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This paper presents a comprehensive review and synthesis of ice streams in the Laurentide Ice Sheet (LIS) based
on a newmapping inventory that includes previously hypothesised ice streams and includes a concerted effort to
search for others from across the entire ice sheet bed. The inventory includes 117 ice streams, which have been
identified based on a variety of evidence including their bedform imprint, large-scale geomorphology/
topography, till properties, and ice rafted debris in ocean sediment records. Despite uncertainty in identifying
ice streams in hard bedrock areas, it is unlikely that any major ice streams have been missed. During the Last
Glacial Maximum, Laurentide ice streams formed a drainage pattern that bears close resemblance to the present
day velocity patterns inmodern ice sheets. Large ice streams had extensive onset zones andwere fed bymultiple
tributaries and, where ice drained through regions of high relief, the spacing of ice streams shows a degree of
spatial self-organisation which has hitherto not been recognised. Topography exerted a primary control on the
location of ice streams, but there were large areas along the western and southern margin of the ice sheet
where the bed was composed of weaker sedimentary bedrock, and where networks of ice streams switched
direction repeatedly and probably over short time scales. As the ice sheet retreated onto its low relief interior,
several ice streams show no correspondence with topography or underlying geology, perhaps facilitated by
localised build-up of pressurised subglacial meltwater. They differed frommost other ice stream tracks in having
much lower length-to-width ratios and have no modern analogues. There have been very few attempts to date
the initiation and cessation of ice streams, but it is clear that ice streams switched on and off during deglaciation,
rather than maintaining the same trajectory as the ice margin retreated. We provide a first order estimate of
changes in ice stream activity during deglaciation and show that around 30% of the margin was drained by ice
streams at the LGM (similar to that for present day Antarctic ice sheets), but this decreases to 15% and 12% at
12 cal ka BP and 10 cal ka BP, respectively. The extent towhich these changes in the ice streamdrainage network
represent a simple and predictable readjustment to a changing mass balance driven by climate, or internal ice
dynamical feedbacks unrelated to climate (or both) is largely unknown and represents a key area for future
work to address.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Ice sheets lose mass through melting or dynamically through dis-
charge via rapidly-flowing ice streams/outlet glaciers. Recent studies of
ice sheet velocity patterns have revealed an intricate network in
Antarctica (Joughin et al., 1999; Rignot et al., 2011b) and Greenland
(Joughin et al., 2010b), with major ice stream trunks fed by smaller trib-
utaries that extend far into the ice sheet interior (Fig. 1). These ice
streams account for approximately 90% of mass loss in Antarctica
(Bamber et al., 2000) and approximately 50% in Greenland (van den
Broeke et al., 2009). They typically exhibit flow velocities of the order
of hundreds of m a−1, increasing towards several km a−1 towards
some of their termini (Joughin et al., 2010b; Rignot et al., 2011b). The
rapid velocity and low surface gradient that characterise some ice
streams result from a weak bed of saturated, fine-grained sediments
that cannot support high basal shear stresses and either deforms or
permits basal sliding across the bed (Alley et al., 1986; Bentley, 1987;
Bennett, 2003). In contrast, a large number of ice streams arise from
thermo-mechanical feedbacks that generate increased ice velocity
through large topographic troughs and which may also be the focus of
sediments and basal meltwater (Payne, 1999; Truffer and Echelmeyer,
2003). These two types of ice streams have been referred to as ‘pure’
and ‘topographic’ (cf. Stokes and Clark, 2001; Bennett, 2003; Truffer
and Echelmeyer, 2003), although, in reality, they represent end mem-
bers of a continuum.

Ice streams observed inmodern-ice sheets show considerable spatial
and temporal variability, with changes in their velocity observed over
timescales of hours to decades (Bindschadler et al., 2003; Joughin
et al., 2003); and with some ice streams known to have switched on
and off, and others changing their flow trajectory (Retzlaff and
Bentley, 1993; Conway et al., 2002). Such variability may arise from
external forcing (e.g., changes in atmospheric or oceanic conditions) or
internal forcing (e.g., the availability of lubricating water and till; see
review in Bennett, 2003). Elucidating these controls is a key area of
research due to the contribution of ice streams to sea level rise (Nick
et al., 2013), but satellite measurements and geophysical surveying of
modern day ice streams only span a period of several decades. As such,
they only provide a snapshot view of the system and are unable to ob-
serve their longer-termbehaviour, such as those related tomajor chang-
es in ice sheet configuration and volume over centennial to millennial
time-scales. However, palaeo-ice streams can be reconstructed from
the landform and sedimentary record on former ice sheet beds (Stokes
and Clark, 2001). Unimpeded access to former ice streambeds also facil-
itates investigation of their bed properties and enables a better under-
standing of the mechanics of ice stream motion and the processes that
facilitate and hinder fast ice flow (Beget, 1986; Hicock et al., 1989;
Stokes et al., 2007). Ice streams may also transport sediments over
large distances and knowledge of mineral dispersal patterns is econom-
ically important for the mining industry (e.g., Klassen, 1997).

A large number of palaeo-ice streams have been described for the
Laurentide Ice Sheet (LIS; Fig. 2), the largest of the ephemeral Northern
Hemisphere ice sheets, covering the territory of present day Canada
from the Cordillera to the Arctic and Atlantic oceans, with large lobes ex-
tending to the north-eastern part of the present day United States
(Denton and Hughes, 1981; Winsborrow et al., 2004). Ice streams
draining the LIS into the North Atlantic have also been identified as a
source of ice rafted debris (IRD) found in the ocean sedimentary record
(Bond et al., 1992). These layers of IRD on the ocean floor have been
interpreted to document periods of significant dynamic mass loss from
the Pleistocene ice sheets of the Northern Hemisphere (Heinrich events;
Heinrich, 1988; Andrews, 1998), particularly, but not exclusively, in the
vicinity of the Hudson Strait Ice Stream (MacAyeal, 1993; Andrews and
MacLean, 2003; Hemming, 2004; Alley et al., 2005).

The large number of hypothesised ice streams in the LIS
(Winsborrow et al., 2004), coupled with the evidence of major purges
of the ice sheet (Heinrich events), highlights the potential impact of
ice streams on large-scale ice sheet dynamics, but there remain key
areas of uncertainty that limit our understanding and predictions of
modern ice sheet dynamics. For example, our knowledge of the scale
and magnitude of episodes of ice sheet collapses is still in its infancy
(MacAyeal, 1993; Deschamps et al., 2012; Kleman and Applegate,
2014), and it is unclear whether ice streams might accelerate ice sheet
deglaciation beyond that whichmight be expected from climate forcing
alone. Tackling these issues requires a comprehensive understanding of
the location and timing of ice streams in palaeo-ice sheets. Numerical
modelling of ice streams also requires testing against palaeo-data
(e.g., Stokes and Tarasov, 2010) to further increase our confidence in
their ability to simulate future ice sheet dynamics.

With these issues in mind, this paper presents a comprehensive re-
view and analysis of ice streams in the LIS. It builds on a recentmapping
inventory of their location (Margold et al., 2015; Fig. 2) and herewe: (1)
briefly describe the historical emergence of the phenomena known as
‘ice streams’ in relation to the LIS; (2) review the evidence of ice streams
from different sectors of the LIS; (3) analyse their characteristics in
terms of their size, shape, and setting; (4) examine the controls on
their spatial and temporal activity; and (5) discuss their wider role in
LIS dynamics and stability. We also make comparisons with ice stream
activity in modern ice sheets, particularly those in Antarctica, where
ice sheet extent is similar to that of the LIS during the Last Glacial Max-
imum (LGM; cf. Figs. 1, 2). A detailed comparison of ice streaming in the
LIS with a modern-ice sheet has not yet been made, and it is useful to
examine whether the configuration of ice streams at different stages
during deglaciation differs from the drainage patterns seen in a modern
ice sheet.
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2. Historical perspective on ice streams in the LIS

In relation to the LIS, ice streamswere firstmentioned in 1895when
Robert Bell inferred, on the basis of striae mapping, the existence of
a “great ice stream” passing through Hudson Strait to the Atlantic
(Bell, 1895, pp. 352–353; Brookes, 2007). The term did not appear
again in connection with the LIS until Løken and Hodgson (1971)
concluded that ice streams were responsible for eroding deep troughs
on the continental shelf off the northeast coast of Baffin Island (Fig. 3).
This, and other occurrences of the term in relation to the LIS
(e.g., Hughes et al., 1977; Sugden, 1977), coincided with the early
work on Antarctic ice streams (e.g., Hughes, 1977) that began to de-
scribe the phenomenon of ice streaming and provided a basis in glacier
physics.

Asmore knowledgewas gained about Antarctic ice streams, the con-
cept of the Pleistocene Northern Hemisphere ice sheets as dynamic
complexes of ice domes and saddles emerged, and both ice streams
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bedrock. These dispersal trains were clearly traceable not only in the
field, but also in aerial photographs, due to the colour contrast of car-
bonate rich tills against darker coloured autochthonous bedrock
(Fig. 4). Someof the large channels of the CanadianArcticwere also sug-
gested to have hosted topographically constrained ice (Dyke and Prest,
1987a) and/or ice shelves (Dyke and Prest, 1987c) withmany later con-
firmed by landform assemblages on islands adjacent to themajor straits
and sounds, e.g., Victoria Island, bordering Amundsen Gulf (Sharpe,
1988; Fig. 3).
During the 1970s and 80s, the glacial geological record of the south-
ernmargin of the ice sheetwas being heavily scrutinised. This coincided
with the ‘paradigm shift’ in glaciology that recognised the importance of
fine-grained, deformable sediments in facilitating fast iceflow (Boulton,
1986), and several workers suggested that the extremely lobate south-
ern margin, together with chronological evidence of rapid re-advances,
resulted from large scale surging (Wright, 1973; Clayton et al., 1985).
Sustained ice streaming, rather than more temporary surge behaviour,
was later suggested for several of the southern lobes (Patterson, 1997;

Image of Fig. 2
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Fig. 3. Palaeo-ice streams in the Canadian Arctic Archipelago (see Fig. 2 for location). Ice flow pattern of this ice sheet sector is described in Section 4.1 andmore information and evidence
for individual ice streams is available in Supplementary data. Abbreviations: BP — Boothia Peninsula, CB — Committee Bay, CI — Coats Island, DS — Dease Strait, PWI — Prince of Wales
Island, RI — Rae Isthmus, RGSI — Royal Geographical Society Islands, SI — Somerset Island (see Table 1). Location of panel (a) in Fig. 7 is marked by a black rectangle. Boundary of the
Canadian Shield is marked by a pink stippled line (medium grey if viewing a black and white version of the manuscript). LIS extent is shown for the Last Glacial Maximum (LGM) and
at 10.2 cal ka BP after Dyke et al. (2003), but note that it has recently been shown to extend to the continental shelf in many regions (e.g., Kleman et al., 2010; Lakeman and England,
2012, 2013; Jakobsson et al., 2014). Ice streams of a neighbouring province (with respect to our geographical subsections of Section 4) are in grey and are found in separate figures.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Patterson, 1998; Jennings, 2006). Such behaviour was linked to the
availability of fine-grained tills that generated low basal shear stresses
(Hicock, 1988; Hicock et al., 1989; Hicock and Dreimanis, 1992). Alley
(1991) suggested that these widespread till sheets were deposited as
a deforming bed with ice velocities of hundreds of m a−1, similar to
that which had been proposed for the modern Ice Stream B (re-
named Whillans Ice Stream) in West Antarctica (Alley et al., 1986;
Alley et al., 1987). Indeed, based on these concepts and the known or
assumed bed properties, Marshall et al. (1996) used numerical model
to generate an ice stream likelihood map for the entire LIS, which
further highlighted the north-western, western, and south margins as
being conducive to ice streaming because of the substrate.

As noted above, the late 1980s and 1990s, saw thediscovery of layers
of ice rafted debris (IRD) in marine sediment cores from the North
Atlantic (Heinrich, 1988), which renewed interest in the behaviour of
Hudson Strait Ice Stream: the anticipated source of icebergs carrying

Image of Fig. 3


Fig. 4. Panchromatic Landsat image of southern Prince of Wales Island (reprinted with permission from De Angelis, 2007). Elongated bedforms depict changing ice flow directions.
Boundaries of fast ice flow are indicated by a shear margin moraine (see Dyke and Morris, 1988; Stokes and Clark, 2002) running S–N across the centre of the image and by the outline
of a sediment dispersal train in the case of the Transition Bay Ice Stream that flowed in easterly direction in the lower right part of the image.
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the terrestrial material found on the sea floor. Bond et al. (1992) identi-
fied the IRDmaterial as originating from the region of Hudson Bay/Strait
and episodes of increased calving from this region were constrained by
the description and dating of individual Heinrich layers (Andrews and
Tedesco, 1992; see Andrews, 1998, for a review). Conceptual models
of these binge–purge oscillations were put forward, supported by
numerical modelling experiments (e.g., the ‘Binge–Purge’ model:
MacAyeal, 1993; Clark, 1994; Marshall and Clarke, 1997b).

The 1990s also saw the application and rapid expansion of remote
sensing and Geographical Information Systems (GIS) techniques in
palaeo-glaciology, which ushered in a new era of palaeo-ice stream re-
search (Clark, 1993, 1997). This approach typically employs regional
scale mapping of the glacial landform record to reconstruct past ice
sheet dynamics, including ice streams (Kleman et al., 1997). Based
largely on the characteristics of modern ice streams and the pioneering
work by Dyke and colleagues (Dyke and Morris, 1988; Hicock, 1988;
Dyke et al., 1992), criteria for the identification of palaeo-ice streams
in the landform record were developed (Stokes and Clark, 1999;
Stokes and Clark, 2001; Stokes, 2002). Subsequently, a number of indi-
vidual ice stream tracks have been identified and examined (Clark and
Stokes, 2001; Stokes and Clark, 2003a, 2004; Stokes et al., 2005; Dyke,
2008; Ó Cofaigh et al., 2013b; Stokes et al., 2013) and regional recon-
structions have been carried out that incorporate their temporal evolu-
tion (DeAngelis andKleman, 2005; DeAngelis and Kleman, 2007; Evans
et al., 2008; Ross et al., 2009; Stokes et al., 2009; Ó Cofaigh et al., 2010;
Ross et al., 2011). These efforts have mostly focussed on the tundra re-
gions of northern Canada, where sparse vegetation allows for easier
landform recognition in satellite imagery (Fig. 5). More recent studies
have successfully mapped portions of the Interior Plains using Digital
Elevation Models (DEMs), despite intensive modification of the land-
scape due to agriculture and other human activity (Evans et al., 2008;
Ross et al., 2009; Ó Cofaigh et al., 2010; Evans et al., 2014).

Although terrestrial evidence and inferences had seen a large num-
ber of ice streams hypothesised in major marine channels (De Angelis
and Kleman, 2005; Stokes et al., 2005; De Angelis and Kleman, 2007),
there were only limited data on the morphology and stratigraphy of
areas submerged by present-day sea-level. Recently, high-resolution
swath bathymetry data have become available, albeit with limited
extent in some areas, and studies by MacLean et al. (2010) and
Ross et al. (2011) have made use of these data, describing sea-floor lin-
eations from Hudson Bay, Franklin Strait, Peel Sound and M'Clintock
Channel (Fig. 3). More extensive datasets are available from Atlantic
Canada, which records a number of ice streams operating in glacial
troughs carved into the continental shelf (Shaw, 2003; Shaw et al.,
2006; Todd et al., 2007; Shaw et al., 2009; Todd and Shaw, 2012;
Shaw et al., 2014). In their updated inventory, Margold et al. (2015)
also used the International Bathymetric Chart of the Arctic Ocean
(IBCAO: Jakobsson et al., 2000) and more detailed swath bathymetry
data from the Canadian Arctic (ArcticNet, 2013) to identify several
new ice streams and confirm others that were previously hypothesised
based only on terrestrial evidence. These bathymetric data have also
been complemented by sub-surface data obtained from seismic reflec-
tion surveys, allowing workers to identify multiple till units, grounding
zonewedges and other glacial features buried in themarine sediments;
and to investigate the architecture of large troughmouth fans that often
lie distal to the major ice stream troughs (Jennings, 1993; Andrews
et al., 1995b; Rashid and Piper, 2007; Li et al., 2011; Siegel et al., 2012;
Batchelor et al., 2013a,b; Batchelor and Dowdeswell, 2014; Batchelor
et al., 2014).

In addition to field and remote sensing studies, numerical modelling
of the LIS has been used to explore ice stream activity in the LIS. One of
the earliest studies was by Sugden (1977), whomodelled the annual ice
discharge of some of the largest ice streams/outlet glaciers. The activity
of ice streams over deformable beds has also been replicated in numer-
ical modelling experiments, especially at the southern margin (Fisher
et al., 1985; Breemer et al., 2002; Winguth et al., 2004; Carlson et al.,
2007;Meriano and Eyles, 2009). Topographically-controlled ice streams
have also been modelled in areas of higher relief (Kaplan et al., 1999),
and, as noted above, the oscillations of the Hudson Strait Ice Stream
have attracted most attention, largely targeted at explaining Heinrich
events (MacAyeal, 1993; Marshall et al., 1996; Marshall and Clarke,
1997a; Marshall and Clarke, 1997b; Calov et al., 2002). Pan-ice sheet
models have also generated ice streams (e.g., Tarasov and Peltier,
2004), and a recent data-model comparison suggests that they are likely
to capture most of themajor ice streams, especially those that are topo-
graphically controlled (Stokes and Tarasov, 2010).
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Fig. 5.Highly elongatedmega-scale glacial lineations (MSGL) on the bed of the Dubawnt Lake Ice Stream. (a) Landsat imagery (path 039, row 015) of a portion of a central trunk of the ice
stream, (b and c) oblique aerial photographs of parts of the image in panel (a); photographs: C. R. Stokes, panels (a)–(c) reprinted from Stokes et al. (2013) with authors' permission.
(d)MSGL identified on the bed of the Rutford Ice Stream in Antarctica (see Fig. 1 for location) compared toMSGL on the bed of the Dubawnt Lake Ice Stream (e); panels (d)–(e) reprinted
from King et al. (2009) with authors' permission.
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Finally, several workers have, periodically, attempted to summarise
and inventorise the growing number of hypothesised ice streams.
Patterson (1998) was one of the first to explicitly map the evidence
for their location across the entire ice sheet, and this was updated by
Winsborrow et al. (2004), who identified a total of 49 hypothesised
locations, albeit with some more speculative than others. Extending
this work, and building on several more recent studies and the
burgeoning availability of sea-floor data, Margold et al. (2015) have
compiled a newmap of 117 ice streams. Margold et al. (2015) refrained
from an in-depth analysis and discussion of the ice streams, which is the
purpose of this paper.

3. Types of evidence for Laurentide ice streams

Paterson (1994: p. 301) defined an ice stream as “a region in a
grounded ice sheet in which the ice flows much faster than in
regions on either side”, which reiterates the original description by
Swithinbank (1954). Although there has been some debate about

Image of Fig. 5
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what qualifies as an ice stream (Bentley, 1987; Bennett, 2003; Truffer
and Echelmeyer, 2003), we follow this simple and concise definition
in our review, i.e., it represents an abrupt spatial transition in ice-flow
velocity (and which must be reflected in the evidence). This definition
encompasses spatial transitions where an ice stream bordered by
slower moving ice may then feed into an outlet glacier sensu stricto,
which is bordered by rock-walls. However, it ignores the temporal as-
pect of the rapid ice flow, which has caused some confusion and confla-
tion of ideas in the literature, especially in relation to land-terminating
(terrestrial) ice streams, where the term is often used interchangeably
with surging (Clayton et al., 1985; Patterson, 1997; Evans et al., 1999;
Jennings, 2006; Evans et al., 2012). Generally, ice streaming is used to
describe a sustained period of fast flow (decades to millennia), whereas
surge-type glaciers exhibit a cycle of fast flow (typically years), followed
by a quiescent phase that is of much longer duration (typically decades;
Raymond, 1987). This should help differentiate surge-type behaviour
from ice streaming, but we note that some modern ice streams have
been suggested to stagnate and reactivate (Bougamont et al., 2003;
Hulbe and Fahnestock, 2007). This has also been suggested in the
palaeo-record (Stokes et al., 2009) and some have even used the term
‘surging ice streams’ (Evans et al., 1999, 2012). In summary, we adhere
to the simple definition of an ice streamas an abrupt spatial transition in
flow, but place no constraints on the duration of flow.

Several different types of evidence have been used for identifying ice
streams in the landform and sedimentary record (Stokes and Clark,
2001). In Margold et al.'s (2015) recent mapping inventory, these
types of evidence are broadly categorised (see also Fig. 6) as:

(1) evidence of fast ice flow in the landform record — the ‘bedform
imprint’ (Fig. 5)

(2) evidence of glacial troughs (Fig. 7)
(3) evidence of sedimentary depo-centres beyond the edge of the

continental shelf (Fig. 7)
(4) evidence of specific till characteristics suggested to be indicative

of fast iceflow, or indicating a distinct sediment dispersal pattern
(5) ice rafted debris traced to its source region

In relation to (1), streamlined landforms such as drumlins,
whalebacks and roches moutonnées have long been recognised as a
product of basal sliding or sediment deformation under flowing ice
(e.g., Boulton, 1987). Larger-scaled streamlined patterns in the form of
mega-scale glacial lineations (MSGLs) have also been observed in satel-
lite imagery (Fig. 5; Punkari, 1982; Boulton and Clark, 1990; Clark,
1993) and have been interpreted as a product of fast ice flow (Clark,
1993; Clark et al., 2003; Stokes et al., 2013). This interpretation has
been confirmed by the observation of MSGLs under the Rutford Ice
Stream in Antarctica (King et al., 2009) and a ridge-groove landform pat-
tern under Jakobshavn Isbræ of the Greenland Ice Sheet (Jezek et al.,
2011), with further support from landform assemblages on the beds of
Greenland and Antarctic palaeo-ice streams (e.g., Canals et al., 2000;
Wellner et al., 2001; Ó Cofaigh et al., 2002; Wellner et al., 2006;
Dowdeswell et al., 2008; Graham et al., 2009; Livingstone et al., 2012; Ó
Cofaigh et al., 2013a) . As noted above, Stokes and Clark (1999) listed
criteria for the identification of palaeo-ice streams defined by their
bedform imprint (as opposed to those defined by large scale topography)
and these are: characteristic shape and dimensions, highly convergent
flow patterns (Fig. 4), highly attenuated bedforms (Fig. 5), abrupt lateral
Fig. 6 Types of evidence available for individual ice streams: bedform imprint (full
bedform imprint in dark blue, discontinuous and isolated bedform imprint in lighter
shades of blue [shades of grey if viewing a black and white version of the manuscript]);
broad-scale topography (glacial troughs); sedimentary depo-centre at the edge of the
continental shelf; ice-rafted debris (IRD); and sediments conducive to fast ice flow. More
information and evidence for individual ice streams is described in Supplementary data.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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closely-spaced ice streams versus fewer, broader ice streams spaced further apart.
Present-day glaciation is marked in a semi-transparent blue (grey if viewing a black and
white version of the manuscript). (b) Subglacial topography of Dronning Maud Land
and the Princess Astrid Coast in East Antarctica. Bedmap2 data from Fretwell et al.
(2013) are significantly less detailed than the data used in panel a; location is marked in
Fig. 1. (c) Ice-flow pattern for the area shown in panel b (data from Rignot et al.,
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this article.)
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margins (Fig. 4), lateral shear margin moraines (Fig. 4), evidence of
pervasively deformed till, Boothia-type dispersal trains (Fig. 4), and sub-
marine till deltas or sediment fans. Not all of these criteria have to be
present, but this is by far the most commonly utilised form of evidence
(see Fig. 6). To account for the variable quantity and quality of evidence
left behind by different ice streams, Margold et al. (2015) further sub-
divided this type of landform evidence into three classes: (1) ice streams
with full bedform imprint, (2) ice streams with discontinuous bedform
imprint, and (3) ice streams with isolated bedform imprint. For the last
group, if no other evidence has been found to constrain the ice streamex-
tent, then it is described as an ice stream fragment (Margold et al., 2015).

In relation to type (2), some LIS ice streams have been inferred
almost exclusively from large-scale topography (e.g., the Massey
Sound Ice Stream; Fig. 3; England et al., 2006). To search for and identify
this type of evidence, Margold et al. (2015) mapped prominent glacial
troughs across the entire LIS bed, both onshore and offshore, which re-
sulted in a number of newly-identified ice streams. This mapping also
included the identification of type (3) evidence in the form of sedimen-
tary depo-centres beyond the edge of the continental shelf (expressed
in the form of a contour bulge at the shelf edge in the topographic
data) and benefitted from similar surveys undertaken for the entire Arc-
tic (Batchelor and Dowdeswell, 2014).

Type (4) evidence (sedimentological) is usually reported in conjunc-
tionwith type (1) evidence (Fig. 6; Kehewet al., 2005; Ross et al., 2011),
but has only been reported for a handful of ice streams, compared to
type (1) evidence. Similarly, type (5) evidence (IRD) has perhaps been
under-utilised in the literature, but can be a powerful constraint on
the timing of ice stream operation (Stokes et al., 2005; Rashid et al.,
2012).

Clearly, the robustness of evidence varies widely among the identi-
fied ice streams (Fig. 6). Whereas some ice streams are hypothesised
based on a variety of different lines of evidence (e.g., the Cumberland
Sound, Amundsen Gulf, or M'Clure Strait ice streams) others are in-
ferred only from one type of evidence and their existence is therefore
more speculative (e.g., the Rocky Mountain Foothills, Quinn Lake, or
offshore Massachusetts ice streams; Fig. 6; Supplementary data). It is
also possible that some ice streams operated but left behind very little
(if any) evidence, and we discuss the possibility of ice streams being
missed in Section 5.1.

4. An updated inventory of Laurentide ice streams

In this section, we provide a brief review of the location and opera-
tion of ice streams from different sectors of the LIS (see Margold et al.,
2015). We do this according to five major physiographic regions,
which likely influenced the pattern of ice dynamics. These are: (1) the
Canadian Arctic Archipelago, (2) the Interior Plains, (3) the Great
Lakes, (4) the Atlantic seaboard, and (5) the Canadian Shield (Fig. 2).
Note that detailed information about the evidence used to identify
each ice stream is available in the Supplementary data accompanying
this paper.

4.1. Canadian Arctic Archipelago

The islands of the Canadian Arctic Archipelago (CAA) are built
largely from sedimentary rocks, except in the east where the SE
part of Ellesmere Island and much of Baffin Island consist of crystal-
line rocks (Fig. 8). The depth of the channels between the islands is
generally not greater than 500 m, but deeper areas (up to 1100 m)
can occur, many of which exhibit characteristics of glacial
overdeepenings (Cook and Swift, 2012), such as Nansen Sound,
Jones Sound, Smith Sound, Robeson Channel or Lancaster Sound in
the north of the archipelago, as well as Cumberland Sound and
parts of Hudson Strait (Fig. 3).

The northernmost part of the CAA hosted an independent ice mass,
the Innuitian Ice Sheet, which was confluent with the LIS during glacial
maxima and connected by a saddle above Nares Strait to the Greenland
Ice Sheet (Fig. 2; Funder and Hansen, 1996; Dyke, 1999; England, 1999;
England et al., 2006). The saddle was drained by ice streams to the
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north, through Robeson Channel (no. 141 in Fig. 3; Jakobsson et al.,
2014; Margold et al., 2015), and to the south, through Smith Sound
(no. 126 in Fig. 3; Blake et al., 1996; England, 1999; England et al.,
2004, 2006;Margold et al., 2015; Simon et al., 2014), where distinct gla-
cial lineations appear in swath bathymetry data (Supplementary data).
Three relatively small, glacially eroded troughs occur on the shelf off the
NW coast of Ellesmere Island, with only the northernmost of these
crossing the whole shelf and forming a pronounced sediment bulge at
the shelf-break (nos. 125, 139, and 140 in Fig. 3; Margold et al., 2015).
A larger ice stream has been inferred in Nansen Sound that cuts into
the central parts of Ellesmere Island, where it forms a large, branching,
overdeepened fjord (no. 124 in Fig. 3; Sugden, 1977; Bednarski, 1998;
England et al., 2006; Jakobsson et al., 2014; Margold et al., 2015). Dis-
tinct lateral ridges border the trough on the outer shelf, protruding be-
yond the shelf edge (Margold et al., 2015). Two relatively extensive,
broad ice streams have been suggested to drain the southern part of
the Innuitian Ice Sheet to the northwest (nos. 123 and 129 in Fig. 3;
Lamoureux and England, 2000; Atkinson, 2003; England et al., 2006;
Jakobsson et al., 2014; Margold et al., 2015). These inferences have
been based on the topography on the shelf, with the northern one in
Massey Sound bordered by lateral ridges, forming a gentle bulge in
the shape of the shelf edge (Margold et al., 2015).

The south-western region of the CAA hosted two major ice streams
that operated during the LGM and deglaciation (nos. 18 and 19 in
Fig. 3), both occupying major channels—M'Clure Strait and Amundsen
Gulf— anddraining a large portion of theKeewatin IceDome (Figs. 2, 3).
Both ice streams formed a distinct troughmouth fan beyond the edge of
the continental shelf, and their sedimentary record contains grounding
zone wedges close to the shelf edge (Batchelor et al., 2013a,b, 2014).
The swath bathymetry data fromM'Clure Strait Ice Streamare dominat-
ed by iceberg scours (Supplementary data). The main evidence for the
ice stream comes from the cross-shelf trough and troughmouth fan, to-
gether with terrestrial landform record on the surrounding islands,
where several ice stream flow-sets have been identified (Hodgson,
1994; Stokes et al., 2005; England et al., 2009; Stokes et al., 2009). The
M'Clure Strait Ice Stream is thought to have operated episodically dur-
ing deglaciation, with a shorter M'Clintock Channel Ice Stream operat-
ing prior to final deglaciation (no. 10 in Fig. 3; Clark and Stokes, 2001;
Stokes, 2002; De Angelis and Kleman, 2005; Stokes et al., 2005, 2009;
MacLean et al., 2010). In contrast, the Amundsen Gulf Ice Stream is
thought to have operated throughout deglaciation, and was spatially
more stable than both the M'Clure Strait Ice Stream to the north and
the Mackenzie Trough Ice Stream to the west (Stokes et al., 2009;
Brown, 2012). It is evidenced both by terrestrial landform record on
the mainland and on Victoria Island (Sharpe, 1988; Stokes et al., 2006;
Kleman and Glasser, 2007; Storrar and Stokes, 2007; Stokes et al.,
2009; Brown et al., 2011; Brown, 2012), and by erosion and distinctly
streamlined morphology of the seabed in Amundsen Gulf (Supplemen-
tary data; Batchelor et al., 2013b).

During deglaciation, a number of smaller ice streams (50–150 km
long, 10–50 km wide) also operated on Victoria and Prince of Wales
islands, in or near the catchments of the M'Clure Strait/M'Clintock
Channel and Amundsen Gulf ice streams, and mostly resulting from
the opening up of major marine embayments (nos. 7, 8, 11, 12, 101,
102 in Fig. 3; De Angelis and Kleman, 2005; Stokes et al., 2005, 2009).

In addition to the ice streams draining Keewatin ice towards the
Beaufort Sea, they also existed in Peel Sound and the Gulf of Boothia
(nos. 13 and 20 in Fig. 3; Dyke and Dredge, 1989; Dredge, 2000, 2001;
De Angelis and Kleman, 2005, 2007; Kleman and Glasser, 2007;
MacLean et al., 2010), draining Keewatin ice to the north, where it
was captured by the W–E oriented Lancaster Sound (no. 22 in Fig. 3;
De Angelis and Kleman, 2005; Briner et al., 2006). The Gulf of Boothia
Ice Stream also drained ice from the Foxe Ice Dome across the Melville
Peninsula and around Baffin Island (Figs. 2, 3). The major trunk ice
stream in Lancaster Sound has also been suggested to have been joined
from the north by a tributary in Wellington Channel draining Innuitian
ice (no. 128 in Fig. 3; Fig. 2; Dyke, 1999; England et al., 2006), although
there is little evidence for this tributary ice stream. In contrast, another
tributary ice stream in Jones Sound (no. 127 in Fig. 3), joining the
Lancaster Sound Ice Stream from the north on the continental shelf in
the north-western part of Baffin Bay, has left a distinctly streamlined
bed visible in the swath bathymetry data (Supplementary data).

The Lancaster Sound Ice Stream, draining Keewatin, Foxe and
Innuitian ice, formed one of the major arteries in the NE sector of the
LIS (Figs. 2, 3; Sugden, 1977; De Angelis and Kleman, 2005; Briner
et al., 2006; Simon et al., 2014), which is evidenced by amajor sediment
bulge protruding into Baffin Bay (Li et al., 2011; Batchelor and
Dowdeswell, 2014). The divide between theM'Clure Strait and Amund-
sen Gulf Ice Stream catchments and the Lancaster Sound Ice Stream
catchment was probably highly mobile, and there is evidence for ice pi-
racy whereby Keewatin ice was captured from the onset zone of the
M'Clure Strait (later M'Clintock Channel) Ice Stream across the Boothia
Peninsula and southern Somerset Island into the Lancaster Sound Ice
Stream catchment (Figs. 2, 3; De Angelis and Kleman, 2005).

Apart from the drainage around Baffin Island through the Gulf of
Boothia, Foxe ice also drained across Baffin Island. Two major routes in
the NW of Baffin Island were Admiralty Inlet and Eclipse Sound (nos.
21 and 104 in Fig. 3; De Angelis and Kleman, 2007). In the central
parts of the island, ice was funnelled through narrow fjords, a product
of selective linear erosion across many glacial cycles (Løken and
Hodgson, 1971; Sugden, 1978), with ice from several fjords typically
feeding one cross-shelf trough (nos. 108–116, and 172 in Fig. 3; Fig. 7;
Løken and Hodgson, 1971; Briner et al., 2006; De Angelis and Kleman,
2007; Briner et al., 2008; Batchelor and Dowdeswell, 2014; Margold
et al., 2015). From the east, Foxe icewas also drained across SE Baffin Is-
land by two sizable ice streams in Cumberland Sound and Frobisher Bay
(nos. 23 and 117 in Fig. 3; Sugden, 1977; Kaplan et al., 2001; Andrews
and MacLean, 2003; Briner et al., 2006; De Angelis and Kleman, 2007).
The Foxe ice drainage pattern appears to have been relatively stable

Image of Fig. 8
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during the LGM, and in the early stages of the ice sheet retreat, but
changed dramatically during the collapse of the Foxe Ice Dome when
a number of small, ephemeral deglacial ice streams operated on Baffin
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Island, with ice flow directions often opposite to those at the LGM
(nos. 103, 106, 107, 118–120 in Fig. 3; De Angelis and Kleman, 2007,
2008; Dyke, 2008).

The Hudson Strait Ice Streamwas one of the largest in the LIS and is
probably the most studied (no. 24 in Fig. 3; Supplementary data). Its
onset zonewas in the vicinity of HudsonBay and icewas routed through
Hudson Strait to the shelf of the Labrador Sea (Figs. 2, 3; Andrews and
MacLean, 2003; De Angelis and Kleman, 2007; Rashid and Piper, 2007;
Ross et al., 2011). It drained the central parts of the ice sheet, receiving
ice from all the major domes: Keewatin, Foxe and Labrador (Figs. 2,
3). However, the evidence of ice streaming is actually rather sparse,
compared to some other ice streams with a fuller bedform imprint,
and mainly comprises long-distance erratic dispersal to the shelf and
IRD of Hudson Bay provenance (Andrews and MacLean, 2003; Rashid
and Piper, 2007; Rashid et al., 2012). The landform record is not always
obvious (Hulbe et al., 2004; De Angelis and Kleman, 2007), but Ross
et al. (2011) described a streamlined zone west of Hudson Bay as a pos-
sible onset zone of the Hudson Strait Ice Stream. Ice stream flow-sets on
Southampton Island (nos. 121 and 122) have been interpreted to post-
date the period of the Hudson Strait Ice Stream operation and originate
from later deglacial ice streams (Fig. 3; De Angelis and Kleman, 2007;
Ross et al., 2011).

Whilst the identification of IRD layers in the North Atlantic with a
high detrital carbonate content (Heinrich, 1988) has been linked to
the activity of the Hudson Strait Ice Stream, little is known about the re-
sponse of other ice streams along the Atlantic seaboard, or farther afield
(seeMooers and Lehr, 1997; Dyke et al., 2002; Stokes et al., 2005). How-
ever, Heinrich events 5, 4, 2, and 1 appear to originate from the Hudson
Bay area (with H4 being the strongest), whereas H6, H3, and H0 are
more likely of Ungava origin with H6 and H3 also having a large contri-
bution of European sources (Hemming, 2004).

In summary, the CAA exhibits robust evidence of numerous ice
streams draining the major ice domes towards marine margins and in
a pattern that is not entirely dissimilar to the present-day situation in
West Antarctica (cf. Figs. 1 and 2). Ice streaming in the region of the
CAA was concentrated in large, broad, marine channels where weaker
sedimentary rocks and unconsolidated marine sediments enhanced
fast ice flow. In contrast, the fjord landscapes along the coasts of Baffin
and Ellesmere islands were more analogous to the high relief coasts of
Greenland and East Antarctica (e.g., Dronning Maud Land; Fig. 7). The
timing of ice stream activity has been studied only in the south-
western part of the CAA and in association with the Hudson Strait Ice
Stream and its role during Heinrich events.

4.2. Interior Plains

Thewesternmargin of the LIS extended into the region of the Interi-
or Plains, an area of low relief built predominantly of soft sedimentary
rocks (Figs. 8, 9). A number of ice streams have been identified in this
area, although it has received relatively little attention and is one of
the less well-understood sectors of the ice sheet. In the northwest, a
large drainage system existed along the course of the present-day
Mackenzie River, but it may have reached the continental shelf on
fewer occasions than the ice streams further north and east in Amund-
sen Gulf and M'Clure Strait (Batchelor et al., 2013a,b). The shallow
Mackenzie Trough appears to have formed the main ice discharge
route, but the landform record indicates that ice drainage was highly
dynamic and ice streams operated along different trajectories (Fig. 9;
Brown et al., 2011; Brown, 2012; Margold et al., 2015). Tracks of four
Fig. 9. Ice streams in the region of the Interior Plains (see Fig. 2 for location). Ice flow
pattern of this ice sheet sector is described in Section 4.2 and more information about
individual ice streams is available in Supplementary data. Boundary of the Canadian Shield
ismarked by a pink stippled line (medium grey if viewing a black andwhite version of the
manuscript). Abbreviations: CH — Cameron Hills, CM — Caribou Mountains, BM — Birch
Mountains. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Image of Fig. 9
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major ice streams have been reconstructed in the area: The Mackenzie
Trough, Anderson, Bear Lake, and Fort Simpson ice streams (nos. 1, 2,
5, and 144 in Fig. 9; Brown, 2012; Batchelor et al., 2014; Margold
et al., 2015). However, it is not entirely clear whether these were sepa-
rate ice streams or different trajectories of a major ice stream system
changing its course over time (Brown, 2012). East of the major ice
streams of the Mackenzie region, three smaller, well-defined ice
streams developed during ice retreat: the Horton/Paulatuk, Haldane,
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and Kugluktuk ice streams (nos. 3, 4, and 142 in Fig. 9; Winsborrow
et al., 2004; Kleman and Glasser, 2007; Brown, 2012; Margold et al.,
2015).

An area of coalescence of the LIS with the Cordilleran Ice Sheet (CIS)
existed during the LGM between 62° and 52° N and this saddle provided
ice that drained through the Mackenzie region to the north (Figs. 2, 9).
Several troughs with generally westerly orientation are also found near
this saddle area in SW Northwest Territories and in N Alberta, between
the higher plateau surfaces of the Cameron Hills, Caribou Mountains
and BirchMountains (Fig. 9). The landform record is patchy in this region
(see Fig. 10) and ice drainage has not been studied in detail. However,
Margold et al. (2015) have mapped topographically inferred ice streams
draining to the west through these troughs (nos. 175–178 in Fig. 9).
Fragmented evidence of fast ice flow has also been found on the plateau
surfaces of the Cameron Hills and the BirchMountains (nos. 145 and 148
in Figs. 9, 10;Margold et al., 2015), indicating a period of fast ice flowun-
constrained by the regional topography. These ice streams draining to
the west could have operated before the CIS and LIS coalesced, or their
operation could have again commenced after the CIS–LIS ice saddle col-
lapsed rapidly during deglaciation (see Gregoire et al., 2012), followed
by topographically constrained ice streams.

The south-western Interior Plains, in Alberta and Saskatchewan,
exhibit one of the most complex networks of ice stream activity docu-
mented for a Northern Hemisphere Pleistocene ice sheet (Figs. 2, 9).
Ice stream trajectories in this region have orientations varying from
WSW to SE, most probably indicating an evolving ice stream network
during the ice sheet advance (ice flow to WSW), maximum extent
(ice flow to SW and S) and retreat (ice flow changing from S to SE and
then back to S and finally SW; Fig. 9; Evans, 2000; Evans et al., 2008;
Ross et al., 2009; Ó Cofaigh et al., 2010; Evans et al., 2012, 2014;
Margold et al., 2015). The complex network of streamlined corridors
has also been interpreted as reflecting the paths of subglacial mega-
floods (e.g., Shaw, 1983; Rains et al., 1993; Shaw et al., 1996, 2000,
2010), rather than ice streams. This interpretation has been the subject
of much debate (e.g., Benn and Evans, 2006; Evans, 2010; Shaw, 2010a,
b; Evans et al., 2013; Shaw, 2013), which is yet to be fully resolved, not
least because ice streams are typically associated with abundant sub-
glacialmeltwater that helps lubricate their flow. However, questions re-
main, for example, regarding the sources and volume of water required
to feed putative mega-flood tracks (Clarke et al., 2005). Thus, spatially-
confined fast-flowing ice (ice streaming) is the simpler interpretation at
present and one which we adopt in this paper.

Two long and narrow ice stream tracks run across central Alberta
in N–S direction: the Central Alberta Ice Stream and the High Plains
Ice Stream (nos. 14 and 15 in Fig. 9; Evans, 2000; Evans et al., 2008;
Ross et al., 2009; Evans et al., 2012, 2014), and a more complicated
network of ice streams occurs further east in Saskatchewan (Fig. 9;
Ross et al., 2009; Ó Cofaigh et al., 2010; Evans et al., 2014; Margold
et al., 2015). To the south of the complex flow record in central
Saskatchewan, two major ice lobes protruded from the southern LIS
margin: the James Lobe and the Des Moines Lobe (nos. 28 and 27 in
Fig. 9). Both are thought to be formed by ice streams operating during
Fig. 10. Evidence for fast ice flow in the region of northern Interior Plains. (a) Broad
troughs seen in a DEM-derived image draped with Landsat Image Mosaic of Canada. The
trough floors are largely devoid of a continuous pattern of glacial lineations. However,
isolated patches of extremely well-developed mega-scale glacial lineations occur both
on the trough floors and on the slopes and upper surfaces of the intervening plateaux.
Although the glacial troughs define an ice stream configuration in the area (panel (b) —
cf. Fig. 9 for location), streamlined terrain on the plateau surfaces (classified as ice stream
fragments;Margold et al., 2015) indicates a stage of fast iceflow thatwasnot controlledby
topography. (c) Streamlined surface of the Cameron Hills seen in a false-colour
composition of SPOT satellite images (see panel (a) for location; scenes used: S4_11650_
6004_20090901, S4_11709_5937_20090605, S4_11750_6004_20060623). Note the
contrast between the slopes of the trough that display indistinct lineations along the
direction of the trough and a heavily streamlined surface of the plateau, with the direction
of streamlining independent of the trough orientation (see panel (d) for a close-up of the
plateau surface edge).

Image of Fig. 10
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the Late Glacial, draining ice from Saskatchewan and Manitoba along
the ice sheet margin in a SSE direction to North and South Dakota,
Minnesota and Iowa (Clayton et al., 1985; Clark, 1992; Patterson,
1997; Jennings, 2006; Lusardi et al., 2011). After a considerable retreat
of the ice margin, ice streaming (surging in Clayton et al., 1985;
Dredge and Cowan, 1989) is documented in a southerly direction for
the late stage of the Red River Lobe (Margold et al., 2015).

In summary, the Interior Plains contain evidence of numerous ice
streams which drained ice northwards to the Beaufort Sea coast,
westward to the Rocky Mountains, and south-westward and south-
eastward, towards the southern margin of the ice sheet (Fig. 9). Ice
streaming on the Interior Plains was enhanced by the presence of weak
sedimentary bedrock andoccurred in broad, shallow troughs creating sin-
uous corridors of smoothed terrain (controls on ice stream location are
discussed in depth in Section 5.4). However, the ice sheet geometry that
defined the pattern of ice drainage is poorly understood, especially in re-
lation to thepattern and timing of theCIS–LIS coalescence and its collapse.

4.3. Great Lakes

TheGreat Lakes basins developedunder recurring glaciations byglacial
erosion of river valleys in a region of relatively weak sedimentary rocks
(Fig. 8; Larson and Schaetzl, 2001). The deepest basin is Lake Superior,
which has a floor at an elevation of 213 m below sea level and a depth
of almost 400 m measured from its outlet (Larson and Schaetzl, 2001).
During the last glaciation, the basins of the Great Lakes constituted a
major topographic control on ice flow, which resulted in a lobate icemar-
gin during the LGM and during ice retreat (Karrow, 1989; Mickelson and
Colgan, 2003). The maximum extent during the Late Wisconsinan was
attained earlier than in the James and Des Moines Lobes to the west
(Mickelson et al., 1983; Hallberg and Kemmis, 1986; Mickelson and
Colgan, 2003). This was most apparent at the contact between the Des
Moines Lobe and the Superior Lobe, where the latter retreated to the NE
and the Grantsburg Sub-lobe of the Des Moines Lobe advanced into the
area formerly occupied by the Superior Lobe (Figs. 9, 11; Jennings, 2006).

The dominance of the particular lobes in the Great Lakes region
changed through time (Mickelson and Colgan, 2003; Kehew et al.,
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(For interpretation of the references to colour in this figure legend, the reader is referred to th
2005). The most extensive was an advance of the Saginaw Lobe over
the southern Michigan Upland (Fig. 11; Kehew et al., 2005) and ice
streaming has been inferred for the area where the lobe passed over
Huron Lake (no. 184 in Fig. 11; Eyles, 2012). When the Saginaw Lobe
retreated, ice advanced in the surrounding areas through the basins of
Lake Michigan and lakes Ontario and Erie (Fig. 11; Dyke et al., 2003;
Kehew et al., 2005). The Huron–Erie Lobe Ice Stream, occupying the
basins of Lake Ontario and Lake Erie, received ice that previously fed
the Saginaw Lobe and was now diverted through the basin of Lake
Huron to the south instead of flowing through the Saginaw Bay to the
SW (no. 49 in Fig. 11; Kehew et al., 2005). In addition to topographic
steering, fine lacustrine sediments were conducive to fast ice flow
(Beget, 1986; Clark, 1992; Hicock, 1992; Hicock and Dreimanis, 1992;
Lian et al., 2003; Kehew et al., 2005; Jennings, 2006; Eyles, 2012;
Kehew et al., 2012; discussed further in Section 5.4.3). Rapid ice flow is
further supported by observations of glacial lineations on the floor of
LakeOntario and by glacial landsystems composed of drumlinfields, tun-
nel valleys, thrust blocks, and recessional moraines (Jennings, 2006;
Eyles, 2012; Kehew et al., 2012). A more localised ice stream has also
been reconstructed for the Oneida Lobe and the higher ground of the
Tug Hill Plateau in the region east of Lake Ontario (nos. 136 and 137 in
Fig. 11; Briner, 2007; Margold et al., 2015).

In summary, several large ice streams have been active in the basins
of the Great Lakes. Ice streaming in this region has been inferred from
the wide-scale topography and from landsystems identified to be char-
acteristic of fast ice flow (Kehew et al., 2005; Jennings, 2006; Hess and
Briner, 2009; Eyles, 2012; Kehew et al., 2012; Margold et al., 2015).

4.4. Atlantic seaboard

The Atlantic seaboard of North America hosts the broadest section of
the continental shelf covered by the LIS (Fig. 2). The region is built by
crystalline lithologies of the Canadian Shield landwards from the
coast-parallel Marginal Trough on the NE Labrador coast, down to the
coast of the Gulf of St Lawrence in SE Labrador, and in most of New-
foundland (Figs. 8, 12). Sedimentary lithologies occur on most of the
continental shelf and in the Northern Appalachians (Fig. 8).
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The easternmargin of the LIS featured a number of ice streams cross-
ing the present-day continental shelf (Figs. 2, 12; Margold et al., 2015).
Only limited evidence exists for ice streams in the Gulf of Maine, where
the most prominent feature is the trough of the Northeast Channel Ice
Stream (no. 134 in Fig. 12; Shaw et al., 2006). Another major ice-
discharge route for Labrador ice constituted the Laurentian Channel
Ice Stream (no. 25 in Fig. 12; Grant, 1989; Keigwin and Jones, 1995;
Shaw et al., 2006, 2009; Eyles and Putkinen, 2014). This ice streamoccu-
pied a well-defined trough that runs for more than 700 km from the
Gulf of St Lawrence to the shelf edge, and with an overdeepening of
about 400 m and a width of 70 to 100 km. As such, a deep calving bay
has been inferred to have developed in the Gulf of St Lawrence during
deglaciation, forcing a significant retreat of the Laurentian Channel Ice
Stream at the timewhen ice complexes still survived on Newfoundland
and Nova Scotia, and drained to the ocean through several smaller ice
streams (Stea et al., 1998; Shaw, 2003; Shaw et al., 2006; Todd et al.,
2007; Shaw et al., 2009; Todd and Shaw, 2012). Indeed, Newfoundland
hosted an independent ice complex that was drained to the north and
north-east by ice streams in the Notre Dame Channel and the Trinity
Trough (nos. 45 and 130 in Fig. 12; Shaw, 2003; Shaw et al., 2006,
2009; Rashid et al., 2012), and which fed into the Laurentian Channel
Ice Stream to the south. Ice from Newfoundland was also drained
through the Placentia Bay–Halibut Channel Ice Stream (no. 133 in
Fig. 12; Shaw, 2003; Shaw et al., 2006). Prominent troughs also occur
off the NE Labrador coast, most of them reaching the shelf edge.
Although the subject of relatively little research, they are likely to
have hosted palaeo-ice streams draining the Labrador Ice Dome (nos.
167–171 in Fig. 12; Fig. 2; Josenhans et al., 1986; Josenhans and
Zevenhuizen, 1989; Rashid et al., 2012; Margold et al., 2015).

In summary, the Atlantic seaboard exhibits strong evidence for
focused drainage of Labrador ice in a number of ice streams that incised
distinct troughs in the continental shelf. The region centred on the Gulf
of St Lawrence has been the subject of a series of studies documenting
the role of ice streams during deglaciation (Shaw, 2003; Shaw et al.,
2006; Todd et al., 2007; Shaw et al., 2009; Todd and Shaw, 2012), but
the NE Labrador coast and the adjacent shelf have received compara-
tively less attention.

4.5. Canadian Shield

The Canadian Shield formed the interior of the LIS during its maxi-
mum extent and hosted two of the three major ice domes: Keewatin
and Labrador (Figs. 2, 13). It is built of crystalline lithologies and its land-
scapes are characterised by low relief with a dominance of areal scour-
ing (Figs. 8, 14; Sugden, 1978; Krabbendam and Bradwell, 2014).

It was only after substantial ice retreat (by 12 ka BP) that icemargins
were located over the Shield (Dyke and Prest, 1987a; Dyke et al., 2003)
and a number of ice streams have been hypothesised in this smaller,
deglaciating LIS (Fig. 2). Arguably, the best studied of the deglacial ice
streams of the Canadian Shield is the NW-flowing Dubawnt Lake Ice
Stream in northern Keewatin (no. 6 in Fig. 13). This large broad ice
stream has been reconstructed from its distinct bedform imprint,
which is one of the best preserved on the entire ice sheet bed (Fig. 5;
Kleman and Borgström, 1996; Stokes and Clark, 2003a,b, 2004; De
Angelis and Kleman, 2008; Ó Cofaigh et al., 2013b; Stokes et al., 2013).
Other major ice streams formed at the south-western margin of the
retreating ice, such as the Hayes Lobe and the Rainy Lobe (nos. 179
and 180 in Fig. 13; Dredge and Cowan, 1989; Margold et al., 2015). Al-
though the fan-shaped tracks of these ice streams are atypical, both of
these large lobes fulfil the definition of an ice stream as a spatially
defined partitioning of ice flow (see Section 3).

East of the Rainy Lobe, icewas drained by a succession of ice streams,
with the Albany Bay Ice Stream initially operating along the trajectory
stretching from James Bay along the Albany River to the Lake Superior
basin (no. 26 in Fig. 13; Hicock, 1988), and followed by the James Bay
Ice Stream that occupied James Bay and flowed in a southerly direction
(no. 33 in Fig. 13; Parent et al., 1995; Veillette, 1997). Apart from the
Dubawnt Lake Ice Stream, none of the ice streams around Hudson Bay
has received detailed scrutiny. The Quinn Lake Ice Stream (no. 164 in
Fig. 13), mapped by Margold et al. (2015) is depicted as a distinct
local readvance in the map of Dyke and Prest (1987b) whereas the
Ekwan River Ice Stream is there portrayed as a series of minor lobes
(no. 165 in Fig. 13; Dyke and Prest, 1987b). The Ekwan River Ice Stream
was later identified by Thorleifson and Kristjansson (1993). We specu-
late on the nature of the unusually broad ice streams of the Canadian
Shield in Section 5.2.

Relatively few ice streams have been reconstructed during deglacia-
tion of the Labrador Ice Dome, especially at the SE and NEmargins, after
they had retreated from the shelf (Dyke and Prest, 1987b, c; Dyke et al.,
2003). The most distinct features draining the Labrador Dome were a
series of ice streams that drained ice in a northerly direction towards
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Ungava Bay (nos. 16, 17, and 188 in Fig. 13; Veillette et al., 1999; Clark
et al., 2000; Jansson et al., 2003; Margold et al., 2015). It is yet to be re-
solved whether they correlatewith the putative H-0 event (11–10.5 14C
ka, i.e., during the Younger Dryas; Andrews et al., 1995a; Andrews and
MacLean, 2003) or with the Gold Cove and Noble Inlet advances (9.9–
9.6 resp. 8.9–8.4 14C ka; Miller et al., 1988; Stravers et al., 1992;
Kaufman et al., 1993; Jennings et al., 1998; Kleman et al., 2001) when
the Labrador ice flowed across Hudson Strait in a NE direction.

In summary, conditions for ice streams on the Canadian Shield dif-
fered from other regions of the LIS: ice streams were not constrained
by topography across these low-relief landscapes, and there were fewer
fine-grained sediments available to lubricate theirflow. They also operat-
ed late into the deglaciation and, as such, drained a much smaller ice
sheet in a muchwarmer climate. Nevertheless, the region still supported
large fan-shaped flow-sets that fit the definition of ice streams as spatial-
ly partitioned ice flow.

5. Discussion

5.1. To what extent have all of the LIS ice streams been found?

Our knowledge of palaeo-ice streams has grown rapidly in the last
two decades (e.g., Stokes and Clark, 2001; Stoker and Bradwell, 2005;
Andreassen et al., 2008; Winsborrow et al., 2010; Livingstone et al.,
2012; Winsborrow et al., 2012; Roberts et al., 2013) and the LIS has
played a key role in this regard (e.g., Patterson, 1997, 1998; De Angelis
and Kleman, 2005, 2007, 2008; Ross et al., 2009; Stokes et al., 2009). In-
deed, it now has themost comprehensive ice stream inventory of any of
the former mid-latitude palaeo-ice sheets (Margold et al., 2015), but an
obvious question to ask is: are any ice stream locations missing?

The vast majority of hypothesised ice streams are informed by dis-
tinct bedform imprints (Fig. 6). These imprints are intimately linked to
the availability of unconsolidated sediments that are moulded into a
distinctive geomorphological signature (cf. Stokes and Clark, 1999) by
the mechanisms that generate fast ice flow. However, there has been
much debate about the processes that facilitate the fast flow of ice
streams — whether through pervasive deformation of a metres thick
layer of sediments at the bed or through basal sliding and/or with only
a relatively thin layer of shearing at the top or within the sediments
(Alley et al., 1986; Blankenship et al., 1986; Alley et al., 1987;
Engelhardt et al., 1990; Engelhardt and Kamb, 1998). In the LIS, this has
been particularly important for interpretations of the landform record as-
sociated with the southern ice lobes/streams (Clayton et al., 1985, 1989;
Alley, 1991; Clark, 1991, 1992; Piotrowski et al., 2001; Hooyer and
Iverson, 2002). Indeed, resolving this issue has implications for the iden-
tification of palaeo-ice streams and for wider inferences about long-term
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landscape modification by glaciers and ice sheets, because different flow
mechanisms maymodify the underlying landscape to a different degree.

Recent observations support the existence of both basal sliding and
sediment deformation at the bed, which is best described by a plastic
rather than viscous rheology (Iverson et al., 1995; Tulaczyk, 2006;
Iverson et al., 2007; Smith and Murray, 2009; Reinardy et al., 2011).
Furthermore, our ability to image the geomorphology at the bed of ac-
tive ice streams has increased our confidence to identify them in the
palaeo-record, confirming that mega-scale glacial lineations form
under ice streams in areas of ‘soft’, deformable sediment (Smith et al.,
2007; King et al., 2009). However, in cases where ice streaming might
be facilitated only by sliding on a film of water and/or over more rigid
(i.e., bedrock) surfaces, one might ask: what form of evidence does
rapid sliding leave behind and how might we distinguish palaeo-ice
streams in these settings? More generally, how are large volumes of
sediment entrained and transported in these settings and what pro-
cesses erode deep troughs?

Basal sliding across hard bedrock or within a shallow layer of under-
lying sediments (e.g., 3–25 cm: see Engelhardt and Kamb, 1998) might
leave little evidence in the geological record and there are large areas of
the LIS bed that are flat and without substantial thickness of sediment
(e.g., the Canadian Shield). Theoretically, fast ice flow could have been
facilitated by high subglacial water pressures that decoupled the ice
from the bed (e.g., Zwally et al., 2002). Indeed, such ‘hard-bedded’ ice
streams (i.e., spatially discrete fast iceflowover less erodible andmostly
crystalline bedrock with little or no sediment cover) have been
discussed for the Pleistocene Greenland Ice Sheet in central West
Greenland (Roberts and Long, 2005; Roberts et al., 2010, 2013), the
Fennoscandian Ice Sheet in south-western Finland (Punkari, 1995)
and the British–Irish Ice Sheet in Scotland, where large mega-grooves
have been interpreted to result from fast ice flow (Bradwell, 2005;
Bradwell et al., 2008; Krabbendam and Glasser, 2011; Krabbendam
and Bradwell, 2014). Interestingly, similar ridge–groove structures
have recently been imaged beneath Jakobshavn Isbræ in West Green-
land (Jezek et al., 2011). Recent work by Eyles (2012) and Eyles and
Putkinen (2014) has also described rock drumlins, megaflutes and
mega-lineated terrain, and argued that these landscapes represent a
hard-bedded landform assemblage cut by ice streams. Indeed, even in
hard bedrock terrains, there can be evidence of faint streamlined pat-
terns visible in satellite imagery. For example, such regions exist around
the Rae Isthmus in northern Keewatin (Fig. 3) and across parts of Baffin
Island. De Angelis and Kleman (2007) interpreted these to represent
small deglacial ice streams in areas of scoured bedrock around Amadjuak
Lake on Baffin Island (Fig. 3), whereas the area of the Rae Isthmus has
been interpreted as an onset zone of the Gulf of Boothia Ice Stream
(Fig. 3; De Angelis and Kleman, 2007). Elsewhere, even when subglacial
bedforms were not generated, there are zones of spatially discrete
streamlined terrain that exhibit a smoothness not seen in the surround-
ing landscape. These are most obvious in the Interior Plains (Section 4.2)
and, in this context, Patterson (1998) noted that the finer the fraction
composing the till, the fewer streamlined landforms are developed.

Apart from hard-bedded ice streams in heavily scoured bedrock
zones and evidence of smooth ice stream tracks in the Interior Plains,
there are other regionswith wide-spread streamlining of predominant-
ly bedrock terrain, but with thin veneers of sediment, particularly in NE
Keewatin (Shaw et al., 2010; Kleman, unpublished). Whilst the degree
of bedform attenuation and the general character of streamlined land-
scape indicate fast ice flow over thin veneers, the lateral boundaries of
some of these zones are often extremely indistinct and preclude their
classification as ice streams. Even the well-studied Dubawnt Lake Ice
Stream (no. 6 in Fig. 13; Stokes and Clark, 2003a,b) has a rather ‘blurred’
northern margin. Thus, we cannot rule out the possibility that short-
lived episodes of fast flow qualifying as ice streams have passed un-
noticed in regions of extensive predominantly bedrock terrain, largely
because our criteria for mapping ice stream tracks from remotely-
sensed data (e.g., Stokes and Clark, 1999) do not account for hard-
bedded ice streams, although there is potential to develop them (see
Roberts and Long, 2005; Eyles, 2012; Eyles and Putkinen, 2014).

To conclude, we would argue that, as a result of more than 30 years
of research, no large/major ice streams have beenmissed for the LIS, es-
pecially as Margold et al. (2015) specifically searched across the whole
ice sheet bed in both onshore and offshore areas. That said, there remain
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some sectors of the LIS that are still poorly understood (e.g., the
western-most margin), and other regions exist where hard-bedded,
possibly short-lived deglacial ice streams may have existed but have
not been reliably reconstructed.

5.2. Size and shape and comparison to modern ice streams

Present-day and palaeo-ice streams span across awide range of sizes
with lengths from tens to hundreds of km and widths of hundreds of
metres to more than a hundred km (Figs. 1, 2; Rignot et al., 2011b;
Margold et al., 2015). It is important to note, however, that reconstruct-
ed tracks of palaeo-ice streams may not represent the extent of an ice
stream at a particular point in time but rather the cumulative effect of
evolving ice stream trajectories (cf. De Angelis and Kleman, 2005;
Kleman and Glasser, 2007). This is likely to apply to ice streams that
are not strongly controlled by topography, but even ice streams con-
fined to deep troughs may have evolved with respect to the size of
catchment they drained, thereby affecting the shape and size of their
onset zone, the vigour of their flow, and their overall length (De
Angelis and Kleman, 2005). Furthermore, although criteria have been
defined to distinguish between time-transgressive and isochronous ice
streams (and hence varying lengths of an ice stream within the same
track; Stokes and Clark, 1999) our knowledge of the operational length
of palaeo-ice streams is sufficient only for those with distinguishable
onset zones preserved in the palaeo-record (De Angelis and Kleman,
2008). Indeed, contemporary velocity datasets often show a gradual
and diffuse transition from slow-moving interior ice into more rapidly
flowing ice streams (Bamber et al., 2000; Rignot et al., 2011b).

Notwithstanding the subjectivity in identifying when an ice stream
actually ‘starts’ in the spatial sense, present-day Antarctic and Green-
land ice streams display a variety of shapes. Most commonly, modern
ice streams exhibit a dendritic pattern where the main trunk is fed by
several tributaries (Fig. 1; Joughin et al., 1999; Rignot et al., 2011b).
Whilst some ice streams have long sinuous tributaries (e.g., the Siple
Coast ice streams, the Evans Ice Stream; Figs. 1, 15a) others have tribu-
taries that are relatively short and wide (e.g., Pine Island and Thwaites
glaciers; Fig. 15b). In contrast, some modern ice streams do not form
dendritic networks and, instead, only one trunk exists, commonly
with diffuse lateral margins. Examples of these are the Sør Rondane
and Belgica ice streams draining to the Princess Ragnhild Coast or the
Ninnis Glacier in the George V Land (Figs. 1, 15c). Yet other ice streams
do not feature one main trunk and, instead, display an anastomosing
pattern of multiple fast-flow ‘channels’ (Fig. 15d). In some cases, espe-
cially with larger ice streams, combinations of the above types exist,
with an intricate network of tributaries that display anastomosing pat-
terns around isolated areas of slow-flowing ice and which feed a large
broad trunk (Fig. 15e). In other cases, ice stream onset zones display
convergence of flow towards a single downstream trunk that is often
narrower and topographically defined (Fig. 15f). We also note that
some downstream sections appear to show an indication of an inner
and outer lateral margin, e.g., Thwaites Glacier (Fig. 15b).

In comparison to modern ice streams (Fig. 15a–f), the shapes of LIS
ice stream tracks can be divided into several similar classes, albeit
with some notable exceptions:

(1) Dendritic ice streams where several tributaries, usually fed by
several fjords, merge into a shelf-crossing trough (examples:
the Nansen Sound Ice Stream, Smith Sound Ice Stream, Lauren-
tian Channel Ice Stream; Figs. 3, 12, 15g);

(2) Ice streams with themain trunk occupying a channel, with a con-
vergent onset zone, possiblywith few large tributaries (examples:
the M'Clure Strait Ice Stream, Amundsen Gulf Ice Stream, Hudson
Strait Ice Stream; Figs. 3, 15h, n);

(3) Terrestrial ice streamswith convergent onset zones and relative-
ly narrow, winding trunk (ice streams on the southern Interior
Plains or the Bear Lake Ice Stream; Figs. 9, 15i);
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Table 1
The longest Laurentide ice streams.

Name ID Length
(km)

Measured from

Gulf of Boothia/Lancaster Sound 20/22 1270 S tip of Committee Bay (Fig. 3)
McClure Strait 19 1250 Royal Geographical Society

Islands (Fig. 3)
James Lobe 28 1250 Saskatchewan River (Fig. 9)
Des Moines Lobe 27 1250 Saskatchewan River (Fig. 9)
Hudson Strait 24 1200 Coats Island (Fig. 3)
Laurentian Channel 25 1050 Pointe-des-Monts (Fig. 12)
Amundsen Gulf 18 1000 E end of Dease Strait (Fig. 3)
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(4) Ice streams whose whole track is represented by a convergent
flow pattern — this type seems to consist entirely of deglacial
ice streams (the Horton/Paulatuk Ice Stream, Haldane Ice
Stream, Horn Ice Stream, Buffalo River Ice Stream, Bernier Bay
Ice Stream; Figs. 3, 9, 15k) albeit even somemodern-day Green-
land ice streams may attain this shape (Fig. 2);

(5) Hour-glass-shaped ice streams with no discrete tributaries and a
convergent onset zone and divergent downstream end (the
Dubawnt Ice Stream, Suggi Lake Ice Stream, James Bay Ice
Stream, Kogaluk Ice Stream; Figs. 13, 15j);

(6) Fan-shaped ice streams whose whole track is represented by a
divergent fan-shape (the Hayes Lobe, Rainy Lobe, Red River
Lobe; Figs. 13, 15l).

The groups of hour-glass-shaped (Fig. 15j) and fan-shaped ice
streams (Fig. 15l) are absent among modern ice streams. However, ice
streams operating in the Fennoscandian Ice Sheet during its retreat
over southern Finland attained distinct fan shapes (Punkari, 1995;
Boulton et al., 2001), albeit at a smaller scale, and, similar to the Hayes
and Rainy lobes, these were also deglacial ice streams terminating in
shallow water. We discuss the longevity and significance of these
types of ice streams in Section 5.5.

In terms of dimensions, ice streams in Antarctica and the LIS occur in
a variety of sizes (Fig. 16). Whilst small ice streams of only a few km in
width and several tens of km in length occur in Antarctica and the LIS
(feeding topographically defined outlet glaciers), the largest ice streams
currently active in Antarctica are smaller than the largest Laurentide ice
streams. Whilst the longest of the Antarctic ice streams is the Recovery
Glacier with ~900 km length (Fig. 1), the length of the largest LIS ice
streams ranged between ~1300 and ~1000 km (Table 1, Fig. 2). How-
ever, it is important to note that the Antarctic Ice sheetwasmore exten-
sive at the LGMwhen the overall lengths of Antarctic palaeo-ice streams
were probablymore comparable (e.g., ice streams in the Crary or Ronne
troughs or at the Siple Coast may have reached 1300–1600 km at the
LGM; Fig. 14; Livingstone et al., 2012). In addition, identifying the up-
stream limit is somewhat arbitrary for both modern and palaeo-ice
streams. The upstream limit was defined as the uppermost spatially
identifiable zone of enhanced velocity (i.e., bordered by slower moving
ice) for Antarctic ice streams (in data from Rignot et al., 2011c); and for
the measurement of LIS ice streams the decision was made on case-by-
case basis and reflects the upstream limit of evidence for accelerating
flow entering the ice stream system (Table 1). We also note that ice
streams in smaller ice sheets tend to be shorter, but not proportional
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to the size ratio between the ice sheets: the largest ice stream in the
Greenland Ice Sheet, the Northeast Greenland Ice Stream (Fig. 2),
reaches ~700 km length, and the Baltic Sea Ice Stream of the
Fennoscandian Ice Sheet could have reached a length of ~1000 km.

Although the absolute size of the largest LGM ice streams of the LIS
exceeds those operating at present in Antarctica, their length-to-width
ratios are within the same range (Fig. 16). Interestingly, a distinct
trend appears within the group of the LIS ice streams: deglacial ice
streams have lower length-to-width ratios than ice streams draining
ice to the LGM ice margin (Fig. 2, 16). This, together with anomalous
shape of ice streams like theHayes or Rainy lobes (Fig. 13),may indicate
that the deglacial ice streams may have formed in reaction to dynamic
or climatic forcing that does not occur at modern ice sheets.

In summary, it appears that the LGM velocity pattern of the LIS was
organised in a similar way to the comparably sized modern Antarctic ice
sheets. Under these conditions,most of themass loss is delivered through
ice streaming, rather than surface melt (Bamber et al., 2000; Shepherd
et al., 2012). In contrast, the ice drainage pattern changed considerably
during deglaciation of the LIS, when climatic conditions were likely to in-
duce a greater proportion of surface melt (Carlson et al., 2008, 2009;
Storrar et al., 2014). During deglaciation, the network of ice streaming
was punctuated by shorter but broader ice streams that operated over
the flatter interior regions and which have no modern analogues.

5.3. Marine versus terrestrial ice streams

For all present-day ice streams in Antarctica and Greenland, the
large ice flux is calved directly into the ocean, and sometimes via large
ice shelves (e.g., in Antarctica). However, the removal of ice from terres-
trial ice stream termini is more enigmatic and, in most cases, these ice
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streams are associated with a lobate ice margin, which typically ad-
vances into lower elevation or warmer areas that help remove ice
through ablation. Given that terrestrial ice streams did not perpetually
advance, an obvious question is whether ablation rates at the down-
stream end are high enough to sustain continuous streaming flow or
whether these ice streams represent a short-lived advance, followed
by stagnation and ablation. These issues relate to other questions
about the longevity and character of fast ice flow at terrestrial margins.

For a broad group of terrestrial ice lobes, the term surge has fre-
quently been used (e.g., Clayton et al., 1985; Marshall et al., 1996;
Kleman et al., 1997; Marshall and Clarke, 1997b; Evans and Rea, 1999;
Evans et al., 1999; Kleman and Applegate, 2014). These fast flow fea-
tures were expected to have undergone cycles of surging and quies-
cence, which has been supported by the reconstructed chronologies
for the southern LISmargin indicating afluctuating icemarginwhere in-
dividual ice lobes repeatedly advanced and retreated (Clark, 1994; Dyke
et al., 2003; Mickelson and Colgan, 2003). They are also recorded by lat-
eral moraines indicating low ice-surface slopes (Clayton et al., 1985),
and by assemblages of landforms indicating stagnation of the surged
lobes (Evans and Rea, 1999; Evans et al., 1999). Theoretical support
for this mode of behaviour has come from the surging mechanism ob-
served frequently at polythermal glaciers,where changes in the thermal
regimeat the bed and a build-up of subglacial water pressures lead to an
abrupt onset of fast flow (Kamb et al., 1985; Kamb, 1987; Raymond,
1987).

In contrast, Patterson (1998) suggested that the lobes of the south-
ern LIS margin operated not as short-lived surges, but as terrestrial ice
streams thatwere sustained for longer timeperiods. She stressed the ef-
fects of the initial topography: ice would have preferentially been
flowing in topographic lowswheremore subglacialmeltwater was pro-
duced due to thicker ice, and fast ice flow would have further been in-
duced by the fine sediments covering the floor of the shallow troughs.
These initial conditions would have led to an establishment of a stable
ice drainage network of the ice sheet comprising a number of persistent
ice streams (Patterson, 1997, 1998; Jennings, 2006).

To test whether terrestrial ice streams are able to persist, a simple
calculation for mass flux can be done, and we use the dimensions of
the James and Des Moines lobes at the southern margin. These were
about 100 kmwide at their downstream end and, because the ice thick-
nesses are not well constrained, two values, 500 and 1000 m, will be
used. Assuming that the ice stream formed an ice lobe protruding
from the adjacent non-streaming ice sheet margin with simplified di-
mensions of 300 long × 150 km wide, melt rates required to prevent
the lobe advancing can be estimated from ice flow velocities within
the ice stream. For a flow velocity of 1 km/year and an ice thickness of
500 m, the melt rate on the ice lobe would need to be about 1 m of ice
per year (2 m for ice 1000 m thick). These values are well below the
values modelled by Carlson et al. (2008, 2009) for the ablation area of
the ice sheet during deglaciation. We therefore suggest that sustaining
a terrestrial ice stream is less of a problem thanmight have been hither-
to assumed and that the reconstructed short-lived surges (Evans and
Rea, 1999, 2003) might have been characteristic mainly during the
phase of ice retreat.

5.4. Controls on ice stream location

Where ice streams turn on and off in an ice sheet is an important
control on the configuration and stability of ice sheets (Hughes, 1977;
Stokes and Clark, 2001;Winsborrowet al., 2010). In this section,we dis-
cuss possible controls governing the location of ice streams within the
LIS. In this regard, Winsborrow et al. (2010) identified several factors
thatmay influence the location of ice streams: (1) topographic focusing,
(2) topographic steps, (3) macro-scale bed roughness, (4) calving mar-
gins, (5) subglacial geology, (6) geothermal heat flux, and (7) subglacial
meltwater routing. In general, we find that almost all of the larger ice
streams (with a notable exception of ice streams of the central Canadian
Shield as well as central Alberta) exhibit at least partial topographic
steering (Fig. 14) and that most of these ice streams also coincide with
several other controls. This causes issueswhen trying to identify the pri-
mary control(s) on each individual ice stream, but we now discuss each
of the potential controls and their likely importance across the popula-
tion of ice streams in the LIS.

5.4.1. Topographic steering
Major topographic features exert a strong control on ice-flow

pattern (e.g., Mathews, 1991). Fast ice flow in topographic troughs is
supported by several processes (cf. Winsborrow et al., 2010): thicker
ice reaches pressure melting point when surrounding ice on topo-
graphic highs is still frozen to the bed (Sugden, 1978; Hall and Glasser,
2003); thick ice under high pressure is more viscous than surrounding
thinner ice (Clarke et al., 1977); and the floors of topographic lows are
frequently covered by sediments that constitute a weaker bed than
bedrock (e.g., Dowdeswell et al., 2004).

Topographic steering appears to be a dominant control on ice flow
pattern both in the present-day ice streams of Antarctica and Greenland
aswell as in the LIS (cf. panels a and b in Fig. 14 and panels a–c in Fig. 7;
Løken and Hodgson, 1971; Sugden, 1977, 1978; Denton and Hughes,
1981; England et al., 2006; Kessler et al., 2008). From the ice streams
identified in the LIS, 55% were reconstructed based on the occurrence
of glacial troughs and, of these, 89% display other evidence of their exis-
tence, such as a bedform imprint, IRD provenance, sedimentological
evidence or the occurrence of sedimentary depo-centres (Fig. 6;
Margold et al., 2015). Whereas almost all of the ice streams draining
the LIS during the LGM appear to be topographically controlled
(Fig. 14), the degree of topographic control on ice stream location de-
creases during the deglaciation, and most of the larger deglacial ice
streams show little relation to topography (Fig. 14). However, this is
largely due to the fact that the ice sheet was retreating onto the central
parts of the Canadian Shield, which is characterised by landscapes of
low relief (Fig. 14). The exception is over the Interior Plains, where
fast ice flow became increasingly steered by the topography during de-
glaciation (Figs. 9, 14; Ross et al., 2009; Ó Cofaigh et al., 2010).

5.4.2. Calving ice front
With the exception of ice streams at the southern margin, all LGM

LIS ice stream systems were likely terminating in the ocean, despite
lower sea levels (Fig. 2; England et al., 2006; Shaw et al., 2006; De
Angelis and Kleman, 2007; Rashid and Piper, 2007; Todd et al., 2007;
Li et al., 2011; Batchelor and Dowdeswell, 2014; Batchelor et al.,
2013a,b, 2014; Jakobsson et al., 2014). However, major uncertainties
exist with regard to the existence and extent of ice shelves that could
have exerted a buttressing effect and protected the ice stream termini
from calving. There is also uncertainty regarding the extent of some
ice streams on the continental shelf, such as the ice streams draining
the Innuitian Ice Sheet to the NE (England et al., 2006, 2009). Although
ice shelves might have prevailed in front of some marine-terminating
ice streams, even during deglaciation (Hodgson, 1994; De Angelis,
2007; Stokes et al., 2009; Furze et al., 2013), ice calving is expected to
have had an important role in the retreat of grounded ice from the chan-
nels of the CAA (De Angelis and Kleman, 2007; Stokes et al., 2009). A
calving terminus, in combination with topographic steering and a
weak bed, would have presented a strong stimulus for fast ice flow, as
long as it was sustained by topography that permitted marine trans-
gression and a propagation of the calving bay with the retreating ice
front. It is also worth noting that calving is not restricted to marine
margins. Proglacial lakes along the terrestrial margin may also have in-
fluenced the location of ice streams (e.g., Stokes and Clark, 2004). Thus,
thewater depth of these lakeswas a critical parameter in controlling the
occurrence of calving (Cutler et al., 2001) and it would be useful to de-
termine the extent to which proglacial lakes accelerated deglaciation,
e.g., using numerical modelling (Cutler et al., 2001).
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5.4.3. Geology of the bed
Ice velocity is a function of stresses within the icemass and the drag

of the bed constitutes an important component of the force balance
(Paterson, 1994). Thus, the geology of the bed in terms of the strength
and roughness of the bedrock and the presence or absence of a layer
of loose sediments can either facilitate or impede fast ice flow (Bell
et al., 1998). Weak sedimentary rocks as well as thick sediment cover
have been suggested to be conducive to fast ice flow and to exert a con-
trol on the occurrence of ice streams (Hicock and Dreimanis, 1992;
Marshall et al., 1996; Anandakrishnan et al., 1998; Ó Cofaigh and
Evans, 2001; Lian et al., 2003; Phillips et al., 2010). Indeed, regional
geology appears to exert a strong influence on the distribution of ice
streams within the LIS (Fig. 8). The onset of the network of ice streams
in theNW,Wand SWsectors of the ice sheet (Fig. 9) is particularly strik-
ing, in that it occurs immediately down-ice from the abrupt transition
between the Canadian Shield and the more deformable sedimentary
substrates. Elsewhere, weaker beds composed of marine or lacustrine
sediments have been suggested to facilitate ice streaming in the basins
of the Great Lakes (Fisher et al., 1985; Hicock and Dreimanis, 1992), in
Hudson Bay (Fisher et al., 1985; MacAyeal, 1993; Tarasov and Peltier,
2004), and in the channels of the CAA (Tarasov and Peltier, 2004). We
also note, however, that whilst the Canadian Shield is likely to have
offered a higher-friction substrate, and evidently appears to have sup-
ported fewer ice streams, it hosted several large, broad ice streams
(see Section 5.2) that were probably facilitated by basal sliding in asso-
ciation with elevated subglacial water pressures (Stokes and Clark,
2003a,b).
of the hydraulic potential surface at the ice-sheet bed for 293 modelled ice-surface
geometries during the period of 32–6 ka BP (Livingstone et al., 2013; reproduced with
permission) alongside reconstructed ice streams (Margold et al., 2015) drawn in
orange/darker grey (LGM) and yellow/lighter grey (deglacial). Identified subglacial lake
evidence in Christie Bay, Great Slave Lake (Christoffersen et al., 2008), is marked by a
black star. Simplified LGM ice sheet margin is in pink (medium grey if viewing a black
and white version of the manuscript). Note the correspondence between the modelled
drainage locations and reconstructed ice stream tracks at times of maximum ice extent.
However, ice streaming conditioned by the presence of meltwater cannot be directly
inferred from this because topography plays a large role both in the modelled meltwater
drainage pathways and in the location of ice streams. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
5.4.4. Meltwater at the bed
If subglacial water is present at sufficiently high pressures, it can

greatly reduce effective pressures, which leads to a significant decrease
in basal drag (e.g., Clayton et al., 1985; Kamb, 1987). In addition, if sed-
iments present at the bed are saturated with water, they become more
easily deformable (e.g., Blankenship et al., 1986; MacAyeal, 1989). Both
of these processes have been confirmed by field-studies on present day
Antarctic ice streams (Engelhardt et al., 1990; Engelhardt and Kamb,
1997; Engelhardt and Kamb, 1998; Kamb, 2001). Furthermore, spatial
and temporal variations in the availability of subglacial meltwater are
known to occur (Gray et al., 2005; Murray et al., 2008; Vaughan et al.,
2008) and re-routing of meltwater has been suggested to cause speed-
up, slowdown, or stagnation of ice streams in Antarctica (Alley et al.,
1994; Anandakrishnan and Alley, 1997; Anandakrishnan et al., 2001;
Wright et al., 2008; Beem et al., 2014). Surface melt-induced speed-up
of ice streams in Greenland has also been hypothesised (Zwally et al.,
2002; Parizek and Alley, 2004; Bartholomew et al., 2010), but the precise
response of the subglacial drainage system is not always straightforward
(Schoof, 2010; Sundal et al., 2011; Meierbachtol et al., 2013). Since large
changes in the amount of supraglacially produced meltwater probably
occurred on the deglaciating LIS (Carlson et al., 2008, 2009; Storrar
et al., 2014), it can be assumed that similar changes affected the ice-
flow pattern of the ice sheet and, potentially, the location of ice streams.

Increased availability of meltwater at the bed (either from subglacial
or supraglacial sources), could thus have a significant influence on the
location of fast ice flow and may help explain the large ice streams
that operated in otherwise unfavourable conditions (e.g., with no topo-
graphic control and over a resistant bed) during deglaciation. Perhaps
unsurprisingly, meltwater drainage pathways modelled by Livingstone
et al. (2013) also correlate well with the majority of large topographic
LIS ice streams (Fig. 17). We also note that the location of one of the
few subglacial lakes hypothesised for the LIS (Great Slave Lake;
Fig. 17; Christoffersen et al., 2008; Livingstone et al., 2013), lies immedi-
ately up-ice from an ice stream track (no. 175 in Fig. 9). This lake could
thus have possibly promoted fast ice flow down-ice of its location in the
manner suggested for Antarctic subglacial lakes (Siegert and Bamber,
2000; Bell et al., 2007).
5.4.5. Macro-scale bed roughness, geothermal heat flux, and transverse
topographic steps

In contrast to the controls on ice stream location discussed above,we
observe relatively little evidence for the effects of geothermal heat flux,
topographic steps transverse to the ice-flow direction, or bed rough-
ness, which were also discussed byWinsborrow et al. (2010) as poten-
tial controls on ice stream location. Increased values of geothermal heat
flux have been found to correlate with the onset zones of the Northeast
Greenland Ice Stream(Fahnestock et al., 2001a,b) and the Siple Coast Ice
Streams in Antarctica (Blankenship et al., 1993, 2001). Values of the
geothermal heat flux show a large variation across the bed of the LIS
(Fig. 18; Blackwell and Richards, 2004), in a pattern similar to the esti-
mations for Antarctica, both in terms of spatial variations and absolute
values (cf. Maule et al., 2005). Highest values, in excess of 100 mW/
m2, are reached in the southern Northwest Territories, and indeed,
Brown (2012) suggested that, through its influence on subglacial melt-
ing, geothermal heatfluxmight have contributed to the development of
ice streams in theNWsector of the LIS. However, these relationships are
not straightforward. Elsewhere on the ice sheet bed, we note low geo-
thermal heat flux values in the area of Hudson Bay and central Labrador,
but whereas central Labrador exhibits correspondingly low ice stream-
ing activity, several ice streams have been identified SW of Hudson Bay
where the geothermal heat flux values are similarly low.

Macro-scale bed roughness (defined as ~1–100 km) has been shown
to correlate with the ice velocity pattern of modern ice streams
(e.g., Siegert et al., 2004; Rippin et al., 2011) and ice sheets
(e.g., Bingham and Siegert, 2009). However, little systematic research
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Fig. 18. Present-day geothermal heat flux for the area formerly covered by the Laurentide
Ice Sheet (modified from Blackwell and Richards, 2004). Simplified Last Glacial Maximum
extent is drawn after Shaw et al. (2006), Kleman et al. (2010), and Jakobsson et al. (2014).
Ice streams are drawn by arrows; those inferred to be active at the Last Glacial Maximum
are in pink; deglacial ice streams or those with unknown age are in purple (lighter and
darker grey, respectively, if viewing a black and white version of the manuscript). (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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to examine the influence of macro-scale bed roughness on the ice-flow
pattern has been done for the Pleistocene ice sheets, which is perhaps
surprising given the accessibility and data availability of palaeo-ice
sheet beds. It has been observed that ice stream tracks in the SW sector
of the LIS, outside of the Canadian Shield, are much smoother than the
surrounding terrain (Evans et al., 2008, 2014). However, it is almost
impossible to determine the cause and effect, and it is equally likely
that the smooth bed results from ice stream flow, rather than caused it.

Similar to bed roughness, topographic steps have received minimal
attention in the case of the LIS and, where considered, they have been
suggested to exert little influence on ice stream location (Brown,
2012). Indeed, the bed of the LIS had a much lower relief compared to
Antarctica and Greenland (Fig. 14) and, consequently, transverse topo-
graphic steps were less likely to affect the character of ice drainage.

5.4.6. Summary
In summary, we find that topography appears to be the most in-

fluential control on the location of ice streams at the LGM (Fig. 14),
with many topographic ice streams also terminating in the ocean and
thereby possessing a calving margin. This is very similar to modern-
day ice sheets in Greenland and Antarctica. During the first stages of de-
glaciation (18–11 cal ka BP), the southern and western margins of the
ice sheet retreated over relatively deformable sedimentary substrates
that appear to have facilitated a large number of sinuous ice streams
that existed as dynamic networks (Fig. 8). The number of ice streams
drops quite dramatically once the ice sheet retreated over much harder
(and flatter) crystalline terrains of the Canadian Shield (Figs. 2, 8), sug-
gesting that the underlying geology is also an important control. In this
respect, our findings are in broad agreement with Winsborrow et al.'s
(2010) hierarchy that suggests that topographic troughs, calving mar-
gins and soft beds are the most important controls on ice stream loca-
tion. However, several ice streams ‘turned on’ during final deglaciation
(10–8 cal ka BP), perhaps influenced by elevated subglacial water
pressures, but with no obvious links to predicted meltwater drainage
(Fig. 17) or physiographic controls. Some may have been influenced
by calving into proglacial lakes, but we speculate that they were likely
triggered by some form of mass balance (i.e., melt-induced) destabi-
lisation linked to climate warming.

5.5. When did the ice streams operate?

Despite a comprehensive knowledge of the spatial extent of ice
streams, our review indicates that there are few constraints on their
temporal activity. This is a major gap in our understanding, because
knowledge of when ice streams turned on and off is critical to an under-
standing of the response (and influence) of ice sheets to (on) the cli-
mate system. For example, to what extent was ice streaming driven by
changes in ice sheet mass balance or localised physiographic controls
(Section 5.4)? Did ice streams turn on and off synchronously in re-
sponse to, or during, major ocean-climate events (e.g., Heinrich events,
meltwater pulses, abrupt warming or cooling)?

For some parts of the ice sheet, such as portions of the Keewatin and
Foxe sectors, the timing of ice streaminghas been broadly reconstructed
using the most up to date ice margin chronology of Dyke et al. (2003;
see Stokes and Clark, 2003b; Shaw et al., 2006; De Angelis, 2007; De
Angelis and Kleman, 2007; Stokes et al., 2009; Brown, 2012). Prelimi-
nary data-model comparisons have also been used to inform our under-
standing of when some ice streams may have operated (Stokes and
Tarasov, 2010; Stokes et al., 2012), but for most ice streams, there
have been few attempts to constraint their activity using absolute dat-
ing methods (Winsborrow et al., 2004).

Ice streams tracks that extend to the maximum limit of the LGM ice
sheet and/or extend across the continental shelf have generally been
assumed to be active at the LGM (e.g., Kleman and Glasser, 2007)
whereas those that liewell inside the LGM icemargin (e.g., theDubawnt
Lake Ice Stream) or those that deviate from the LGM ice-flow patterns
(e.g., some of the smaller ice streams on Baffin and Prince of Wales
islands; Figs. 2, 3) have generally been considered much younger
(Stokes and Clark, 2003b; De Angelis, 2007; De Angelis and Kleman,
2007; Stokes et al., 2009). However, not all ice streams reaching the
LGM ice margin necessarily operated simultaneously, which is high-
lighted by the varied timing of the maximum advance of the southern
lobes (Clayton and Moran, 1982; Mickelson et al., 1983; Attig et al.,
1985; Dyke and Prest, 1987a; Mickelson and Colgan, 2003; Kehew
et al., 2005; Ross et al., 2009). The timing of operation is also uncertain
for ice streams flowing across the continental shelf, in the Beaufort
and Labrador seas and in Baffin Bay, beyond the maximum Late
Wisconsinan limit of the ice sheet (Fig. 2). Indeed, the LGM ice margin
has recently been re-drawn to the edge of the continental shelf in
most areas (Shaw et al., 2006; Li et al., 2011; Lakeman and England,
2013; Jakobsson et al., 2014), but the timing of ice streaming remains
uncertain, especially in terms of when they might have switched on in
these settings: before, during or immediately after the LGM? Very little
is known about pre-LGM ice streaming within the LIS. Both the land-
form record (Kleman et al., 2010) and terrestrial sediment dispersal
(Shilts, 1980; Adshead, 1983; Prest et al., 2000) indicate that pre-LGM
ice sheet geometry and ice flow patternsmight have been distinctly dif-
ferent from the LGM and post-LGM periods, even though the results of
low-resolution modelling studies show that some of the largest topo-
graphic ice streams may have operated during most of the ice sheet's
existence (Stokes et al., 2012).

Important constraints on the timing of pre-LGM ice-streaming are
likely to be recorded in ocean-floor sediments. In particular, major epi-
sodes of iceberg calving inferred from IRD records are able to span the
entire late Pliocene and the Pleistocene (Bailey et al., 2010, 2012). A
more detailed record is available for the late Pleistocene, and especially
for the late Wisconsinan, and it shows a periodicity of IRD events likely
related to LIS dynamics and with major ice fluxes operating with a
roughly 7 kyr cycle (Heinrich events) that are in synchrony with the
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coldest peaks recorded in the Greenland ice cores (Hemming, 2004).
The established timing of the Heinrich events is approximately 60, 45,
38, 31, 24, and 16.8 ka for H6 to H1, with a Heinrich-like event (H0) de-
scribed during the Younger Dryas. The average duration of the Heinrich
events is inferred to about 500 years (Andrews and MacLean, 2003;
Hemming, 2004). The Heinrich oscillations overprint a finer pattern
that shows an increase in the LIS dynamics that may reflect the cold
peaks of the Dansgaard–Oeschger cycles (Bond and Lotti, 1995;
Andrews and Barber, 2002). Given recent advances in sediment prove-
nance techniques (Andrews and Eberl, 2012; Andrews et al., 2012),
there would appear to be huge potential to make links between these
IRD events and specific ice stream catchments.

Even though most research on IRD fluxes from the LIS has concen-
trated on the sediments deposited in the North Atlantic and traced
back to the Hudson Bay and Strait region (Andrews, 1998; Hemming,
2004), major IRD events have also been linked to other ice streams,
which released icebergs from the CAA to the Beaufort Sea and Baffin
Bay, and from Labrador and Atlantic Canada to the Atlantic Ocean
(Darby et al., 2002; Stokes et al., 2005; Rashid et al., 2012; Andrews
et al., 2014; Simon et al., 2014). However, whereas some of this influx
may be tentatively synchronous with Heinrich events (e.g., the activity
of the M'Clure Strait Ice Stream: Darby et al., 2002; Stokes et al., 2005)
other cyclic increases in ice stream activity do not correlate with this
rhythm (Andrews et al., 2014). Furthermore, little connection has so
far been established between the record of the LIS dynamics recon-
structed from the ocean floor sediments (i.e., Heinrich events) and the
terrestrial glacial landform and sedimentary record. To our knowledge
the only exceptions are the advances of the Rainy Lobe in Minnesota,
which Mooers and Lehr (1997) correlated with H2 and H1; and the in-
terpretation byDyke et al. (2002) that changes in the ice sheet geometry
over Labrador reconstructed by Veillette et al. (1999)might be linked to
Heinrich event reorganisation.

Notwithstanding the lack of absolute age control, we can use the dis-
tribution, size and shape of ice streams to tentatively identify three dif-
ferent categories based on their temporal activity (see also Klemanet al.,
2006; Kleman and Glasser, 2007). The first category, which we term
‘persistent ice streams’, are those reconstructed or assumed to have
operated continuously, as long as their trajectories were preferential
pathways for ice drainage, such as alongmajor topographic troughs. Ex-
amples of these are the Amundsen Gulf Ice Stream (Stokes et al., 2009;
Brown, 2012), ice streams draining Foxe ice across Baffin Island into Baf-
fin Bay (Briner et al., 2006; De Angelis and Kleman, 2007; Briner et al.,
2009), as well as possibly other marine-terminating ice streams
draining the Innuitian Ice Sheet, the Labrador Ice Dome, and the ice
complexes of Atlantic Canada (England et al., 2006; Shaw et al., 2006).

A second category, which we term ‘recurrent ice streams’, are those
that have been interpreted to switch on and off in the same location.
These would include the M'Clure Strait Ice Stream, which is thought to
have been replaced by a short-lived ice divide, and then subsequently
switched back on in the form of the smaller M'Clintock Channel Ice
Stream (Hodgson, 1994; Clark and Stokes, 2001; Stokes et al., 2009),
and possibly the James Lobe and the Des Moines Lobe, which have
been reconstructed to advance and retreat several times during the
Late Wisconsinan (Clayton and Moran, 1982; Dyke and Prest, 1987a).
A long-frequency binge/purge oscillation throughout the glacial cycle,
reflected in the Heinrich layers, has also been suggested for the Hudson
Strait Ice Stream (Heinrich, 1988; Bond et al., 1992; MacAyeal, 1993;
Alley and MacAyeal, 1994; Marshall and Clarke, 1997b; Calov et al.,
2002; Robel et al., 2013).

A third category are those that only operated once and over a short
time-scale (decades to a few centuries) and which we term ‘ephemeral
ice streams’ (after Kleman et al., 2006; including their category “tran-
sient rigid-bed ice streams”). These ice streams came into existence as
a result of rapid changes in ice sheet geometry and transient conditions
that promoted fast ice flow during deglaciation (Kleman et al., 2006;
Stokes et al., 2009; Kleman and Applegate, 2014). Examples include
the Dubawnt Lake Ice Stream or the Hayes Lobe (nos. 6 and 179 in
Fig. 13) or small deglacial ice streams on Prince of Wales and Baffin
islands (nos. 12, 101–103, 106–107, 118–120 in Fig. 3).

In summary, a number of large ice streams reached the LGM limit of
the ice sheet and have thus been assumed to have operated during the
LGM. However, our knowledge about the timing of ice streamoperation
within the LIS is uneven and incomplete.Whilst the temporal history of
some ice streams is known in general outline, there have been few
attempts to date ice stream activity in the LIS and this is a key area for
future work to address. Nonetheless, the size and shape of ice streams
suggests three main categories that we term persistent ice streams, re-
current ice streams, and ephemeral ice streams.

5.6. Stability of ice drainage network

In relation to the previous section, it is important to consider the
temporal and spatial stability of the ice stream drainage network,
which we broadly define as the pattern and spacing of ice streams. Re-
search on contemporary ice sheets is heavily focussed on measuring
and modelling changes in ice stream velocity, thinning and terminus
positions (Joughin, 2002; Joughin et al., 2004, 2008; Nick et al., 2009;
Miles et al., 2013; Nick et al., 2013) and yet we have little context for
understanding what changes might take place over much longer cen-
tennial to millennial time-scales, e.g., will ice streams persist or will
other ice streams switch on or off? Knowledge of palaeo-ice streams,
however, should allow us to answer some of these questions and assess
how stable the ice stream drainage network might be within a deg-
laciating ice sheet.

In the LIS, an obvious control on the ice stream network is topogra-
phy (see Section 5.4). High relief coasts overrun by the ice sheet (such
as NW Ellesmere Island and NE Baffin Island) exhibit a regular pattern
of ice drainage organisation where several fjords feed into a shelf-
crossing trough. This organisation with regular spacing between the
cross-shelf troughs and the highly over-deepened trough heads re-
quires a prolonged time for formation (Kessler et al., 2008), which at-
tests to a relatively stable ice drainage network in these portions of
the ice sheet, probably over several glacial cycles. Analogous settings
existed in the Pleistocene Cordilleran and Fennoscandian ice sheets
and in the Greenland and Antarctic ice sheets (Fig. 7). It is interesting
to note, however, that along these heavily incised coasts, there appears
to be a clear preference/organisation of ice stream spacing, which pre-
sumably reflects the interaction of the catchment areas that feed indi-
vidual fjords. For example, Fig. 7a shows numerous (8–9) relatively
short and closely spaced cross-shelf troughs emanating from the coast
of Baffin Island, whereas across Baffin Bay, the ice streams from west
Greenland carved much larger troughs that were spaced further apart.
This organised pattern and spacing has rarely been scrutinised in con-
temporary or palaeo-ice sheets, but hints at a regulatory role of ice
streams in these regions where the potential for additional ice streams
to switch on and off is, presumably, limited. Of course, this does not pre-
clude temporal variations in ice flux from individual ice streams, per-
haps through short-term bathymetric controls or changes in the size
or slope of the ice stream catchments (Briner et al., 2009; Jamieson
et al., 2012; Joughin et al., 2014; Rignot et al., 2014; Stokes et al., 2014).

Elsewhere in the ice sheet, there is evidence that the drainage net-
work of ice streams was far more dynamic, typically in lower relief
areas, such as across the Canadian Prairies (e.g., Evans et al., 2008;
Ross et al., 2009; Ó Cofaigh et al., 2010; Evans et al., 2014), and in Labra-
dor/Ungava (Kaufman et al., 1993; Clark et al., 2000; Jansson et al.,
2003). The interaction between neighbouring ice streams has been
observed during deglaciation (Ross et al., 2009; Ó Cofaigh et al., 2010;
Evans et al., 2014). Even in some of the moderately high relief settings,
changes in ice catchments might drive changes in ice stream activity.
For example, at the NW margin of the ice sheet, Stokes et al. (2009)
noted periods when neighbouring ice streams appeared to behave
in synchrony, such as during the retreat of the M'Clure Strait and the
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AmundsenGulf ice streams between 15.2 and 14.1 cal ka BP, forwhich a
dominance of external forcing was inferred. However, they also identi-
fied times when the ice streams behaved differently, and thought to re-
flect internal dynamics of the ice stream catchments (Stokes et al.,
2009). De Angelis (2007) also stressed the importance of nonlinear pro-
cesses involved in internal ice sheet dynamics, where a large reaction
may be triggered by a minor change in external conditions or ice sheet
configuration. An illustration of this might be an inference of Stokes
et al. (2009) that the quiescence of the M'Clure Strait Ice Stream was
caused by its previous rapid retreat into deeper andwider ViscountMel-
ville Sound, which led to a thinning and a subsequent freeze-on of the
ice mass (cf. Christoffersen and Tulaczyk, 2003; Beem et al., 2014),
and to profound changes in the configuration of the ice sheet sector.

Thus, although there has been limited work on the stability of ice
stream drainage networks at millennial time-scales, our synthesis
from the LIS appears to show stable and regularly spaced networks in
areas of high relief, but with the potential for much more dynamic
changes to occur over low relief areas (Jansson et al., 2003; Ross et al.,
2009; Ó Cofaigh et al., 2010). This “switching” behaviour is likely driven
by a number of factors (see also Winsborrow et al., 2012), including
changes in topography and geology as the ice sheet retreats
(Dowdeswell et al., 2006; Stokes et al., 2009), competition and interac-
tion between neighbouring catchments (in terms of both ice and sub-
glacial meltwater; Payne and Dongelmans, 1997; Anandakrishnan
et al., 2001; Conway et al., 2002; Greenwood and Clark, 2009) and, po-
tentially, external climate triggers (De Angelis and Kleman, 2007;
Stokes et al., 2009).

5.7. What role did ice streams play in ice sheet mass balance
during deglaciation?

A further interesting question that relates to the stability of the ice
stream drainage network relates to the role of ice streams during ice
sheet deglaciation. In contemporary ice sheets, ice streams account for
between 50% (Greenland) and up to 90% (Antarctica) of the ‘dynamic’
mass loss, with the remaining accounted for melting (supraglacial or
basal, e.g., under ice shelves; Bamber et al., 2000; van den Broeke
et al., 2009). To date, however, there have been no empirical estimates
for the potential flux from ice streams in the LIS, or any other palaeo-
ice sheet, either for the LGM or for different stages of deglaciation. Did
the percentage of dynamic mass loss remain constant throughout the
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Fig. 19. Conceptual scenarios for the percentage of dynamicmass loss in the Laurentide Ice
Sheet during deglaciation. Three possible scenarios are drawn: (1) the percentage of mass
loss delivered by ice streams remained stable; (2) the percentage ofmass loss delivered by
ice streams decreased during deglaciation, with a proportionally increasing contribution
from surface melt, (3) the percentage of mass loss through ice streams increased during
deglaciation, perhaps hinting at non-linear feedbacks accelerating mass loss beyond that
which might be expected from climate forcing alone.
deglaciation or did it increase or decrease? We illustrate these three
simple scenarios in Fig. 19 and suggest that determining their likelihood
is likely to represent a significant advance in understanding ice sheet re-
sponse tomajor changes in climate. If we knew the answer, it might tell
us whether ice stream activity across an ice sheet is predictably and
closely related to external climate forcing, or whether it might acceler-
ate deglaciation far quicker thanmight be expected fromclimate forcing
alone. The latter would have major implications for our predictions of
modern-day ice sheets and the time-scales and magnitude of future
sea level rise.

Although the interplay between the effects of external forcing and
internal dynamics during the LIS deglaciation was undoubtedly highly
complex, there are some hints of internally driven instabilities that
might be unrelated to climate forcing. The binge/purge explanation for
Heinrich events (MacAyeal, 1993), if correct (see discussion in
Hemming, 2004),would suggest that strong ice-dynamicalmechanisms
operated at least in some sectors of the ice sheet. Furthermore, a num-
ber of ice stream tracks fit the definition of ice stream “singular events”
(see Kleman and Applegate, 2014), andmight have thus been responsi-
ble for a substantial draw-down of the LIS ice mass in their respective
sectors. Much like surge-type glaciers, these ice streams may have
been influenced by long-term climate warming, but the precise timing
of the response may have been more closely linked to changes in the
distribution and pressure of subglacial meltwater. Ice streams that we
suggest might fall into this category include the Dubawnt Lake Ice
Stream, the Hayes and Rainy lobes, some of the Ungava fans, the
James Bay Ice Stream, theMaguse Lake Ice Stream (Fig. 13), and a num-
ber of smaller ice streams, particularly in the CAA. Indeed, during final
deglaciation, numerical modelling studies (Beget, 1987; Carlson et al.,
2008, 2009) as well as analyses of the landform record (Storrar et al.,
2014) appear to indicate intense surface ablation.

To provide a first order estimate on the potential role of ice streams
during the LGM and later during deglaciation, we calculate the percent-
age of themargin intersected/drained by ice streams at three time steps
and compare it against the present-day Antarctic ice sheets. We esti-
mate that the Antarctic ice sheet margin that is streaming (using the
definition from Section 3) is around 30% of its circumference
(Fig. 20a). The figure for the LGM LIS is 32% (Fig. 20b). Despite reaching
similar numbers for the present-day Antarctica and the LGM LIS, we
note an important difference: the result for the LIS is derived from a
much smaller number of relatively large ice streams compared to
Antarctica. Furthermore, it is likely that in some areas of the ice sheet,
we overestimate ice streaming activity at the LGMby adopting a simpli-
fied approach to the timing of ice stream operation, e.g., the ice streams
at the southern margin may not have operated simultaneously (Kehew
et al., 2005; Ross et al., 2009). On the other hand, it is likely that we are
missing small ice streams of the size that we can still clearly distinguish
in the Antarctic ice velocity data (Figs. 1, 20). Interestingly, for two sub-
sequent time steps (~12 cal ka and ~10 cal ka)we estimate significantly
lower percentages of the ice margin to be streaming: 15% and 12%, re-
spectively (Fig. 20b). This may reflect the fact that some of the potential
controls/triggers for ice streaming were lost when the ice sheet
retreated onto a hard bed (Clark, 1994; Marshall et al., 1996; Stokes
et al., 2012), for example, soft sediments and a calving margin (see
Section 5.4).

It is also likely that numerical modelling could shed some light on
this important issue. In a preliminary assessment of ice stream activity
during LIS build-up from ~120 ka, Stokes et al. (2012) found a strong
correlation between the size of the ice sheet and the relative role of dy-
namic mass loss (ice stream activity), an observation that is in agree-
ment with the sedimentological record of ice dynamics on the ocean
floor (Kirby and Andrews, 1999; Hemming, 2004). However, that
model is limited by the relatively coarse grid size (that is unable to re-
solve narrow ice streams) and the use of the shallow-ice approximation,
whichmay be unable to resolve the dynamics of ice streaming. Tomake
further progress on this important issue therefore, requires (1) the
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deployment of numerical models with better grid resolution and higher
order physics, and (2) a concerted effort to constrain the temporal activ-
ity of ice streams through time (see Section 5.5).

5.8. Future work

A comprehensive inventory of ice streams in the LIS is a powerful
tool for improving our understanding of the controls on ice stream
activity and their role in ice sheet mass balance and stability. Based on
our synthesis and discussion in Sections 5.1–5.7, we briefly highlight
some key areas that future work might address:

Improved dating of ice stream operation (see Section 5.5).
Constraining the timing of individual ice streams is a key require-
ment for answering important questions related to their activity
and role in ice sheetmass balance, e.g., was ice streamactivity linked
to major climate events or transitions, or did they play a more regu-
latory role? Is there evidence for near-synchronous activation or de-
activation of ice streams? Previous work has tended to use existing
pan-ice sheet margin chronologies (Dyke et al., 2003) for specific
regions (see De Angelis, 2007; De Angelis and Kleman, 2007;
Stokes et al., 2009), but this has never been applied across the
whole ice sheet. Moreover, there is a clear need for concerted efforts
to specifically date palaeo-ice stream tracks, especially in the
western and northern sectors of the ice sheet.
Provenance studies of IRD records from ocean-floor sediments. In rela-
tion to the previous point, the timing of several marine-terminating
ice streams along the northern and eastern margin of the ice sheet
might be further constrained by IRD records in the North Atlantic
and Arctic Oceans (e.g., Rashid et al., 2012). These records have the
added advantage of being able to extend our knowledge of their
activity prior to the LGM, where terrestrial evidence is scarce
(Stokes et al., 2012).
Criteria for examining hard-bedded ice streams (see Section 5.1). Our
knowledge of ice stream geomorphology is mostly gleaned from
those that operated over soft, unconsolidated sediments, where
the bedform imprint is most obvious, e.g., mega-scale glacial linea-
tions (Fig. 5). There ismuchmore uncertainty about the geomorpho-
logical imprint of ice streaming over hard beds, although some
putative criteria are emerging (Bradwell, 2005; Roberts and Long,
2005; Bradwell et al., 2008; Roberts et al., 2010; Eyles, 2012; Eyles
and Putkinen, 2014). Further work could usefully focus on dif-
ferentiating the imprint of slow versus fast flow over hard bedrock
surfaces, further informed by geophysical surveying of active ice
streams in these settings (see Bingham et al., 2010; Jezek et al.,
2011; Jezek et al., 2013; Morlighem et al., 2013). Once identified,
the geomorphology of hard-bedded ice streams might also
allow inferences to be made about the flow mechanisms of
these ice streams and the efficacy of glacial erosion in these set-
tings, which affects bed roughness. Indeed, there is huge poten-
tial to use palaeo-ice stream settings, on both hard and soft
beds, to examine the influence of bed roughness on ice sheet
flow patterns, something that is being investigated on contempo-
rary ice sheets/streams, despite the difficulty of obtaining high
resolution data (Bingham and Siegert, 2009; Rippin et al., 2011,
2014). Measurements of bed roughness on palaeo-ice stream
beds might be a powerful interpretative tool for these modern-
day ice stream studies (Gudlaugsson et al., 2013).
Estimates of ice fluxes from palaeo-ice streaming. In order to examine
the role of ice streams in palaeo-ice sheet mass balance and stability
(see Section 5.7), it is necessary to estimate the potential magnitude
of their ice flux through time. This requires better dating of palaeo-
ice streams (see above), but also an improved understanding of
their ice thickness and velocity, which would allow estimates of
their ice flux. Due to the large uncertainties, these issues are often
neglected in palaeo-ice stream studies, but future work could inves-
tigate techniques to better constrain ice thicknesses and velocities,
perhaps using modern analogues and/or numerical modelling
(Golledge et al., 2008; Stokes and Tarasov, 2010; Golledge et al.,
2012).
Successful replication of palaeo-ice streaming in numerical ice sheet
models. Future predictions of contemporary ice sheet dynamics are
heavily reliant on numerical ice sheet models. Our confidence in
their ability to predict the behaviour of ice streams will gain
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confidence from their ability to replicate observations of past ice
stream behaviour. Much progress has been made in attempting to
model the behaviour of individual ice streams in both palaeo and
modern settings (Boulton et al., 2003; Boulton and Hagdorn, 2006;
Jamieson et al., 2012; Nick et al., 2013; Lea et al., 2014), but there
have been very few attempts to compare model output against ice
stream locations at the ice sheet scale. Stokes and Tarasov (2010)
did this for the LIS, based on amuch smaller inventory of ice streams,
and found that most major topographic ice streams were captured,
but that the model was not always able to resolve terrestrial ice
streams. This is likely to reflect the inability of that model to fully
capture the role of subglacial hydrology in generating fast flow
over relatively flat beds, and this is a key area for future work to
address.

6. Conclusions

This paper presents a comprehensive review and synthesis of ice
streams in the Laurentide Ice Sheet, based on a newmapping inventory
that includes previously hypothesised ice streams and includes a con-
certed effort to search for others from across the entire ice sheet bed
(Margold et al., 2015). The inventory includes 117 ice streams and, de-
spite some subjectivity in identifying themover hard bedrock areas, it is
unlikely that any major ice streams have been missed. At the LGM,
Laurentide ice streams formed an ice drainage pattern that bears close
resemblance to the present day velocity patterns of the similarly-sized
Antarctic Ice Sheet (including both the East and West Antarctic Ice
Sheets). Large ice streams had extensive onset zones and were fed by
multiple tributaries. There is also similarity between the Laurentide
and Antarctic/Greenland ice sheets when ice drained from or through
regions of high relief onto the continental shelf, and where ice streams
show a degree of spatial self-organisation which has hitherto not been
recognised. However, the size of the largest Laurentide ice streams
surpassed the size of ice streams currently operating in Antarctica.

Similar tomodern ice sheets,most large ice streams in the LIS appear
to have been controlled by topography, but there are zones along the
western and southern margin where ice streams were spatially more
dynamic and existed in sinuous tracks and show clear switches in tra-
jectory during deglaciation.More generally, we note that the underlying
geology exerts an important control on the pattern and density of ice
streams, as noted in previous work (Fisher et al., 1985; Clark, 1994;
Marshall et al., 1996). As the ice sheet retreated onto its low relief inte-
rior, several ice streams operated that show no correspondence with
topography or underlying geology. Their location may have arisen
from localised build-up of pressurised subglacial meltwater, and they
differed from most other ice stream tracks in having much lower
length-to-width ratios, often displaying convergent ice-flow pattern
along their whole trajectory. Perhaps because all modern ice streams
are marine-terminating, the feasibility of sustaining ice streams with a
land-terminating margin is questionable, but we suggest that realistic
melt rates of 1–2 m of ice per year are sufficient to ablate ice from a
large, thin, divergent lobe that is fed by persistent rapid ice flow.

The timing of a handful of ice streams has been investigated through
a proxy record of IRD sediments on the ocean floor (e.g., Heinrich
events), which hints that the activity of some ice streams is linked to
abrupt climate changes recorded in the Greenland ice cores (Bond and
Lotti, 1995; Darby et al., 2002; Andrews and MacLean, 2003; Stokes
et al., 2005). However, there is minimal dating control for the vast
majority of ice streams in the LIS. Time-dependent ice sheet reconstruc-
tions that incorporate ice stream activity have only been carried out for
some sectors of the ice sheet, such as the CAA (De Angelis and Kleman,
2005, 2007; Stokes et al., 2009), Atlantic Canada (Shaw et al., 2006), and
the Great Lakes region (Kehew et al., 2005, 2012), whereas for other
regions the timing of ice streams has rarely been investigated (e.g., the
Interior Plains).

In terms of the stability of the ice stream drainage network, high
relief areas fixed ice streams in topographic troughs, but it is clear that
other ice streams switched on and off during deglaciation, rather than
maintaining the same trajectory as the ice margin retreated. We note
evidence for dynamic adjustments and reactions of the ice drainage net-
work to changes in ice geometry and external forcing during the degla-
ciation. These include some of the late glacial ice streams, which appear
to be local instabilities during an otherwise predictable ice margin
recession, and with the potential of substantial draw-down of ice in
the respective regions (Kleman and Applegate, 2014). This type of ice
stream has no modern analogue, but is likely to occur if and when
modern-ice sheetmargins are forced to retreat onto flat interior regions
in a warming climate (e.g., parts of Greenland). The extent to which
changes in the ice streamdrainage network represent a simple readjust-
ment to a changing mass balance driven by climate, or internal ice dy-
namical feedbacks unrelated to climate (or both) is largely unknown
and represents a key area for future work to address.

We provide a first order estimate of the changes in ice stream activ-
ity duringdeglaciation. The percentage of icemargin thatwas streaming
at the LGM is remarkably similar to that for the modern Antarctic ice
sheets (~30%), whereas this percentage drops significantly during the
LIS deglaciation (to 15% at ~12 ka and just 12% at ~10 ka). This is consis-
tent with recent modelling studies (e.g., Carlson et al., 2008, 2009) that
have suggested an increasing role of surface melt during deglaciation,
although those studies did not investigate the potential for ‘dynamic’
losses. This is a key area for future work to address and we suggest
that dating of ice streams is an urgent priority. Such dating would help
answer some key questions relating to the role of ice streams in ice
sheet mass balance and whether they have potential to accelerate de-
glaciation beyond that which might be expected from climate forcing
alone.
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