tr

(
RαSR

T
β

)
, (6)

Gmix
αβ = (2WRβXw)α , (7)

where Tr stands for the trace and

W =
∑

i

wi ,

Xw =
1

W

∑
wixi ,

Rα = ∂R/∂pα. (8)

Gtrans
αβ and Grot

αβ are the components of the metric tensor
that depend on translational and rotational degrees of
freedom only, while Gmix

αβ contains the cross terms. S is
the weighted gyration tensor in the reference frame of the
rigid body with

Sαβ =
∑

i

wixi,αxi,β , (9)

where xi,α is the α(= x, y, z)-component of the vector xi.
Note that the mixing term Gmix

αβ vanishes for any con-
sistent choice of wi and rigid body mapping such that∑

wixi = 0. For example, if we take wi = mi and X

corresponds to the position of the center of mass, or al-
ternatively if we take wi = 1 and use the center of geom-
etry.
In the reference frame for the rigid body (p = 0) with

wi = mi, the rotational part of the metric tensor is the
familiar inertia tensor

Iαβ =
∑

i

wi

(
r2i δαβ − xi,αxi,β

)
. (10)

Since Gαβ can be expressed purely in terms of the rigid
body variables X and p and the gyration tensor S, the
general expression can be widely applied, for example, to
the Stockmayer potential29 and to coarse-grained molec-
ular models that depend on orientation without an un-
derlying site-site description.8,31 In such cases, the gyra-
tion tensor is chosen directly to describe the shape of the
underlying model.

B. Finite distances

The metric tensor derived above can be used to calcu-
late the length of an infinitesimal line element ds. How-
ever, for many applications, such as the chain of state
methods discussed in section IV or for permutational
alignment procedures,32 a finite distance measure be-
tween two distinct orientations of a rigid body is required.
In fact there are at least two possible choices. First, we
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could use the arc length, which is the integral of ds over
the shortest rotational separation connecting the two ori-
entations in question. Alternatively, we could compute
the direct finite distance measure, which is equivalent to
the (weighted) sum of distances for the sites that deco-
rate the rigid body. We focus on the latter approach in
this subsection.

For two poses of a rigid body, distinguished by the
subscripts 1 and 2, a (weighted) squared distance can be
obtained by summing over the squared distances of the
individual sites:

s212 =
∑

i

wi (y2,i − y1,i)
2
=

∑

i

wi∆y2
i . (11)

Rewriting ∆yi as

∆yi = X2 −X1 +R2xi −R1xi ≡ ∆X+∆Rxi , (12)

and substituting Eq. (12) into Eq. (11), we obtain

s212 =
∑

i

wi (∆X+∆Rxi)
2

(13)

=
∑

i

[
wi∆X2 + wi |∆Rxi|

2
+ 2wi∆X · (∆Rxi)

]
.

The distance can therefore be separated into three con-
tributions, namely translational, rotational, and mixed:

s212 = s2trans + s2rot + s2mix , (14)

with

s2trans = ∆X2W , (15)

s2rot =
∑

i

wi |∆Rxi|
2
= Tr

(
∆RS∆RT

)
, (16)

s2mix = 2W∆X · (∆RXw) . (17)

Note that in the limit ∆R → 0 and ∆X → 0, we can
substitute X2 = X1+dX and R2 = R1+

∑
R1,αdp1,α in

Eq. (15)-Eq. (17) and recover the metric tensors defined
in Eq. (5)-Eq. (7).

III. GLOBAL OPTIMIZATION

In the previous section we derived the metric tensor
and distance measure for poses of a single rigid body.
We now consider an arbitrary number of rigid bodies with
generalized coordinates q = {qα} = {X1, p1, ..., XN , pN}.
Since the coordinates for different rigid bodies are inde-
pendent, the metric tensor for the full system is block
diagonal, where each block corresponds to the metric ten-
sor of an individual rigid body. The squared distance s2

between two different configurations is the sum of the
squared distances s2I of the individual rigid bodies, I.

A. Convergence criterion for local energy

optimization

An important step in basin-hopping global
optimization24,33 is to quench the system to a lo-
cal potential energy minimum. We generally employ a
modified limited-memory Broyden-Fletcher-Goldfarb-
Shanno34 (L-BFGS) algorithm for this purpose. A
typical measure for convergence is the root mean square
(RMS) gradient in the prevailing coordinate system.
Here, we can now make use of the metric tensor derived
above to calculate a coordinate independent measure for
the RMS conditions.
The gradient of the potential energy with respect to the

generalized coordinates q is defined as ∂U/∂q. Following
standard vector algebra in curvilinear coordinates,35 we
can define a scalar that is a dot product of the gradients
as

u2 =
∑

αβ

∂U

∂qα
G−1

αβ

∂U

∂qβ
,

RMS =
√
u2/6N , (18)

where 6N is the total number of degrees of freedom.
We use the inverse metric tensor, rather than the met-
ric tensor, because the energy gradients are dual vectors
or covectors, and their components covary, rather than
contra-vary, with a change of basis. For 3N standard
atomistic Cartesian coordinates, the metric tensor is the
identity and Eq. (18) simplifies to the usual RMS gradi-

ent

(∑
α
(∂U/∂xα)

2/3N

)1/2

.

IV. CHAIN OF STATE METHODS

Chain of state algorithms are an important class of
methods for characterizing reaction pathways and re-
arrangement mechanisms.15,16 In the present contribu-
tion we focus on the doubly17-nudged elastic band18,19

(DNEB) approach.
In previous work, Sheppard et al.36 derived a gener-

alized solid state NEB method to obtain pathways in
crystalline systems, where the lattice vectors can change
along the pathways. They derived a consistent treatment
of the atomic coordinates and the lattice vectors, which
describe different types of degrees of freedom. Here, we
adopt an analogous approach to ref. 36 and obtain a gen-
eralization of the (D)NEB method for a system of rigid
bodies that involve translational and rotational coordi-
nates.
The first step in the (D)NEB approach to characterize

a transition path on the potential energy surface between
two endpoints q0 and qN+1 is to make an initial guess for
a set of images, {q1,q2, ...,qN}, to trace out the path,
were qi is the 6N -dimensional (3N for atomistic systems)
coordinate vector for image i. For a system of rigid bod-
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ies the initial guess can be obtained via linear interpola-
tion of the translational coordinates and spherical linear
quaternion interpolation (SLERP)37 of the rotational co-
ordinates.
The images corresponding to the initial guess are then

relaxed using the gradient that includes contributions
from two components. The “true” gradient, gi, depends
on the interaction potential alone, while the spring force
component, g̃i, keeps the images roughly equidistant and
is derived from the spring potential

Vi =
k

2

(
s2i,− − s2i,+

)
, (19)

where k is the spring constant, and si,− and si,+ are the
distances to the i − 1 (left) and i + 1 (right) images of
image i, respectively.
Using the true gradient and spring gradient without

modification leads to corner-cutting (images are pulled
away from the minimum energy path) and sliding-down
problems (images slide down from barrier regions).18,19

The key ingredient in NEB methods is the use of cer-
tain projections for the gradients based on the tangent
τ̂i along the path, hence the term nudged. We use the
formulation in ref. 19 to obtain τ̂i based on the tangents
to the left and to the right image, τi,− and τi,+, respec-
tively. For an atomistic system, or equivalently the trans-
lational degrees of freedom of rigid bodies, the left and
right tangents and distances s± are given by

τi,± = qi±1 − qi ,

s2i,± = |qi±1 − qi|
2
. (20)

Note that we define τi,− with a different sign compared
to ref. 19.
The treatment of angle-axis coordinates on the same

footing as translational coordinates for applications of
the (D)NEB method to rigid-body systems is problem-
atic. As such, it is less straightforward to define a suitable
spring constant, k. Furthermore, the results can depend
on the choice of reference frame, since angle-axis coor-
dinates are not rotationally invariant. To alleviate these
problems, we employ the distance measure in Eq. (14) for
si,± and the left and right tangents can then be derived
as

τi,α,± = ∂s2i,±/∂qi,α (21)

for image i and degree of freedom α. For the rotational
degree of freedom, the derivative of the distance function
is given by

1

2

∂s2i
∂qi,α

=
1

2

∂

∂qi,α

[
Tr

(
∆RS∆RT

)
+X∆RXw

]

= −Tr
(
Ri,αS∆RT

)
−XRi,αXw , (22)

where we have used S = ST . The derivatives with respect
to the translational degrees of freedom can be obtained
accordingly.

The first projection in both NEB and DNEB, retains
only the components of the true gradient that are per-
pendicular to the tangent vector τi:

g⊥

i = gi − (gi · τ̂i) τ̂i . (23)

Removing the tangent part of the true gradient is numer-
ically not sufficient to achieve equidistant images, and
additional spring force components are required. The
difference between NEB and DNEB lies in the nudging
of the spring force. NEB only uses the spring force that
is parallel to the path to avoid corner-cutting:

g̃NEB
i = k (si,+ − si,−) τ̂i . (24)

In some cases,17 it can be beneficial to keep an additional
perpendicular part of the spring gradient to improve the
stability of the NEB. This approach leads to the DNEB
method, which uses Eq. (24) for the parallel part and
adds an additional perpendicular portion of the spring
force

g̃DNEB
i = g̃NEB

i + g̃∗ , (25)

with

g̃∗ = g̃⊥

i −
(
g̃⊥

i · ĝ⊥

i

)
ĝ⊥

i , (26)

g̃⊥

i = g̃i − (g̃i · τ̂ ) τ̂ . (27)

Several comments are in order:
(i) For rigid bodies we find that it is particularly im-

portant to have a sufficiently large image density when
optimizing the path. Usually, the number of images is de-
termined from the initial distance between the two end-
points. However, the length of the path can increase
significantly upon optimizing the chain of images and we
have now implemented an adaptive number of images
(D)NEB procedure. The total path length is calculated
every M steps and if the relative change in the num-
ber of images exceeds a certain threshold, a new path is
generated with the appropriate image density by piece-
wise interpolation, using the images of the old path as
supporting nodes. The reinterpolation with an adaptive
number of images leads to a very robust DNEB method,
which allows us to employ a minimal number of images
to speed up the calculations. As indicated in Figure
1b, the length of the band changes upon reinterpolation.
This change arises due to corner-cutting when the path
is reinterpolated piecewise linearly. For high reinterpola-
tion frequencies, it might be beneficial to perform higher
order (e.g. spline) interpolation.
Results for the adaptive DNEB for rigid bodies are

illustrated in Figure 1 for the S4 to D2d transition of
the water octamer cluster, described using the TIP4P
potential.1 We use a target image density of ρ = 3/Å
[using the distance formulation Eq. (14)] with reinterpo-
lation every 50 steps. The initial spring constant was
k = 100 kJ/mol/Å2 and was adjusted every five steps, as
described in ref. 17. The chain of images was optimized
using a modified L-BFGS algorithm.34
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FIG. 1: (a) DNEB pathways between the S4 and D2d minima of the water octamer described by the TIP4P potential. (b)
Path length defined using Eq. (11) and number of images versus number of optimization steps. The path length increases upon
relaxing the DNEB to an approximate minimum energy path. The number of images is adapted every 50 steps to match a
target image density of ρ = 3/Å.

(ii) With the new distance measure for angle-axis coor-
dinates we can control the relative weight of the transla-
tional and rotational coordinates by scaling the gyration
tensor. This control is useful for cases where the cal-
culated distance does not properly reflect the change in
the potential energy (i.e. for strongly directional interac-
tions). In such cases, the energy profile along the path
can become a narrow peak and render the (D)NEB pro-
cedure unstable. By increasing the gyration tensor, the
weight of the distance calculation can be shifted towards
the rotational coordinates and a smoother energy profile
can be obtained.

(iii) The distance formulation in Eq. (14) provides a
direct distance measure rather then the arc length. This
description is consistent with a formulation of (D)NEB
based on all the molecular sites. However, for rotations
of rigid bodies, it may lead to undesired cancellations of
the spring forces. To illustrate the problem, we depict in
Figure 2 the scenario where the two neighboring images
are rotated by exactly π. The torques that arise from
the left and right spring forces cancel out, while the re-
maining force vanishes due to the rigid-body constraints.
Such problems start to occur when a site in the left and
right image is rotated by more than π/2.

(iv) Both the NEB and (D)NEB approaches are com-
patible with our new distance measure for rigid bodies.
For a NEB, additional constraints to remove the global
translation and rotation of the system are required.38 For
DNEB, no such constraints are needed for clusters, how-
ever, it is not usually possible to converge tightly to the
minimum energy path.39 Since we refine transition state
candidates using hybrid eigenvector-following,25,26 we do
not need to converge the band tightly, and therefore we
generally choose the (D)NEB method over NEB.

(v) Benchmarks comparing several optimization

FIG. 2: If a molecule in the left and right image is rotated
exactly by π, the spring force on the middle molecule is zero.
The torques that arise from the left and right spring force
cancel out, while the remaining force vanishes due to the rigid-
body constraints.

techniques39 revealed that the fastest way to relax the
band is L-BFGS, as in ref. 17, with all images optimized
simultaneously. In the present work we again employ
an L-BFGS procedure with line searches removed as im-
plemented in the OPTIM program.40 Since several gradi-
ent projections are involved, the objective function in
a (D)NEB procedure is not well defined, and it can be
problematic to control the step size in the L-BFGS proce-
dure. An alternative is the FIRE minimizer,41 which uses
only gradient information to determine the step size. In
a few cases, we observed that FIRE, even though it con-
verges slower than L-BFGS, can be more robust during
the optimization process.
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V. ENERGY LANDSCAPES

A. Potential energy landscapes

One of the main applications for the doubly-nudged
elastic band method in energy landscape exploration is
to construct a database of connected minima and tran-
sition states.42 We start with a set of unconnected min-
ima found during basin-hopping global optimization. We
then use the DNEB method to connect pairs of min-
ima. Images corresponding to local maxima in the DNEB
are refined to transition states using hybrid eigenvector-
following.25,26 Once a transition state is found, two down-
hill approximate steepest-descent paths are traced, giving
us to a connected local minimum - transition state - local
minimum triplet. A DNEB interpolation usually leads
to multiple transition state candidates, and the downhill
paths following the refinement routinely find new min-
ima, different from the original pair we attempted to con-
nect. Recursive use of this procedure using the missing
connection algorithm42 provides us with a global survey
of the potential energy landscape, which can be visual-
ized using disconnectivity graphs.27,28

B. Free energy landscapes

To gain more insight into the thermodynamic proper-
ties of a system, it is convenient to construct free energy
disconnectivity graphs22,23,29 or calculate the heat capac-
ity as a function of temperature.43,44 The thermodynamic
functions can be calculated approximately from the po-
tential energy landscape using harmonic vibrational den-
sities of states.21 The partition function for a single min-
imum, Zi(T ), at temperature T can then be written as

Zi(T ) =
n∗
i exp(−Vi/kBT )

(hν̄i/kBT )κ
, (28)

where Vi is the potential energy of minimum i, and n∗
i

is the number of distinct permutation-inversion isomers.
n∗
i ∝ 1/hi, where hi is the order of the point group for

the minimum. ν̄i is the geometric mean of the positive
normal mode frequencies for minimum i, and κ is the
number of vibrational degrees of freedom. We recall that
the vibrational degrees of freedom exclude six zero eigen-
values in the normal mode calculation, which correspond
to overall translation and rotation.

The harmonic free energy, Fi(T ), for minimum i is
then calculated from the partition function via Fi(T ) =
−kBT lnZi(T ). The free energy of a transition state can
be defined in a similar way, except that the negative
eigenvalue in the normal mode frequency calculation is
excluded (κ− 1 vibrational modes).22

C. Normal mode analysis

The frequencies are calculated using a normal mode
analysis for the curvilinear coordinates q,20,45 where
q = {qα} = {X1, ..., XN , p1, ..., p2}. The Lagrangian in
curvilinear coordinates near a local minimum with energy
Vmin up to harmonic order can be written as

L =
1

2
q̇TGmq̇−

1

2
qTHq− Vmin , (29)

where Gm is the mass weighted metric tensor [wi = mi

in Eq. (4)] and H is the Hessian derived in curvilinear
coordinates

Hαβ =
∂V

∂qα∂qβ
. (30)

The eigenmodes can be obtained by solving the general-
ized eigenvalue equation (see appendix B)

H− λGm = 0 , (31)

or, in other words, by calculating the eigenvalues of
(Gm)−1H. Note that if the metric tensor has zero eigen-
values, G cannot be inverted. Instead, the pseudoinverse
may be used.46 This situation can arise in cases where
there is a degeneracy in the potential energy, for exam-
ple, arising from rotation about a local symmetry axis.

VI. APPLICATIONS TO WATER CLUSTERS

The methods we have described in the previous sec-
tions are now applied to a cluster of eight water molecules
interacting via the TIP4P potential.1 We first per-
form a basin-hopping run with a temperature kBT =
8 kJ/mol, employing uniform rotational perturbations
with angle ∆θ = 1.6 (see appendix C) and vanish-
ing translational perturbations. Our initial database af-
ter basin-hopping included the two known lowest min-
ima for this system.47,48 The global minimum of the
TIP4P water octamer has S4 symmetry with energy
E = −305.51 kJ/mol, while the second lowest minimum
has a D2d symmetry and E = −305.41 kJ/mol.

The DNEB and hybrid eigenvector-following methods
were then used recursively to construct a database of con-
nected minima and transition states. We attempted to
connect two randomly chosen minima in each DNEB op-
timization. This procedure often led to the discovery of
new minima and the database therefore grew. Half of the
connect runs were dedicated to connecting minima with
energies below −275 kJ/mol, which roughly corresponds
to the highest lying transition state in the S4−D2d tran-
sition path. The potential energy disconnectivity graph
shown in Figure 3a displays the minima that are con-
nected to the global minimum via transition states lying
below −270 kJ/mol. In total our database contained
4812 minima and 25498 transition states.
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To improve the sampling of low free energy regions for
higher temperatures, we performed three 2 ns stochastic
dynamics run at T = 270 K using the GROMACS simula-
tion package.49 New minima were obtained by quenching
from the resulting trajectory every 0.2 ps. Only minima
where no molecules had dissociated were added to the
database. Finaly, we performed random double-ended
connect runs for the 50 lowest free energy minima at
kBT = 2.5 kJ/mol (this corresponds to a free energy
band of roughly 5 kJ/mol.). The potential energy discon-
nectivity graph shown in Figure 3a displays the minima
that are connected to the global minimum via transition
states lying below −270 kJ/mol. In total our database
contained 6171 minima and 39170 transition states.
The potential energy disconnectivity graph has been

reported before.50 Here, we present free energy discon-
nectivity graphs using the normal mode analysis de-
scribed in the previous section. We employ the harmonic
superposition approximation to estimate the entropic
contribution to the free energy, and we display the results
for two representative temperatures: kBT = 1.5 kJ/mol
(T = 180 K) and kBT = 2.5 kJ/mol (T = 300 K),
as shown in Figure 3b and Figure 3c, respectively. As
before, we only display minima that are connected to
the free energy global minimum by paths with transition
states below 20 kJ/mol. To further improve the visual-
ization of the free energy disconnectivity, we recursively
regroup minima, where the barrier for the forward and
backward transitions is smaller than kBT .

51–53

The free energy disconnectivity graphs reveal that the
separation between the S4 and D2d structures increases
with increasing temperature. The vibrational modes
of the two structures are in fact very similar, and the
splitting originates from the different point group or-
ders, which are 4 and 8 for S4 and D2d, respectively.
Upon increasing the temperature further, neither of these
structures is the global free energy minimum (Figure 3c).
Structures with fewer hydrogen-bonds dominate the low
free energy region, as they have much softer vibrational
modes than the compact cluster structures.54

The validity of the harmonic approximation we have
used to estimate the entropic contribution to the free en-
ergy could become problematic at higher temperatures,
where well anharmonicity becomes important. In future
work we will compare the present results with parallel
tempering calculations.

VII. CONCLUSIONS

We have presented methodological advances for explor-
ing the energy landscapes of molecular systems incorpo-
rating orientational degrees of freedom. Since transla-
tional and rotational degrees of freedom have different
physical dimensions, special care is needed for a consis-
tent treatment of both types of coordinates. We have
derived a distance metric and metric tensor for angle-
axis systems, which allow for such a treatment that is

independent of the reference frame. The metric tensor
was used to define a convergence criterion for geometry
optimisation, and the distance metric has been employed
to derive a generalization of the (doubly) nudged elastic
band approach. We have also considered normal mode
analysis in curvilinear coordinates to obtain vibrational
frequencies, which are needed to estimate free energies
based on the harmonic approximation. These results
were then combined to explore the potential and free en-
ergy landscape of water octamer, described by the TIP4P
potential.
The theory has been developed in terms of the angle-

axis representation of rotation. A generalization to other
descriptions of rotation, such as quaternions or Euler an-
gles, is straightforward since the derivations are based on
the rotation matrix, R. Furthermore, our methods can
be implemented for rigid-body molecules, using center of
mass coordinates, orientation, and the gyration tensor.
This formulation is advantageous because the theory can
be applied in exactly the same way for systems where
there is no underlying atomistic model. Examples in-
clude orientation-dependent interaction potentials, which
are widely used in mesoscopic simulations.7–12

All the methodology presented has been implemented
in our public domain programs GMIN55 and OPTIM,40 and
in a python package.56

Acknowledgements

We gratefully acknowledge Dr Jacob Stevenson and
James Farrell for stimulating discussions. This research
was funded by EPSRC Programme grant EP/I001352/1
and a European Research Council Advanced Grant.

Appendix A: Converting the gradient between fixed

and moving reference frames

When dealing with rigid bodies, there are two relevant
frames of reference: the laboratory frame and the instan-
taneous frame. In the laboratory frame, the position of
atom i in a rigid body with center of mass/geometry po-
sition X and rotation matrix R(p) is

yi = X+Rxi , (A1)

where xi are the fixed reference coordinates.
We now introduce the instantaneous frame. In this

frame, we define the rigid body such that p = 0, so that
R = I, the identity matrix. Following Eq. (3), this defini-
tion implies yi = xi for X = 0. In other words, we trans-
late and rotate the reference coordinates to match the
current site positions. This approach may seem inconve-
nient at first, but the advantages of this special frame of
reference are that the angle-axis coordinates are orthog-
onal for the weighting wi = mi; the rotational part of
the metric tensor and energy gradients also correspond
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FIG. 3: Disconnectivity graphs for a cluster of eight water molecules described by the TIP4P potential for the potential energy in
part (a), and harmonic vibrational free energy at kBT = 1.5 kJ/mol in part (b), and kBT = 2.5 kJ/mol in part. (c). The lowest
branch in the free energy disconnectivity graph (c) corresponds to a group of 312 minima. The yellow curves superimposed on
the structure describe the normal mode with the smallest non-zero frequency of the lowest free energy minimum in that group.

to the familiar concepts of moment of inertia and torques
in rigid body dynamics.

To convert a gradient given in the instantaneous frame,
where we denote the rotation vector as P for clarity, to
that in the laboratory frame with rotation vector p, we
use the chain rule

∂U

∂pα
=

∑

β

∂U

∂Pβ

∂Pβ

∂pα
. (A2)

A simple way to obtain ∂Pβ/∂pα is to compare the
change in a vector r under an infinitesimal rotation. In
the instantaneous frame,

dr = Θr, (A3)

where

Θ =




0 −dP3 −dP2

dP3 0 −dP1

−dP2 dP1 0


 . (A4)

On the other hand, in the laboratory frame,

dr = RαR
−1dpαr. (A5)

Equating the two equations, Eq. (A3) and Eq. (A5), we
obtain

∂P1

∂pα
= (RαR

−1)32 ,

∂P2

∂pα
= (RαR

−1)13 ,

∂P3

∂pα
= (RαR

−1)21 . (A6)
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The inverse gradient transformation from the laboratory
to the instantaneous frame can be derived in the same
way.

Appendix B: Normal mode analysis in curvilinear

coordinates

Here we derive the generalized eigenvalue equation,
Eq. (31). Inserting the Lagrangian defined by Eq. (29)
into the Euler-Lagrange equation, we obtain

∂L

∂qα
−

d

dt

∂L

∂q̇α
= 0 ,

Hαβqβ +
d

dt
Gm

αβ q̇β = 0 , (B1)

where we have evaluated the metric tensor Gm
αβ at the

corresponding minimum energy configuration, and ne-
glected changes as we move away from that particular
point. This approximation is made so that the normal
mode analysis does not depend on the amplitude of the
oscillation. Assuming that the oscillation has the usual
form q = Aqiωt, where A is the amplitude vector, ω is
the frequency, and λ = ω2 is the eigenvalue, we obtain

(Hαβqβ − λGm
αβ)qβ = 0. (B2)

This equation is equivalent to the generalized eigenvalue
problem, Eq. (31). A more detailed discussion can be
found in ref. 20.

Appendix C: Uniform step taking

Another subtle issue for global optimization within the
angle-axis framework is step-taking. In almost all basin-

hopping structure perturbations, one generally wants to
take a rotational step that is uniform. However, directly
displacing angle-axis coordinates by a random value does
not lead to uniform random rotational displacements. In
particular, for increasing |p|, this procedure leads to ro-
tations mainly around the current rotation vector p.

To illustrate this effect, consider an angle-axis vector
p = (p, 0, 0), with p ≫ 1. A displacement of ∆p ≪ p
in the x-direction of the angle-axis vector corresponds to
an additional rotation ∆p along the (1, 0, 0) axis. On
the other hand, the same displacement ∆p in the y (or
z-direction) results in a small shift in the rotation axis to(
1− (∆p)

2
/2p2,∆p/p, 0

)
, and an additional rotation of

(∆p)2/2p.

A uniform random rotation can be generated by first
taking a uniformly distributed rotation axis, p̂, and
choosing a rotation angle θ according to the probability
distribution57

p(θ) ∝
1

π
sin2 (θ/2) , θ ∈ [0, π] . (C1)

In practice, efficient algorithms have been developed to
directly generate uniform distributed random rotations:
see ref. 58 for quaternions and ref. 59 for rotation matri-
ces.

In some applications, one may also prefer to gener-
ate a random rotational displacement with a maximum
rotation angle θmax. To achieve this goal, we indepen-
dently choose a random rotation axis p̂ and an angle
θ ∈ [0, θmax] from the distribution in Eq. (C1).
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