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Abstract: We describe duality cascades and their infrared behavior for systems of

D3-branes at singularities given by complex cones over del Pezzo surfaces (and related ex-

amples), in the presence of fractional branes. From the gauge field theory viewpoint, we

show that D3-branes probing the infrared theory have a quantum deformed moduli space,

given by a complex deformation of the initial geometry to a simpler one. This implies that

for the dual supergravity viewpoint, the gauge theory strong infrared dynamics smoothes

out the naked singularities of the recently constructed warped throat solutions with 3-form

fluxes, describing the cascading RG flow of the gauge theory. This behavior thus generalizes

the Klebanov-Strassler deformation of the conifold. We describe several explicit examples,

including models with several scales of strong gauge dynamics. In the regime of widely sepa-

rated scales, the dual supergravity solutions should correspond to throats with several radial

regions with different exponential warp factors. These rich throat geometries are expected to

have interesting applications in compactification and model building. Along our studies, we

also construct explicit duality cascades for gauge theories with irrational R-charges, obtained

from D-branes probing complex cones over dP1 and dP2.
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C. Cones over the Y p,q manifolds 50

1. Introduction

Much insight into the gauge/gravity correspondence has been obtained from the study of D3-

branes at singularities. In the simplest situations where only regular D3-branes are present,

the resulting gauge theories are conformal, and are dual to superstring backgrounds of the

form AdS5 ×X5, where X5 is the base of the real cone describing the singular manifold [1].

This has led to important extensions of the AdS/CFT correspondence to situations with

reduced supersymmetry.

Conformal invariance can be broken by adding fractional D3-branes (e.g. D5-branes

wrapped over collapsed 2-cycles at the tip of the singularity). The resulting renormalization

group (RG) flow sometimes takes the form of a duality cascade. In a duality cascade, Seiberg

duality is used to change to a dual description every time any of the gauge groups goes to

infinite coupling. The idea of a cascading RG flow was first introduced in [2], for the gauge

theory on D-branes over a conifold singularity.

The ultraviolet (UV) behavior of cascading theories is markedly different from that of

ordinary field theories. Instead of having a UV fixed point, they have an infinite tower of

dual theories with a steadily increasing number of colors and matter fields towards the UV.

This increase can sometimes be linear as in [2], or can be much faster, with a power law or

even exponential behavior. In the latter cases, the dualization scales generally present a UV

accumulation point, leading to a duality wall [3, 4].

A supergravity solution describing the UV region of the conifold cascade was found by

Klebanov and Tseytlin (KT) in [5]. This solution is well behaved at large energies but has

a naked singularity in the infrared (IR). A full solution, which asymptotes the one of KT at

large energies but is well behaved in the IR was later presented by Klebanov and Strassler

(KS) in [2]. Instead of being based on the singular conifold, it is constructed using the

deformed conifold. The 3-cycle inside the deformed conifold remains of finite size in the IR,

avoiding the singular behavior. On the gauge theory side, the IR singularity is eliminated

by strong coupling effects, whose scale is related to the dual 3-cycle size.

In [6], UV solutions, similar to that of KT, were constructed for complex cones over del

Pezzo surfaces dPn, for 3 ≤ n ≤ 8. These supergravity solutions also suffer from the same

problems in the IR. Contrary to what happens for the conifold, explicit metrics describing
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either the non-spherical horizons or their deformations are not known. Therefore it remains

an open question to develop methods to understand the infrared behavior of these theories

in their dual versions. The purpose of this paper is to use the strong coupling dynamics of

the dual gauge theories to extract as much information as possible regarding these defor-

mations. In particular we will show a precise agreement between the field theory analysis

of D3-branes probing the infrared of the cascades and the complex deformations of the ini-

tial geometries. This strongly supports the existence of completely smooth supergravity

descriptions of the complete RG flow for (some of) these non-conformal gauge theories. In

addition, our techniques are valid for other geometries, suggesting the existence of cascades

and infrared deformations for other quiver gauge theories.

Although our examples are analogous to the conifold in some respects, the gauge theories

and corresponding geometries are notably richer in others. For instance, we will encounter

that these gauge theories generically give rise to several dynamical scales. In the regime of

widely separated scales, the flow among these scales is to a great approximation logarithmic.

The supergravity duals thus correspond to logarithmic throats with different warp factors,

patched together at some transition scales. Clearly these topologically richer throats deserve

further study.

Before proceeding, it is important to point out that our analysis shows that a smoothing

of the singularity by a complex deformation may not be possible for some geometries, or even

for all possible assignments of fractional branes in a geometry. Our methods give a clear

prescription for when this is the case. A class of examples of this kind is provided by the

countable infinite family of 5d horizons with S2×S3 topology, for which explicit metrics have

been constructed in [7, 8, 9, 10, 11]. These geometries are labeled by two positive integers

p > q and are denoted Y p,q. In [12], the quiver theories living on the world-volume of D3-

branes probing metric cones over Y p,q geometries were derived. Impressive checks of the

AdS/CFT correspondence for these models, such as matching the field theory R-charges and

central charge a = c with the corresponding geometric computations were carried out in full

generality [12]. Recently, warped throat supergravity solutions dual to cascades in the Y p,q

quivers were constructed in [13]. These solutions exhibit a naked singularity, and we show

that for the particular subclass of Y p,0 a complex deformation removes the IR singularity.

However, in the general case these geometries do not admit complex deformations to smooth

out their infrared behavior. It would be interesting to understand such examples, and we

leave this question for future research.

The paper is organized as follows. In Section 2 we provide some background material.

In section 2.1 we review the KS conifold. In section 2.2 we describe the supergravity throats
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constructed in [6], and generalizations. In sections 2.3 and 2.4 we present a framework to de-

termine possible geometric deformations for general local Calabi-Yau geometries using (p, q)

web diagrams, and discuss a topological property of the corresponding RG flow solutions.

In section 2.5 we introduce our approach to show that the strong gauge theory dynamics

induces the complex deformation of the initial geometries to simpler ones. These arise as

quantum deformations of the moduli space of the gauge theory describing D3-branes probing

the infrared dynamics.

In Section 3 we describe some simple examples of RG cascading flows and infrared

deformations, in several cases with a single strong dynamics scale. The examples include

the cone over F0, the cone over dP2, and the suspended pinch point (SPP) singularity. In

subsequent sections we present examples with several strong dynamics scales. In Section 4

we study the case of the cone over dP3, which admits a two-scale deformation following the

pattern dP3 → conifold → smooth (C3). In Section 5 we present further two-scale examples,

namely dP4 → SPP → smooth, and PdP3 →C2/ZZ2 → enhançon.

Section 6 contains our concluding remarks. Appendix A presents an alternative approach

for the field theory analysis of the mesonic branch, while Appendix B provides a detailed

description of the deformations in toric geometry. Finally Appendix C describes the field

theory description of the smoothing for real cones over the Y p,0 manifolds.

2. Cascading throats

In this section we lay out our approach to cascading RG flows. We first discuss the super-

gravity duals that describe logarithmic flows, beginning with a review of the well known

conifold example and then moving on to generalizations to other geometries. We then ex-

plain how to identify extremal transitions using (p, q) web diagrams. Finally, we discuss how

these geometric deformations are generated by the strong coupling dynamics of the gauge

theory.

2.1 Review of the conifold

To frame the forthcoming discussion, it is convenient to review the case of the conifold. The

N = 1 supersymmetric gauge theory on N D3-branes at a conifold singularity [1], in the

presence of M fractional branes (i.e. D5-branes wrapped over the 2-cycle in the base of the

conifold), is given by a gauge group SU(N) × SU(N +M), with two chiral multiplets A1,

A2 in the representation ( , ) and two multiplets B1, B2 in the representation ( , ). The

superpotential isW = A1B1A2B2−A1B2A2B1. In order to keep the notation short, we leave
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the superpotential couplings and the trace over color indices implicit. We will adopt this

convention when presenting all the forthcoming superpotentials.

As discussed in [2], for M ≪ N the theory undergoes a duality cascade as it flows to

the infrared, at each step of which the highest rank gauge group becomes strongly coupled

and is replaced by its Seiberg dual. Since the gauge theory of the conifold is self-dual (up to

a modification of the gauge group ranks),2 the cascade is fully specified by the sequence of

gauge groups

SU(N)× SU(N +M) → SU(N)× SU(N −M) → SU(N − 2M)× SU(N −M) → . . .

which shows that the number of effective D3-branes decreases along the flow, while the

number of fractional branes, given by the difference in ranks between the two gauge groups,

remains constant and equal to M . The cascade proceeds until this number is comparable

with M . For N a multiple of M , the infrared theory has chiral symmetry breaking and

confinement, and shares some features with N = 1 SU(M) SYM. Besides the heuristic

field theory arguments, this picture is strongly supported by the dual supergravity solutions,

which we now turn to describe.

In the absence of fractional branes the gauge theory on D3-branes at a conifold singularity

is superconformal, and its supergravity dual is given by Type IIB theory on AdS5 × T 1,1.

The 5-manifold T 1,1 is topologically S2 × S3, and may be regarded as an S1 fibration over

S2 × S2. Denoting σi the 2-forms dual to the two S2’s, we define for future convenience the

Kähler class ω = σ1 + σ2 and the orthogonal combination φ = σ1 − σ2.

In the presence of M fractional branes, conformal invariance of the gauge theory is

broken, and the supergravity dual is no longer AdS5 × T 1,1. In the UV, the supergravity

dual is a particular case of the throats to be described in section 2.2. Sketchily, it is a

warped version of AdS5 × T 1,1, with warping sourced by non-trivial RR and NSNS 3-form

fluxes supported on φ,

G3 = F3 −
i

gs
H3 =M(η + i

dr

r
) ∧ φ (2.1)

where η is a 1-form along the S1 fiber in T 1,1, and r is the radial coordinate. In intuitive

terms, the RR flux (related to F3) is sourced by the fractional branes in the dual description,

while the NSNS flux (related to H3) leads to a logarithmic running of the relative inverse

squared gauge coupling of the field theory. The fluxes also lead to a radially varying integral

of the 5-form over T 1,1, which reproduces the decrease in the number of D3-branes in the

2Strictly speaking the term self-dual is exact at the conformal point for M = 0. This notion of self-duality

is then borrowed to the case M 6= 0, where the superpotential stays the same while the ranks are changed.
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duality cascade of the field theory. The solution does not contain, even asymptotically, an

AdS5. This is accordance with the fact that the gauge theory does not have a conformal

fixed point in the presence of fractional branes.

The above solution, first studied in [5], if extended to the IR, leads to a naked singularity.

Intuitively, this is because the above supergravity description misses the strong coupling

dynamics taking place near the end of the cascade. The full solution in [2] is smooth, due

to a non-trivial modification of the above ansatz in the infrared. In the IR, the geometry

is a deformed conifold, and has a finite size S3, which supports the RR 3-form flux. The

size of this 3-cycle is related to the scale of strong dynamics of the dual gauge theory. The

complete solution is a warped deformed conifold, with imaginary self-dual 3-form fluxes

which are moreover (2, 1)-forms and thus preserve supersymmetry [15, 16]. In the UV, the

full solution asymptotes the warped version of AdS5 × T 1,1 described above, while in the IR

it contains a non-trivial 3-cycle supporting the flux.

Overall, the gauge/gravity correspondence is a relation between the field theory, de-

scribed by fractional D3-branes on (i.e. D5-branes on the 2-cycle of) a resolved conifold,

and the supergravity solution, described by 3-form fluxes on a deformed conifold. Namely a

brane-flux transition taking place between two geometries related by an extremal transition

where a 2-cycle disappears and is replaced by a 3-cycle [17, 18, 19, 20]. In our case the

geometries under consideration are toric, and can be visualized using web or toric diagrams

[21, 22]. The geometric interpretation of webs is discussed in detail in [23]. In these pictures,

finite segments and faces of the initial web correspond to 2- and 4-cycles in the resolution

phase, while 3-cycles correspond to segments joining the different sub-webs in the deforma-

tion phase. The geometrical transition is nicely depicted using web diagrams for the conifold

geometry, as shown in Figure 1. The detailed geometric description of the deformation is

described in Appendix B.

Figure 1: Conifold extremal transition. The finite segment in the first figure represents an S2,

with an area proportional to the length of the segment, while the green segment in the last figure

corresponds to an S3 with a volume proportional to the distance between the two infinite lines.
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For future convenience, it is useful to review the matching between the deformation of

the geometry and the infrared dynamics of the field theory. In particular, and following [2],

we may recover the deformed conifold geometry as the moduli space of D3-branes probing

the infrared end of the cascade.

A simple derivation follows by considering the infrared theory in the presence of M

additional D3-branes. This is described by a conifold gauge theory with gauge group

SU(2M) × SU(M), with the chiral multiplets Ar, Br, r = 1, 2 and superpotential W =

A1B1A2B2 − A1B2A2B1. The non-perturbative dynamics may be determined by assuming,

to begin with, that the SU(M) gauge factor is weakly coupled and acts as a spectator,

corresponding to a global flavor symmetry. Then the gauge factor SU(2M) has Nf = Nc

and develops a quantum deformation of its moduli space. Introducing the four mesons

Mrs = ArBs, which transform in the adjoint of SU(M), and the baryons C, C̃, the quantum

modified moduli space is described by

det(M11) det(M22)− det(M12) det(M21)− CC̃ = Λ4M , (2.2)

where Λ is the dynamical scale of the SU(2M) gauge theory. The constraint may be im-

plemented in the superpotential by introducing a Lagrange multiplier chiral field X , so it

reads

W =M11M22 −M12M21 −X(detM−CC̃ − Λ4M), (2.3)

with M a 2M ×2M matrix whose blocks are the M ×M matrices, M11,M12,M21,M22. The

quantum constraint forces some of the mesons or baryons to acquire vevs. As discussed in

[2], the dynamics of the probes is obtained along the mesonic branch3, which corresponds to

X = Λ4−4M ; C = C̃ = 0 ; detM = Λ4M (2.4)

The vacuum is parametrized by the vevs of the mesons Mij , subject to the quantum

constraint. This can be seen to correspond to M D3-brane probes moving in a deformed

conifold. To make this more manifest and to simplify the discussion, it is convenient to

restrict to the Abelian case. This is sensible, because all the information about the non-

Abelian gauge dynamics has been already included, and because we are not turning on

3 As mentioned already in [2], the baryonic branch describes instead the continuation of the cascade

down to the endpoint SU(M) theory. That the infrared theory at the end of the cascade is in the baryonic

branch is supported by the identification in the supergravity solution of the Goldstone mode associated to

the spontaneous breaking of baryon number symmetry, and the identification of the D1-brane as an axionic

string [24, 25, 26].
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baryonic degrees of freedom.4 The moduli space of the single D3-brane probe in this case is

M11M22 −M12M21 = Λ4 (2.5)

namely, a deformed conifold geometry. Hence the strong coupling dynamics of the field

theory encodes the deformed geometry at the infrared end of the cascade, dictating the size

of the finite S3.

The general idea is that the gauge theory living on the D-brane world volume perceives

the deformed geometry that becomes important at a given scale as a quantum deformation

of its moduli space. This technique will generalize to more complicated cascades and infrared

behaviors in the next sections.

2.2 The supergravity throats

As we discussed, the main support for the idea of a cascading RG flow for the conifold

comes from the supergravity dual description [5]. In [6], analog supergravity solutions were

constructed for del Pezzo surfaces. In this section we review such solutions and discuss the

possibility of extending the ideas in [6] to other geometries.

These solutions are concrete examples of the Type IIB supergravity solutions introduced

by Graña and Polchinski in [16] (see [28, 29] for related backgrounds in compactifications).

The starting point is a warped product of four dimensional Minkowski space and a Calabi-

Yau 3-fold X

ds2 = Z−1/2ηµνdx
µdxν + Z1/2ds2X (2.6)

with the warp factor Z depending only on internal coordinates of the Calabi-Yau. In addition

there is a 3-form flux

G3 = F3 −
i

gs
H3 (2.7)

It was shown in [16] that (2.6) and (2.7) lead to a solution that preserves N = 1

supersymmetry provided that G3 has support only on the Calabi-Yau X , is imaginary self-

dual with respect to the Hodge star on X , and is a harmonic (2, 1) form.

More specifically, we will be interested in cases in which the Calabi-Yau is a complex

cone over a del Pezzo surface. Thus, its metric has the typical form

4A more precise statement would be to stick to the non-Abelian case, without overall U(1), but study

the dynamics along the generic mesonic Higgs branch. Our results below would arise for the relative U(1)’s

controlling the relative positions of the D-branes. The trick of simplifying the discussion by restricting to the

Abelian quiver theory is a standard manipulation for branes at singularities, see [27] for further discussion.
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ds2X = dr2 + r2η2 + r2hab̄dz
adz̄b̄ (2.8)

where η =
(

1
3
dψ + σ

)

and hab̄ denotes the Kähler-Einstein metric on the del Pezzo surface. It

is important to remember that dPn only admits Kähler-Einstein metrics for n ≥ 3, and thus

our construction will be valid in this range and will not be applicable to the first del Pezzos.5

One however expects that gauge theory cascades for these theories exist, and presumably

correspond to other throat structures (indeed the supergravity dual of a dP1 cascade belongs

to the class recently constructed in [13]).

For dPn, h
2,0 = 0 and h1,1 = n + 1. Thus, there are n + 1 harmonic (1, 1) forms. One

of them is the self-dual Kähler form ω. It is possible to pick the remaining (1, 1) forms φI ,

I = 1 . . . n, such that

φI ∧ ω = 0 (2.9)

Also, these forms are anti-selfdual. With this basis at hand, it is straightforward to

construct the 3-form flux

G3 =
k
∑

I=1

aI(η + i
dr

r
) ∧ φI (2.10)

where, at this point, the aI are constant coefficients determining the solution. It is easy to

check that (2.10) satisfies all the conditions presented above and leads to a supersymmetric

solution.

The warp factor in (2.6) becomes, for dPn,

Z(r) =
2 · 34
9− n

α′2g2s

(

ln(r/r0)

r4
+

1

4r4

)

∑

i,j

M IAIJM
J (2.11)

The number of fractional branes MJ is measured by the integrals of the RR 3-form F3

over the 3-cycles in the 5-dimensional base, obtained by fibering the U(1) fiber over the

3-cycles dual to φI (namely, over the 3-cycles dual to η ∧ φI). The solutions describe RG

flows in which the number of D5-branes of each type remains constant

aJ = 6πα′MJ (2.12)

and the effective number of D3-branes runs logarithmically with the scale.

5dP0 also admits a Kähler Einstein metric but cannot admit fractional D3-branes, due to the absence of

collapsing 2-cycles, and therefore will not be considered here.
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N =
3

2π
gs ln(r/r0)

∑

I,J

M IAIJM
J , (2.13)

with AIJ the intersection matrix on dPn.

Another remarkable fact of this supergravity dual is that it reproduces the field theory

computation of n combinations of the n + 3 gauge coupling beta functions (corresponding

to n marginal couplings in the conformal case) [6]. They are encoded in the evolution of the

NSNS 2-form in the radial direction due to the non-trivial NSNS 3-form flux.

The construction of these throats is important since it illustrates that cascading RG

flows appear often in quiver gauge theories. Moreover, warped throats are interesting both

from the viewpoint of phenomenological applications (e.g. [29, 30, 31]) and of counting flux

vacua, due to their ‘attractor’ behavior [33]. Our purpose in this paper is to clarify the

infrared structure of these (and similar) classes of models, a key understanding required for

the above applications.

These throats contain a naked singularity at their origin, and hence are the analogs

of the KT throat [5] for the conifold. In later sections we will clarify that the dual gauge

theory infrared dynamics suggests that in many situations a suitable deformation of the

geometry eliminates the singularity, and yields a smooth supergravity solution, the analog

of the solution in [2] for the conifold.

The above construction of throats was originally elucidated for the case of del Pezzo

surfaces. Nevertheless, its range of applicability is much broader and it is indeed suitable

for any other complex cone over a 4-dimensional surface Y 4 with a Kähler-Einstein metric.

In the general case, the φI , with I = 1 . . . h1,1(Y 4) − 1, correspond to a basis of harmonic

(1, 1) forms chosen to be orthogonal to the Kähler form on Y 4, and AIJ is a general matrix

encoding the cup product among them (alternatively, the geometric information regarding

the intersections between the 2-cycles in Y 4 which are Poincaré dual to the φI ’s). Indeed,

the warped conifold belongs to the above class of solution, by considering the case of a single

2-form orthogonal to ω, and with the matrix AIJ reduced to a single entry.

Finally, we would like to mention that there exist more general situations, where the con-

ical Calabi-Yau singularity corresponds to a real cone over a Sasaki-Einstein 5-dimensional

horizon X5 as before, but X5 cannot be constructed as a U(1) fibration over a 4-dimensional

Kähler-Einstein base. Simple examples of this class are provided by the complex cones over

dP1 and dP2, where the U(1) fibration over the del Pezzo surface is irregular. This fact

maps, on the gauge theory side, to irrational R-charges. Moreover, recently, an infinite fam-

ily of cones over 5d Sasaki-Einstein manifolds, denoted Y p,q, with explicit metrics has been

constructed [7, 8, 9, 10, 11]. Also, the dual quiver gauge theories have been found in [12].
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Duality cascades for the case of Y 2,1, corresponding to the 5d horizon of a complex cone

over dP1, were constructed in [6], and duality cascades for the entire Y p,q family along with

their supergravity duals have been recently carried out in [13]. An interesting difference with

respect to the above throats is an additional dependence of the warp factor on a coordinate

of the 5d horizon X5, rather than just on the radial direction.

Finally, notice that, using our arguments in coming sections, one can show that the Y p,q

cascades do not in general admit a geometric deformation to resolve their singularities. The

only cases where this is possible correspond to cones over Y p,0, which are in fact ZZp quotients

of the conifold. They thus fall within our analysis, and we describe the field theory version

of their smoothing in Appendix C.

2.3 The deformed geometries

The above throats contain a naked singularity, suggesting that they miss the non-perturbative

infrared dynamics of the dual gauge field theory. Hence they are the analogs of the singular

solution in [5]. From the discussion of the conifold it is expected that, at least in some cases,

when the infrared gauge theory dynamics is included, the dual supergravity solution corre-

sponds to a deformed background related to the original one by an extremal transition. This

transition replaces 2- and 4-cycles by 3-cycles. A general question is therefore to analyze the

existence of extremal transitions on local Calabi-Yau geometries, where shrinking 4-cycles

are replaced by finite size 3-cycles.

In this section we address this geometric question from several viewpoints. For con-

creteness we center the discussion on the geometries given by complex cones over del Pezzo

surfaces, although results generalize to other situations, as will be clear in our examples.

The general question is what are the possible deformations of the complex cones over

del Pezzo surfaces. Besides its relevance to the above discussion, this question has another

interesting realization. Geometries with collapsing del Pezzo surfaces lead, when used as

M-theory backgrounds, to five-dimensional field theories with En global symmetries. The

Coulomb branch is parametrized by the sizes of the 2-cycles, while the Higgs branch cor-

responds to extremal transitions, i.e. complex deformations of the geometry arising at the

origin of the Coulomb branch, where the 4-cycle shrinks to zero size. The classification of

such Higgs branches was described in [34], and shown [35] to fully agree with the geometric

description.6

6A concise description of these Higgs branches is provided by the instanton moduli space of the corre-

sponding En gauge theory. The relation is manifest by realizing the five-dimensional field theory in the

worldvolume of D4-branes probing configurations of D8-branes/O8-planes at strong coupling, so that the
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In many examples, one may use the realization of the five-dimensional field theories in

terms of (p, q) webs of Type IIB fivebranes [21, 22], in order to visualize the corresponding

Higgs branches. This corresponds to the situations where the geometries are toric, and the

(p, q) web corresponds to the reciprocal of the collection of points in the ZZ
2 integer lattice

defining the toric diagram [22, 23]. In general, for toric geometries with a corresponding

web, deformations exist if there are subsets of external legs which can form sub-webs in

equilibrium. The deformation is described as the separation of such sub-webs. A more

precise description of this in toric geometry language is illustrated in some examples in

Appendix B.

The (p, q) web representation of the deformation for the conifold is described in Figure

1, where the sub-webs correspond to straight lines. The 3-cycle in the deformed conifold

corresponds to a segment stretched between the two sub-webs. For example in 5 dimensional

gauge theories a D3-brane stretched between the two (p, q) sub-webs is a BPS brane on the

Higgs branch, which maps to a brane wrapped on the 3-cycle in the geometry.

Using the toric diagrams for the cones over del Pezzo surfaces one can recover the results

in [35]. Namely, for dP0 and dP1 there is no deformation branch, as is manifest from their

toric pictures, Figure 2.

dP0
dP1

Figure 2: Web diagrams for the complex cones over dP0 and dP1. In both cases, it is impos-

sible to split them into more than one sub-webs in equilibrium, implying there exist no complex

deformations for these geometries.

On the other hand, dP2 has a deformation, shown in Figure 3, which completely smoothes

out the geometry. For dP3 there are two deformation branches, one of them two-dimensional

and the other one-dimensional, see Figure 4. Notice that the two-dimensional deformation

branch may be regarded as a one-dimensional deformation to the conifold, subsequently

followed by a one-dimensional deformation to a smooth space. This is more manifest in the

regime of widely different sizes for the two independent 3-cycles.

global symmetry is enhanced to En [34]. The Higgs branch corresponds to dissolving the D4-brane as an

instanton of the En gauge theory.
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Figure 3: The web diagram for the complex cone over dP2 and its complex deformation.

a) b) c)

Figure 4: Web diagram for the complex cone over dP3 and its two branches of complex defor-

mation. Figure b) shows a two-dimensional deformation branch, parametrized by the sizes of two

independent 3-spheres corresponding to the dashed segments (the three segments are related by a

homology relation, hence only two are independent). Figure c) shows a one-dimensional deforma-

tion branch.

For higher del Pezzo surfaces, the generic geometry is not toric. However, there are

closely related blow-ups of IP2 at non-generic points, which do admit a toric description.

These non-generic geometries lead to the same quivers than the del Pezzos, but with differ-

ent superpotentials. For non-toric del Pezzos, some deformations are manifest in the toric

representation, see Figure 5 for an example. Notice however that the dimensions of these

deformation branches is in general lower than that for generic geometries, thus showing that

some deformations of the higher del Pezzos are non-toric.

In a similar spirit, we may consider other toric geometries closely related to toric del

Pezzos, but corresponding to a non-generic location of the blow-ups.7 They are given by

web diagrams associated to the so-called less symmetric quiver gauge theories. For such

7Here the distinction between toric and quiver webs is relevant [36]. In these cases, the web diagram

corresponds to the quiver web, and encodes the quiver data of a less symmetric phase of the gauge theory.

On the other hand, the geometry is still described by some toric data, corresponding to a toric web, different

in general from the quiver web. See [36] for a detailed discussion.
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Figure 5: Web diagram for a cone over a non-generic blow-up of IP2 at four points and its

deformation. This geometry is toric and is closely related to dP4. The two dashed segments

correspond to two homologically equivalent 3-spheres. The left-over diagram describes a suspended

pinch point singularity, which admits a further deformation not shown in the picture.

geometries, deformations to smooth geometries exist, although the generic deformation may

not be available. One example of a deformation on a non-generic version of dP3 is shown in

Figure 6.

Figure 6: Web diagram for the cone over a non-generic dP3 and its deformation to the orbifold

C3/ZZ2.

Finally, we emphasize that the above techniques can be used to study the deformations

of other geometries, even involving more than one collapsing 4-cycles. Concrete examples,

like the deformations of the cone over F0, the suspended pinch point singularity and the

Y p,q geometries will appear in subsequent sections. It is interesting to point out that all

possible complex deformations for toric varieties may not be described using the above web

deformations. Nevertheless, all our examples will be of this kind. We leave the interesting

question of other possible situations for future research.
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2.4 A topological consideration

The throats on cones over dPn constructed in [6] (and generalizations) have in principle n

independent discrete parameters, the M I , associated to the integer fluxes sourced by the n

independent fractional branes one can in principle introduce in the quiver gauge theory.

However, in this section we describe a topological argument which shows that in order

for a throat to have a smooth deformation at its bottom, corresponding to a geometric

deformation as discussed above, the fractional brane assignments cannot be fully arbitrary.

Equivalently, it is possible to use topological information about the allowed deformations to

derive the set of fractional branes triggering the corresponding strong infrared dynamics.

The argument is as follows. The fractional brane numbers can be measured in the throat

solution by computing the flux of the RR 3-form F3 through a 3-cycle in the 5d base of the

cone (constructed as an S1 fibration over a 2-cycle in the del Pezzo surface 8). There are n

such 3-cycles. On the other hand, in the smooth deformed geometries, one in general finds a

smaller number k of 3-cycles. This implies that n− k 3-cycles in the asymptotic region are

homologically trivial. Consequently, only k independent choices of fractional brane numbers

remain.

For each deformed geometry, the set of corresponding fractional branes, i.e. those asso-

ciated to the homologically non-trivial 3-cycles, is determined as follows. Consider a given

complex deformation, corresponding to the separation of sub-webs. Recall now the relation

between external legs in web diagram and nodes in the quiver [37, 38]. The fractional branes

associated to the deformation are those controlling the rank of the nodes corresponding to

the legs in the removed sub-web. We will see some examples of this in later sections.

Notice that this does not mean there are no throat solutions for more general fractional

brane assignments, but rather that they cannot be completed in terms of a purely geometric

background. The most plausible proposal is that the general case corresponds to a smooth

deformed geometry (accounting for the fractional branes associated to non-trivial 3-cycles)

with additional explicit fractional brane sources, leading to a non-trivial dF3, which induces

a non-vanishing F3 flux at large radial distances for the homologically trivial 3-cycles.

2.5 Deformations from the gauge theory

In the previous sections, we have introduced the simple example of the conifold and discussed

how the original naked singularity in the supergravity dual is cured when the strong coupling

8Although we focus on the case of del Pezzo surfaces, the discussion applies to other real four dimensional

Kähler-Einstein surfaces.
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dynamics of the gauge theory is taken into account. We then reviewed how more general

extremal transitions are described using toric geometry in the form of (p, q) webs.

We now describe the derivation of the geometric deformation from the viewpoint of the

infrared dynamics of the dual gauge theory, for a general quiver theory. As in the conifold

case above, the deformation can be derived as the deformed moduli space of probes, arising

from the quantum modification of the moduli space of the gauge theory. Although the basic

idea follows discussions in [2], its implementation in our more involved geometries leads to

richer structures.

The geometries we study have several collapsing 2-cycles on which we can wrap D5-

branes, giving rise to different types of fractional branes. In order for the supergravity

solutions described in Section 2.2 to be valid we will assume that the number of fractional

branes of each type M I ≪ N . There is no constraint on the relative sizes of the M I ’s.

However, in order to simplify our discussion, we can consider the situation in which

M1 ≪M2 ≪ . . .≪ . . .≪ N (2.14)

Then it is natural to foresee a hierarchy of scales of strong gauge dynamics

Λ1 ≪ Λ2 ≪ . . .≪ Λ3 (2.15)

where the ΛI ’s are dynamical scales that arise when N(ΛI) is comparable to MI

ΛI such that N(ΛI) ∼M I (2.16)

We have simplified the field theory analysis by assuming the scales are well separated,

although we expect that descriptions of other situations exist in both the smooth supergravity

solution and the gauge theory language.

The basic structure of strong infrared dynamics is the following. Given a quiver gauge

theory with fractional branes, the theory cascades down until the number of D3-branes

N becomes similar to one of the fractional brane numbers, say M I0 , at a scale ΛI0. For

simplicity, and due to our assumption of separation of scales, we may ignore the remaining

M I ’s and take them to vanish. In order to simplify notation, we call M I0 = M . Then the

last step of the cascade can be probed by introducing M additional D3-branes and studying

the resulting moduli space. In this situation the gauge group takes the form

SU(2M)m × SU(M)n (2.17)
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In several of our examples below, the number of gauge factors with rank 2M is two 9,

m = 2, but the discussion may be carried out in general. Also, in the explicit models the

number of flavors for the SU(2M) gauge factors is 2M , hence equals the number of colors.

The non-perturbative dynamics may be determined by assuming, to begin with, that the

SU(M) gauge factors are weakly coupled and act as spectators, corresponding to global flavor

symmetries. For simplicity we continue the discussion assuming also that there no arrows

among SU(2M) nodes, i.e. no (2M, 2M) matter. Under these circumstances, the strong

dynamics corresponds to a set of decoupled SU(2M) gauge theories with equal number of

colors and flavors, which thus develop a non-perturbative quantum modification of the moduli

space. This is best understood in terms of gauge invariant mesonic and baryonic variables.

For each such gauge factor, the mesons are

Mru = ArBu (2.18)

with r, u = 1, 2, where

Ar : (2M,M r) Bu : (Mu, 2M) (2.19)

and the baryons have the abbreviated form

B = [A]2M B̃ = [B]2M (2.20)

where antisymmetrization of gauge indices is understood. It is important to keep in mind

that these operators are not gauge invariant when the entire gauge group (and not just the

factors undergoing deformation) is taken into account. This will be important when we

study what happens after they develop non-zero vevs. The quantum modified moduli space

is described by

detM−BB̃ = Λ4M (2.21)

The resulting infrared gauge dynamics is described by a quiver gauge theory with the

SU(2M) nodes removed, the corresponding flavors replaced by mesonic and baryonic degrees

of freedom (both in the quiver diagram and in the superpotential), and with the quantum

modified constraints enforced as superpotential interactions by means of singlet chiral field

Lagrange multipliers X , of the form10

9In the (p, q) web description of the deformations presented in Section 2.3, this arises naturally when one

of the sub-webs that are separated is simply an infinite straight line.
10For simplicity, we show only one Lagrange multiplier and additional superpotential term. It us under-

stood that there is one such contribution for each strongly coupled gauge group factor.
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W =W0 +X(detM−BB̃ − Λ4M) (2.22)

The quantum constraints force some of the meson/baryon degrees of freedom to acquire

non-zero vevs. The dynamics of the probes is recovered along the mesonic branch, which

corresponds to setting the baryons to zero and X = ±Λ4−4M , and saturating the constraint

with meson vevs (see footnote 3). This triggers symmetry breaking of some of the SU(M)

factors to diagonal combinations, and makes some of the fields massive due to superpoten-

tial couplings. The resulting theory contains a set of meson fields with quantum deformed

moduli space, describing the probes in the deformed geometry. In addition, there are addi-

tional gauge factors and chiral multiplets describing the geometry left-over after the complex

structure deformation of the original one. In later sections we will present several examples,

in which the matching between the gauge theory description of the quantum deformations

and the geometric complex structure deformations is complete. This is a very satisfactory

result.

There is a subtlety in fixing the sign of the vev for X . The simplest way of deter-

mining the correct one is to impose that, restricting to the Abelian case, the theory has a

superpotential allowing for a toric description of its moduli space. Concretely, that each

bi-fundamental field appears with opposite signs in the two terms containing it. This recipe

can be recovered from a more careful treatment of the equation of motion determining X

from the initial superpotential, as discussed in a concrete example in Appendix A.

After the condensation, the left-over quiver theory may correspond to a singular geome-

try with fractional branes, and thus will have subsequent duality cascades and condensations.

The resulting RG flow takes in this case the form of a cascade with multiple dynamical scales

at which the underlying geometry undergoes deformation. Explicit examples are discussed

in coming sections.

3. Some warmup examples

In this section we would like to describe some simple examples of infrared resolutions, in

situations with one-scale cascades.

3.1 The cone over F0

Let us consider the case of the cone over F0. The web diagram for this geometry is shown

in Figure 7a, and the corresponding quiver is in Figure 8a.
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Figure 7: Web diagram for the complex cone over F0, and its complex deformation to a smooth

space.

2

4 3

1
a) b)

2

4 3

1

Figure 8: Figure a) shows the quiver diagram for the theory of D3-branes at a complex cone over

F0. Figure b) shows a dual phase of the theory, involved in the duality cascade.

The fractional brane corresponds to the rank vector (0, 1, 0, 1). The superpotential for

the theory is

W = X12X23Y34Y41 − X12Y23Y34X41 − Y12X23X34Y41 + Y12Y23X34X41 (3.1)

in self-explanatory notation. This theory has an SU(2) × SU(2) global symmetry, which

geometrically arises as the product of the SU(2) isometries of the two IP1’s in F0 = IP1× IP1.

It corresponds to a ZZ2 orbifold of the conifold xy − zw = 0 by the action x, y, z, w →
−x,−y,−z,−w, as first determined in [27]. This is also manifest in the dual toric diagrams,

where the cone over F0 differs from the conifold by the addition of an interior point (namely,

by the refinement of the toric lattice).

This theory has a cascade, which was exhaustively discussed in [4, 6], to which we refer

the reader for details. Introducing N D3-branes and M fractional branes, namely starting

quiver 8a with the rank vector

N (1, 1, 1, 1) + M (0, 1, 0, 1) (3.2)

the theory alternates between the two quivers in Figure 8a, b. Given the ZZ2 symmetry of the

quiver and of the deformed geometry, it is natural to consider the situation where the UV

gauge couplings of opposite nodes are equal. In this case, the duality cycle is obtained by
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a (simultaneous) dualization of the nodes 1 and 3, followed by a (simultaneous) dualization

of 2 and 4, after which 1 and 3 are subsequently dualized, etc. Under these conditions,

quiver 8b appears just as an intermediate step between simultaneous dualizations. In each

duality cycle, the number of D3-branes decreases by 2M units. It is interesting to note that,

regarding the geometry as a quotient of the conifold, nodes 1 and 3 descend from a single

node in the quiver of the conifold, while 2 and 4 descend from the other. In this respect,

the duality cascade in the orbifold theory, in the situation of symmetric gauge couplings for

opposite nodes in the quiver, can be regarded as directly descending from the duality cascade

in the conifold theory.

The infrared end of the cascade is therefore expected to be similar to that of the conifold.

In fact, this is exactly what is obtained e.g. for N a multiple of M . The gauge theory

associated to the rank vector (0,M, 0,M), leads to two decoupled N = 1 SYM-like theories.

In more detail, the infrared behavior may be explored by introducing M additional D3-

brane probes, namely by studying the gauge theory with rank vector (M, 2M,M, 2M). In

the infrared the gauge factors 1 and 3 are weakly coupled, and can be considered spectators.

The gauge factors 2 and 4 have Nf = Nc and develop a quantum deformation of their moduli

space. Following the general discussion in Section 2.5, we introduce the mesons

M =





M11 M12

M21 M22



 =





X12X23 X12Y23

Y12X23 Y12Y23



 ; N =





N11 N12

N21 N22



 =





X34X41 X34Y41

Y34X41 Y34Y41





and the baryons B, B̃, C, C̃
The quantum modified superpotential reads

W = M11N22 − M12N21 − M21N12 + M22N11 +

+ X1 (detM−BB̃ − Λ4M) + X2 (detN − CC̃ − Λ4M) (3.3)

where we have introduced a single strong coupling scale due to the equality of the gauge

couplings along the flow.

In order to study the mesonic branch, we have

X1 = Λ4−4M ; B = B̃ = 0 ; X2 = Λ4−4M ; C = C̃ = 0

detM = Λ4M ; detN = Λ4M (3.4)

Now restricting to the Abelian case (see footnote 4), the resulting superpotential is

W = M11N22 − M12N21 − M21N12 + M22N11 −M11M22 + M12M21 − N11N22 + N12N21
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That is, the superpotential becomes entirely quadratic. The gauge group is broken to the

diagonal combination of nodes 1 and 3 by the expectation values of the mesons. Using the

equations of motion, the superpotential vanishes. The only degrees of freedom are one set of

mesons, due to the equations of motion, which require M = N . In addition, these mesons

are subject to the quantum constraints, namely detM = Λ4. This describes the dynamics

of the probes in the deformation of the cone over F0 to a smooth space. Indeed, at any point

in the mesonic branch (in the Abelian case) the gauge group is U(1) and there are three

adjoint (i.e. uncharged) chiral multiplets with vanishing superpotential. This is the N = 4

U(1) SYM of D3-branes probing a smooth space.

The analogy of the above discussion with the conifold case is manifest from the orbifold

description. Moreover, from the geometric viewpoint the deformation of the cone over F0

corresponds simply to the quotient of the deformed conifold xy − zw = ǫ by the ZZ2 action

x, y, z, w → −x,−y,−z,−w, under which it is invariant.

The complex cone over F0 is one of the first examples in the family of real cones over

the manifolds Y p,0 introduced in [7, 8, 9, 10, 11], namely Y 2,0. The real cones over Y p,0

correspond to quotients of the conifold xy − zw = 0 by the ZZp action generated by

x→ e2πi/px , y → e−2πi/py , z → e2πi/pz , w → e−2πi/pw (3.5)

(with Y 1,0 corresponding to T 1,1, the base of the conifold itself). This orbifold action is easily

understood by looking at the toric diagrams for these varieties. The toric diagrams look like

the diagram of the conifold with an additional refinement of the lattice.

Moreover, using the web diagrams for these varieties it follows that these are the only ex-

amples of cones over the manifolds Y p,q which admit a complex deformation which smoothes

the singularity. Namely, only for the case of q = 0 we expect that complex deformations will

smooth out the naked singularity at the tip of the warped throat solutions in the presence of

fluxes as in [13]. The discussion of the geometries involved and the field theory description

of the smoothing is presented in Appendix C.

3.2 First del Pezzos

Let us consider the cones over the first del Pezzo surfaces. As already mentioned, the cone

over dP0 does not admit any fractional branes, and therefore cannot be taken away from the

conformal regime.

The quiver diagram for a cone over dP1 is presented in Figure 9. The corresponding

superpotential is
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Figure 9: Quiver diagram for D3-branes at the cone over dP1.

W = ǫαβX
α
34X

β
41X13 − ǫαβX

α
34X42X

β
23 + ǫαβX

12X3
34X

α
41X

β
23 (3.6)

This theory admits one kind of fractional branes, given by the rank vector (0, 3, 1, 2).

The addition of these fractional branes leads to an RG cascade which was first studied in

[6]. The superpotential (3.6) preserves an SU(2) × U(1) global symmetry. The R-charges

can then be determined using the a-maximization principle, and turn out to be irrational

numbers [11]. Some explicit computations can be found in [14]. This is the simplest example

of a singularity whose dual gauge theory has irrational R-charges. Thus, it is very interesting

to understand the associated cascades in detail and we now proceed to do so.

The resulting RG flow is logarithmic and periodic. For an appropriate choice of initial

couplings, the sequence of dualized nodes in a period is 2, 4, 3, 1, after which N → N − 4M

and M . The quivers for several steps in the cascade are shown in Figure 10.

The beta functions at each step are

N1 N2 N3 N4 β1/M β2/M β3/M β4/M

1 N N + 3M N +M N + 2M −10 +
√
13 10−

√
13 22− 7

√
13 −22 + 7

√
13

2 N N −M N +M N + 2M 22− 7
√
13 −10 +

√
13 −22 + 7

√
13 10−

√
13

3 N N −M N +M N − 2M −22 + 7
√
13 22− 7

√
13 10−

√
13 −10 +

√
13

4 N N −M N − 3M N − 2M 10−
√
13 −22 + 7

√
13 −10 +

√
13 22− 7

√
13

5 N N − 4M N − 3M N − 2M −10 +
√
13 10−

√
13 22− 7

√
13 −22 + 7

√
13

(3.7)

where we have indicated the beta functions of the dualized nodes with a bold font.

In addition, the supergravity dual of this flow corresponds to the Y 2,1 flow, which is a

member of the class of warped throat solutions recently constructed in [13]. However, as

already mentioned, the geometry does not admit a complex deformation, hence the naked

singularity at the infrared is not removed by this mechanism. This remains an open question

we hope to address in the future.

The first non-trivial example of complex deformation is provided by the cone over dP2.

The web diagram is shown in Figure 3a, and the corresponding quiver diagram is in Figure
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Figure 10: Quivers in a duality cycle in the duality cascade of dP1. We have indicated in blue

the dualized node at each step.
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Figure 11: Evolution of the inverse squared couplings xi = 8π2/g2i as a function of t = log µ

for the dP1 cascade under consideration. UV couplings have been chosen respecting the quiver

symmetries and such that the sequence given by Figure 10 and (3.7) is followed. We indicate x1

and x2 in green, and x3 and x4 in orange.

12.

The superpotential for this theory is given by

W = X34X45X53 − (X53Y31X15 +X34X42Y23)

+ (Y23X31X15X52 +X42X23Y31X14)−X23X31X14X45X52 (3.8)

The two independent fractional branes can be taken to correspond to the rank vectors

(1, 1, 0, 0, 0) and (0, 1, 0, 1,−1). The existence of an RG cascade in this theory, although
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Figure 12: Quiver diagram for D3-branes at the cone over dP2.

expected, has not been established in the literature, neither from the field theory nor the

supergravity viewpoint.

Using our arguments in section 2.4, it is possible to see that the cascade ending in the

deformation shown in figure 3a corresponds to the first type of fractional branes. We thus

proceed to study it, taking initial ranks of the form

~N = N(1, 1, 1, 1, 1) +M(1, 1, 0, 0, 0) (3.9)

We will consider UV couplings respecting the ZZ2 symmetry that the quiver has in the absence

of fractional branes, x1 = x2 and x4 = x5.
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N+MN+M
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Figure 13: Some quivers in a duality cycle in the duality cascade of dP2. We have indicated in

blue the dualized node at each step.
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The sequence of gauge group ranks and beta functions for the gauge couplings is

N1 N2 N3 N4 N5 β1/M β2/M β3/M β4/M β5/M

1 N +M N +M N N N 3 3 3

4
(−9 +

√
33) 3

8
(1−

√
33) 3

8
(1−

√
33)

2 N −M N +M N N N −3 3 0 0 0

3 N −M N −M N N N −3 −3 3

4
(9−

√
33) 3

8
(−1+

√
33) 3

8
(−1 +

√
33)

4 N −M N −M N N −M N 3

8
(1 −

√
33) 3

4
(−9 +

√
33) 3 3

8
(1−

√
33) 3

5 N −M N −M N N −M N − 2M 0 0 3 0 −3

6 N −M N −M N − 2M N −M N − 2M 3

8
(−1 +

√
33) 3

4
(9−

√
33) −3 3

8
(−1+

√
33) −3

(3.10)
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Figure 14: Evolution of the inverse squared couplings xi = 8π2/g2i as a function of t = log µ

for some steps in the dP2 cascade under consideration. UV couplings have been chosen respecting

the quiver symmetries and such that the sequence given by Figure 13 and (3.10) is followed. We

indicate x1 and x2 in black, x3 in green, and x4 and x5 in magenta.

Figure 14 shows a typical evolution of gauge couplings in this case. For simplicity,

Figure 13 and (3.10) only show six steps in the duality cascade. At the end of this pattern of

dualization, one obtains a quiver similar to the original one, up to a reduction of the number

of D3-branes and a rotation of the diagram. Hence continuation of this pattern eventually

leads to a full duality cycle, and thus a periodic cascade.

Let us now explore the behavior of the theory for small number of regular D3-branes,

which corresponds to the infrared of the RG cascade. For that, we consider M D3-branes

probing the theory at the IR end of the cascade. Hence, let us consider the gauge theory

described by the rank vector

~N =M(1, 1, 1, 1, 1) +M(1, 1, 0, 0, 0) (3.11)
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In this situation the nodes 1 and 2 have Nf = Nc and develop a quantum deformed moduli

space. The meson fields for nodes 1 and 2 are

M =





M34 M35

M̃34 M̃35



 =





X31X14 X31X15

Y31X14 Y31X15



 ; N =





N43 N53

Ñ43 Ñ53



 =





X42X23 X52X23

X42Y23 X52Y23





The quantum modified superpotential becomes

W = X34X45X53 − (X53Y31X15 +X34X42Y23)

+ (Y23X31X15X52 +X42X23Y31X14)−X23X31X14X45X52

+ X1 (detM−BB̃ − Λ4M) + X2 (detN − CC̃ − Λ4M) (3.12)

Along the mesonic branch we have

X1 = Λ4−4M ; B = B̃ = 0 ; X2 = −Λ4−4M ; C = C̃ = 0

detM = Λ4M ; detN = Λ4M (3.13)

The appropriate signs for the vevs for X1 and X2 can be determined with a reasoning

identical to the one in Appendix A.

The expectation values for the mesons higgs the gauge group to a single diagonal combi-

nation of the nodes 3, 4 and 5. Restricting to the Abelian case, the superpotential becomes

W = X34X45X53 −N53M34X45 −X53M̃35 −X34Ñ43

+ Ñ53M35 +N43M̃34 +M34M̃35 − M̃34M35 −N43Ñ53 + Ñ43N53 (3.14)

Using the equations of motion for e.g. M̃34, M̃35 and Ñ43, we have

M34 = X53 , M35 = N43 , X33 = N53 (3.15)

Plugging this into (3.14) we have

W = X34X45X53 −X34X53X45 (3.16)

Renaming X34 = X , X45 = Y and X53 = Z, we obtain the N = 4 field content and

superpotential

W = X [Y, Z] (3.17)

which in any event vanishes in the Abelian case, but is crucial in non-Abelian situations.

Hence, the moduli space of the D3-brane probes is given by the complex deformation of the

cone over dP2 to a smooth space, as expected from the geometrical analysis.
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3.3 The suspended pinch point

To illustrate that the ideas of cascades and infrared deformations are very general, we would

like to consider a further example, based on the suspended pinch point (SPP) singularity.

The web diagram for this geometry is shown in Figure 15a, while its deformation is in Figure

15b.

Figure 15: Web diagram for the SPP and its deformation to a smooth geometry.

The quiver diagram was determined in [27, 39] and is shown in Figure 16a, and the

superpotential is

W = X21X12X23X32 −X32X23X31X13 +X13X31X11 −X12X21X11 (3.18)

The ranks of the gauge factors are arbitrary, hence there are two independent fractional

branes, which can be taken to be (0, 1, 0) and (0, 0, 1).

1

3 2

Figure 16: Quiver diagram for SPP.

Although it has not been described in the literature, the theory has a very nice and simple

sequence of dualities, which as we show ends in the deformed geometry shown in Figure 15a.

Similarly to what happens in the flows considered for dP1 and dP2, this sequence of dualities

shares a very special feature with the conifold cascade: it is periodic and involves a single

quiver. Let us consider the starting point given by the ranks

~N = N(1, 1, 1) +M(0, 1, 0) (3.19)
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A period in the duality sequence involves the following set of consecutive dualizations

(2, 1, 3, 2, 1, 3). After six dualizations, the quiver comes back to itself, with N → N − 3M

and M constant. The quiver theories at each step of this sequence are shown in Figure 17.

As before, we have indicated in blue the node that gets dualized at each step.

1 2 3

4 5 6

N N+M

N

N

N−M

N−2MN−2M N−M N−2M

N−M

N N−M

N−M N−3M

N N−M

N−2M N−2M

Figure 17: Sequence of quivers in one period of the SPP cascade. We have indicated in blue the

dualized node at each step.

Computing the beta functions for the gauge couplings, it appears that the simple se-

quence in Figure 17 cannot be realized by a cascade. In particular, it is not possible to

prevent a node with an adjoint from going to infinite coupling at some point in the RG

flow. It would be interesting to understand whether the simple features of Figure 17 can be

preserved by some more general RG flow.

When the effective number of D3-branes is comparable toM , we expect the gauge theory

strong dynamics to take over and induce a geometric transition. Indeed, the SPP singularity

admits a complex deformation, shown in Figure 15b. In the following we describe how this

arises in the field theory.

In order to study the infrared end of the cascade, we study the gauge theory describing

M D3-branes probing it. This corresponds to the quiver theory with rank vector

~N =M(1, 1, 1) +M(0, 1, 0) (3.20)

In this case, we only need to consider mesons and baryons for node 2. The mesons are
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given by

M =





M13 M11

M33 M31



 =





X12X23 X12X21

X32X23 X32X21



 (3.21)

We now introduce the quantum constraint in the superpotential and choose the mesonic

branch

X = Λ4−4M ; B = B̃ = 0 (3.22)

Restricting to the Abelian case, the superpotential reads

W = −M33X31X13 +X13X31X11 −M11X11 +M33M11 (3.23)

The equation of motion for M11 requires X11 =M33, so we get

W = −M33X31X13 +X13X31M33 (3.24)

The gauge group is SU(M) (due to the breaking by meson vevs M ∝ 1). All three fields

transform in the adjoint representation (a singlet in the Abelian case). The above the-

ory clearly describes the field content and superpotential of N = 4 SYM, i.e. the theory

describing the smooth geometry left over after the deformation.

In addition, there remain some additional light fields, namely M11, M13, M31, M33,

subject to the constraint

M13M31 −M33M11 = Λ4 (3.25)

The dynamics is that of probe D3-branes in the geometry corresponding to the defor-

mation of the SPP to flat space. This matches nicely the geometric expectation, from the

web diagrams in Figure 15, from which we see that the result of the deformation is a smooth

geometry.

The relation between the field theory and the more geometrical description of the defor-

mation can be done also using the toric geometry language. Using the construction of the

moduli space of the SPP in terms of toric data (the forward algorithm), e.g. in [27, 40], the

moduli space is given by xy = zw2, with

x = X13X32X24, y = X31X12X23, z = X11, w = X13X31 (3.26)

modulo relations from the superpotential (namely, we also have e.g. w = X12X21). Using

the mesons we have

x = X13M31 , y = X31M13 , z = X11 =M33 , w = X13X31 =M11 (3.27)
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The monomials satisfy xy − zw2 = 0 at the classical level, namely

X13X31(M31M13 −M33M11) = 0 (3.28)

The quantum deformation of the moduli space of the field theory M31M13 −M33M11 = Λ4,

thus corresponds to

X13X31(M31M13 −M33M11) = ǫX13X31 (3.29)

which in terms of the monomials can be written as xy − zw2 = ǫw which is the description

of the geometric deformation in Figure 15b. Thus the description we have provided has a

quite direct link with the geometric description of the deformation, see Appendix B. Similar

computations could be carried out in the other cases.

4. The dP3 example

In this and subsequent sections we present examples where there are several scales of strong

gauge dynamics along the RG flow. They are dual to supergravity solutions with several

geometric features along the radial direction. The cleanest examples are those involving

several deformation scales, which separate throat-like regions with different warp factors,

dual to cascading flows in the gauge theory. In this section we center on one such example,

based on the cone over dP3.

The complex cone over dP3 has two different deformation branches, shown in Figure

4. Following the discussion in section 2.4, it is possible to directly determine the sets of

fractional branes in the gauge theory that are associated to the finite size 3-cycles in the

supergravity description, and which should therefore trigger the corresponding RG flow and

strong dynamics. In this section we carry out the gauge theory analysis corresponding

to these sets of fractional branes and describe in detail the duality cascade and infrared

dynamics.

Before doing that, let us review some general features of the gauge theory. The (p, q)

web diagram is shown in Figure 4, and the corresponding quiver gauge theory is shown in

figure 18. The superpotential reads (see e.g. [41])

W = X12X23X34X45X56X61 + X13X35X51 +X24X46X62 −
− X23X35X56X62 − X13X34X46X61 − X12X24X45X51 (4.1)

in self-explanatory notation.

A basis of fractional branes is given by the rank vectors (1, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 1)

and (1, 0, 1, 0, 1, 0).
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Figure 18: The quiver for D3-branes on the complex cone over dP3.

4.1 The cascade for the first branch

In this section we describe a cascading RG flow for the dP3 theory. This duality cascade,

which has not appeared in the literature, provides the dual of the throat in [6] corresponding

to the appropriate choice of fractional branes.

The cone over dP3 has a two-dimensional deformation branch, shown in Figure 4c, which

involves two independent 3-cycles and hence two independent RR fluxes. Hence a warped

throat ending in this deformation must be dual to an RG flow in the quiver gauge theory

with two independent fractional branes. From the geometry, and the argument in section

2.4, the 3-cycles involved in the deformation correspond to the fractional branes with rank

vectors (1, 0, 0, 1, 0, 0) and (0, 0, 1, 0, 0, 1).

Hence our starting point is the quiver in Figure 18 with ranks

~N = N(1, 1, 1, 1, 1, 1) + P (1, 0, 0, 1, 0, 0) +M(0, 0, 1, 0, 0, 1) (4.2)

In addition, the ZZ2 symmetry of the external legs in the toric diagram suggests that it

is natural to consider initial conditions such that the RG flow is symmetric with respect to

opposite nodes in the quiver. Hence, opposite nodes are taken with equal gauge couplings

at a large UV scale. In order to study the RG flow to the infrared, we center on the regime

N ≫ P ≫M , which eventually will lead to two hierarchically different scales of RG flow.

The suggested duality cascade proceeds as follows. The nodes with largest beta function

are 1 and 4, so we dualize them simultaneously. The results are shown in Figure 19a,b

(the resulting quiver may be reordered to yield a standard maximally symmetric quiver, but

we need not do so). Next the most strongly coupled nodes are 3, 6, so we dualize them

simultaneously. This is shown in Figure 19b,c.

The quiver in Figure 19c can be reordered into a standard maximally symmetric quiver.

This is of the form of the starting quiver, with similar fractional branes, but with the effective
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Figure 19: Two dualizations in the first RG cascade in dP3. Dualized nodes are shown in blue.

N reduced by an amount P . We can then continue dualizing nodes 2, 5, then 1, 4, then 3,

6, etc, following the above pattern and generating a cascade which preserves the fractional

branes but reduces the effective N .

In order to check that the suggested cascade of dualizations is consistent with an RG

flow, we compute the gauge theories at each step in the cascade, along with the beta functions

for the gauge couplings.

Given that N ≫ P ≫ M , we expect the cascade to be controlled by the P fractional

branes of the first type in the UV. In that spirit, we study in detail the RG flow first

neglecting the effect of M , which we set to zero for simplicity, under the assumption that

the M fractional branes of the second type will only produce a small perturbation to the

cascade constructed this way.

Let us explore in more detail that the above proposed cascade of dualizations 1,4,2,5,3,6

indeed corresponds to an RG flow. This cascade iterates between Models I and II of dP3 in

[42], and the corresponding ranks and beta functions at each step are

N1 N2 N3 N4 N5 N6 β1/P β2/P β3/P β4/P β5/P β6/P

1 N + P N N N + P N N 3 −3/2 −3/2 3 −3/2 −3/2

2 N − P N N N + P N N −3 0 0 3 0 0

3 N − P N N N − P N N −3 3/2 3/2 −3 3/2 3/2

4 N − P N − P N N − P N N −2 −3/2 5/2 −5/2 3/2 2

5 N − P N − P N N − P N − P N −3/2 −3/2 3 −3/2 −3/2 3

6 N − P N − P N − 2P N − P N − P N 0 0 −3 0 0 3

7 N − P N − P N − 2P N − P N − P N − 2P 3/2 3/2 −3 3/2 3/2 −3

(4.3)
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After six dualizations (step 7 in the previous table), the quiver comes back to itself, with

ranks

~N = (N − P )(1, 1, 1, 1, 1, 1)− P (0, 0, 1, 0, 0, 1) (4.4)

Thus, the theory after six steps looks like the original one, with N → N − P , plus a

rotation and a replacement of P → −P .
Notice that in the situation which is ZZ2 symmetric with respect to opposite nodes, the

above duality steps group by pairs of simultaneous dualizations, and the quivers involved

are always maximally symmetric (model I in [42]).

One may worry that in the presence of non-zero M the structure of the above cascade is

destabilized. However, numerical results on the structure of cascades for a variety of choices

of UV gauge couplings shows that the existence of cascades is a quite robust feature of the

above choice of fractional branes (although the particular pattern of dualities involved in a

cycle may be different from the above one).

Hence, the above cascade can be generalized to the situation with non-zero M , with

the same result, namely there are cycles of Seiberg dualities, which leave the quiver and

fractional branes invariant, but decrease the number of D3-branes in multiples of P .

The cascade proceeds until the effective N is not large compared with P . For simplicity,

consider that the starting N is N = (k+2)P −M . Then after a suitable number of cascade

steps, the ranks in the maximally symmetric quiver are (2P−M,P−M,P, 2P−M,P−M,P ),

for nodes (1, 2, 3, 4, 5, 6), as shown in Figure 20a. At this stage the SU(2P −M) factors

have 2P − M flavors and develop a quantum deformation of their moduli space. This

should correspond to turning on one of the complex deformations of the geometry. From the

structure of the left over web in the toric representation after a one-parameter deformation,

see Figure 4b, we expect that the left over geometry should be a conifold. This is shown in

Figure 20.

Before describing this quantum deformation in detail, let us simply mention that it

results in the disappearance of nodes 1 and 4, the recombination of nodes 2 and 3, and 5

and 6 respectively, due to meson vevs, and a rearrangement of the arrows. The final result

is indeed a conifold quiver gauge theory, with ranks P −M and P . The theory subsequently

evolves towards the infrared via a Klebanov-Strassler flow, by duality cascades where the

effective number of D3-branes decreases in steps of M . At the end of this cascade, there is

another condensation, which corresponds to turning on the second complex deformation of

the cone over dP3 to yield a smooth space.
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Figure 20: Condensation of the gauge theory of dP3 to the gauge theory of the conifold. The

nodes undergoing a deformation are indicated in green.
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Figure 21: Gauge theory encoding the dynamics of D3-brane probes of the infrared of the cascade.

The nodes undergoing a deformation are indicated in green.

4.2 The quantum deformation to the conifold

Let us now describe the fate of the dP3 quiver theory at the end of the first duality cascade.

To simplify the discussion, we take the situation where nodes 2356 have equal rank, i.e.

M = 0, but the generalization to non-zero M is possible. We would like to consider the

gauge theory associated to a set of P D3-branes probing the infrared of the duality cascade.

The corresponding quiver is shown in Figure 21.

Following our general discussion in section 2.5, the SU(2P ) nodes condense, so we in-

troduce the corresponding mesons

M =





M63 M62

M53 M52



 =





X61X13 X61X12

X51X13 X51X12



 ; N =





N36 N35

N26 N25



 =





X34X46 X34X45

X24X46 X24X45




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We also introduce the baryons B, B̃, A, Ã. The quantum constraints read

detM−BB̃ = Λ4P ; detN −AÃ = Λ4P (4.5)

where we use the same dynamical scale for both gauge groups, corresponding to the ZZ2

symmetry of opposite nodes in the quiver preserved during the flow.

The superpotential reads

W = M62X23N35X56 + M53X35 +N26X62 −
− X23X35X56X62 − M63N36 − M52N25 +

+ X1 (detM−BB̃ − Λ4P ) + X2 (detN −AÃ − Λ4P ) (4.6)

Going along the mesonic branch, we uncover the dynamics of the probes in the geometry

at the infrared of the cascade. The mesonic branch corresponds to

X1 = X2 = Λ4−4P ; A = Ã = 0 ; B = B̃ = 0 (4.7)

and the constraints on the mesons. For the most symmetric choice of meson vevs M ∝ 1,

N ∝ 1, the gauge groups associated to the nodes 3 and 6, and 2 and 5, are broken to their

respective diagonal combinations.

In order to simplify the discussion, we restrict to the Abelian case, where the superpo-

tential reads

W = M62X23N35X56 −X23X35X56X62 −M63N36 −M52N25 +

+ M53X35 +N26X62 +M63M52 −M53M62 +N36N25 −N26N35 (4.8)

Using the equations of motion for M53 and N26, we have X35 =M62, X62 = N35. Thus

W = X23N35X56M62 −X23M62X56N35 −
− M63N36 −M52N25 +M63M52 +N36N25 (4.9)

Using the equations of motion for e.g. M63,M52, the quadratic terms disappear, and we are

left with

W = X23N35X56M62 −X23M62X56N35 (4.10)

Going back to the non-Abelian case, the gauge group is SU(M)25 × SU(M)36, with charged

fields given by those appearing in the superpotential. These can be relabeled as A1 = X23
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and A2 = X56, in the ( , ), and B1 = M35, B2 = M62, in the ( , ). This is the gauge

theory of D3-branes at a conifold singularity, showing that the left over geometry after the

complex deformation is a conifold. It is important to note that there are some additional

massless fields, which describe the dynamics of the D3-brane probe in the deformed geometry.

Specifically, the quadratic terms in (4.9) leave two linear combinations ofM63,M52, N36, N25

massless. In addition, the fields M53 and N26, which disappeared from the superpotential,

also remain massless. Overall, we have light fields subject to the constraints (from ∂W/∂Xi =

0)

M63M52 −M53M62 = Λ4P ; N36N25 −N26N35 = Λ4P (4.11)

Hence the complete dynamics of the theory corresponds to one D3-probe in a geometry which

is the deformation of a complex cone over dP3 to a singular conifold.

Notice also that if we consider two kinds of fractional branes, namely non-zero M in

the original cascade, the quantum deformation proceeds as above, since it involves recom-

binations of opposite nodes which have equal ranks even for non-zero M . The resulting

condensation leads to a conifold, with the two nodes of the conifold theory having different

ranks, what triggers a further Klebanov-Strassler duality cascade and infrared deformation.

4.3 The other branch

The cone over dP3 has a second deformation branch, which is one-dimensional, see figure 4c.

In this section we discuss the duality cascade dual to the corresponding supergravity throat,

and describe the infrared deformation in the gauge theory.

Using the relation in section 2.4, the one-parameter deformation branch corresponds to

the choice of fractional branes in Figure 22. Also, due to the ZZ3 symmetry of the geometry, it

is natural to propose that nodes with even/odd label have equal UV couplings, respectively.

The proposed cascade in this case goes as follows. As one flows to the infrared, the

SU(N +M) gauge factors become strongly coupled and should be dualized. Their simul-

taneous dualization is difficult, since there are bi-fundamentals joining the corresponding

nodes, so we proceed sequentially, with a particular choice of ordering which is not impor-

tant for the final result. We choose to dualize node 1 first. The result is shown in Figure

23ab. In the resulting theory, there are no bi-fundamentals joining nodes 3 and 5, so we can

now dualize them simultaneously, as shown in Figure 23bc.

Next, node 1 is most strongly coupled, so we dualize it again. The result is shown in

Figure 24ab. Then, we dualize nodes 2 and 6. The final quiver is the maximally symmetric

one, as can be shown by reordering the nodes as in 24bc. This final theory is of the same
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Figure 22: Starting point of the cascade ending in the one-parameter deformation of the cone

over dP3.
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Figure 23: Some steps in the duality cascade. Dualized nodes are shown in blue.

kind as the original one, but reducing the effective N in M units (and up to a rotation).

Notice also that the final theory has the same nice ZZ3 symmetry between the nodes as the

original onem with the nodes (2, 4, 6) playing the role of (1, 3, 5). One can then proceed to

perform the same sequence of dualizations, this time on nodes (2, 4, 6), completing a full

cycle of the cascade.

The above heuristic derivation is confirmed by the detailed computation, and provides

the field theory interpretation of the supergravity solution in [6], for the corresponding

choice of asymptotic fluxes. The cascade proceeds until the effective number of D3-branes is

comparable to that of fractional branes. At this stage, we may use the field theory to derive

the strong infrared dynamics which removes the singularity by replacing it by a smooth

deformed geometry.

For that purpose, we consider the dynamics of the theory at the end of the cascade,

in the presence of additional D3-brane probes. Namely, we consider the quiver with ranks
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Figure 24: Last duality and reordering to complete the duality step. Note that the nodes of the

last quiver have been reordered in order to make its ZZ3 symmetry manifest. The dualized node is

shown in blue.

(2M,M, 2M,M, 2M,M). In this situation, we expect that the three nodes 1, 3, 5 lead

to a quantum deformed moduli space. In order to study the left-over theory, we consider

performing this condensations sequentially (the order not being relevant for the final result).

Consider the strong dynamics associated to the node 1. We introduce the mesons

M =





M62 M63

M52 M53



 =





X61X12 X61X13

X51X12 X51X13



 (4.12)

Similar to our above analysis, we implement the quantum constraint in the superpotential.

We center on the mesonic branch, along which the gauge factors 6 and 2, and 5 and 3, are

broken to their respective diagonal subgroups, denoted 26 and 35 henceforth. Restricting to

the Abelian case, the superpotential is described by

W = M62X23X34X45X56 + M53X35 + X24X46X62 − X23X35X56X62

− M63X34X46 −M52X24X45 − M62M53 + M52M63 (4.13)

The combined node 35 has Nf = Nc plus additional massive adjoints and flavors, which

we integrate out using the equations of motion for M53, X35, M52, M63. The resulting

superpotential is

W = M62X23X34X45X56 + X24X46X62 − −X23M62X56X62 − X34X46X24X45 (4.14)

so the only fields charged under the node 35 are the massless ones. Since it has Nf = Nc we

introduce the mesons

N =





N26 N24

N46 N44



 =





X23X56 X23X34

X45X56 X45X34



 (4.15)
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which, along with the corresponding baryons, satisfy a quantum deformed constraint. Along

the mesonic branch, the group associated to the nodes 26 and 4 is broken to a single diagonal

combination. The superpotential is given by

W = M62N24N46 + X24X46X62 − N26M62X62 − N44X46X24 + N26N44 − N46N24(4.16)

Using the equations of motion for N26, N44, N46, N24, the superpotential reads

W = X24X46X62 − X24X62X46 (4.17)

Since these fields transform in the adjoint representation of the leftover SU(M) gauge group,

this is the N = 4 SYM theory, and the result implies that the geometry after the deformation

is smooth. As usual, there are some additional neutral massless fields, with quantum modified

constraints, which describe the dynamics of the probe in the deformation of dP3 to a smooth

geometry. We see that the complete smoothing by a single scale is in full agreement with

the geometric picture.

5. Further examples

In this section we apply our by now familiar techniques to study other examples of quiver

gauge theories with two scales of strong infrared dynamics.

5.1 From PdP
(I)
4 to the Suspended Pinch Point

We now investigate a two-scale cascade which follows the sequence

PdP
(I)
4 → SPP → smooth (5.1)

where PdP stands for ’pseudo del Pezzo’ and PdP
(I)
4 indicates the complex cone over a

non-generic toric blow-up of dP3 denoted Model I of PdP4 in [43].

This is another simple example of the agreement between the complex deformation of

the geometry, and the quantum deformation of D3-branes probing the infrared theory of

fractional branes. Since the discussion of the RG flow and existence of cascades in these

geometries is involved and somewhat aside our main interest, we skip their discussion and

center on the gauge theory description of the deformation.

We consider the theory on a stack of D3-branes probing a complex cone over the toric

variety obtained by performing a non-generic blow-up of dP3. Figure Figure 25a shows

the (p, q) web diagram for this geometry. We also indicate a complex deformation to the

suspended pinch point (SPP) singularity.
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Figure 25: Web diagram for the PdP
(I)
4 model, its deformation to the SPP, and a further defor-

mation to a smooth space.

The quiver diagram for this model is shown in Figure 26, which has a 5-block structure

that is evident in the web diagram, with nodes 7, 1 and 2, 3 forming pairs.
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Figure 26: Quiver diagram for PdP
(I)
4 . We show in green the nodes that undergo the deformation.

The corresponding superpotential was derived in [43] and reads

W = X24X46X61X12 +X73X35X57 −X73X34X46X67 −X45X57X72X24

−X35X56X61X13 +X51X13X34X45 −X25X51X12 +X25X56X67X72

(5.2)

Following our arguments in section 2.4, the deformation we want to consider corresponds,

in the gauge theory, to the choice of fractional branes

~N =M(1, 1, 1, 1, 1, 1, 1) +M(0, 1, 0, 0, 0, 1, 0) (5.3)

Following our general prescription, we construct the meson fields for nodes 2 and 6
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M =





M14 M74

M15 M75



 =





X12X24 X72X24

X12X25 X72X25





(5.4)

N =





N41 N47

N51 N57



 =





X46X61 X46X67

X56X61 X56X67





We now introduce Lagrange multiplier chiral fields to impose the quantum modified

constraints on mesons and baryons. Along the mesonic branch we have

X1 = Λ4−4M ; B = B̃ = 0 ; X2 = Λ4−4M ; C = C̃ = 0

detM = Λ4M ; detN = Λ4M (5.5)

Along the mesonic branch, nodes 1, 4 and 5, 7, recombine to their respective diagonal

combinations. Restricting to the Abelian case, the superpotential is

W =M14N41 +X73X35X57 −X73X34N47 −X45X57M74

−X35N51X13 +X51X13X34X45 −M15X51 +M75N57

−M14M75 +M15M74 −N41N57 +N51N47

(5.6)

Using the equations of motion for M14, M15, N57, N47, N51, etc, we have

N41 =M75 ; X51 =M74 ; M75 = N41 N51 = X73X34 ; N47 = X35X13 (5.7)

The gauge group after symmetry breaking is SU(N)57 × SU(N)14 × SU(N)3, and we have

the superpotential

W = X73X35X57 −M74X45X57 −X73X34N47 −X35X73X34X13 +M74X13X34X45 (5.8)

Relabeling the gauge group as SU(N)1 × SU(N)2 × SU(N)3, and the fields as

M74 → Y12 , X45 → Y21 , X13 → Y23 , X34 → Y32

X35 → Y31 , X71 → Y13 , X57 → Y11 (5.9)

we readily see the field content and superpotential of the SPP geometry. In addition to these

fields, there are some massless modes, left over from the initial mesons. One can check that

out of the eight original fields, five combinations remain massless, and they are subject to

the quantum constraints, hence three degrees of freedom remain. They provide the moduli

space of a D3-brane probe in the geometry given by the dP4 deformed to a SPP.

The remaining theory may have fractional branes, triggering an RG flow related to the

sequence of dualities discussed for SPP in section 3.3, which terminates in smooth C3.
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5.2 From PdP3b to C/ZZ2

In this section we would like to discuss a further example of condensation, realized geometri-

cally as the deformation of a non-generic blow-up of dP2, the pseudo del Pezzo denoted PdP3b

in [36], to a C2/ZZ2 ×C orbifold singularity. From the geometric viewpoint, it illustrates the

fact that different phases of the quiver gauge theory may suffer different condensation pro-

cesses. From the field-theoretical viewpoint, it provides an example with a different behavior

for the left over theory. Namely, instead of the N = 4 theory or a conifold-like singularity,

the left-over geometry corresponds to an orbifold singularity. In the presence of fractional

branes on C2/ZZ2, the theory is not conformal, but instead of running down a cascade it en-

counters a singularity. The smoothing of this singularity in the dual supergravity description

is of enhançon type [44].

Let us consider a set of branes at a complex cone over the non-generic blow-up of dP2

leading to the quiver gauge theory in the phase denoted Model II of PdP3b, worked out in

[36], and whose quiver diagram is shown in Figure 27. The corresponding toric web diagram

is shown in Figure 28 11.

34

5

21

6

Figure 27: Quiver diagram for PdP3b.

The tree level superpotential is given by

W0 = X12X25X54X41 +X26X64X43X32 −X25X51Y13X32 −X64X41X13X36

+Y13X36X61 +X13X35X51 −X61X12X26 −X43X35X54

(5.10)

11Here we adhere to the terminology introduced in [36]. Thus, we see that the toric diagram for PdP3b is

different from the one for dP3 and is given by the reciprocal of the (p, q) web in Figure 28.
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Figure 28: Web diagram for the cone over the non-generic blow-up of dP2, and its deformation.

The external legs have been labeled indicating their correspondence to the nodes in the quiver in

Figure 27.

The geometric deformation of this space is shown in Figure 28b. Using our arguments

in section 2.4, this corresponds to strong coupling dynamics associated to nodes 2 and 4 in

the quiver diagram. In order to show this using D3-brane probes of this infrared dynamics,

we consider the quiver gauge theory with rank vector

~N =M(0, 1, 0, 1, 0, 0) +M(1, 1, 1, 1, 1, 1) =M(1, 2, 1, 2, 1, 1) (5.11)

In this situation, the nodes 2 and 4 have Nf = Nc, and have a quantum deformed moduli

space. Hence the above gauge theory (along the mesonic branch) describes the dynamics

of D3-brane probes in the left over geometry after the complex structure deformation of

the original geometry PdP3. In the following, we follow the by now familiar arguments to

determine the latter.

We introduce the meson fields

M =





M15 M35

M16 M36



 =





X12X25 X32X25

X12X26 X32X26





(5.12)

N =





N51 N53

N61 N63



 =





X54X41 X54X43

X64X41 X64X43





In terms of mesons and baryons, the superpotential becomes

W = M15N51 + M36N63 − M35X51Y13 − N61X13X36

+ Y13X36X61 + X13X35X51 − M16X61 − N53X35

−X1 (detM−BB̃ − Λ4M)−X2 (detN − CC̃ − Λ4M)

(5.13)

The mesonic branch is given by

X1 = X2 = Λ4−4M ; B = B̃ = 0 ; C = C̃ = 0 (5.14)
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with the mesons subject to the quantum constraints. Also, along the mesonic branch, the

symmetry is broken by recombining the gauge factors 1 and 5, and 3 and 6, into their

respective diagonal combinations.

Restricting now to the Abelian case, the superpotential is

W = M15N51 + M36N63 − M35X51Y13 − N61X13X36

+ Y13X36X61 + X13X35X51 − M16X61 − N53X35

−M15M36 + M16M35 − N51N63 + N61N53

(5.15)

Using the equations of motion, we obtain e.g. N61 = X35, M16 = X61, N51 = M36,

M15 = N63. The superpotential is

W = M35X51Y13 − N61X13X36 + Y13X36M16 + X13N61X51 (5.16)

Relabeling the unbroken group as SU(N)A ×SU(N)B, and the fields as Y13 → XAB, M35 →
XBA, X51 → ΦAA, X13 → YAB, N61 → YBA, X36 → ΦBB , the final quiver is presented in

Figure 29.

BA

Figure 29: Quiver diagram after deformation of PdP3b. It corresponds to a C2/ZZ2 ×C geometry.

The field content and superpotential correspond to the gauge theory for a C2/ZZ2 ×C

geometry. This agrees with the expected left over geometry after the complex deformation.

In addition, the theory contains massless meson degrees of freedom, subject to the quantum

constraint. They describe the dynamics of the D3-brane probe in the geometry given by the

complex deformation of PdP3 to C2/ZZ2 ×C.

As usual, it is possible to study the situation where the final gauge theory contains

fractional branes. This theory is N = 2 supersymmetric, hence its RG evolution could be

determined from its exact solution. As usual in non-conformal N = 2 theories, instead of a

duality cascade we expect strong coupling singularities. In the dual supergravity side, they

are described as enhançon configurations [44].

6. Conclusions

In this paper we have centered on the gauge field theory dynamics associated to the smooth-

ing of singularities in warped throat solutions dual to RG flows for branes at singularities in

the presence of fractional branes. We have established that in a large set of examples the
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smoothing corresponds to a complex deformation of the cone geometries. We have described

this phenomenon in the dual gauge field theory, by using D3-brane probes of the infrared

dynamics. The geometric deformation arises as a quantum deformation of the moduli space

of the D3-brane probes. The field theory description is in full agreement with the geometric

description of the complex deformation using toric methods.

In addition, we have constructed new explicit examples of cascading RG flows for some

of these theories. These duality cascades, along with the infrared deformations, are general-

izations of the Klebanov-Strassler RG flow, but show a richer structure in several respects.

For instance, very interestingly, several examples correspond to duality cascades with several

scales of partial confinement and deformation, after each of which the remaining quiver the-

ory continues cascading down the infrared in a different pattern. Their supergravity duals

should correspond to warped throats whose warp factor and flux structure jumps at partic-

ular values of the radial coordinate. In other words, to warped throats based on a deformed

geometry with several 3-cycles, which are of hierarchically different size. It would be in-

teresting to develop a better understanding of these throats directly from the supergravity

side. Also, we expect several interesting applications of these richer throat structures to

compactification and model building [32].

Our work opens a set of new questions. For instance, certain geometries do admit

fractional branes, and even have known KT-like warped throat solutions, but do not admit

complex deformations to smooth out their singularities. It would be interesting to understand

the infrared behavior of this class of models. In particular, the real cones over the recently

studied Y p,q manifolds, of which the five-dimensional horizon of the complex cone over dP1

is an example, fall in this class. We hope interesting progress in this direction.

Finally, there is an interesting phenomenon taking place in the quiver gauge theories

we have studied, which is however not involved in the nice RG flows we have centered

on. Namely, some of these theories, for other choices of fractional branes (or of UV gauge

couplings) exhibit duality walls [3, 4, 45, 6]. It is conceivable that a gauge theory with

in principle a duality wall in its UV can actually be UV completed by regarding it as a

remnant after confinement of a larger gauge theory at higher energies, with a better behaved

UV regime. Thus our work may shed some light also into these more exotic RG flows. We

leave this and other questions for future research.
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A. A more careful look at the mesonic branch

In this appendix we present an alternative approach to the field theory analysis of the IR

complex deformation of the geometry, which complements our methods in Section 2.5. The

strategy will be to consider the dynamics of the fluctuations of the meson fields around the

expectation values required by the quantum constraints. As we will see, this method has the

advantage of clarifying how the relative signs of the Lagrange multipliers are determined and

shows how the low energy limit with respect to the strong coupling scales is taken explicitly.

In order to illustrate these ideas, we will focus in the example of the deformation from

dP3 down to the conifold. We will reproduce the computations performed in Section 4.2

from a different viewpoint.

As discussed, the quantum modified constraints on the meson and baryon fields (2.21)

are imposed via Lagrange multipliers Xi. The quiver for the phase of dP3 we are considering

is shown in Figure 21. The ranks are

~N =M(1, 1, 1, 1, 1, 1) +M(1, 0, 0, 1, 0, 0) (A.1)

leading to a quantum modified moduli space for nodes 1 and 4. The meson fields for these

nodes are

M =





M63 M62

M53 M52



 =





X61X13 X61X12

X51X13 X51X12



 ; N =





N36 N35

N26 N25



 =





X34X46 X34X45

X24X46 X24X45





In terms of them and the baryonic operators, the quantum corrected superpotential is

W = M62X23N35X56 −X23X35X56X62 −M63N36 −M52N25 +M53X35 +N26X62
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+ X1(detM − BB̃ − Λ4M) +X2(detN − CC̃ − Λ4M) (A.2)

Let us focus on the mesonic branch of the moduli space, i.e. solutions with B = B̃ =

C = C̃ = 0.

∂X1
W = 0 ⇒ detM = Λ4M

∂X2
W = 0 ⇒ detN = Λ4M

(A.3)

For simplicity, we concentrate on a particularly simple choice of vev’s satisfying (A.3)

<M >= Λ2





1M×M 0

0 1M×M



 < N >= Λ2





1M×M 0

0 1M×M



 (A.4)

Denoting ηij and ξij the fluctuations of Mij and Nij around their respective expectation

values, and dropping a constant term, the superpotential in the Abelian case becomes

W = η62X23η35X56 −X23X35X56X62 − 2Λ4 − Λ2(η63 + η36 + η52 + η25)

− η63η36 − η52η25 + η53X35 + η26X62

+ X1(Λ
2(η63 + η52) + η63η52 − η53η62) +X2(Λ

2(η36 + η25) + η36η25 − η35η26) (A.5)

We are interested in looking at energies much smaller than the dynamical scale Λ. This

can be systematically implemented by taking the large Λ limit of the superpotential, which

we will call W ′, and looking at the approximate equations of motion that follow. For large

Λ, the superpotential becomes

W ′ = −Λ2(η63 + η52)− Λ2(η36 + η25)− Λ2X1(η63 + η52)− Λ2X2(η36 + η25) +O(Λ0) (A.6)

This determines the value of the Lagrange multipliers through

∂W ′

∂(η63 + η52)
= 0 → X1 = 1

∂W ′

∂(η36 + η25)
= 0 → X2 = 1 (A.7)

Plugging this into (A.5), we obtain an expression identical to (4.8), with the mesons

replaced by their corresponding fluctuations. The rest of the proof is the same as the one in

Section 4.2.

This type of discussion makes clear, for example, how the relative minus sign in the

values of the Lagrange multipliers X1 and X2 assumed in (3.13) is determined.
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B. Description of complex deformations

In this section we provide a precise geometric description of the complex deformation corre-

sponding to the removal of sub-webs in the toric diagram of our geometries. For additional

details and other examples see [46].

The basic process in the separation of a sub-web in a toric diagram is the separation of

two lines. This basic process is already present in the complex deformation of the conifold.

In order to describe it in toric language, recall the toric data for the conifold

a1 a2 b1 b2

Q 1 1 −1 −1

Namely, one is performing a Kahler quotient of C4 by the U(1) action acting on it with the

above charges. Physically, the conifold is the target of the 2d linear sigma model specified by

the above charges for a set of four chiral multiplets. The moment map equation (equivalently

the D-term equations for the linear sigma model) are

|a1|2 + |a2|2 − |b1|2 − |b2|2 = s (B.1)

The geometry is toric, namely can be regarded as a fibration of circles over a base. The U(1)

action is simply generated by the three independent phase rotations of the chiral multiplets,

up to the above U(1) action (which is a gauge equivalence).

The geometry can be describe using the gauge-invariant quantities x = a1a2, y = b1b2,

u = a1b1, v = a2b2, as the hypersurface in C4 defined by xy = uv. This may be equivalently

described by the two equations xy = z, uv = z. The U(1) actions degenerate along lines

in the subspace z = 0. The toric projection in Figure 30 describes the loci in z = 0 where

the U(1) actions degenerate. Notice that s measures the size of the 2-cycle in the resolved

conifold.

s

a1=0

a2 =0
b1 =0

b 2 =0

Figure 30: Toric projection and complex deformation for the conifold.

The complex deformation involving the separation of the two lines, Figure 30b, is possible

when s = 0. To describe it, we simply use monomials invariant under the U(1) gauge
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symmetry associated to s, namely x, y, u, v, and deform their constraint to

xy − uv = ǫ (B.2)

This may be recast as xy = z+ ǫ, uv = z, showing that there are two different values of z at

which the toric fibers degenerate. This implies that the two lines have separated from each

other.

1=0x

=0x 3

=0x 4

=0x 5

=0x 2

s
t

a) b)

Figure 31: Toric projection and complex deformation for the SPP.

The procedure generalizes to more involved situations. Let us consider the SPP singu-

larity, for which the toric data are

x1 x2 x3 x4 x5

Qs 1 −1 0 1 −1

Qt 0 0 1 −2 1

The corresponding D-term equations are

|x1|2 + |x4|2 − |x2|2 − |x5|2 = s,

|x3|2 + |x5|2 − 2|x4|2 = t (B.3)

There are two parameters s, t which control the size of two independent 2-cycles in the

geometry. The toric picture, showing the degeneration loci of the toric circle actions, is

shown in Figure 31a. The complex structure of the SPP is given by

uv = xy2, (B.4)

where x, y, u, v are gauge invariant coordinates,

x = x1x2, y = x3x4x5, u = x1x4x
2
5, v = x2x

2
3x4. (B.5)
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The complex structure deformation, in Figure 31b, arises when s = 0. In order to describe

it, we introduce variables invariant under U(1)s

x = x1x2, y = x3x4x5 ρ = x1x5/x3 v = x2x
2
3x4 (B.6)

(which are well-defined for x3 6= 0). They satisfy a constraint xỹ = ρṽ, which we deform to

xy − ρv = ǫ (B.7)

In the complete manifold, using that ρ = u/y, we obtain for the complex deformation

xy2 = (ρv + ǫ) y = uv + ǫy (B.8)

Notice that this geometric argument and the deformed geometry nicely dovetail the field

theory argument at the end of section 3.3.

C. Cones over the Y p,q manifolds

Real cones over the manifolds Y p,q [7, 8, 9, 10, 11] provide an infinite family of 6 dimensional

singular geometries on which we can place D3-branes. This leads to an infinite class of

quiver gauge theories, which have been determined in [12], and whose study is a promising

new direction in the gauge/gravity correspondence.

One interesting feature is that the five dimensional Y p,q manifolds have only one collaps-

ing 2-cycle and thus admit a single kind of fractional brane, which triggers a cascading RG

flow. Some particular cascades, as well as the KT-like supergravity solutions for the general

case, have been recently constructed in [13]. The warped throat solutions contain a naked

singularity at their tip. A natural question is whether a smooth solution exists, based on a

complex deformation of the underlying geometry, and how to understand it from the dual

field theory viewpoint.

In general these 6 dimensional manifolds correspond to spaces which do not admit com-

plex deformations. This can be seen from the web diagrams of those spaces, see Figure

32.

Only in the case of Y p,0 a decomposition of the web into sub-webs is possible. This case

is also special, since it corresponds to a ZZp quotient of the conifold. More concretely, defining

the conifold by the equation

xy − zw = 0 (C.1)
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(0,0) (1,0)

(0, p)

(−1, p−q)

(0,−1)

(p,1)
(−q,1)

(−p+q,−1)

Figure 32: The toric and web diagram for the cone over the general Y p,q manifold. No leg

recombination is possible except for the case q = 0.

the cone over Y p,0 is obtained by modding out by the ZZp action generated by θ, which acts

as

x→ e2πi/px , y → e−2πi/py , z → e2πi/pz , w → e−2πi/pw (C.2)

which is clearly a symmetry of (C.1).

The complex deformation of the manifold is simply the ZZp quotient of the complex

deformation of the conifold

xy − zw = ǫ (C.3)

The 3-cycle in the deformed space is the Lens space S3/ZZp.

Therefore, although both warped supergravity throats and logarithmic RG duality cas-

cades seem to exist for all the Y p,q cases, the class of Y p,0 manifolds stand out as the only

cases which admit a complex deformation, presumably removing the infrared singularity of

their supergravity solutions. Our plan is to center on this class and indeed derive the defor-

mation from the viewpoint of the strong dynamics of the dual gauge theory with fractional

branes in general.

For that purpose we need the corresponding quiver gauge theories. These can be obtained

using the rules in [12], but for illustration purposes we construct them using their realization

as ZZp quotients of the conifold. This can be done following the ideas in [39]. Concretely, the

conifold theory is SU(N1)×SU(N2) with fields A1, A2 in the ( , ) and B1, B2 in the ( , ).

We also have the superpotential

W = A1B1A2B2 − A1B2A2B1 (C.4)
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By the realization of the conifold as the moduli space of the gauge theory, there is a relation

between the fields and the coordinates x, y, z, w. Roughly

x ≃ A1B1 , y ≃ A2B2 , z ≃ A1B2 , w ≃ A2B1 (C.5)

The action (C.2) can thus be implemented as the action

A1 → e2πi/pA1 , A2 → e−2πi/pA2 , B1 → B1 , B2 → B2 (C.6)

In addition, we have to specify the action of θ on the SU(N1) and SU(N2) Chan-Paton

labels. This is done by two order p discrete gauge transformations, which without loss of

generality can be chosen

γθ,1 = diag (1n0
, e2πi/p1n1

, . . . , e2πi(p−1)/p1np−1
)

γθ,2 = diag (1m0
, e2πi/p1m1

, . . . , e2πi(p−1)/p1mp−1
) (C.7)

with
∑

a na = N1 and
∑

ama = N2.

Now we have to project with respect to the combined geometric and Chan-Paton action.

For vector multiplets, the geometric action is trivial, and we simply get a gauge group

SU(n0)× . . .× SU(np−1)× SU(m0)× . . .× SU(mp−1) (C.8)

while the projection for the chiral multiplets leads to a set of chiral multiplets in the following

representations

(A1)a,a+1 = (na, ma+1) (A2)a,a−1 = (na, ma−1)

(B1)a,a = (na, ma) (B2)a,a = (na, ma) (C.9)

The superpotential is directly obtained from the conifold one and reads

W =
∑

a

[(A1)a,a+1(B1)a+1,a+1(A2)a+1,a(B2)a,a − (A1)a,a+1(B2)a+a,a+1(A2)a+1,a(B1)a,a]

The complete result agrees with that using the rules in [12] (by relabeling Bα → Uα,

A1 → Z, A2 → Y ). It is easy to check that the quiver for e.g. Y4,0 agrees with that in figure

8 in [12].

This gauge theory admits a single kind of fractional brane. The gauge theory corresponds

to na = N + M , and ma = N . The RG flow presumably leads to a cascade of Seiberg

dualities with structure very similar to that of the conifold. Although we have not carried
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out a complete analysis, we would like to make the following natural proposal. Consider all

the nodes SU(N) to have equal coupling at some UV scale, and all nodes SU(N +M) to

have equal coupling. Namely, we consider the couplings to respect the ZZp symmetry of the

quiver. As we run to the IR, the nodes SU(N +M) get to strong coupling. Let us Seiberg

dualize them simultaneously (to do it in practice, we may do it sequentially, but presumably

the order is not important). After this, we obtain a similar quiver, with all ranks N +M

replaced by N − M . So next one should dualize all the nodes of rank N , etc. This just

amounts to inheriting the cascade from the parent to the orbifold theory.

Let us now consider the infrared behavior of the cascade. For N a multiple of M (in

which case we center in what follows) the endpoint of the cascade is a theory of p decoupled

N = 1 SYM nodes, with equal gauge coupling (or dynamical scale) due to the ZZp symmetry

of the flow. The unique dynamical scale should be associated with a finite-size 3-cycle in a

deformed geometry.

In order to check that the geometry at the tip of the throat is the deformed geometry

described above, we consider the gauge theory describing the dynamics of M D3-brane

probing the IR theory. Namely, using the by now familiar technique we take the quiver

theory with group
∏

a

SU(2M)a ×
∏

a

SU(M)a (C.10)

The nodes SU(2M)a condense, so we introduce the mesons

M =





Ma,a+1 M̃a,a+1

Ma,a−1 M̃a,a−1



 =





(A1)a,a+1(B1)a+1,a+1 (A1)a,a+1(B2)a+1,a+1

(A2)a,a−1(B1)a−1,a−1 (A2)a,a−1(B2)a−1,a−1



 (C.11)

In terms of these, the superpotential reads

W =
∑

a

[

Ma,a+1M̃a+1,a − M̃a,a+1Ma+1,a

]

(C.12)

We now should impose the quantum constraint, and pick the mesonic branch. Along the

mesonic branch, all the SU(M)a gauge groups are broken to a single diagonal combination.

Therefore all mesons transform in the adjoint representation of this gauge group. Imposing

the constraint as a superpotential and centering in the Abelian case as usual, we have

W =
∑

a

[

Ma,a+1M̃a+1,a − M̃a,a+1Ma+1,a −Ma,a+1M̃a,a−1 +Ma,a−1M̃a,a+1

]

(C.13)

Notice that we have 4pM2 meson degrees of freedom. However, they have to satisfy the

F-term equations

M̃a+1,a = M̃a,a−1 Ma+1,a =Ma,a−1

M̃a,a+1 = M̃a−1,a Ma,a+1 =Ma−1,a (C.14)
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These are apparently 4pM2 relations. However, they are not all independent. This can be

seen by noticing that they only fix the relative vevs of the mesons for different values of

a, but they do not fix the overall size of a given kind of meson. Therefore, there are four

operators whose vevs are not fixed by the above conditions. They are

M11 =
∏

a

Ma,a+1 , M12 =
∏

a

M̃a,a+1 , M21 =
∏

a

Ma+1,a , M22 =
∏

a

M̃a+1,a(C.15)

Notice however that the original mesons are also constrained by the quantum constraint

(which is obtained from ∂W/∂Xa = 0 before going into the mesonic branch etc). This implies

that the final operators have to satisfy

M11M22 −M12M21 = ΛP (C.16)

This moduli space indeed corresponds to a deformed space. Moreover, the fact that the

fundamental mesons are related to the above fields by the order p relation (C.15) shows that

the final space is a ZZp quotient of the deformed conifold.

Hence the whole family of Y p,0 cones is closely related to the KS conifold, and a gener-

alization of the complex cone over F0, which is the case p = 2 in the above language. The

field theory argument plus the geometric analysis strongly support the existence of a smooth

supergravity solution describing a complete RG flow for these theories. Indeed, these exist

and are given simply by the ZZp quotient of the KS solution.
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