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Abstract

The zig-zag symmetry transition is a phase transition in 1D quantum wires,
in which a Wigner lattice of electrons transitions to two staggered lattices. Pre-
vious studies model this transition as a Luttinger liquid coupled to a Majorana
fermion. The model exhibits interesting RG flows, involving quenching of ve-
locities in subsectors of the theory. We suggest an extension of the model which
replaces the Majorana fermion by a more general CFT; this includes an exper-
imentally realizable case with two Majorana fermions. We analyse the RG flow
both in field theory and using AdS/CFT techniques in the large central charge
limit of the CFT. The model has a rich phase structure with new qualitative
features, already in the two Majorana fermion case. The AdS/CFT calculation
involves considering back reaction in space-time to capture subleading effects.

1email: vijay@physics.upenn.edu
2email: micha.berkooz@weizmann.ac.il
3email: S.F.Ross@durham.ac.uk
4email: j.simon@ed.ac.uk

1



1 Introduction

One-dimensional and quasi-one-dimensional systems are of particular interest in con-
densed matter physics and possess a rich experimental and theoretical structure.
Under favorable circumstances, they remain under theoretical control even when the
dynamics is strongly coupled, unlike in higher dimensional systems. A case of interest
is the zig-zag transition, where a one-dimensional electron crystal becomes quasi-one
dimensional as we increase its charge density. The transition was studied at strong
and weak coupling in [1, 2, 3]. Our aim in this paper is to study generalizations of
this model, both in field theory and using a holographic description of the system in
a large central charge limit.

In section 2, we first review the description of the zig-zag system in earlier work,
and then discuss our generalisation. The critical theory at the usual zig-zag phase
transition is described by a Luttinger liquid coupled to a single Majorana fermion
via a fermion bilinear operator. This exhibits unusual Renormalization Group (RG)
behaviour. Sitte et al. [3] found a flow to weak coupling where the velocities u, v of
the fermion and the Luttinger liquid flowed to u/v = 1, u = v = 0. Our generalisation
proceeds in three steps. First, we consider an extension with k Majorana fermions
preserving a SO(k)left × SO(k)right symmetry. The case of two fermions is easily
achievable experimentally, and it already shows important qualitative changes in the
RG behaviour. The flow is no longer generically to u/v = 1, and u does not flow to
zero. Second, for models describing k > 1 fermions, there is an additional marginal
interaction, preserving the above symmetries, with coupling fc. Physically, if we think
of each Majorana fermion as encoding a band which is being filled, the additional
coupling describes a charge-charge interaction between bands. We find the set of RG
equations, valid for any k, for weak coupling between the bands, based only on the
k = 1 results and on symmetry arguments. For all k > 1, we find that the parameter
space is divided into two regions by a critical line at a particular value of fc. The
RG flows of the system simplify for k = 2 and in the limit of large k. We solve these
RG equations analytically for some special cases, and present numerical results for a
typical set of values. The results are summarized in Fig. 3.

The simplification at large k leads us to consider our third generalisation. It con-
sists of coupling the Luttinger liquid to a generic large central charge Conformal Field
Theory (CFT), which contains an operator O with dimension (1/2, 1/2). Integrating
out the Luttinger liquid, the resulting theory can be written purely in terms of the
CFT with an induced multi-trace, marginal deformation F O2, where F is a new
momentum dependent coupling.

We explain in Sec. 3 that the RG flow of this setup has a natural embedding
within the AdS/CFT correspondence; this uses work on multi-trace deformations in
[6, 7, 8] and involves a back-reaction calculation similar to [9]. The scalar operator
O is dual to a scalar field Φ in the bulk spacetime, and the induced multi-trace
deformation determines a boundary condition for the latter. As in the field theory
discussion, there is a critical line at a particular value of Fc splitting the RG orbits.
On the critical line v flows to zero in the IR; above it v approaches a finite value
in the IR; below the critical line, v vanishes at a finite scale. The flow obtained
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from the AdS/CFT calculation agrees with the large central charge limit of the field
theory calculation, and qualitatively agrees with the field theory calculation for a
finite number of fermions. Thus we believe this behaviour is robust and the class of
large c models we study may actually belong to the same universality class as k > 2
Majorana fermions.

In the large c limit, the flow of u (the CFT velocity) is suppressed. Thus, to obtain
this flow holographically, we need to extend the calculation to subleading order in c.
In section 4, we calculate this subleading behaviour by studying the one-loop back-
reaction of the bulk scalar Φ on the spacetime metric. We find that u decreases in
the IR, but always flows to a finite value, as in the field theory calculation for k > 1.

In Sec. 5, we highlight the main results obtained in our analysis. We include two
technical appendices at the end of the paper. In Appendix A we derive a set of duality
transformations which are used to obtain the full set of RG equations in the main text;
in Appendix B, we discuss the computation of the momentum integrals controlling
the one-loop contribution to the expectation value of the bulk field Φ stress tensor.

2 Generalizing the zig-zag transition

The main goal of our paper is to study generalizations of the critical theory associated
with the zig-zag transitions, and the approach to such points. In this section we review
the field theory model of the zig-zag transition, and analyse a simple extension. In
Sec. 2.1, we review the setup and phase diagram of the zig-zag transition. Phrased in
the language of two-dimensional CFT, the critical point of the model is a Luttinger
liquid coupled to a single c = 1/2 Majorana fermion (in both the left and right moving
sectors), with different velocities for the fermion and the Luttinger liquid. In Sec. 2.2,
we generalise to an arbitrary number of Majorana fermions. The generalisation to
two fermions may be experimentally realizable. The RG flow in this generalisation is
discussed in Sec. 2.3. The main point of our discussion is that the RG flow for more
than one fermion is qualitatively different. The model simplifies for a large number
of fermions. This motivates us to introduce a more general model with a Luttinger
liquid coupled to a large central charge CFT in Sec. 2.4.

2.1 The zig-zag transition

The dynamics of electrons in a one dimensional quantum wire is dominated by their
Coulomb interactions in the low-density regime n aB � 1, where n is the electron
density and aB is Bohr’s radius in the given material. Experimentally, quantum
wires are created by confining 3D electrons to move freely in the x direction by some
external potential. If the latter is such that typical excitation energies are low in the
y direction and high in the z direction, then motion is only quasi one-dimensional
(For a review of the physics of this system see [4]).

Classically, deviations from one dimensional physics arise due to electron lateral
motions in the confining potential which can be assumed to be Vconf = 1

2
mΩ2

∑
i y

2
i

(yi is the transverse coordinate of the i’th electron). Thus, physics is parameterised
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Figure 1: Band structure in the zig-zag transition. The lower band, in which the
fermions occupy a straight line configuration, is populated at low chemical potentials.
When the chemical potential increases to µc, fermions begin populating the upper
band, in which fermions occupy a zig-zag configuration in two dimensions.

by two tunable parameters: Ω, the frequency of the harmonic oscillations in Vconf and
the electron density n.

When the density of electrons is low, electrons sit at the bottom of the potential
well, yi = 0, and form a 1D Wigner crystal. When the density increases, electrons
find it energetically favourable to form a quasi 1D zig-zag structure, in which the
electron follow a pattern yi = (−1)iy0. The transition between the phases is the
zig-zag transition, which occurs when the electrostatic repulsion energy between the
electrons is of the same order as the energy penalty for going up the potential in the
y direction, i.e., roughly when

Vconf(r0) =
1

2
mΩ2y2

0 ∼ Vint =
e2

εr0

(1)

where ε is the dielectric constant of the medium. At low energies and independently
of the phase, the crystal has acoustic plasmon excitations, i.e. propagating waves of
the electron density. At the zig-zag transition, a transverse soft mode appears, and
develops an expectation value above the transition.

The dynamics of the transition was studied at strong and weak coupling in [1, 2, 3].
In [3], an effective model of the physics near this transition (at weak coupling) was
obtained by considering the coupling between the effective one-dimensional electronic
bands. When we quantize the motion of the electron in the transverse potential well,
there are discrete energy levels for motion in the y direction, which descend into
different one-dimensional bands, with the lowest band corresponding to electrons
sitting in the bottom of the potential. As the chemical potential is raised, the second
band begins to be populated.

The near-critical system is modeled by an effective Hamiltonian [3]

H1 =
v

2π

∫
dx

(
K(∂xθ) +

1

K
(∂xφ)2

)
, (2)
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H2 =

∫
dxψ†

(
∂2
x

2m
− µ+ µcr

)
ψ, (3)

H12 =

∫
dx
(
−gx
π
∂xφψ

†ψ +
u

2

(
e2iθ ψ∂xψ + h.c.

))
. (4)

H1 describes the acoustic plasmon excitations in the lowest band, when we fill it up
to some Fermi energy, and linearize about it. This is a Luttinger model written in
terms of standard conjugate variables θ and φ (θ is a boson with an S1 target space,
and φ is its dual with an inverse S1 radius, defined by ∂xφ = ∂tθ up to normalization;
see, e.g., [5]). H2 represents the second band which is just beginning to be populated
at the critical chemical potential µcr, as shown in Fig. 1. The interaction between
the two bands is encoded in (4). The first term describes electrostatic repulsion
between electrons in the two bands; the second one describes pairs of electrons hopping
between the bands.5 There is no single electron hopping due to mismatch between
the momenta at the Fermi surfaces of the two bands.

It is convenient to rewrite the model by applying a chiral rotation U = ei
R
θψ†ψ.

After this rotation, it can be described in terms of a Euclidean Lagrangian density
[3]

LLL =
1

2πvK

(
(∂tφ)2 + v2(∂xφ)2

)
, (5)

LIsing = ψ†∂tψ +
u

2
(ψ∂xψ + h.c.) + rψ†ψ, (6)

Lint = −λ
π
∂xφψ

†ψ, (7)

where r = µcr − µ is the deviation from the critical value of the chemical potential
and λ = gx − πv/K. From now on we will set r = 0. The free boson (5) represents
the acoustic plasmon excitations. The free fermion ψ in (6) represents the second
band.

The RG flow of this model was calculated in [3] at one loop. The diagrams that
contribute are Fig. 2a,b,c. Integrating out the modes within the momentum shell
(Λ/b,Λ), [3] defined the RG scheme so that v and K are RG invariants. Since Fig. 2a
is a 1-loop correction to the bosonic propagator, it generates running of the velocity
v. We can then make v an RG invariant by rescaling the time and space momenta
differently, kx → kx/b and kt → kt/b

z, where

z = 1 +
λ2K

4π2uv
. (8)

5To see this, note that the U(1) charge symmetry is implemented as a shift θ → θ + a in these
variables. Thus, the Noether charge density in the lower band is ∂tθ. As an operator, the latter
is equivalent to ∂xφ (up to an overall normalization). Thus ∂xφψ†ψ is indeed a charge-charge
interaction between the bands. For the second term, note that an electron (hole) in the lower band
is given, in the Luttinger theory, by an operator eiθ (e−iθ) and hence e2iθ inserts two electrons into
the lower band. These electrons come from the upper band, where they are annihilated using the
operator ψ∂xψ, which is the lowest (engineering) dimension charge (−2) operator in the upper band
(Fig. 1).

5



This value of z is determined by computing the 1-loop correction from the diagram
Fig. 2a. The RG equations for the remaining parameters are then determined by
Fig. 2b,c to be

∂u

∂ log b
= −λ

2K

π2

(
1

(v + u)2
− 1

4uv

)
u, (9)

∂λ

∂ log b
= −λ

3K

2π2

(
1

u(v + u)
+

1

(u+ v)2
− 3

4uv

)
. (10)

The last term in each of these equations arises from the rescalings of momenta to
keep v invariant. The key results are:

• When u < v, the theory flows to u = v, λ = 0 in the IR.

• When u = v, neither u nor λ change along the flow.

• When u > v, the flow is to u/v, λ → ∞, which takes the system outside the
perturbative regime. The flow will reach infinite coupling at a finite RG scale.

A drawback of this scheme is that u and v are not the physical velocities because
kt and kx are rescaled by different factors. Sitte et al. [3] extracted the physical
velocities by multiplying u and v by appropriate factors of scale. They found that
the physical velocities go to zero in the IR. We will see this more directly in Sec. 2.3
where we describe the equations in an RG scheme with z = 1.

RG invariance of u = v: One of the key results of Sitte et al. [3] is that the
condition u = v is RG invariant, to this order in perturbation theory. Before consid-
ering extensions of this model it is useful to understand where the u = v invariance is
coming from. This feature can be understood as the result of an additional perturba-
tive symmetry of this model with a single Majorana fermion. To see the symmetry,
note first that the periodicity of φ is irrelevant to the perturbative calculation, so we
can choose it to be such that we can fermionize the Luttinger liquid to two Majorana
fermions ν1(z), ν2(z), ν̄1(z̄), ν̄2(z̄). In addition ψ can be decomposed into ν3(z) and
ν̄3(z̄). When u = v, the model then manifestly has an SO(3) symmetry rotating the
νi, which forms two SU(2) Kac-Moody algebras at level 2, one for the left and one
for the right movers.

We can now classify the operators in the theory in terms of SU(2)L × SU(2)R ×
SO(1, 1), where the latter is the Lorentz symmetry.6 In particular, the interaction
term is

−λL
π
ν1ν2ν3ν̄3 −

λR
π
ν̄1ν̄2ν̄3ν3, λL = λR = λ. (11)

The first operator in (11) has quantum numbers (0, 1, 1), and the second has quantum
numbers (1, 0,−1). In general we can treat λL,R as distinct couplings with opposite
quantum numbers to their associated operators.

6For SU(2) we will use the convention that 0 is a singlet and 1 a triplet, and for SO(1, 1), we
normalise the charges such that the holomorphic stress tensor Tzz has charge 2.
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The operators that deform the velocities are of the form νi∂zνj, and their anti-
holomorphic counterparts. For example, all velocities are changed by the opera-
tor Σiνi∂zνi, which is the holomorphic stress tensor Tzz. The quantum numbers of
these operators are either (2, 0, 2) or (0, 0, 2) (and their anti-holomorphic counter-
parts (0, 2,−2) and (0, 0,−2)). Deforming away from u = v is done with the (2, 0, 2)
operator. The coefficient of this operator again has the opposite quantum numbers;
assuming it is built out of the couplings λL,R, then its quantum numbers tell us that
the lowest order in which it can appear is λ2

Lλ
4
R = λ6. Thus, this operator can only

occur at higher order in perturbation theory, which explains the RG invariance of
u = v at one-loop. However, it will generically appear at higher orders, implying
the invariance is only valid to low orders in perturbation theory. Indeed, we expect
that the full RG flow (including all orders in perturbation theory) will not generically
approach a Lorentz-invariant theory with u = v in the IR. When we generalize the
model we will also see that the u = v invariance is also special to the case of a single
Majorana fermion and fails more generally.

2.2 Generalising to a larger central charge CFT

Instead of a single transverse oscillation, let us consider a generalisation of the previ-
ous model describing k transverse oscillations. From a CFT perspective, this corre-
sponds to increasing the number of Majorana fermions and, consequently, the central
charge of the theory. The k = 2 case describes the excitations of electrons mov-
ing along the z direction in a shallow confining potential V = 1

2
mΩ2(x2 + y2) with

rotational symmetry in the two transverse dimensions. In fact, a smaller symmetry
group, made out of 90 degree rotations and reflections, i.e., x→ −x, y → −y, x↔ y,
is sufficient. The k > 1 generalisations are straightforward, can be experimentally
realised (for k = 2), and introduce qualitative changes in the physics, with k = 2 as
a transition case.

An effective Lagrangian describing these models is given by using (5) again to
describe the plasmon degree of freedom, but replacing (6) by a sum over k Majorana
fermions ψi i = 1, . . . k, and choosing the interaction to be:

Lint = −λ ∂xφΣk
i=1ψ

†
iψi = −λ ∂xφOM , (12)

where we introduced the notation

OM = Σk
i=1ψ

†
iψi. (13)

We will assume throughout this article that the SO(k)left × SO(k)right supported by
the k Majorana fermions is unbroken.

There are two major distinctions between this case and a single Majorana fermion:

1. Diagrams with fermion loops are enhanced by a factor of k. In particular,
the running of v determined by Fig. 2a is enhanced in this way relative to
the running of u. This will qualitatively change the running we saw before, for
example in that u = v will no longer be an RG invariant condition. Furthermore,

7



(a) (b) (c)

(d) (e)

μcr
μ

k

ε(k)

(f)

Figure 2: Feynman diagrams for processes contributing to the RG flow. Here the
dashed line is the Luttinger scalar and the solid line is one of k fermions.

if we still wanted to work in the scheme where v is an RG invariant, the value
of z would increase with k,

z = 1 + k
λ2K

4π2uv
. (14)

The large value of z (for large k) will introduce artificially large β-functions
elsewhere, and hence we will work below either with a z = 1 scheme or with a
scheme where u is an RG invariant.

2. The Majorana fermion sector contains a new marginal operator for k > 1. We
will denote it as O2

M - a dimension (1, 1) operator appearing in the OPE of OM
with itself7. Since OM is the charge density in the higher bands, O2

M describes
the charge interaction within these bands. This is a natural marginal interaction
that we could add to the effective interaction lagrangian

Lint = −λ ∂xφOM + fcO2
M . (15)

As before, ∂xφOM describes the charge interaction between the Luttinger liquid
electrons and the electrons in the higher bands.

We will study below how the addition of the fc coupling changes the RG flow.

2.3 RG equations in different schemes

The RG equations (9)-(10) in [3] were derived in a v fixed scheme and scaling kt and
kx differently. In this section, we will discuss these equations in an RG scheme where
we either fix u (the velocity of the fermion) or set z = 1. The first scheme is natural
at large k, since the propagator of the Luttinger scalar is strongly renormalized by the

7Actually, this operator can be written in various other ways. Both left movers and right movers
have an SO(k) symmetry, which is manifest when we decompose ψi = νi(z) + ν̄i(z̄), and O2

M =
ΣaJa(z)J̄a(z̄) where the sum runs over the N(N − 1)/2 generators of SO(N). If we bosonize the
Majorana fermions into scalars, we obtain new Luttinger liquids and then this operator changes
some of the radii of these scalars.
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diagram Fig. 2a which is proportional to k, whereas the renormalization of the fermion
propagators and the interaction terms (Figs. 2b and Fig. 2c) are k independent. Thus,
the velocity of the scalar changes significantly with RG flow, whereas that of the
fermions does not. Physically, the scalar is dragged by many fermions whereas each
fermion is only dragged by a single scalar. A more natural prescription is therefore to
keep the velocity of the fermions fixed. The second scheme (z = 1) is always natural
since it deals with physical velocities and couplings.

In this section, we discuss the RG equations in these schemes. First, we discuss the
z = 1 scheme for the k = 1 scenario and then generalize to arbitrary k. Afterwards,
we discuss the fixed u scheme for k > 1.

z = 1 RG scheme: Recall that in the scheme where v is an RG invaraint, the
momenta are scaled as kx → kx/b and kt → kt/b

z. To go to a scheme where these
momenta are scaled in the same way, we undo the above scaling by a rescaling t →
tb−(z−1) as each momentum shell is integrated out. We can therefore convert the RG
equations (9)-(10) obtained in [3] to the z = 1 scheme by rescaling t with z as in
(8). Requiring the invariance of the Lagrangian (5)-(7) then implies the rescaling of
the couplings u → ub(z−1), v → vb(z−1), λ → λb(z−1). When v varies, it is also more
convenient to canonically normalise the Lagrangian, absorbing the factor of (2πvK)−1

in (5) by rescaling the scalar field φ. This produces a redefinition of the coupling

λ̄ = λ
√

2πvK . (16)

Using this redefinition, the RG equations in the z = 1 scheme are

∂v2

∂ log b
= − λ̄2

4π3u
, (17)

∂u

∂ log b
= − λ̄2u

2π3v(u+ v)2
, (18)

∂λ̄

∂ log b
= − λ̄3

4π3v

(
1

u(v + u)
+

1

(u+ v)2

)
. (19)

Since u, v and λ̄ are the physical velocities and coupling, we can immediately see
that all of them decrease along the RG flows. This is consistent with the result of
[3] that the physical velocities both go to zero for the RG flows with u < v. We
also see that there is a rescaling of the physical coupling which was not stressed in
[3]. Although the coupling λ in the fixed v scheme increases for u > v, the physical
coupling actually decreases. The pathology of the u > v flows is really that they
reach v = 0 at a finite RG scale. We can see from the above equations that this is
actually the only possible pathology in the physical couplings; both u = 0 and λ̄ = 0
are RG invariant conditions, so as all parameters are decreasing, u and λ̄ will either
approach constant values or asymptotically approach zero in the IR. But since v = 0
is not an RG invariant condition, v can reach zero at a finite RG scale.

The generalisation of the RG equations in the z = 1 scheme to k > 1 contains two
effects:
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1. The one-loop renormalisation of the bosonic propagator picks up a factor of k,
for the k different species of fermions running in the loop. Since this factor only
contributes to the running of v, the only modification is to multiply the RHS
of (17) by k.

2. Due to the new interaction (15), there will be three new one-loop diagrams;
one contribution to the running of the λ coupling from this new interaction
(Fig. 2f), and two contributions to the running of fc (Fig. 2d,e).

The resulting z = 1 scheme RG equations are

∂v2

∂ log b
= −k λ̄2

4π3u
, (20)

∂u

∂ log b
= − λ̄2u

2π3v(u+ v)2
, (21)

∂λ̄

∂ log b
= − λ̄3

4π3v

(
1

u(v + u)
+

1

(u+ v)2

)
− fcλ̄(k − 1)

4π3u
. (22)

∂fc
∂ log b

= − fcλ̄
2

2π3v

(
1

u(v + u)
+

1

(u+ v)2

)
− f 2

c (k − 2)

4π3u
. (23)

The factor of k− 1 in (22) originates from the fermion in the loop in figure 2f, which
can be any species other than the external one. Similarly, the factor of k − 2 in (23)
comes from the fermion loop in figure 2e, which can be any species other than the
two external ones. As for k = 1, all the right hand sides are non-positive. Thus, all
physical parameters decrease along the flow, unless u = 0, λ̄ = 0, or fc = 0, which
are RG invariant conditions. Since v = 0 is not an RG invariant condition, RG flows
can reach v = 0 at finite scale.

Derivation of the RG equations: These RG equations can be obtained by ex-
plicitly evaluating the one-loop diagrams, but it is useful to note that their form is
essentially determined from the equations at fc = 0 by exploiting a symmetry of
the system, which involves a transformation between the description in terms of the
boson φ and its dual θ (T-duality in the particle physics language). As discussed in
Appendix A, the change between θ and φ involves a shift of the O2

M coupling; that
is, i∂tθOM is related to ∂xφOM + αO2

M . The coefficient α can be worked out by
using the T-duality rules (see Appendix A). The appropriate coefficient can also be
obtained by considering the process of integrating out the boson in the path integral.
We work in terms of the original unrescaled fields, where the Euclidean Lagrangian
for φ is (5). If we assume we have the interaction λ ∂xφOM + αO2

M , integrating out
φ gives [

−2πvK
λ2k2

x

k2
t + v2k2

x

+ α

]
O2
M . (24)

In terms of the dual θ variable, the Euclidean Lagrangian is LLL = K
2πv

((∂tθ)
2 +

v2(∂xθ)
2), and we assume that the interaction in terms of this variable is simply
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λt ∂tθOM . Integrating out θ we will find an effective interaction

−2πv

K

λ2
tk

2
t

k2
t + v2k2

x

O2
M . (25)

Thus requiring that the effective interactions agree we see that λt = iλK/v and
α = 2πKλ2/v = λ̄2/v2.

Furthermore, we can relate the interaction ∂tθOM back to an interaction of the
form ∂xθOM by exploiting the fact that we are working in Euclidean space and can
interchange the t and x coordinates. The Lagrangian (5) will be symmetric under
interchanging the t and x coordinates, if we invert the velocities u → 1/u, v → 1/v.
This interchange involves a scaling of the fermions, so in (7) we must also rescale λx =
λt/u. Finally, to eliminate the overall factor of K difference between the Lagrangian
in terms of θ and in terms of φ we should rescale the fields. In total then, using the
transformation to the dual variable θ predicts that the theory has a symmetry under
the redefinition of the parameters

λ̄→ i
λ̄

uv2
, u→ 1

u
, v → 1

v
, fc →

1

u2

(
fc −

λ̄2

v2

)
. (26)

It is easy to check that (20)-(23) are indeed invariant under this automorphism.
(For k = 1, fc is not defined, and (20)-(22) are invariant under the action of the
transformation on u, v, λ̄.) This enables us to determine the values of the coefficients
of the fc terms in (22) and (23) without explicit calculation. Note also that this
transformation maps fc = 0 to fc = λ̄2/v2 and vice-versa. Thus, it predicts that
fc = λ̄2/v2 is an RG invariant condition. This can be directly verified from (20)-(23)

∂
(
fc − λ̄2

v2

)
∂ log b

=

(
fc − λ̄2

v2

)
4π3uv(u+ v)3

(
v(u+ v)2

(
2fc − k

(
fc −

λ̄2

v2

))
− 2λ̄2(2u+ v)

)
.

(27)

Fixed u RG scheme: The z = 1 RG scheme is conceptually simpler, but to
perform explicit calculations, it is more convenient to work in a scheme where u is
fixed. This can be obtained by a rescaling of t in a way similar to that described
above for converting between the fixed v and z = 1 schemes. The resulting value of
z is

z = 1 +
λ̄2

2π3v(u+ v)2
, (28)

and the RG equations are

∂v2

∂ log b
= − λ̄

2

π3

(
k

4u
− v

(u+ v)2

)
= − λ̄

2

π3

(ku2 + (2k − 4)uv + kv2)

4u(u+ v)2
, (29)

∂λ̄

∂ log b
= − λ̄3

4π3v

(
1

u(v + u)
− 2

(u+ v)2

)
− fcλ̄(k − 1)

4π3u
, (30)
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(A) (B) (C)

Figure 3: Typical RG flows in three regions of parameter space. We plot λ̄2/v2 against
fc for (A) k = 2, (B) k = 3 and (C) k = 10000. In each plot, the lowest curve is
a super-critical flow (with fc > λ̄2/v2), the middle curve is the critical flow (with
fc = λ̄2/v2) and the top curve is a sub-critical flow (with fc < λ̄2/v2). We see that
the super-critical flow is to finite fc for k = 2 and to vanishing fc for k > 2, and that
λ̄2/v2 diverges along the sub-critical flows, because v → 0.

∂fc
∂ log b

= − fcλ̄
2

2π3v

1

u(v + u)
− f 2

c (k − 2)

4π3u
. (31)

This fixed u scheme is convenient for understanding the relative flow of u and v. We
can see from (29) that u = v is an RG invariant condition for k = 1, as shown in [3],
but for k > 1 the RHS is negative. Thus, v always decreases relative to u for k > 1.
In fact, u = v defines a line of fixed points of the fixed u RG flow for k = 1, as in [3],
because the first term in (30) vanishes. For k > 1, the second term generates a flow
to small λ̄ along the u = v line.

2.3.1 Solving the RG equations

We will now discuss the characteristic behaviours of the RG flows for k > 1. Given
the RG invariant condition (27), fc = λ̄2/v2 divides the space of RG flows into three
categories : subcritical where fc < λ̄2/v2, critical where fc = λ̄2/v2 and supercritical
where fc > λ̄2/v2.8 This phase structure can clearly be seen in figure 3.

The supercritical and critical RG flows, with λ̄2 ≤ v2fc, cannot reach v = 0 at
finite RG scale, since, as we discussed below (23), λ̄ 6= 0 at finite scale if it was
non-zero initially. However subcritical flows, with λ̄2 > v2fc, could end at finite scale.
Thus, since all parameters are decreasing along RG flows, we see that the supercritical
and critical flows always extend to arbitrary b, with the parameters either going to
zero or approaching finite values in the IR. Subcritical flows are harder to analyse,
as the flow may terminate at some finite scale where v vanishes, and so we cannot
always use an IR expansion.

8Note that subcritical includes the simplest analogue of the k = 1 discussion of [3], fc = 0.
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Since the RG equations are a set of first-order ODEs for the couplings, we can
easily solve them numerically; the results are presented in Figs. 4, 5 and 6 and sum-
marised in Fig. 3. We supplement this numerical analysis with analytical calculations
for a few simple cases.

Analytic calculations in a fixed u scheme: Setting λ̄2 = fcv
2, the critical flows

are two parameter flows in the fixed u RG scheme. The relative flow fc(v) for critical
flows can be determined for any k by dividing (31) by (29). This gives

∂ log fc
∂v

=
2(u+ v)

v

(k − 2)(u+ v) + 2v

k(u+ v)2 − 4uv
. (32)

Integrating this relation tells us that

log fc =
2(k − 2)

k
log v + . . . , (33)

where the dots stand for terms that remain finite when v → 0. Thus, fc will vanish
when v vanishes, unless k = 2. For k = 2,

∂ log fc
∂v

= 2
u+ v

u2 + v2
=⇒ log fc = log(u2 + v2) + 2 tan−1

(v
u

)
+ C, (34)

so that fc remains finite for all v. From (29), the running of v is then

∂v2

∂ log b
= −fcv

2

π3

(ku2 + (2k − 4)uv + kv2)

4u(u+ v)2
. (35)

For k = 2, where fc → f IR
c is constant in the IR, the velocity goes to zero as a power

law, v ∼ b−α, with α = −f IR
c /2π3u. For k > 2, we had fc ∼ v2β, with β = k−2

k
, so

in the IR v−2β ∼ log b, and the velocity goes to zero logarithmically. It is interesting
that k = 2 seems to be a transitional case.

The absence of the last term in (31) for k = 2 allows us to make further progress,
even away from the critical flow. Dividing (31) by (29), we can integrate the relative
flow fc(v) for all k = 2 flows, giving

log fc = log(u2 + v2) + 2 tan−1
(v
u

)
+ C, (36)

so that fc remains finite. For the supercritical case, we can assume the second term
in (30) will dominate over the first one, so

∂λ̄

∂ log b
≈ − fcλ̄

4π3u
. (37)

Since fc → f IR
c is constant in the IR, λ̄ will go to zero as a power law, λ̄ ∼ b−α/2,

where α is the same power as before. Plugging this into (29) will then give that v
will generically approach a constant,

v2 ≈ A+Bb−α. (38)
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(A) (B) (C)

Figure 4: RG flow for k = 2, in the z = 1 scheme. (A) Sub-critical flow: λ0 =
1.2, v0 = 1, u0 = 0.8, fc0 = 1. We see that v → 0 at a finite scale. (B) Critical flow:
v0 = 1, u0 = 0.6, fc0 = 4, λ0 =

√
fc0 v2

0. Here λ, v → 0 in the IR, but fc, u remain
finite. (C) Super-critical flow: λ0 = 0.8, v0 = 1, u0 = 0.6, fc0 = 1.5. Here λ → 0 in
the IR but the other couplings are finite.

The critical flow corresponds to the special case with A = 0 where v2 → 0.
Subcritical flows are harder to understand, because we don’t know whether the

first term in (30) is important. A special case which we can analyse explicitly is
fc = 0. Dividing (30) by (29) gives

∂ log λ̄

∂v
=

2(v − u)

k(u2 + v2) + (2k − 4)uv
, (39)

so the relative flow λ̄(v) is

log λ̄ = −2

k

√
k − 1 tan−1

(
(k − 2)u+ kv

2
√
k − 1u

)
+

1

k
log
(
k(u+ v)2 − 4uv

)
+ C. (40)

Thus, λ̄ remains finite for all v, including v → 0. Plugging into (29), we see that
the RHS is bounded away from zero, so that v2 will reach zero at a finite RG scale.
This is qualitatively similar to the behaviour found in [3] for k = 1 when u > v; here
we see that we get this behaviour for any velocities on the flow with fc = 0. In the
numerical results in Fig. 4, we see that this behaviour is generic for the subcritical
flows.

Physical velocities and couplings: As in [3], we can convert back from the fixed
u scheme we have used in our analytic discussion of the RG flows to the physical
velocities (that is, to z = 1) by multiplying by the factor

Ω = exp

(∫ log b

(1− z(b′))d log b′
)
, (41)

where z is given in (28). Unlike in [3], this Ω is a finite factor for the flows we have
analysed. For the critical flow, with k > 2,

1− z ∼ 1

(log b)1+ 1
β

, (42)
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(A) (B) (C)

Figure 5: RG flow for k = 3 in the z = 1 scheme. (A) Sub-critical flow: λ0 =
1.2, v0 = 1, u0 = 0.8, fc0 = 1. Here we see again that v → 0 at a finite scale. (B)
Critical flow: v0 = 1, u0 = 0.6, fc0 = 2, λ0 =

√
fc0 v2

0. Here u remains finite as the
other couplings flow to zero in the IR. The difference from k = 2 is that now fc → 0
in the IR. (C) Super-critical flow: λ0 = 0.8, v0 = 1, u0 = 0.6, fc0 = 1.5. Here u, v are
finite, but λ, fc → 0 in the IR.

so the integral is finite. For k = 2, the critical and supercritical flows have 1 − z ∼
e−α log b, so the integral is again finite. When v goes to zero at a finite RG scale bc we
have v2 ∼ log bc − log b, so 1− z ∼ (log bc − log b)−1/2 and the integral again remains
finite. As a consequence, the physical velocity u remains finite along all these flows,
and the IR asymptotics of the physical v and the couplings is as described above.

Numerical calculations and large k limit: It is difficult to solve the RG
equations analytically for k > 2 non-critical flows, but straightforward to solve them
numerically. Representative numerical plots for k = 3 are given in Fig. 5; higher
values are qualitatively similar. We see that the main difference from the k = 2 case
is that fc flows to zero in the IR. In the limit of large k, the final terms in (20) and
(22)-(23) will dominate over the other contributions, and u will not run at leading
order in k. It is then straightforward to solve the RG equations analytically. We
postpone the detailed discussion to section 3, as it is essentially equivalent to the
solution obtained holographically (see equations (61)). We present numerical results
for a representative large k case in Fig. 6.

k = 2 summary: Of the generalizations we have considered, perhaps the most
interesting is k = 2, which can be realized experimentally. We have found that the
flows in this case are qualitatively different from those with k = 1 (Fig. 3A,4). Firstly,
the IR fixed point for supercritical and critical flows is not generically relativistic, as
v runs relative to u. The physical velocity u remains finite along all the k = 2
flows, while the physical velocity v remains finite for supercritical flows, goes to zero
logarithmically in the IR for critical flows, or vanishes at a finite scale for subcritical
flows. The coupling fc remains finite in all cases, while λ̄ vanishes in the IR for
supercritical or critical flows, remaining finite when v vanishes in the subcritical case.
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(A) (B) (C)

Figure 6: RG flow for k = 10000 in the z = 1 scheme. We see that u does not run to
leading order in k at large k. (A) Sub-critical flow: λ0 = 1.2, v0 = 1, u0 = 0.8, fc0 =
1. Here we clearly see v → 0 at a finite scale with the other couplings remaining finite.
(B) Critical flow: v0 = 1, u0 = 0.6, fc0 = 4, λ0 =

√
fc0v2

0. All the parameters apart
from u run to zero. (C) Super-critical flow: λ0 = 0.8, v0 = 1, u0 = 0.6, fc0 = 1.5. We
see that u and v remain finite, while λ and fc run to zero.

2.4 The large c model

The general RG equations for k > 2 are rather difficult to analyse, but we can see
that they simplify in the large k limit, where the contributions from fermion loops
will dominate over the other terms. This motivates us to consider a more general
large central charge model: we keep the scalar field φ describing the Luttinger liquid,
but replace the k fermions with a general 2d CFT of large central charge c, having a
dimension one operator O which we couple to φ through an interaction of the same
form as above. More explicitly, we have a scalar field φ with the Lagrangian

SLL =

∫
d2x (∂tφ

2 + v2∂xφ
2), (43)

which provides the bosonised description of a Luttinger liquid. We introduce a CFT
sector with a dimension (1/2, 1/2) operator O, which generalises the fermion bilinear
ψ†ψ in the previous discussion. We add an interaction

Lint = −λ̃ ∂xφO + FcO2, (44)

including both a coupling to the Luttinger liquid and the marginally irrelevant defor-
mation O2. We introduced new names for the interaction parameters because here
and henceforth we adopt the standard CFT normalisation for O where the two-point
function is 〈O(x)O(0)〉 = |x|−2. Then, if we specialise to the case where the CFT
describes k fermions, in which case c = k/2 and O = 1√

k
OM , we learn that λ̃ =

√
kλ̄

and Fc = kfc.
The couplings whose RG runnings we are interested in understanding are λ̃, Fc,

and the velocities of the two sectors. The velocity v of the Luttinger liquid appears
as a parameter in the Lagrangian (43). There is a velocity u characterising the CFT
sector; we have implicitly set u = 1 by choice of units at this stage, but it will run
after we introduce the coupling (44). We will discuss the holographic determination
of its running later.
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We can work directly with this coupled theory, or given that φ is a free field with
a Gaussian path integral, we can integrate it out explicitly by solving its equation of
motion.9 Doing so transforms the coupling (44) into a momentum-dependent (and
non-local) double-trace deformation FO2, with coefficient

F = Fλ
v2k2

x

v2k2
x + k2

t

+ Fc, (45)

where Fλ = −λ̃2/v2. Due to the negative contribution of Fλ to the CFT Hamiltonian,
we would expect this deformation to give a well-defined theory only if Fc + Fλ ≥ 0
and to lead to a dynamical instability otherwise.

Indeed, as in the previous field theory discussion, we will find that the holographic
RG flows are divided into two regions by the critical line Fλ+Fc = 0. For Fλ+Fc < 0,
the velocity v vanishes at a finite RG scale - this is presumably associated with the
expected instability mentioned above. Along the critical line v and Fc flow to zero in
the IR, whereas for Fλ + Fc > 0, v flows to a finite value in the IR, and Fc still flows
to zero. The velocity u of the CFT is not renormalised at leading order in c.

3 AdS/CFT approach

Many strongly coupled CFTs with large central charge c have a dual description
in terms of gravity in asymptotically anti-de Sitter (AdS) space. The AdS/CFT
correspondence [10] gives a procedure to compute the RG flow of the deformations
of such theories in an expansion in inverse powers of c. We will briefly review this
method below; excellent comprehensive reviews include [11, 12, 13]. We will apply it
to study the flow of a 2d CFT deformed by the marginal double trace operator (45)
that arises from integrating out a Luttinger liquid as above. As we will see, the result
is independent of the details of the CFT and hence we expect the qualitative aspects
of the flow to be universal, at least for theories with sufficiently large central charge
and coupling.

The AdS/CFT correspondence provides a technique for computing the partition
function ZCFT[J ] of deformations of a CFT

LCFT → LCFT +
∑
a

Ja(x)Oa(x), (46)

where Ja(x) are couplings (possibly position-dependent) and Oa are operators in the
theory. Correlation functions are obtained by differentiating this partition function
with respect to Ja. We are interested in analyzing how the couplings Ja run with
scale.

9This allows us to avoid the question of how the degrees of freedom of the Luttinger liquid
would be explicitly realized in an AdS model. This could have been alternatively treated in the
semi-holographic approach of [20]. See [21, 22] for explicit discussions of Luttinger liquids in the
AdS/CFT context.
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The dictionary for carrying out this computation is as follows. First, the vacuum
of the theory corresponds to empty anti-de Sitter space. For a two-dimensional CFT
this is AdS3 space

ds2 = L2dz
2 + dt2 + dx2

z2
. (47)

The scaling symmetry of the CFT is realized as the isometry xµ → λxµ, z → λz.
Position in the radial direction z is thus associated with RG scale in the CFT; in
particular, the asymptotic behaviour as z → 0 is associated with local excitations in
the CFT, and z →∞ corresponds to the deep infrared of the CFT.

Next, in theories with an AdS3 dual all operators can be generated as sums of
products of “single-trace” operators {Oi}, each of which corresponds to a field Φi

that propagates on AdS space. For scalars, the operator dimension ∆+ of Oi is
related to the mass m of Φi as

∆± = 1±
√

1 + 4m2L2. (48)

(∆− is a parameter that will become useful later.) Our large central charge model
involved an operator O with conformal dimension 1, so that O2 has dimension 2,
making the couplings Fc and F in (44) and (45) marginal. This corresponds to
m2 = −1/L2. This mass saturates the so-called Breitenlohner-Freedman (BF) bound,
and is the lowest mass in AdS space that leads to a stable scalar field [14].

The AdS/CFT correspondence states that the path integral in AdS space with
particular boundary conditions for fields is related to the CFT partition function in
the presence of sources [15, 16]. Below we will describe how the boundary conditions
are related to the sources. We take our AdS action for the metric and Φ, the AdS
scalar field dual to the operator O, to be

Scl =
1

16πGN

∫
d3x
√
−g(R +

2

L2
) +

1

2

∫
d3x
√
−g [(∇Φ)2 +m2Φ2] , (49)

where GN is Newton’s constant. The AdS length L appearing in the cosmological
constant term is related to the central charge in the CFT via

c =
3L

2GN

� 1 . (50)

The large c limit is thus a classical limit for the path integral with action (49).
Henceforth, we will choose units such that L = 1; so the central charge c ∼ 1/GN .

In this classical limit, the CFT partition function ZCFT[J ] is approximated by
calculating the action (49) on a classical solution. For a scalar field, the classical
equation of motion is

z3∂z(z
−1∂zΦ) + z2∂2

t Φ + z2∂2
xΦ−m2Φ = 0. (51)

The solution for a scalar saturating the BF bound takes the asymptotic form

Φ ∼ Φ+ z + Φ− z log(Λz) (52)
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as z → 0. For m2 exceeding the BF bound, Φ ∼ Φ−z
∆− + Φ+z

∆+ , where ∆± are
given in (48). A simple boundary condition is Φ− = J , and

ZCFT[J ] ≈ e−Scl[J ]. (53)

For fixed Φ− we determine a solution Φ of the bulk equation of motion by imposing
regularity in the interior of the spacetime. In Euclidean signature the condition of
regularity in the bulk fixes Φ+ uniquely. The subleading mode Φ+ can be identified
with the expectation of the operator O (of conformal dimension ∆+) that develops in
response to a perturbation of the theory around the conformal vacuum by a coupling
J(x)O(x).

The above discussion was extended to understanding the bulk description of
“double-trace” operators like O2 in [6, 7, 8]. In particular, adding a double-trace
deformation corresponds to a boundary condition Φ− = FΦ+. To be more careful,
we should write the boundary conditions on a cutoff surface of fixed z0; this then
corresponds to

z
−∆−
0 Φ(z0) = F (z0) z

−∆+

0

∆−Φ(z0)− z∂zΦ(z0)

∆− −∆+

. (54)

For general values of m2, the scaling transformation xµ → λ−1xµ, z → λ−1z scales
Φ+ → λ∆+Φ+ and Φ− → λ∆−Φ−, so F → λd−2∆+F , as we would expect for the
coupling to an operator O2 of dimension 2∆+.

In our case, where the operator saturates the BF bound, the scaling is a little
more complicated; the asymptotic form (52) implies that the scaling is

Φ+ → λ−1(Φ+ + Φ− log λ), Φ− → λ−1Φ−, (55)

so the RG flow of F = Φ−/Φ+ is [7]

F (µ) =
F (Λ)

1 + F (Λ) log(Λ/µ)
, (56)

where we have re-expressed the scaling in terms of a ratio of energy scales Λ, µ.
(Another useful reference on boundary conditions for scalars saturating the BF bound
is [17]).

When F (Λ) > 0, this says that the theory returns to the undeformed F = 0
theory in the IR (µ → 0), i.e. O2 is marginally irrelevant. If we try to extend the
RG running to µ > Λ we will encounter a Landau pole at some critical energy µc
where F →∞. Thus the theory is not defined at arbitrarily high scales. One should
therefore think of this as describing just the running below some cutoff scale Λ. On
the other hand, if F (Λ) < 0, the Landau pole occurs at µc < Λ, so the running to
the IR will encounter this pole. We interpret this as a signal of the instability of the
theory with F < 0.

In [7] F was implicitly assumed to be momentum-independent, but the analysis
there does not depend in any way on this assumption. So we can extract the running
of the couplings Fc, v

2 and Fλ in our large c model by simply plugging the expression
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(45) into (56). This gives

Fc(µ) =
Fc(Λ)

1 + Fc(Λ) log(Λ/µ)
, (57)

v2(µ) = v2(Λ)
1 + (Fc(Λ) + Fλ(Λ)) log(Λ/µ)

1 + Fc(Λ) log(Λ/µ)
, (58)

Fλ(µ) =
1

1 + Fc(Λ) log(Λ/µ)

(
Fλ(Λ)

1 + (Fc(Λ) + Fλ(Λ)) log(Λ/µ)

)
. (59)

In particular, notice

Fλ(µ) + Fc(µ) =
Fλ(Λ) + Fc(Λ)

1 + (Fλ(Λ) + Fc(Λ)) log(Λ/µ)
. (60)

We see that the IR behaviour depends on the sign of Fλ + Fc. The parameter space
is divided into different regions by a critical line at Fc +Fλ = 0.10 To compare to the
previous field theory analysis, we can rewrite these flows in terms of beta functions,
and trade the coupling Fλ for λ̃2 = −Fλv2. The beta functions are

∂Fc
∂ log(Λ/µ)

= −F 2
c ,

∂v2

∂ log(Λ/µ)
= −λ̃2,

∂λ̃

∂ log(Λ/µ)
= −Fcλ̃.

(61)

Comparing these to the large k limit of the field theory RG equations in (20)-
(23), we see that there is also no running of u at leading order in k in the field theory
calculation, and that the functional form of the RG running of the other couplings is
the same, apart from a factor of k/4π3u in the RHS of (20)-(23). The factor of k is
due to the redefinitions λ̃2 = kλ̄2, Fc = kfc, while we have set u = 1 in the present
discussion.

Thus, the RG running of the coupling in the field theory will also be given, up
to normalisation, by the solution (59) read off from the holographic analysis. This
agrees well with the behaviour obtained from the numerical analysis in Fig. 3C and
Fig. 6. In summary,

• For subcritical flows, Fc + Fλ < 0, the theory reaches a pole at a finite scale
µc where 1 + (Fc + Fλ) log(Λ/µc) = 0. At µc the velocity v vanishes, while λ̃
and Fc remain finite (the divergence in Fλ is just due to the vanishing of the

10In this approach we are reading off the beta functions of the field theory in terms of the the radial
running of the boundary condition for an AdS bulk field. A more Wilsonian approach, integrating
out shells in spacetime to derive an effective IR theory, was followed in [23, 24]. (See [25] for a
related earlier approach.) The running couplings derived in [23, 24] do not initially look anything
like the running value of bulk solutions. However, it is possible to choose an RG scheme in which
the Wilsonian couplings are indeed directly related to the running values of bulk fields [26].
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velocity v). This pole is presumably associated with the expected instability
of this theory. This includes in particular the case Fc = 0 which is the most
straightforward generalisation of the one-fermion system studied in [3]. Note
that for Fc = 0, the RG at leading order in c affects only the velocity v2. This
agrees with our analysis of the Fc = 0 flow at k = 2, and this behaviour of the
subcritical flows appears to be robust for k > 1.

• Along the critical line Fc + Fλ = 0, the velocity v flows to zero in the IR, and
the couplings Fc, λ̃ will also flow to zero. This agrees qualitatively with the
k = 3 flow in Fig. 5, so this behaviour appears robust for k > 2.

• For supercritical flows with Fc +Fλ > 0, the velocity v flows to a finite value in
the IR, while the couplings Fc, λ̃ still flow to zero. This again agrees with the
behavior seen in Fig. 5.

Thus, the holographic analysis has produced an RG behaviour which agrees with the
large k limit of the field theory and allowed us to extract the solution of the RG
equations simply from the AdS behaviour. The behaviour is also consistent with field
theory results at finite k > 2.

The AdS analysis does much more, however, in two respects. The first is that
it computes the behavior for generic large c CFT, under the only assumption of a
dimension 1 operator which couples to the full current, i.e. it is very robust to changes
in the model11. The second is that goes beyond the one loop field theory, and sums
up all the planar diagrams.

What about the running of the velocity u? As noted in the field theory discussion,
at large central charge c, u does not run to leading order in 1/c. To explore the renor-
malisation of u, we therefore turn in the next section to the subleading corrections
that are produced by back-reaction of the scalar field onto the bulk metric.

4 Back-reaction and flow of u

To explore the renormalisation of the CFT velocity u, we need to consider the back-
reaction on the metric of the boundary condition for the scalar Φ. As we will see, this
will first appear at subleading order in 1/c. We calculate this back-reaction first for
the momentum-independent case where we only consider Fc, and then in the general
case with both Fc and Fλ turned on in the boundary condition. The calculation is
similar to a previous AdS/CFT calculation of the back-reaction of a double-trace
deformation [9], but differs in that we consider a scalar saturating the Breitenlohner-
Freedman bound and consider a momentum-dependent boundary condition. We find

11Even if the CFT is interacting we still expect to see a dimension 1 operator. Recall that we
obtain the CFT by coupling a massive theory to the low band, then redefining the low band Luttinger
liquid to be that of total electric charge by separating off the charge from the massive theory, and
then going to the IR in the stripped off theory. However, the dimension 1 charge density operator
is still there and couples to ∂xφ. Since the stripped-off CFT no longer has a U(1) symmetry, that
operator is a (1/2, 1/2) operator rather than a current.
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that the velocity u decreases in the IR, but remains finite, as in the field theory
analysis for k > 1.

4.1 General formalism

We start with a general ansatz for the spacetime metric

ds2 =
e2ν(z)dt2 + dx2 + g(z)dz2

z2
. (62)

Recall that z is identified with scale in the CFT. In view of this, we can interpret the
metric on surfaces of constant z as defining the background geometry seen by the CFT
as a function of scale. In this interpretation, the ratio of the gtt and gxx components
of the metric, eν(z), is the running value of the velocity u. At leading order in c,
the bulk metric is simply AdS3, even if the double-trace deformation modifies the
boundary condition for the scalar. To see changes in the geometry we need to take
into account the back-reaction of the quantum stress tensor of the scalar field on the
metric, through Einstein’s equations

Rµν −
1

2
Rgµν +

1

L2
gµν = 16πGN〈Tµν〉. (63)

Because GN ∼ 1/c, we see that the back-reaction of the metric to the matter is a
subleading effect in the 1/c expansion, consistent with what we saw in the large c
field theory calculation.

The expectation value of the stress tensor is

〈Tµν〉 = 〈∂µΦ∂νΦ〉 −
1

2
gµν〈(∂Φ)2〉 −m2gµν〈Φ2〉. (64)

To compute this, we evaluate the bulk two-point function 〈Φ(x, z)Φ(y, ẑ)〉 with the
deformed boundary condition, take the relevant derivatives, and then take the limit
x→ y, z → ẑ. There is a divergence in the coincident point limit, which we can remove
by considering the difference between 〈Tµν〉 computed with the boundary condition
determined by F , and 〈Tµν〉0 computed with the boundary condition F = 0, that is
Φ− = 0.

The scalar two-point function is a solution of the scalar equation of motion (51)
which is regular as z →∞ and satisfies the asymptotic boundary condition Φ− = FΦ+

as z → 0, and which has a delta-function source at some x = y, z = ẑ. We will solve
this equation by working in momentum space in the t, x directions, with a delta-
function source at z = ẑ. We write this solution, at a given momentum 2-vector k,
Φ(k, z; ẑ) as

Φ =

{
A1Φ1 (z < ẑ)
B2Φ2 (z > ẑ)

, (65)

The solution of (51) regular at the horizon z → ∞ in AdS is simply Φ2 = zK0(kz),
where we also use k as a short hand notation for |k|. The solution satisfying the
boundary condition at z → 0 can be written as

Φ1 = z(aI0(kz) +K0(kz)) , (66)
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where a is some arbitrary constant at this stage. We impose the boundary condition
on some cutoff surface at a finite z0. We think of 1/z0 as a UV cutoff for the field
theory, so the momenta in the boundary directions will naturally satisfy kz0 � 1,
so that we can use the asymptotic form of this solution in imposing the boundary
condition at z0.12 Using the small argument expansion of the Bessel functions, for
z ≈ z0,

Φ1(z) ≈ z

(
a− γ − log

(
kz

2

))
. (67)

Imposing the boundary condition then gives

a = log(kz0) + A− 1/F (z0), (68)

where A ≡ γ − log 2. Note that if we change the cutoff surface on which we impose
the boundary condition, and calculate the value F (z1) on the new surface using the
RG flow equation (56), we obtain the same value for a, as we should:

a = log(kz1)+A−1/F (z1) = log(kz1)+A−1 + F (z0) log(z1/z0)

F (z0)
= log(kz0)+A−1/F (z0).

(69)
The coefficients A1, B2 are then determined by requiring that Φ is continuous at

ẑ and its derivative has an appropriate discontinuity, so that ∂2
zΦ = zδ(z − ẑ) as in

[9]. This gives

A1Φ1(ẑ)−B2Φ2(ẑ) = 0 (70)

A1∂zΦ1(ẑ)−B2∂zΦ2(ẑ) = ẑ, (71)

whose solution is

A1 = −ẑ Φ2(ẑ)

W (Φ1,Φ2)
, B2 = −ẑ Φ1(ẑ)

W (Φ1,Φ2)
. (72)

The Wronskian W (Φ1,Φ2) = Φ1∂zΦ2−Φ2∂zΦ1 of the solutions Φ1, Φ2 obtained above
is W (Φ1,Φ2) = −aẑ. Thus the Green’s function is

Φ =

{
1
a
Φ2(ẑ)Φ1(z) (z < ẑ)

1
a
Φ1(ẑ)Φ2(z) (z > ẑ)

. (73)

This gives us the Green’s function in momentum space. To calculate the one-loop
contribution to the stress tensor, we need to evaluate the Green’s function in position
space. This is given by an integral over momenta,

〈Φ(x, z)Φ(y, ẑ)〉 =

∫
d2k

4π2
ei
~k·(~x−~y) zẑK0(kẑ)(aI0(kz) +K0(kz))

a
z < ẑ, (74)

and a similar expression for z > ẑ. The Green’s function will have a divergence at
coincident points, but this is a UV effect (in spacetime) which is not sensitive to the

12For points ẑ far from the boundary, the dominant contribution to the one-loop vacuum diagram
will come from such momenta.
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modification of the boundary conditions. We cancel this divergence by considering
the difference between the Green’s function and the one for the undeformed theory
with F = 0 boundary conditions (that is, the standard Dirichlet theory in AdS space).
Since F = 0 corresponds to 1/a = 0, this just cancels the piece proportional to I0,
giving

〈Φ(x, z)Φ(y, ẑ)〉ren =

∫
d2k

4π2
ei
~k·(~x−~y) zẑK0(kẑ)K0(kz))

a
z < ẑ, (75)

which has a finite limit as x → y, z → ẑ. Note that in the integral over momenta,
the exponential decay of the Bessel functions K0(kz) implies that the contribution
comes mostly from momenta such that kz ≤ 1, so if we consider a point far from the
cutoff surface, so z � z0, then kz0 � 1, and our use of the asymptotic form in (67)
is justified.

4.2 Warm-up: momentum-independent boundary conditions

As a warm-up, consider the calculation for a constant double-trace deformation (that
is, just considering the coupling Fc, with Fλ = 0). This is Lorentz-invariant, so
its analysis is technically simpler than the momentum-dependent case. It is also
interesting for its relation to previous AdS/CFT calculations. Readers uninterested in
the technical details who just want to see the results relevant to the zig-zag transition
may want to skip this section on a first reading.

Our aim in this section is to explore the difference between the present case, where
the bulk scalar saturated the BF bound, and the discussion of [9], where the one-
loop back-reaction due to a modified boundary condition for a scalar field with mass
strictly above the Breitenlohner-Freedman bound was calculated.13 The corrected
bulk metric determines the running of the central charge in the field theory. We find
that the central charge logarithmically approaches the value in the IR CFT. That is,
the running is qualitatively similar to that in [9], but the behaviour is logarithmic
rather than power law. The holographic running of the central charge was studied
further in [18, 19].

The components of the stress tensor we will be interested in are

〈Ttt〉+ 〈Txx〉 = −〈∂zΦ∂zΦ〉+
m2

z2
〈Φ2〉,

〈Tzz〉 =
1

2
(〈∂zΦ∂zΦ〉 − 〈∂tΦ∂tΦ〉 − 〈∂xΦ∂xΦ〉+

m2

z2
〈Φ2〉),

The expectation value 〈Φ2〉 is just the coincidence limit of (75); the derivative terms
can be calculated by taking the derivatives of the renormalised Green’s function (75)

13In [9] it was suggested that there would be no back-reaction as a result of turning on such a
source, and indeed the scalar saturating the Breitenlohner-Freedman bound was used as a reference
to calculate the behaviour above the bound. We will see that there actually is a flow, but as it
involves a logarithmic running, the effect on the computation in [9] is negligible compared to the
power-law running considered there.
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and then taking the coincident point limit. We obtain

〈∂tΦ∂tΦ〉+ 〈∂xΦ∂xΦ〉 =

∫
d2k

4π2a
(kz K0(kz))2 , (76)

〈∂zΦ∂zΦ〉 =

∫
d2k

4π2a
(K0(kz) + kzK ′0(kz))

2
. (77)

Thus, the stress tensor components are

〈Tµν〉 =

∫
kdk

4πa
H(kz), (78)

where for 〈Ttt〉+ 〈Txx〉,

H(kz) = 2 [−(K0(kz) + kzK ′0(kz))2 +m2K0(kz)2], (79)

and for 〈Tzz〉,

H(kz) = [(K0(kz) + kzK ′0(kz))2 − k2z2K0(kz)2 +m2K0(kz)2]. (80)

Recall that a in (68) is also k-dependent. It is convenient to eliminate the apparent
z0 dependence in (68) by re-expressing a in terms of the coupling F at scale z,

a = A+ log(kz)− 1

F (z)
. (81)

The factor of H(kz) is an exponentially decaying function of its argument, so the
integral will be dominated by kz ∼ 1. The RG flow (56) approaches F → 0 in the IR,
so if we assume that the scale z is sufficiently far in the IR, then we can approximate
a ≈ −1/F (z), and we can then explicitly evaluate the momentum integrals:

〈Ttt〉+ 〈Txx〉 =
F (z)

2πz2

∫
dxx[(K0(x) + xK ′0(x))2 +K0(x)2] =

F (z)

3πz2
, (82)

〈Tzz〉 = −F (z)

4πz2

∫
dxx[(K0(x) + xK ′0(x))2 − x2K0(x)2 −K0(x)2] =

F (z)

6πz2
. (83)

Notice we evaluated these at the BF bound, i.e. m2 = −1 in units where the radius
of AdS3 is one (L = 1).

4.2.1 Back-reaction on the metric

For this Lorentz-invariant case, we can take the metric to be of the form

ds2 =
dt2 + dx2 + g(z)dz2

z2
. (84)

This is not in the usual Fefferman-Graham gauge, but it will prove to be convenient
for our back-reaction calculation. In these coordinates z is more simply related to
field theory scale, and the function g(z) directly encodes changes in the AdS scale,
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corresponding to the renormalisation of the central charge of the dual field theory
resulting from the one-loop stress tensor obtained above.

We will compute the central charge as a function of scale by calculating the Ricci
scalar as a function of z. We can do this because the Ricci scalar gives the local
effective value of the cosmological constant (or, equivalently, the radially varying
space-time length scale L(z)) as a function of z. The cosmological constant corre-
sponds to the effective central charge in the dual field theory (see (50)).

In the interior of the spacetime, for z � z0, we can work with a linearised ap-
proximation, as the one-loop stress tensor is going to zero. Setting g = 1 + δg, the
linearised Einstein equations give us

R(1) = 6δg − 2zδg′ = −2z4

(
δg

z3

)′
= −2z2GN〈Ttt + Txx + Tzz〉 = −F (z)GN

π
. (85)

Thus, we see that in the theory with a scalar saturating the BF bound, there is a
one-loop running of the central charge. The Ricci scalar is negative (in our units,
the background Ricci scalar is R = −6), so the correction to the central charge is
proportional to −R(1). Thus the total central charge is

c+ δc =
3

2GN

+
F (z)

4π
(86)

This decreases towards the infrared as expected, as F (z) decreases as z → ∞ ac-
cording to the flow equation (56). In the IR, the central charge approaches that of
the undeformed F = 0 CFT (which has an AdS representation in terms of the con-
ventional Dirichlet boundary conditions). In the IR region F (z) ∼ 1/ log z, so the
running is logarithmic.

4.3 Running of u in the critical flow

We now consider the running of u for the momentum dependent double-trace defor-
mation (45). We consider first the special trajectory where Fλ + Fc = 0. It was for
this trajectory that we found that the velocity v flows to zero in the IR. The key
result is that u approaches a finite value in the IR.

For this trajectory

F =
λ̃2

v2

k2
t

v2k2
x + k2

t

. (87)

Proceeding as in the momentum-independent case, the renormalised position space
Green’s function is given by (75), but the fact that F and hence a depend separately
on kx, kt implies that the behaviour of the stress tensor components will be different.

The components of the stress tensor we are interested in are

〈Ttt − Txx〉 = 〈∂tΦ∂tΦ〉 − 〈∂xΦ∂xΦ〉,

〈Ttt + Txx〉 = −〈∂zΦ∂zΦ〉+
m2

z2
〈Φ2〉,

〈Tzz〉 =
1

2
(〈∂zΦ∂zΦ〉 − 〈∂tΦ∂tΦ〉 − 〈∂xΦ∂xΦ〉+

m2

z2
〈Φ2〉).

(88)
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The derivatives in this case are given by

〈∂aΦ∂bΦ〉 =

∫
d2k

4π2

(kaz K0(kz))2

A+ log(kz0)− v2

λ̃2

v2k2
x+k2

t

k2
t

, (89)

〈∂zΦ∂zΦ〉 =

∫
d2k

4π2

(K0(kz) + kzK ′0(kz))2

A+ log(kz0)− v2

λ̃2

v2k2
x+k2

t

k2
t

, (90)

where a, b run over the boundary coordinates t, x. The breaking of Lorentz invariance
makes the angular part of the momentum integral non-trivial.

These angular integrals are calculated in appendix B.1 in terms of the quantities

B(k) = A+ log(kz) + 1/Fλ(z) + v̂2, v̂2 = −v2/Fλ = v2/(λ̃2/v2). (91)

Like a in the momentum independent case, B and v̂2 are independent of the scale we
use to evaluate them – i.e. they are RG invariants. The result is that the stress tensor
contributions in the IR region, where we can make the large |B| approximation, are

z2〈Ttt − Txx〉 ≈ −
v̂

6π|B|3/2
≈ − v̂|Fλ|

3/2

6π
, (92)

where we used the identity
∫
dxx3K0(x)2 = 1

3
,

z2〈Ttt + Txx〉 ≈
1

3π|B|
≈ |Fλ|

3π
, (93)

and

z2〈Tzz〉 ≈
1

6π|B|
≈ |Fλ|

6π
. (94)

Thus, the Lorentz-invariant components have a similar form to the momentum-
independent case, but with Fλ in place of F . The 〈Ttt−Txx〉 component is subleading
compared to these in the region of small Fλ, but as it gives the back-reaction on the
velocity, it is our main subject of interest.

4.3.1 Backreaction on the metric

As we have broken Lorentz symmetry in this case, we need to take our general ansatz
for the metric, writing

ds2 =
e2ν(z)dt2 + dx2 + g(z)dz2

z2
. (95)

Then eν(z) will parameterize the departure from Lorentz invariance, and give the RG
flow for the velocity u. Writing g = 1 + δg, the linearised Einstein equations are

z2ν ′′ − zν ′ = −z2GN〈Ttt − Txx〉 , (96)

−δg +
1

2
zδg′ = z2GN〈Ttt〉, (97)
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and a constraint,
−δg − zν ′ = z2GN〈Tzz〉. (98)

where primes denote derivatives with respect to z. Working with the gauge choice
(62) rather than the usual Fefferman-Graham coordinates is convenient because it
simplifies these linearised equations (fewer derivatives are involved) and will turn out
to give a solution where the linearised analysis is valid throughout the IR region.

If there were no source terms 〈Tµν〉, these equations would just have the homo-
geneous solution νhom = ν0 + ν1z

2, δghom = −2ν1z
2, where the z2 parts are related

by the constraint equation. The constant homogeneous mode ν0 just corresponds to
the freedom to rescale t in the metric (62). The homogeneous mode ν1 corresponds
to a finite energy density in the dual CFT; it is the linearised version of a black hole
solution. Because we are interested in the RG flow in vacuum, we set ν1 = 0.

Consider first the back-reaction of the source in (96). In the region of large z, (92)
tells us 〈Ttt − Txx〉 ∼ |Fλ|3/2, and the leading order RG equation (59) tells us that in
the IR Fλ ≈ 1/ log(z/z0). So

z2ν ′′ − zν ′ ≈ GN v̂

6π log(z/z0)3/2
. (99)

Introducing a variable x = log(z/z0), the solution to this equation when we set ν1 = 0
is

ν = ν0 +
v̂GN

3π
√
x

+ . . . . ≈ ν0 +
v̂GN |Fλ(z)|1/2

3π
. (100)

More formally, to obtain a first-order RG equation from (96) the equation for ν
can be written as (

ν ′/z
)′

=
v̂GN |Fλ(z)|3/2

6πz3
, (101)

so we can integrate to write

ν ′(z) = −ν̄1z+
v̂GN

6π
z

∫ z

z0

du |Fλ(u)|3/2/u3 = 2ν1z−
v̂GN

6π
z

∫ ∞
z

du |Fλ(u)|3/2/u3 (102)

The ν1 piece just corresponds to the z2 homogeneous mode in ν. We choose to work at
zero temperature (i.e., no background energy density in the CFT and no black hole in
the bulk), which corresponds to setting ν1 = 0. (Working at finite temperature would
be more difficult because we would need to go beyond this linearized approximation
in the IR.) This gives us the first-order equation. Recalling that we can identify z
with the scale µ as z = Λ/µ, and multiplying both sides of the equation by z, we can
write

∂log(Λ/µ)ν = − v̂GN

6π

∫ ∞
1

dw |Fλ(zw)|3/2/w3 (103)

in terms of w = u/z. Since the running of the coupling Fλ is logarithmic, if we neglect
the far IR contribution to the integral we can approximate it by taking Fλ(zw) ≈
Fλ(z). Then

∂log(Λ/µ)ν = − v̂GN |Fλ(Λ/µ)|3/2

6π
(104)
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This has all the properties of an RG equation in the sense that it depends only on the
couplings at the scale - ie there is no remnant of the scale Λ. In the IR, F (z) ∼ 1/ log z,
so if we denote x = log(Λ/µ) we obtain the equation

∂xν ∝ −1/x3/2, (105)

which reproduces the solution (100).
Thus, the solution for ν will approach some constant value in the IR. To determine

the constant ν0, we should fix ν at some cutoff scale. We could take this cutoff scale
somewhere in the IR where the above expression is valid, and use the velocity there
to parametrize the different flows. More physically, we should relate this to the UV
velocity, but that is more difficult as we can not control the evolution outside of the
IR region.

As discussed above, the velocity u is the ratio of the gtt and gxx components in
the metric, and so is given by e2ν(z) at the scale z. So the fact that ν remains finite
as we flow to the IR indicates that the velocity is not going to zero. In fact, since
we remain in the linearised regime, there is just some small (order ~) correction to
the velocity. Since ν is decreasing as x increases, we see that the velocity always gets
smaller in the IR, as in the perturbative field theory calculation in section 2.2. On
general grounds we might expect that velocities will decrease towards the IR because
high energy excitations should effectively provide a “drag” for low energy excitations.

The renormalisation of the central charge can be determined as in the previous
momentum independent case. We now have that the linearised Ricci scalar is

R(1) = 6δg − 2zδg′ + 4zν ′ − 2z2ν ′′ = −2z4

(
δg

z3
+
ν ′

z2

)′
, (106)

and this is still given by Einstein’s equations in terms of the trace of the one-loop
stress tensor,

R(1) = −2z2GN〈Txx + Tyy + Tzz〉 = −GN |Fλ|
π

, (107)

Thus the total central charge is

c+ δc =
3

2GN

+
|Fλ|
4π

=
3

2GN

+
Fc
4π

(108)

where we used the fact that Fc = −Fλ for the critical flow. So the only change
compared to (86) is that (108) is expressed in terms of Fc = |Fλ|. Below we will
consider the general case where Fc + Fλ 6= 0 and we will find that the central charge
is still expressed in terms of Fc.

The one-loop correction to the central charge decreases along the flow, and goes to
zero in the IR, consistent with the idea that the theory flows back to the undeformed
fixed point in the IR (i.e. F = 0 corresponding to an AdS description with Dirichlet
boundary conditions). Interestingly, the running central charge has a universal ex-
pression here in terms of the trace of the bulk stress tensor, and can be related to a
total derivative in the coordinate system we have adopted here. The significance of
this total derivative form is not entirely clear.
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If we wanted to use Fefferman-Graham coordinates, we would need to define a

coordinate z = z̄(1 + ε(z̄)) with g(z)dz2 = dz̄2

z̄

2
, that is to linear order

(1 + δg + 2ε+ 2zε′)

1 + 2ε
= 1, (109)

Now in the IR region δg ∼ 1
log z

, so

ε ∼
∫

dz

z log z
∼ log(log z). (110)

Thus, the coordinate transformation to Fefferman-Graham coordinates has a slow
divergence in the IR; this is why it was useful to work in the coordinate system we
have adopted.

4.4 More general flows

The formalism developed in the previous subsection to compute the RG flow of u
for the critical flow (Fλ + Fc = 0) can equally be applied for the other stable flows,
i.e. those with Fλ + Fc > 0. We find that for these flows the velocity u will still be
decreasing in the IR, to some finite value, but more rapidly than in the critical flow.

The calculation proceeds similarly: the background metric ansatz will still be
given by (95) and the form of the linearised Einstein’s equations will remain as in
(96)-(98). The expectations values 〈Tab〉 appearing on the right hand side of these
equations are still given by (88).

For flows with Fλ +Fc > 0, the boundary condition Φ− = FΦ+ involves a double-
trace coefficient

F =
(Fc + Fλ)v

2k2
x + Fck

2
t

v2k2
x + k2

t

. (111)

This determines the Φ Green’s function (75), through the RG invariant a (68). To
make its scale independence more manifest, we introduce the RG invariants (i.e. z-
independent quantities derived from (59))

F̂ =
(Fc + Fλ)v

2

Fc
, v̄2 = −v

2Fλ
F 2
c

. (112)

We can then write

1

F
=

1

Fc
+

v̄2k2
x

F̂ k2
x + k2

t

=
1

Fc
− v̄2

(1− F̂ )
+

v̄2

(1− F̂ )

k2
x + k2

t

F̂ k2
x + k2

t

. (113)

Thus

a = A+ log(kz0)− 1

F (z0)
= B − v̂2 k2

x + k2
t

F̂ k2
x + k2

t

, (114)

where for ease of notation, two modified scale invariants were introduced

B = A+ log(kz0)− 1

Fc(z0)
+ v̂2 and v̂2 =

v̄2

(1− F̂ )
. (115)
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The calculation of 〈Tµν〉 proceeds as in subsection 4.3 and it is discussed in ap-
pendix B.2. The 〈Tzz〉 or 〈Ttt + Txx〉 components are dominated by the pole at the
origin

z2〈Ttt + Txx〉 ≈
1

3π|B|
≈ Fc

3π
, z2〈Tzz〉 ≈

1

6π|B|
≈ Fc

6π
. (116)

Thus, their values are the same as for the critical flow (93)-(94), except for |Fλ| being
replaced by Fc. The 〈Ttt − Txx〉 component now has comparable contributions from
all poles. These are computed in (147) and give rise to

z2〈Ttt − Txx〉 ≈
1−

√
F̂

6π
√
F̂ (1 +

√
F̂ )

v̂2

B2
≈ 1−

√
F̂

6π
√
F̂ (1 +

√
F̂ )
v̂2 F 2

c . (117)

This expectation value is more suppressed in the IR than the one in (92) for the
critical flow. Thus, the velocity ν will decrease more quickly along these flows.

Indeed, consider (96) with the source (117). As in section 4.3.1, we will ignore the
homogeneous mode associated with thermal effects. In the deep IR, we know from
(57) that Fc ≈ 1/x with x = log(z/z0). Thus, the solution for the linearised running
of the velocity in this IR regime will then be

ν ≈ ν0 +
GN

6π

1−
√
F̂√

F̂ (1 +
√
F̂ )

v̂2

x
+ . . . ≈ ν0 +

GN

6π

1−
√
F̂√

F̂ (1 +
√
F̂ )
v̂2 Fc . (118)

This again decreases to some constant value ν0, but it does so more rapidly than for
the critical flow.

Since the contributions to the trace of the stress tensor have the same form as
for the critical flow, the running of the central charge will be given by the same
expressions (107) in terms of Fc. It is interesting to note that independent of the value
of Fλ, the running of the central charge is determined by the momentum-independent
double-trace deformation Fc.

5 Summary

We have suggested extensions of the zig-zag phase transition model in [3]. The latter
consists of a free boson (realizing a Luttinger liquid) coupled to a Majorana fermion.
Phase space is parameterised by the fermion velocity u, the Luttinger velocity v and
their interaction. The interaction breaks Lorentz invariance but RG flow restores it
in the IR where both velocities become equal and quenched. In the model of [3] there
is a critical line at u = v.

In this work, we replaced the Majorana fermion with a more general CFT, in-
cluding theories with a large central charge and an AdS dual. First, we studied the
k Majorana fermion extension. This theory admits an additional marginal operator
parameterized by a new coupling fc, and shows qualitative differences with the k = 1
case in [3]: the velocities u and v decrease towards the IR, but for k > 1 the velocity
u remains finite even in the IR, and in general does not approach v. For large k, the

31



running of u is parametrically suppressed relative to the running of v. For k > 1 the
critical line in the RG flows is at fc = λ2/v2 (this bears no relation to the u = v
critical line in the k = 1 case).

We solved the RG equations analytically in some special cases and numerically
for generic values of k. For k = 2 the equations are simple enough to be solved
analytically with some assumptions. In the super-critical case (fc > λ2/v2), v runs
to a finite value in the IR, while in the critical case it goes to zero logarithmically.
In the subcritical case (fc < λ2/v2), v vanishes at a finite scale. In all k = 2 cases,
fc remains finite at all scales. For k > 2 we solve the RG flow numerically and found
a similar structure. In the super-critical case v remains finite in the IR, but fc now
goes to zero. In the critical case both v and fc flow to zero logarithmically. In the
subcritical case v again goes to zero at a finite scale.

Given the simplifications of the large k fermion model, we considered a further
generalisation in which we replaced the CFT describing the k Majorana fermions with
an arbitrary large central charge CFT containing a dimension (1/2, 1/2) operator O
coupled to the Luttinger theory and allowing a marginally irrelevant deformation O2.
We then used the AdS/CFT correspondence to analyze these more general scenarios.
The qualitative structure of the bulk RG flows reproduces the field theory behavior
for k > 2. In the large central charge limit, the running of u is subleading; we
studied it by including gravitational back-reaction in the holographic calculation.
Our technique for studying the problem involves integrating out the Luttinger liquid
entirely and then studying the resulting deformed conformal theory. This allowed
us to avoid the question of how the degrees of freedom of the Luttinger liquid were
specifically realized in an AdS model. This could have been alternatively treated in
the semi-holographic approach of [20]. Note that the AdS analysis computes the RG
behavior for a a generic large central charge CFT, assuming only the presence of a
dimension one operator that couples to the current, and effectively sums up all the
planar Feynman diagrams, thus going well beyond the one-loop analysis of [3].

Some of our proposed generalizations can be experimentally realized. Consider,
for example, a three dimensional material with a potential in two transverse direc-
tions such that two transverse oscillations become massless at the same value of the
chemical potential. This will realize our k = 2 model.
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A T-duality and the appearance of O2

We want to understand the transformation between the descriptions of the Luttinger
liquid in terms of the two dual variables θ and φ when we include the coupling to O.
We start from the Luttinger liquid Hamiltonian (2) and the canonical commutation
relations [

1

π
∂xφ(x), θ(x′)

]
= −iδ(x− x′). (119)

When we have only a Luttinger liquid, then the derivatives are dual, ∂t,xθ ∝ ∂x,tφ.
As a result, for k = 1, the interaction Lagrangians

∫
∂tθO and

∫
∂xφO are related.

However we will see that for k ≥ 2 the two interaction Lagrangians are not the same,
but rather they differ by the addition of the operator O2 with a specific coefficient.

It is simplest to see this in the path integral formulation of the Luttinger liquid.
There are two equivalent (Minkowskian) Lagrangian descriptions of the Luttinger
theory, one using only θ and one using only φ,

Lθ =
K

2πv

∫
dtdx

(
(∂tθ)

2 − v2(∂xθ)
2
)
, (120)

Lφ =
1

2πKv

∫
dtdx

(
(∂tφ)2 − v2(∂xφ)2

)
. (121)

We will further rescale the coordinate xnew = x/v,which sets v = 1.
We can go from one Lagrangian to the other by starting with the path integral∫

DφDVµexp

(
− i

2π

∫
dtdx

(
KηµνVµVν + 2εµνφ ∂µVν

))
(122)

where η00 = −1, η11 = 1. This path integral reduces to (120) if we treat φ as a
Lagrange multiplier and solve the resulting equation of motion by setting Vµ = ∂µθ,
or it reduces to (121) if we integrate out Vµ and keep φ as a dynamical variable.

Suppose that we are now given a Lagrangian of the form

L′θ = Lθ + (αt∂tθ − αx∂xθ)O − αO2. (123)

We can replace it by

−L =
K

2π
ηµνVµVν +

1

π
εµνφ ∂µVν + ηµναµVνO + αO2, (124)

where as before we reduce to (123) by integrating out φ to obtain Vµ = ∂µθ. Now we
can integrate out Vµ to obtain the Lagrangian

−L =
1

2πK
ηµν∂µφ∂νφ−

1

K
εµναµ∂νφO +

(
α− 2π

K
ηµναµαν

)
O2 (125)
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or

α
(φ)
t =

1

K
α(θ)
x (126)

α(φ)
x =

1

K
α

(θ)
t (127)

α(φ) = α(θ) − 2π

K
ηµνα(θ)

µ α(θ)
ν . (128)

The last term in (128) is the shift in the coefficient of O2. In particular, if we start with

only λ
(θ)
t , then we end up with λ

(φ)
x = λ

(θ)
t /K, and α(φ) = 2π

K

(
λ

(θ)
t

)2
= 2πK(λ

(φ)
x

)2
,

which agrees with the discussion around (24) and (25), noting we both set v = 1 and
work in Lorentzian signature in this appendix, while v is generic and the signature is
Euclidean in the main body of the paper.

B Evaluation of 〈Tµν〉
In this appendix we compute the momentum integrals determining the expectation
value of the stress tensor 〈Tµν〉. The latter are given in (88) and are fully determined
by (89)-(90)

〈∂aΦ∂bΦ〉 =

∫
d2k

4π2a
(kaz K0(kz))2 ,

〈∂zΦ∂zΦ〉 =

∫
d2k

4π2a
(K0(kz) + kzK ′0(kz))

2
,

(129)

where the scale independent a equals

a = A+ log(kz0)− 1

F
. (130)

As discussed in the main text, it is F that controls the kind of double trace deforma-
tion (flow) under consideration. To study these integrals, we apply two transforma-
tions. First, we work with polar coordinates in momentum space

kt = k sin θ, kx = k cos θ . (131)

Second, we introduce a complex coordinate w mapping the angular θ integral to the
unit circle closed contour in the complex plane

w = eiθ ⇒ cos θ =
(w + 1/w)

2
, sin θ =

(w − 1/w)

2i
. (132)

B.1 Critical flows

First, we discuss these integrals for critical flows, i.e. Fλ + Fc = 0, where F is given
in (87). Using the above transformations, we can jointly write 〈Tµν〉 as

〈Tµν〉 =

∫
kdk

4π2
H(kz)

(
1

i

∮
dw

w

(w2 − 1)2

B(w2 − 1)2 + 4w2v̂2
G(w)

)
. (133)
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In writing this expression, we introduced the RG-invariants

B = A+ log(kz) + 1/Fλ(z) + v̂2, v̂2 = − v
2

Fλ
=

v2

λ̃2/v2
. (134)

The different relevant components are characterised by

• For 〈Ttt − Txx〉, we have G(w) = −w4+1
2w2 and H(kz) = (kzK0(kz))2.

• For 〈Tzz〉, G(w) = 1 and

H(kz) =
1

2
[(K0(kz) + kzK ′0(kz))2 − k2z2K0(kz)2 +m2K0(kz)2]. (135)

• For 〈Ttt + Txx〉, we again have G(w) = 1 and

H(kz) = [−(K0(kz) + kzK ′0(kz))2 +m2K0(kz)2]. (136)

Note that as in the momentum independent flows discussed in section 4.2, far in
the infrared, B ≈ 1/Fλ(z), as Fλ → 0 in the IR. In performing the integral, we will
always assume that we are in this region of large B. As a result the angular integral
is approximately independent of k, allowing us to compute it separately from the
integral over k.

Angular integral: Consider first the angular integral with G(w) = 1. Using the
residue theorem, there can only be contributions from the poles in the integrand.
There is a manifest simple pole at w = 0, whose contribution to the unit circle
integral is 2π/B. Let us examine the existence of further poles in the second factor :

B(w2 − 1)2 + 4v̂2(w2 − 1) + 4v̂2 = 0 .

In the limit of large |B|, when we are in the deep interior of the spacetime, i.e. in the
IR of the RG flow, |B| � v̂2, this equation reduces to

w2
?± − 1 = ∓ 2v̂√

−B
. (137)

Notice that only w?+ is inside the contour of integration, giving rise to two simple
poles,

w± ∼ ±
(

1− v̂√
−B

)
. (138)

Using the residue theorem, their contribution to the integral is

2πi

i

[
1

w+

(w2
+ − 1)2

B(w+ − w−)(w2
?+ − w2

?−)
+

1

w−

(w2
− − 1)2

B(w− − w+)(w2
?+ − w2

?−)

]
In the large |B| limit, where w+ − w− ≈ 2, the latter is

2π

|B|
v̂√
|B|
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up to subleading contributions. Thus, the overall integral is dominated by the pole
at the origin, and

1

i

∮
dw

w

(w2 − 1)2

B(w2 − 1)2 + 4w2v̂2
≈ 2π

B
. (139)

To sum up, for the components described byG(w) = 1, the result has the same form as
in the momentum-independent case. This is because the integral is dominated by the
pole at the origin and the angular dependence only makes a subleading contribution
to this integral.

Consider the case with G(w) = −w4+1
2w2 . For the momentum-independent case the

corresponding integral vanishes. Thus, the angular dependence must be crucial now.
There is still a contribution from the pole at the origin, but the current non-trivial
G(w) turns this into a third order pole. To evaluate its contribution, we use Cauchy’s
integral formula

f (n)(a) =
n!

2πi

∮
f(w)

(w − a)n+1
dw .

This gives a contribution from the pole at the origin of 4πv̂2

B2 . The integral still has
the same two poles w± identified earlier. Since the new function G(w) is even, we can
again conclude the contribution of both poles is equal. In fact since G(w±) ∼ −1,
these poles have the same contribution as before. As a result, the contribution from
the origin will now be subleading, allowing us to approximate the integral by

−1

i

∮
dw

w

(w2 − 1)2

B(w2 − 1)2 + 4w2v̂2

w4 + 1

2w2
≈ − 2π

|B|
v̂√
|B|

. (140)

B.2 More general flows

In this subsection, we compute the integrals determining 〈Tµν〉 for the more general
stable flows satisfying Fc + Fλ > 0. Using the value of F in (111) determining a in
(130), we can write these expectation values as

〈Tµν〉 =

∫
kdk

4π2
H(kz)

(
1

i

∮
dw

w

(w2 − 1)2 − F̂ (w2 + 1)2

B[(w2 − 1)2 − F̂ (w2 + 1)2] + 4w2v̂2
G(w)

)
, (141)

where, for ease of notation, the following RG-invariants were introduced

B = A+ log(kz0)− 1

Fc(z0)
+ v̂2 and v̂2 =

v̄2

(1− F̂ )
, (142)

as a function of

F̂ =
(Fc + Fλ)v

2

Fc
, v̄2 = −v

2Fλ
F 2
c

, (143)

but with the same functions H(kz), G(w) as in the critical flow discussion.
The contributions from the pole at the origin are similar to previously. Its residue

equals 2π/B for G(w) = 1 and 4πv̂2/(B2(1 − F̂ )) for G(w) = −(w4 + 1)/2w2. To
determine the remaining poles, notice that for stable flows F̂ > 0 and in the IR we
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can again consider the large |B| limit. Assuming v̂2

B
is small, we can expand the

denominator in (141) to linear order around the zeroes in its numerator. These equal

w2
0± =

(1±
√
F̂ )2

(1− F̂ )
. (144)

Notice it is only the lower sign w0− that lies inside the unit circle. Solving for the
poles14

w2
− ≈ w2

0−

(
1 +

v̂2

B
√
F̂

)
. (145)

As for the critical flows, there are two poles ±w− inside the unit circle whose residues
add up to

2π
G(w0−)√

F̂

v̂2

B2
. (146)

Thus, for G(w) = 1, this gives a subleading contribution, whereas for G(w) = −(w4 +
1)/2w2, it is of the same order as the contribution from the pole at the origin.

To sum up, since 〈Tzz〉 and 〈Ttt+Txx〉 have G(w) = 1, their dominant contribution
is from the pole at the origin. The latter is given by (139), as for the critical flow. On
the other hand, 〈Ttt − Txx〉 has G(w) = −(w4 + 1)/2w2 and the value of the angular
integral equals

1

i

∮
dw

w

(w2 − 1)2 − F̂ (w2 + 1)2

B[(w2 − 1)2 − F̂ (w2 + 1)2] + 4w2v̂2
G(w) ≈ −2π

1−
√
F̂√

F̂ (1 +
√
F̂ )

v̂2

B2
. (147)
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