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Abstract 

A new meshless sub-region radial point interpolation method (MS-RPIM) is proposed 

for linear elastic fracture mechanics. The Williams expansions of stress field for mode 

I/II crack is used as the trial functions in crack tip region, the meshless radial point 

interpolation is used for the rest of domain, and a mixed variational principle is used for 

discretisation. In contrast to existing meshless formulations, the present MS-RPIM 

requires only very few nodes around the crack tip to obtain smooth stress and accurate 

results and the SIFs can be directly obtained as part of the solution and no additional 

effort via post-processing. 

Keywords: Crack tip; Meshless; Meshfree; Mixed variational principle; RPIM; 

1. Introduction 

The accurate analysis of crack tip fields is of vital importance for the safety assessment 

and life prediction of cracked engineering structures and materials. Over the past three 

decades, a wide range of numerical methods have been proposed for fracture modelling. 

The finite element method (FEM) using quarter-point for standard elements, singular 

crack tip elements, enriched elements, and hybrid elements [1-5] can be applied for 

fracture modelling with quite good accuracy. For static cracks, the FEM remains a 
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dominant numerical tool. However, the method finds difficulties in modelling crack 

propagation due to the element topology that needs to be updated during crack 

propagation. More recently, the development of novel numerical methods has attracted 

much interest for researchers in computational mechanics particularly in the area of 

meshless methods, which refers to a group of numerical methods requiring no 

preexisting mesh for the construction of the field approximation. They are particularly 

suitable for fracture modelling since there is no entanglement problem with large 

deformations of the mesh requiring updating or remeshing to accommodate the 

changing geometry of a crack. Some of the prominent methods for crack analysis are 

the generalized finite element method (GFEM), the extended finite element method 

(XFEM), smoothed FEM and non-uniform B-spline based FEM [6-8]. These methods 

together with meshless methods fall generally into the family of partition of unity 

methods.  

Recently, much effort has been directed towards the application of meshless 

methods to crack problems to overcome the difficulties in traditional numerical methods 

[9-19]. Despite clear general progress with these methods, there are still some technical 

issues in their application  to fracture problems, for instance, it is often awkward and an 

expensive task to refine the nodal arrangement near the crack tip in order to increase the 

solution accuracy, since the stress results tend to be oscillatory near the crack tip. The 

incorporation of singular functions associated with linear elastic fracture in meshless 

methods reduces stress oscillations and increases accuracy of stress intensity factor 

(SIF) significantly [12, 16]. However, introducing such an enriched basis in meshless 

approximations can lead to ill-conditioning of the global stiffness matrix, and special 

treatments [12, 17] have to be used to alleviate this problem. Thirdly, many meshless 

methods employ the J-integral or contour integral scheme for the calculation of SIF, 

which is performed as a post-processing step applied to the stress results, such as in the 

formulations using the FEM described in [15-19] and partition of unity enriched 

boundary element method (PU-BEM) [21, 22]. This is unlike the case with the 

isoparametric FEM or sub-region mixed variational principle based FEM where the SIF 

can be directly obtained as part of the solution [3-5].  

To address the above issues, a new meshless method is proposed in this paper 

which can be classified as a mixed sub-region radial point interpolation method (MS-

RPIM) for analyzing crack tip fields. In this method, Williams expansion of the stress 

field of mode I/II crack [22] is used as the trial functions in the region near the crack tip, 
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the meshless RPIM [23, 24] is used for the region far from the crack tip, and a mixed 

variational principle is used to discretise the governing equations [3]. The present MS-

RPIM preserves the advantages of meshless methods where the entanglement of finite 

element topology is removed, and has further positive features such as a simple 

formulation for numerical implementation. In contrast to existing meshless formulations 

for fracture modelling, it has the following advantages. Firstly, only a very few nodes 

around the crack tip are required to obtain smooth stress results and accurate SIFs. 

Secondly, solution accuracy and stability are much better than meshless methods using 

implicit enrichment and it is free from the ill-conditioning problem which affects the 

global stiffness matrix using explicit enrichment. Finally, the SIFs can be directly 

obtained as part of the solution; there is no additional effort required to calculate the SIF 

results via post-processing. The rest of the paper is organized as follows. Section 2 

covers the field interpolation used in the MS-RPIM, which is then described in detail in 

Section 3 including a description of the mixed variational formulation used for 

discretisation. Finally, Section 4 contains verification examples to show the 

performance of the method.  

2. Point interpolation based on radial basis function 

For the convenience of the following discussion, in this section we will briefly describe 

the field interpolation using the RPIM, used for the stress analysis. The RPIM was 

originally proposed in [23] and has been recently used for fracture modelling in [16] and 

[24]. We confine the present study to 2D linear elastic fracture mechanics, with the 

fundamental field variables being displacements. Consider a problem domain   of 

arbitrary shape discretised by a set of scattered nodes  ix  as shown in Fig.1. For a 

given point x  in  , there are n  distributed nodes in the influence domain x  of point 

x . Considering one of the two freedoms at a node, the nodal function value is  iu  at  

node ix . The RPIM is used to construct the approximation function  xu  of the point x  

using radial basis functions  xiB  and polynomial basis functions  iP x  having m 

terms 
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By enforcing the interpolation to pass through all n  nodes within the influence domain 

x , the coefficients ia  and ib  in Eq.(1) can be determined, and the RPIM interpolation 

can be  expressed as 
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where  xi  is the RPIM shape function, u  is the vector of nodal values where 
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and 
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Figure 1. The meshless model for an arbitrary analysis domain  

It has been proven in [24] that the RPIM shape functions  xi  in Eq.(3) possess the 

Kronecker delta property. Hence, essential boundary conditions in the RPIM method 

can be directly applied as in the FEM. Here, a linear polynomial basis function 

   yx,,1T xP                                                                                                                 (8) 

 and Gaussian type radial basis function 
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are used in the present study. In Eq. (9), 
pr  is the radius of the influence domain x  of 

point x , and ir  is a distance between interpolating point x  and the node ix  where 

   222

iii yyxxr                                                                                                  (10) 

To capture the displacement discontinuity due to the existence of crack as shown in Fig. 

1,  the visibility criterion [12] is used where a point of interest and the nodes supporting 

that point severed by a crack is not associated in the interpolation. For the determination 

of the radius 
pr  at point x , a radius id  of the support domain for an arbitrary node ix  

in domain   is firstly defined as 

ii cd                                                                                                                         (11) 

where ic  is set as the distance to the fifth nearest neighbor node near node ix ,   is a 

coefficient and here 7.2  for the nodes near the crack and at the boundary, and 
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0.2  for all other nodes. This is due to the fact that when the visibility criterion is 

used to exclude the nodes cut by the crack, or when an integration point or a sampling 

point is close to the boundary, less nodes are included as supporting nodes. This may 

lead to an ill conditioned problem or lower accuracy in the construction of the RPIM 

interpolation. From the experiences in testing examples, we found that an increase of 

the coefficient to the value of 7.2  normally gives results of satisfactory accuracy. 

Note that we have larger support coefficient for the region where the crack passes 

through but this is unnecessary for the nodes close to the crack tip since the crack tip 

region is captured by a sub-region around the crack tip, as will be explained in §3. 

Assuming that there are total N  scattered nodes  Nkk ,,1x  where the given point 

x  is in the support domain of nodes kx , the radius 
pr  of point x  is defined as 

 Np dddr ,,,min 21   .                                                                                               (12) 

3. The meshless sub-region RPIM (MS-RPIM) 

In this section, the formulation of the new meshless sub-region radial point interpolation 

method (MS-RPIM) is described in detail. We start the description of the formulation 

using a 2D problem domain of arbitrary shape with a preexisting crack as shown in Fig. 

1. The key feature of the method is the division of the problem domain into two sub-

regions in which different unknowns are solved for. In Fig. 2, the domain is divided into 

two sub-regions by setting a circle centered on the crack tip with radius R. The sub-

region bounded by the circle is denoted as cV , that outside the circle as 
pV  and the 

interface between cV  and 
pV

 
is marked as 

pcS . We follow the mixed sub-region method 

proposed in [3] by taking the stress parameters in cV  and nodal degrees of freedom in 

pV  as the unknowns. Then the functional of the total potential energy is calculated to 

include the contribution from 
pV denoted as 

p , the contribution from cV  denoted as 

c  and the energy along the interface 
pcS

 
denoted as 

pcH . Note that nodes falling 

inside cV  are not used for the interpolation in 
pV , and are set as invalid nodes when 

calculating 
p . 
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Figure 2. The divisions of the analysis domain into the complementary energy sub-region around the 

crack tip (shaded area) and the potential energy sub-region distant from the crack. 

 

3.1. The energy term in potential energy sub-region  

Here, we solve the problem in solid mechanics with the nodal displacement being 

unknowns. Denote the nodal displacements in the potential energy sub-region 
pV

 
as 

 T11 ,,,, MM vuvu U                                                                                               (13) 

where u is the displacement in x direction, v is displacement in the y direction, and M is 

the total number of nodes in 
pV , and the entries of the vector  ii vu ,  are the 

displacements at node i in x and y directions respectively. By using the RPIM 

interpolation in Eq. (3), the total potential energy in 
pV  is expressed as 

PUUKU TT  pp
2

1
                                                                                                (14) 

where 
pK  is the global stiffness matrix of the potential energy sub-region, and P  is the 

vector of nodal forces. 

3.2. The energy term in complementary energy sub-region 

We denote the displacement variables in the complementary energy sub-region cV  as 

 
T

1 2 2, , , m  β                                                                                                       (15) 
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where m is the number of the stress terms. By using Williams expansions of the stress 

fields near mode I and II crack tips [18], the stress field in the complementrary energy 

sub-region cV  can be expressed by 

  Sβσ 
T

,, yxyx                                                                                                    (16) 

where S is a vector of the stress functions of the mode I and II crack, i.e. 
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where 1,2, ,k m . Note that r and   are based on the local coordinate system shown 

in Fig. 2. Then the potential energy c  in the complementary energy sub-region is 

calculated as  

FββσDσ T1T
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where D is the elastic constitutive matrix for plane elastic problemand t is the thickness 

of the domain. Using the symmetric and antisymmetric terms of mode I and mode II 

stress expansions, the flexibility matrix in the complementrary energy sub-region can be 

written as  
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in which 
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3.3. The energy term along the interface of the sub-regions 

The traction vector at any point along the interface pcS  shown in Fig. 2 is denoted 

as  T, yx TTT  and can be calculated as 

λSβT                                                                                                                          (24) 

where  ,r   is the local polar coordinate at that point with respect the crack tip, and 

λ is the transformation matrix with respect to the crack tip given by 
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Using the displacement at a point along 
pcS , the displacement inside the sub-region can 

be interpolated using Eq. (3)   

   
1
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n

i i
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 u x u ΦU ,                                                                                      (26) 

where Φ  is the matrix of the shape functions of the RPIM, Û  is the nodal displacement 

vectors in the potential energy sub-region 
pV . The energy term along 

pcS
 
is then 

calculated as 

UHβuT ˆH TT  
pcS

pc tds                                                                                               (27) 

where 



pcS

tdsΦλSH TT   .                                                                                                        (28) 

3.4. Discretisation of the governing equations based on the mixed 

variational principle 

In this section, we will derive the discretised form of the governing equations for  the 

MS-RPIM method by minimization of the energy functional, as in the standard FEM. 
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Firstly, we look at the total energy functional which here is the total mixed energy 

functional denoted as  , i.e. the summation of the energy terms in Eqs. (14), (20) and 

(27) 

UHβFββPUUKU TT ˆ
2

1

2

1
H TT

p  pccp .
                                        (29) 

The stationary condition is applied to   so that 

0 β ,                                                                                                                   (30) 

and 

0 U .                                                                                                                  (31) 

From Eq. (29), we can solve for β as 

UHFβ ˆ1  .                                                                                                                (32) 

Substituting Eq. (32) into (29) and considering the stationary condition of Eqs. (30) and 

(31) gives 

PUHFHUK   ˆ1T

p   .                                                                                              (33) 

By taking out the entries of HFH
1T 

and adding them to the corresponding nodal 

stiffness matrix of pK , the global equation system can be obtained as  

PUK                                                                                                                         (34) 

where K is the global stiffness matrix by assembling pK
 
and HFH

1T 
 together. Now 

the nodal displacement U  can be obtained by solving Eq. (34). By substituting U  into 

Eq. (32), we can obtain the stress coefficients β  and hence the stress results at any point 

inside the domain can be evaluated from Eq. (16). Since the stress terms in Eqs. (18) 

and (19) use the Williams stress expansion as the basic solution, the SIFs for both  mode 

I and II at the crack tip can be directly found as 

1I 2 RK                                                                                                                   (35) 

1II 2  mRK   ,                                                                                                          (36) 

where KI and KII are the SIFs for mode I crack and mode II crack respectively. There are 

a number of advantages using the proposed formulation which are outlined as follows. 

Firstly, the size of the sub-region around the crack tip can be arbitrarily chosen without 
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any mesh constraint as with the FEM. Secondly, the SIFs KI and KII can be directly 

obtained as part of the solution without calculating the J integral. It is also found that 

the results obtained are more stable compared with intrinsic or extrinsic enrichments 

used in  meshless methods. Finally, there is no transitional region required as for 

intrinsic enrichment in [11]. 

3.5 Numerical integration and implementations 

background 

integration cell

refinement 

near crack tip

cell partition

along crack line

 

Figure 3. Background integration cells in meshless methods and refinement around the crack tip. 

The weak form integration is a key issue in fracture modelling for accurate calculation 

of crack tip field and hence the extraction of fracture parameters. Many meshless 

methods requires the use of background integration cell to perform the global weak 

form integration, such as the Element-free Garlerkin Method (EFGM) and the RPIM. 

Local weak form based meshless formulation such as the meshless local Petrov-

Galerkin (MLPG) method performs integration over nodal support and therefore is 

regarded as truly meshfree. However the local weak form leads to the loss of symmetry 

in global stiffness matrix, which is not computational ideal. So here the global weak 

form integration is adopted using background cells. When background cells are used, it 

normally involves further geometric operation to consider the crack geometry and its 

cutting with the analysis domain as shown in Fig. 3. Due to  the high energy release rate 

and stress gradient around a crack tip, refinement of cell near crack tip is also required. 

As has been in shown [25] the number of integration points required for results of 

acceptable accuracy is typically about 10 times the total number of nodes, and is 

heighten for fracture modelling in 2D to 11~12 times for single crack problem in 2D 

[19]. The integration of the present method is slightly different from that of the EFGM 

or the original RPIM in that it performs two independent integration over Vp and Vc as 

shown in Figure 4. In Vp, the integration is performed over each cell which is the same 
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as the EFGM or RPIM. While in Vc, the integration is performed directly over a circular 

domain for the complementary energy term in Eqs. (20). 

integration cell

for Vp

integration circle 

for Vc

line integration

along Spc

cell partition

along crack 

 

Figure 4. Integration scheme used in the present sub-region RPIM. 

Denote the coordinates of crack tip and nodes as xtip and xn respectively where the 

subscript n indicated a node index, and recall that the radius of complementary sub-

region is R. The integration and construction of shape functions mainly comprises the 

following steps. 

 Generate the integration cells and nodes through the whole analysis domain.  

 Loop over each node and if ||xn-xtip|| < R, switch off the nodes in constructing the 

RPIM shape functions. 

 Partition the integration cells with respect to complementary circular domain (as 

shown in Fig. 4) and adjust the integration cells and points using a certain 

coordinate mapping scheme. 

 Generate integration points inside the circular domain  based on polar coordinates.  

The integration scheme used for the complementary energy domain is Gaussian 

integration in both radial and angular directions. Take for example the three-point beam 

bending problem in§4, the number of integration points in the potential energy and 

complementary energy sub-regions are 11264 and 900 respectively. The number of 

nodes used are 962 (including switching off nodes inside Vc), and hence the total 

integration points is about 12 times the number of nodes, which is similar to the EFGM. 

In terms of the computational cost in weak form integration, the present method is close 

to the EFGM or the original RPIM. It should be noted that during crack propagation, Vc 

will move with the crack tip as it advances, and thus the nodes falling inside Vc in 

previous calculation steps will be switched on again for constructing the shape function 

in Vp. Similarly, nodes ahead of crack tip and outside Vc in previous steps may be 



13 

switched off. Though these are additional efforts, it does not entail that much cost when 

a circular domain of Vc is used. Compared with the EFGM or the original RPIM, an 

additional benefit of the present method is the refinement without partitioning Vc or 

involving any other geometry operation. In the former two, the cell refinement is like 

performing another local meshing process, which is undesirable for a meshless method. 

While in the present method, this can be realized numerically by increasing the 

divisions of angular and radial integration or by using higher order Gaussian integration 

scheme. Besides, the refinement here does not affect the shape functions outside Vc, 

while in the EFGM it will affect nodes in constructing shape functions around the crack 

tip and also the nodal supports need to be resized with respect to the refine integration 

points. It is cumbersome to do so in terms of numerical stabilities and convergence. 

4. Numerical Examples 

Having outlined the formulation of the method, we now present examples to verify 

performance. In all examples, if not pointed out specifically, the number of stress terms 

is set as 8m . To accommodate the crack size and node density, the radius of the 

circle defining Vp is set by the following criterion 

 iclR 3  ,5.0min                                                                                                          (37) 

where l is the characteristic size of the crack (i.e. equal to the actual length of the crack 

for a straight crack), ic  is defined in Eq.(11), in which i  refers to the index of the node 

closest to the crack tip.  

4.1 Plate with a single edge crack 

Consider a rectangular plate with an edge crack of length a located at its mid-height 

(Fig. 5). The dimensions of the plate are 1 LW  and it is subjected to a uniaxial 

tensile stress as shown 1 . The problem is solved for the plane stress case with 

Young’s modulus 1000E  and Poisson’s ratio 30. . Note that plate sizes and 

material parameters here are set regardless of dimensions. For realistic problems, their 

dimensions should be consistent with each other. The analytical solution for IK  is given 

in Gdoutos [26] as 
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Figure. 5 Analysis domain of an edge crack  

 

 

Figure 6. Nodal distributions of the edge-cracked rectangular plate 

 

Results are presented for regular-pattern nodes as shown in Fig. 6. In Table 1, the SIF of 

the analytical solution, by the  MS-RPIM and eRPIM (enriched RPIM by Gu et al. [16]) 

are compared in terms of the crack length-width ratio 6.02.0/ Wa . As  the results in 

Table 1 show, the  MS-RPIM leads to stable and accurate results. It is seen that the 

relative error is less than 1.0% in all cases by using the  MS-RPIM. Table 1 indicates 

that the MS-RPIM solution is much more accurate than the eRPIM solution for sparsely 

distributed nodes. 

Table 1.Comparison of the stress intensity factors for the edge-cracked rectangular plate 

Wa /  
Analytical 

KI 

eRPIM(231 nodes)  

 

MS-RPIM(231 nodes)  

 KI Error(%) KI Error(%) 
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0.2 1.09 0.95 -12.8  1.08  -0.57   

0.3 1.61 1.39 -13.7  1.62  0.67   

0.4 2.36 2.23 -5.5  2.36  0.27   

0.5 3.54 3.48 -1.7  3.56  0.49   

0.6 5.53 5.63 1.8  5.54  0.24   

 

Fig. 7 shows the sensitivity of the SIF results with respect to the size of complementary 

energy region and taking the first eight terms of the stress series. The horizontal axis is 

dimensionless being the ratio /R a  and the vertical axis is the relative error of KI with 

reference to the exact solution. The variation of the SIF by taking different numbers of 

stress terms is also examined by fixing aR 3.0  and the number of nodes but then 

changing the number of stress terms in Eqs (18) and (19).  In Fig. 8, the SIF errors with 

respect to the exact solution are plotted against the number of terms. It can be seen from 

Figs. 7 and 8 that an increase of the complementary energy region size, i.e. R , will 

result in a reduction of the SIF error, and the same effect is seen with an increase in the 

number of stress terms. However, the influence from the latter does not seem to be as 

significant as the former. In both figures, the errors tend to converge quickly showing 

the robustness and satisfactory convergence performance of the proposed method.  
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Figure 7. Variation of the SIF errors against various crack tip radius  
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Figure 8. The variation of SIF errors by using different number of stress terms 

 

4.2 A three-point beam bending problem 

The problem of a stationary crack in a three-point bend specimen is now considered. 

The geometry is shown in Fig. 9. The crack is located at the midspan of the beam so that 

only mode I cracking develops. The dimensions of the specimen are 12S  and 6W . 

The load is 1F  applied over unit length and unit depth. The discretisation is shown in 

Fig. 10 and the computed SIFs are compared with the analytical solution obtained by 

John [27]  in Table.2. As it can be seen from the table, the MS-RPIM method shows 

high solution accuracy for SIFs with the maximum error less than 0.5%.  

S=12 S=12

a

W
=

6

1F

 

Figure 9. A three-point bending beam 

 

Figure 10. Meshless model of the three-point bending beam 

 

Table 2 SIF results for the three-point beam bending specimen 
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Wa /  KI (analytical) KI (MS-RPIM) Error(%) 

0.3 2.484 2.490 0.23 

0.4 3.236 3.236 0.00 

0.5 4.348 4.331 -0.38 

0.6 6.159 6.148 -0.18 

 

4.3 Plate with a single mode II edge crack 

The third problem to verify the method is an edge cracked plate clamped at  bottom, and 

subjected to a far field shear stress 0.1  on the top, as shown in Fig. 11(a). A plane 

strain state is assumed in this problem. And the discretisation is shown in Fig. 11(b). 

The reference solution for the stress intensity factors with 5.0/ Wa  can be found in  

Fleming et al. [12] and these are compared with results from the numerical modelling in 

Table 3. Once again the MS-RPIM provides very good agreement for IK  and IIK  

values. 

a=3.5

W=7

L
=

8

1

L
=

8

(a) Edge-cracked plate (b) Discrete model
 

Figure 11. An edge-cracked plate subjected to the shear 

 

Table 3. SIF results for the edge-cracked plate subjected to the shear 

 Reference MS-RPIM Error(%) 

KI 34.00 34.17 0.50 

KII 4.550 4.559 0.20 
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4.4 Square plate with an inclined central crack 

The final verification problem is a square plate with an inclined central crack. The 

geometry and the node discretisation is shown in Fig. The reference solution for the 

SIFs for this problem can be found in Murakami [28] and these are compared with the 

numerical predictions in Table 4, once again showing excellent agreement with the error 

less than 1%. 

2a
=2.

5

W=5

L
=

5
L

=
5

1

(a) Geometry and boundary conditions (b) Meshless model
 

Figure 12. Square plate with an inclined central crack 

 

Table 4.SIF results for the inclined central crack 

 Reference MS-RPIM Error(%) 

KI 1.0137 1.0153 0.158 

KII 0.9376 0.9380 0.043 

 

5 Conclusions 

The accurate modelling of crack tip fields dominated by singular stress field remains a 

challenging topic computational mechanics. The present paper proposes a mixed sub-

region method for fracture modelling combined with the meshless radial point 

interpolation method. The coefficients for the terms of Williams expansion are used as 

the unknowns for the sub-region around the crack tip and nodal displacements as 

unknowns for the sub-region distant to the crack tip. A mixed variational principle is 

then used to derive the discretised form of the governing equations. The present method 
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provides an alternative and effective solution for problems of accurate fracture analysis 

near crack tips. The advantages are that a meshless method is used, i.e. free from 

meshing and with the capability to deal with moving boundary conditions are preserved 

while at the same time the SIFs at the crack tip can be directly obtained as part of the 

solution. Therefore in contrast with the existing meshless formulation for fracture 

modelling, the present method does not require additional effort in post-processing to 

calculate the SIFs. It is also elegant in its simple formulation. Several numerical 

examples demonstrate the effectiveness and robustness of the present MS-RPIM for the 

analysis of crack tip fields. The test results show that even with sparsely distributed 

nodes around the crack tip, the accuracy of the SIF remains and the method converges 

quickly with respect to the sizes of sub-regions and number of stress terms. Despite the 

above benefits, it can be seen that the integration of the weak form here still requires 

some efforts and this issue requires further studies which is undergoing by the authors. 
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