
On the size and shape of drumlins

A. C. Fowler1,2, M. Spagnolo3, C. D. Clark4, C. R. Stokes5, A. L. C.
Hughes6, and P. Dunlop7

1MACSI, Department of Mathematics and Statistics, University of
Limerick, Limerick, Ireland

2OCIAM, Mathematical Institute, University of Oxford, Oxford, UK
3School of Geosciences, University of Aberdeen, Aberdeen, Scotland

4Department of Geography, University of Sheffield, Sheffield, UK
5Department of Geography, University of Durham, Durham, UK

6Department of Earth Science, University of Bergen, Bergen, Norway
7School of Environmental Sciences, University of Ulster, Coleraine,

Northern Ireland

August 16, 2013

Abstract

We provide a mechanistic explanation for observed metrics for drumlins,
which represent their sizes and shapes. Our explanation is based on a concept
of drumlin growth occurring through a process of instability, whereby small
amplitude wave forms first grow as ice slides over a bed of deformable sediments,
following by a coarsening process, in which the wavelength as well as the relief
of the drumlins continues to grow. The observations then provide inferences
about the growth process itself.
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1 Introduction

Recent work on the size and shape of British and Irish drumlins (Clark et al. 2009,
Spagnolo et al. 2012) has shown that both their lengths and widths have well-defined
smooth distributions, which are approximately lognormal. A lognormal random vari-
able X takes positive values x > 0, and has the probability density function

fX(x) =
1

σx
√

2π
exp

[
−(lnx− µ)2

2σ2

]
. (1.1)
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Figure 1: Distribution of drumlin relief h, plotted on the left as a histogram of the
number of drumlins in bins of equal width in relief, and on the right as a histogram
of the frequency fi of lnh (see (1.4)) with equal bin widths in lnh. The vertical axis
on the right gives the frequency fi in the i-th bin. If the distribution is lognormal,
the right histogram will be fit by a Gaussian, given by (1.2), as explained in the text.

The name lognormal is associated with the fact that the random variable Y = lnX,
taking values y = lnx ∈ (−∞,∞) has the normal distribution

fY (y) = xfX(x) =
1

σ
√

2π
exp

[
−(y − µ)2

2σ2

]
, (1.2)

thus µ and σ2 are the mean and variance of the distribution of lnX.
Estimates of the density can be made by binning a sample population into equal

sized bins and plotting the results as a histogram. If unequal bins are used, then
the number in each bin must be divided by the bin width in order to provide a true
measure of the frequency. Thus the histograms using equal bin widths of length L
and width W provided by Clark et al. (2009), and of relief (Spagnolo et al. 2012),
provide an estimate of the probability density. Similarly, if we plot histograms of lnX
using equal bin widths of lnx, we gain an estimate of the density of lnX (but not of
X). In figures 1, 2 and 3, we show estimates of the densities of lnH, lnL and lnW ,
where also H is drumlin relief, together with Gaussian densities computed from the
formula (1.2), using the unbiased estimators µ̄ and σ̄ for µ and σ defined by

µ̄ =
1

n

∑
i

lnxi,

σ̄2 =
1

n− 1

∑
i

(lnxi − µ̄)2. (1.3)

More specifically, if ni is the number of drumlins in each bin, the plots represent the
histogram of the frequency fi, which is an approximation of the probability density
fY , and is given by

fi =
ni
n∆
≈ fY (y), (1.4)
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Figure 2: Distribution of drumlin lengths l, plotted as a histogram of frequency fi of
ln l with equal bin widths in ln l.

where ∆ is the bin width in y = lnx, for x = H,L,W , and n is the total number of
the sample; fY is the Gaussian given by (1.2). It can be seen that the data are very
well fitted by the Gaussian curves, and this naturally raises the question as to why
this should be so.

2 Log-normal distributions

An elementary discussion of lognormal distributions is given by Limpert et al.
(2001), who also point to many different sciences where such distributions arise. For
example in linguistics, the number of letters per word and the number of words per
sentence fit a log-normal distribution. Kolmogorov (1941) provided a basic mechanism
which can explain their occurrence, and his argument is nicely summarised by Kondolf
and Adhikari (2000). Kolmogorov considers rock fragments of dimension ri, which
are successively fractured in events indexed by the subscript i, so that ri+1 = Firi,
where Fi ∈ (0, 1) is the fraction of the particle which remains. It follows that

ln rn =
n∑
0

lnFi + ln r0, (2.1)

and assuming that Fi is drawn from some appropriate distribution (for example,
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Figure 3: Distribution of drumlin widths w, plotted as a histogram of frequency fi of
lnw with equal bin widths in lnw.

uniformly distributed on (0,1)) it follows from the central limit theorem that ln r will
be normally distributed, i. e., r is lognormal. The key to the production of a lognormal
distribution is thus the combination of a large number of independent events in which
incremental (multiplicative) growth or decay occur.

Let us suppose that a deterministic theory of drumlin growth provides an evolution
equation for quantities like the relief h of the form

ḣ = rh. (2.2)

The growth rate r will in practice depend on conditions of the ice flow and subglacial
water pressure, and is unlikely to be uniform in space or time. If we suppose that in
fact drumlins are built in a series of events, each of which we might characterise as
a relatively short term period of rapid flow, for example, or excess water flow, as for
example in a sheet flood such as those found in Antarctica by Goodwin (1988) and
Wingham et al. (2006), then we might correspondingly expect drumlin relief to grow
in spurts, consistent with observations of King et al. (2009) and Smith et al. (2007).
In that case we might expect that each measurable quantity x, such as width, length
or relief, then evolves in the following way:

∆x ≈ rx∆t. (2.3)

The equation represents the increment in x due to a supposed instability, in which r
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is the growth rate and ∆t is the duration of the event. The quantity

∆w = r∆t (2.4)

is considered to be a random variable, drawn from a suitable distribution.
Now we suppose that these events occur randomly in space, so that at every point

where a drumlin forms, the sequence of events represents a series of independent
trials, each of which has some probability p of causing an increment of growth given
by (2.3). The central limit theorem then indicates that the total number of successes
is described by a normal distribution; since ∆x/x = ∆ ln x, the sum of the increments
is normally distributed, and specifically we have, for the random variable X taking
the value x,

ln

(
X

x0

)
∼ N(µEnE, σ

2
EnE), (2.5)

where N represents a normal distribution of mean µnE and variance σ2nE: nE is
the number of events, x0 is the initial value for x, and µE and σ2

E are the mean and
variance of the distribution of ∆w. If, for example (like coin tossing), an event either
occurs (∆w = r∆t with probability p) or not (∆w = 0 with probability 1− p), then

µE = pr∆t, σ2
E = p(1− p) (r∆t)2 . (2.6)

Thus h (and similarly width and length) can be expected to have a log-normal dis-
tribution. We comment more on the physical basis of this supposition below.

A discussion similar to the above follows from the precepts of stochastic dynam-
ics (Gardiner 2009, Van Kampen 2007), where we would associate the stochastic
exponential growth of a quantity S with the stochastic differential equation

dS = rS dW, (2.7)

where W is a Wiener process, that is to say W (t) is continuous, non-differentiable
and is a random variable with a Gaussian distribution and variance t. From this, we
deduce a Fokker–Planck equation for the evolution of the density of lnS, which is
simply a diffusion equation for lnS: hence S is lognormally distributed.

3 Non-lognormal distributions

While the probability densities in figures 1 to 3 are close to lognormal, they are not
precisely so, and one may ask what the significance of these variations is. Particularly,
the difference in the tails of the densities for length and width could be important.
Fortunately, it is simple to modify the discussion above to link any unimodal density
function to an hypothesised deterministic predictive equation.

Suppose now that a deterministic model for x is

ẋ = rg(x), (3.1)

where we will assume g > 0 and g ∼ x as x→ 0. Exponential growth is recovered if
g = x.
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The discrete stochastic analogue is

∆x = g(x)∆w, (3.2)

and the consequence of the central limit theorem is that

I(Y ) ∼ N(µEnE, σ
2
EnE), (3.3)

with the same notation as in (2.5), and where

I(y) =

∫ x

x0

dx

g(x)
, y = ln

(
x

x0

)
, (3.4)

as a consequence of which

g(x) =
x

I ′(y)
. (3.5)

The central limit theorem implies

P [y < I(Y ) < y + ∆] ≈ G(y)∆, (3.6)

where G is the Gaussian

G(y) =
1

σ
√

2π
exp

[
−(y − µ)2

2σ2

]
, (3.7)

and we use the sample mean and variance from (1.3) in the definition of G; thus also

G(y)∆ ≈ P [I−1(y) < Y < I−1(y + ∆)]

≈ P

[
I−1(y) < Y < I−1(y) + ∆

d

dy
I−1(y)

]
, (3.8)

from which it follows that

G(y) ≈ fi
[
I−1(y)

] d
dy
I−1(y). (3.9)

If we define the cumulative distribution functions of the Gaussian and the sample as

FG(I) =

∫ I

−∞
G(I) dI = 1

2

[
1 + erf

(
I − µ
σ
√

2

)]
,

FY (η) =

∫ η

−∞
fi(η) dη, (3.10)

each of which is a monotonically increasing function of its argument, with FG(−∞) =
FY (−∞) = 0, FG(∞) = FY (∞) = 1, then we determine I(y) through the identifica-
tion

FG[I(y)] = FY (y). (3.11)

This is illustrated in figure 4.
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Figure 4: Illustration of the method of determining I(y) via (3.11). The distributions

illustrated are FG in (3.10) and FY =
ey−3

1 + ey−3
, and the mean and variance of FG are

µ = σ2 = 1.

In practice, we do the following. For any quantity x and with y = ln

(
x

x0

)
, we

order each drumlin in the database as a pair (j, yj), where y1 ≤ y2 ≤ y3 . . ., etc. For
a total sample of size n, the numerical definition of FY is then just

Fj = FY (yj) =
j

n
. (3.12)

The computational step of calculating Ij = I(yj) consists of inverting (3.11), but
(unless one has the inverse error function available) it is easier to calculate y(I).
Thus given Ii (in practice we select a monotonic sequence I1, . . . , IK : note that the
sequences {i} and {k} are distinct), we may calculate FG(Ii) explicitly via (3.10). For
a y sample of size n, we define

j = int [nFG(Ii)], (3.13)

which gives j(i) and thus also the corresponding yj as a stair-like function of I. Note
that some of the j values may be repeated, depending on the fineness of the partition
for I. In practice we want the I partition to be sufficiently coarse that j(i+ 1)− j(i)
is reasonably large.
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Figure 5: The function gH(x) computed as described in the text. For pure exponential
growth, gH(x) = x.

To calculate g(xj), we note that xj = x0e
yj , and then from (3.5) that

gj = xjy
′(Ii) =

xjF
′
G(Ii)

F ′Y (yj)
; (3.14)

using (3.11). To compute F ′Y (yj), which is just the density of Y , we approximate

F ′Y (yj) ≈
FY (yj(i+1))− FY (yj(i))

yj(i+1) − yj(i)
, (3.15)

and using (3.12), this implies

1

F ′Y (yj)
≈
n(yj(i+1) − yj(i))
j(i+ 1)− j(i)

. (3.16)

Thus (3.14) is just

gj =
nxj{yj(i+1) − yj(i)}

σ
√

2π{j(i+ 1)− j(i)}
exp

[
−(Ii − µ)2

2σ2

]
. (3.17)

Note that the denominator in (3.16) is just ni, the number of drumlins in the i-th
bin, while the numerator is n∆i, with ∆i being the binwidth, so (3.16) is consistent
with (1.4). As a simple illustration, if {yj} is exactly lognormal, then FY = FG, so
that I(y) = y and (3.14) implies g = x.

Because of the irregularity of the sequence yj and the sparseness of the data far
from the mean, we restrict ourselves to values of y within ±2σ̄ of the logarithmic
mean. Additionally, the approximation (3.15) becomes very noisy if K is too large.
For the figures below, we use K = 50.
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Figure 6: The function gL(x).

Figures 5, 6 and 7 show the results of carrying out this algorithm for the three
data sets which give the height (or relief) H, length L and width W . The plots show
the form of the deterministic equation

ẋ = gM(x), (3.18)

where the metric M is H, L or W . It can be seen that, as evident in figure 1, the
relief growth rate is almost exactly exponential, with a slight tendency to saturate
at higher relief. The length and width both show accelerated growth rate at higher
values, corresponding to the noticeably fatter tails in figures 2 (in particular) and 3.
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Figure 7: The function gW (x).

9



4 Discussion

A striking feature of all morphometric characteristics of drumlins is the regularity of
the frequency distributions (Clark et al. 2009, Spagnolo et al. 2012). This regularity
is very suggestive of a robust mechanism. We know of two ways in which robust
distributions can form, although in essence they boil down to the same thing. The
first is the central limit theorem, which when applied to large sequences of independent
events, inevitably leads to the normal distribution. When the events consist of relative
growth or fragmentation, the consequence is a lognormal distribution. In the case
of drumlins, their lognormal distribution of size thus suggests that these landforms
are a consequence of an incremental growth process. The second way is through
a description of the dynamics as a stochastic process, where the stochastic term is
usually taken to be a Wiener process; but in essence this is the same thing, since the
representation of a Wiener process is as a Gaussian, essentially as a consequence of a
large number of independent events, as for example in Brownian motion.

Therefore, a possible explanation of the very closely lognormal distributions of
length, height and width which drumlins exhibit is to be found in an interpretation of
their growth as arising through a combination of near exponential growth, together
with a time history in which the growth phases occur randomly, or for random dura-
tions. Because conditions for the unstable growth of drumlins require the deformation
of subglacial sediment, and thus low effective pressure, we might suppose such events
are associated with, for example, transient ice spurts, or transient high subglacial dis-
charge events, assuming a distributed system in which effective pressure decreases as
water flux increases; and indeed such events appear to occur (Wingham et al. 2006).

In this view, the lognormal distributions of drumlin metrics are consistent with
the instability theory, but the interpretation of the events as a jerky progression is
not the only one. Indeed, in their extensive investigation of stability characteristics
in terms of different flow parameters, Dunlop et al. (2008) (figure 7, middle) found
that a random spread of flow conditions could also lead to a lognormal distribution of
drumlin wavelengths. Admittedly this was only a linear analysis, but it suggests that
an alternative source of the stochasticity may lie in the distribution of ice velocities,
effective pressures, and so on. Nor indeed is there much to separate these two views
at a conceptual level.

While the exponential growth of relief in stop-start time is consistent with insta-
bility theory, the evolution of length and width is at first sight not, since instabilities
grow at preferred wavelengths. However, in common with other pattern-forming pro-
cesses, Chapwanya et al. (2011) showed that coarsening occurred in finite amplitude
calculations of drumlin evolution, and this is consistent with the behaviour seen in
figures 6 and 7.
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