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Abstract 32 

 33 

Primate species are characterised by variation in foraging behaviour and dietary composition across their 34 

geographic range. Here we examine how ecological conditions account for variation in the behavioural 35 

ecology of a widespread arboreal guenon, Cercopithecus mitis.  Although substantial variation existed in 36 

time budgets, group size, home range and day journey length, clear biogeographic patterns were not 37 

apparent.  In contrast, dietary variation was correlated with underlying climatic conditions.  Temperature 38 

seasonality, which tends to increase with latitude, was significantly positively related to the proportion of 39 

fruit in the diet and negatively related to the proportion of animal matter. Both dietary components were 40 

'preferred' foods, with the variability between populations reflecting the availability of different food types 41 

across their geographic range.  Although we found no significant relationships between climate and the 42 

proportion of leaves in the diet, the ability for C. mitis to vary their diet to include a diversity of food types, 43 

and to incorporate a significant proportion of leaves when preferred sources are scarce, likely underpins 44 

their ability to survive across such a large distribution. 45 

  46 



Introduction 47 

 48 

Climatic conditions are known to have important effects on the availability of food for primates [Lehmann 49 

et al., 2007; Willems and Hill, 2009; Korstjens et al., 2010]. As a consequence, climate is an important 50 

driver of species’ distributions through its impact on underlying resource distributions [Eeley and Foley, 51 

1999; Eeley and Lawes, 1999; Chuine, 2010]. All primates must attribute their available time to a number 52 

of different activities, mainly foraging, socialising and resting [Dunbar, 1992]; for an individual to survive 53 

they must meet their minimum calorific intake within the time they are able to attribute to foraging. This 54 

likely accounts for why primates with large geographical distributions, such as baboons (Papio spp) and 55 

vervet monkeys (Chlorocebus aethiops) tend to be classed as diet generalists able to access a broader 56 

range of dietary options. With the potential for diet to be such an important constraint on primate 57 

distribution it is perhaps surprising that the topic still remains relatively understudied.  58 

 59 

In one of the few studies to investigate macro-spatial variation in the diet of a primate species, Hill and 60 

Dunbar [2002] used data on 15 baboon populations to assess the relationship between dietary 61 

composition and environmental variables. They found that the proportion of time spent feeding on fruit by 62 

baboons increased with increasing average temperature, decreasing altitude and with increasing Primary 63 

Productivity Index, a measure of the number of productive months in a year. Their results also showed that 64 

time spent eating leaves and subterranean foods had a negative relationship with temperature, indicating 65 

their status as ‘fall-back’ foods eaten when fruit was limiting. In a study of gorillas (Gorilla spp.), Lehmann 66 

et al. [2008b] observed that in areas of low fruit availability gorillas spent more time resting, due to the 67 

increased digestive effort associated with elevated leaf consumption. These studies indicate that 68 

geographically variable climatic conditions can have significant effect on underlying ecological conditions, 69 

which in turn influences a genus’ or species’ diet and behavioural profiles.  Comparative data sets allow 70 

investigations into how species adapt behaviourally to survive under different environmental conditions 71 

and the implications this has for species distributions [Altmann, 1974]; here we attempt such an 72 

investigation focussing on the arboreal monkey species, Cercopithecus mitis.  73 

 74 

C. mitis (referred to as samango monkeys, blue monkeys or Syke’s monkeys in different parts of their 75 

range) are medium sized (adult females ~4.4kg, adult males ~7.6kg: [Harvey et al., 1987]), arboreal, diurnal 76 

guenons, which form single-male multi-female groups with group sizes ranging from 4-65 [Butynski, 1990; 77 

Beeson et al., 1996; Smith et al., 2008; Houle et al., 2010; Lawes et al., 2013]. Home ranges have been 78 

reported as large as 253ha [Butynski, 1990], but most groups tend to have ranges of less than 80ha [Cords, 79 

1986; Butynski, 1990; Lawes, 1991; Beeson et al., 1996; Kaplin et al., 1998; Fairgrieve and Muhumuza, 80 

2003; Coleman, 2013; Tesfaye et al., 2013]. The distribution of C. mitis extends from central Ethiopia in the 81 



north to the Eastern Cape, South Africa, in the south (a range of approximately 5000km), and west-east 82 

from western Angola to Somalia (approximately 3200km) (Figure 1). Within this distribution they are 83 

present in a range of different forest types including riverine forest, bamboo forest and lowland and 84 

montane tropical moist forest [Lawes, 1990]. With such a large and diverse range C. mitis make an ideal 85 

study species for investigating how and why diet and behaviour may vary geographically.  86 

 87 

Although most forest guenons have diets dominated by fruit [Gautier-Hion, 1988; Beeson et al., 1996; 88 

Chapman et al., 2002], C. mitis tend to have a broader diet than most other arboreal Cercopithecine 89 

species [Lawes, 1991; Chapman et al., 2002]. C. mitis supplement their diet from a variety of different 90 

sources such as leaves [Fairgrieve, 1995; Beeson et al., 1996], insects [Butynski, 1990; Kaplin, 2001] and 91 

flowers [Schlichte, 1978]. This dietary diversity and increased leaf consumption is reflected in the gut 92 

morphology of C. mitis, which have longer caecums, a larger numbers of cellulases and more cellulose 93 

digesting bacteria than other Cercopithecines [Bruorton et al., 1991]. 94 

 95 

The ability of C. mitis to consume a diverse diet may account for their geographic range extending to more 96 

southerly latitudes than other arboreal guenons [Wolfheim, 1982].  C. m. erythrarchus is one of the most 97 

southerly sub-species of C. mitis, with samango monkeys ranging throughout Mozambique, Zimbabwe and 98 

northern South Africa where it experiences a highly seasonal climate. Previous work has shown that C. m. 99 

erythrarchus in South Africa increase their leaf consumption during colder months to subsidise their 100 

normally highly frugivorous diet [Lawes, 1991; Coleman, 2013]. In some more equatorial populations, the 101 

total proportion of foliar material in the diet of C. mitis has been observed to drop below 10% [Moreno-102 

Black and Maples, 1977; Cords, 1986; 1987], indicating that these populations do not supplement their 103 

diets with leaves to the same extent. 104 

 105 

Here we investigate the environmental factors underlying variation in samango monkey behaviour and diet 106 

composition across different populations of this widely distributed arboreal primate species. In doing so 107 

we assess the degree to which dietary flexibility in samango monkeys accounts for their ability to extend 108 

their range into more southerly latitudes than other forest guenons. 109 

 110 

Methods 111 

 112 

Behavioural and diet data 113 

Data were extracted from the literature on the behavioural ecology and diet composition of 13 populations 114 

of C. mitis (Tables 1 and 2; Figure 1). Only studies with a duration of at least 6 months were included in our 115 

analysis.  If the studies reported data from more than one group per population the mean of these groups 116 



was used. Where available, home range area, group size and mean day journey length were extracted. 117 

Time budget data were restricted to four categories: feeding, resting, moving and socialising (following 118 

Dunbar [1992]). 119 

 120 

Published dietary data had been collected using a series of methods, including direction observation, faecal 121 

analysis and the analysis of stomach contents, with some studies reporting a combination of methods.  122 

Diet components were separated into fruits (including seeds), leaves, flowers, other plant (e.g. bark), 123 

animal matter (usually invertebrates, e.g. caterpillars, ants), fungi and unknown. The figures reported in 124 

Table 2 represent the proportion of the diet these components comprise in each population.  For Budongo 125 

Forest, Uganda [Fairgrieve and Muhumuza, 2003], only unlogged forest data were used as this was more 126 

comparable to other study sites. Similarly for the population in Jibat Forest, Ethiopia [Tesfaye et al., 2013], 127 

only undisturbed forest data were used.  128 

 129 

Climatic data 130 

Climatic data for Africa were extracted from a 1950-2000 data set [Hijmans et al., 2005] at a resolution of 131 

30s of a degree (equating to 0.86km2 at the equator).  Using ArcGIS 10.2 (Environmental Systems Research 132 

Institute, California), the following climatic variables were extracted for each site: mean annual 133 

temperature, diurnal temperature range (mean of monthly (max temperature – min temperature)), 134 

temperature seasonality (standard deviation of monthly values), maximum temperature of warmest 135 

month, minimum temperature of coldest month, annual temperature range (max temperature warmest 136 

month – min temperature coldest month), annual precipitation, precipitation seasonality (coefficient of 137 

variation) and altitude (Table 3). These variables were chosen after assessment of indices used by previous 138 

cross-populational primate studies [Williamson and Dunbar, 1999; Hill and Dunbar, 2002; Lehmann et al., 139 

2008b; a; Willems and Hill, 2009]. Along with these bioclimatic variables the Primary Productivity Index 140 

(PPI) was calculated as the number of months in which total precipitation (in mm) exceeds twice the 141 

monthly average temperature (in oC).  PPI has been show to equate to the length of the growing season, 142 

which itself yields a very strong correlation with primary productivity ([Le Houerou, 1984]. Williamson 143 

[1997] highlighted the value of PPI for describing rainfall seasonality and previous studies have illustrated 144 

its value in explaining biogeographic patterns of primate dietary variation and behavioural ecology [Hill and 145 

Dunbar, 2002; Lehmann et al., 2008a; 2010]. To complement this, information on primary productivity was 146 

obtained from the remotely-sensed Normalized Difference Vegetation Index (NDVI), a well-established and 147 

successful satellite-derived measure of photosynthetic activity [Kerr and Ostrovsky, 2003; Pettorelli et al., 148 

2011] that has been successfully applied to studies of primate biogeography [Zinner et al., 2001; 2002; 149 

Willems and Hill, 2009].  NDVI data were derived from the Moderate Resolution Imaging 150 

Spectroradiometer (MODIS) instrument and extracted from the MODIS subsetted land products [Oak Ridge 151 



National Laboratory Distributed Active Archive Center (ORNL DAAC), 2012].  The data were based on field 152 

site coordinates overlaid onto satellite imagery, and extracted for a 2.5km subset for the period 2001-153 

2010.  A small subset area was selected to ensure that estimates were centred on preferred forest 154 

habitats, even for those populations inhabiting relatively small forest fragments.  From the 2.5km subsets, 155 

mean annual NDVI composites were computed from all pixels passing quality filtering criteria.  Finally, day 156 

length variation (length of longest day – length of shortest day) was calculated for each population using 157 

data from the Astronomical Applications Department of the U.S. Naval Observatory 158 

(http://aa.usno.navy.mil/data/docs/Dur_OneYear.php), since this has also been shown to account for 159 

geographic variation in primate behaviour [Hill et al., 2003]. 160 

 161 

Exploratory analysis revealed highly significant correlations between some climate variables (Appendix1).  162 

As a consequence the original 11 variables were reduced to seven independent variables for analysis: 163 

altitude, mean annual temperature, temperature seasonality, mean annual precipitation, diurnal 164 

temperature range, PPI and NDVI.  The remaining variables incorporated the three main dimensions of 165 

climatic variation identified through a large factor analysis of 80 sub-Saharan weather stations (annual 166 

rainfall, average temperature and seasonality: Williamson and Dunbar [1999]) and mirror those used in 167 

previous studies of this type [Hill and Dunbar, 2002; Lehmann et al., 2008a; 2010]. 168 

 169 

Statistical analysis 170 

A parametric correlation analysis was conducted to investigate bivariate relationships between the six 171 

climatic variables and group size, home range and diet composition data. Time budget data were only 172 

available for five populations and so no statistical analyses were attempted. For the home range data, we 173 

excluded from statistical analyses the estimates from Kibale by Butynski [1990] since they represent the 174 

cumulative home ranges over a 6 year period, which for the Ngogo group in particular, results in an 175 

abnormally large estimate.  The Kibale home range estimate from Rudran [1978] is retained. For the 176 

dietary data, Lawes et al. [1990] used two different methods of data collection, so each data set was given 177 

a weighting of 0.5 in the analyses to allow all available data to be incorporated without inflating the sample 178 

sizes for any one population. The two studies conducted at Kanyawara, Kibale Forest, Uganda, were both 179 

included since they were 12 years apart (Rudran 1978, Butynski 1990), but each was weighted 0.5 within 180 

the analysis (if only one of these studies was used for a particular analysis then the weighting was returned 181 

to 1).  All climatic variables, home range, day journey length, group size and all diet components except 182 

fungi were normally distributed (Kolmogorov-Smirnoff: fungi: p <0.001; all other variables: p > 0.05). Only 183 

two studies reported fungi being consumed and thus percentage fungi in the diet was not included as a 184 

response variable in the analyses.  185 

 186 



Previous studies have highlighted potential problems with multiple tests [Hochberg, 1988; Rice, 1989; 187 

Bland and Altman, 1995], although others have questioned correcting for multiple testing due to the 188 

potential problems associated with the correction methods, such as increased Type II errors [Perneger, 189 

1998; Moran, 2003; Nakagawa, 2004]. Although we do not apply corrections for multiple tests here, all 190 

significant relationships were evaluated on the basis of a requirement for substantial effect sizes (i.e. 191 

minimum r =0.5: [Nakagawa, 2004] and the biological merit of the correlations to minimise the potential 192 

for Type I errors. 193 

 194 

Stepwise linear regression analyses were used to further investigate any statistically significant 195 

relationships between the climate variables and the diet and behavioural categories. From these analyses, 196 

regression equations were derived which were used in GIS, using the raster calculator function, to produce 197 

new layers displaying the category’s variation over the species’ distribution based on the underlying 198 

climatic parameters in the Hijmans et al. [2005] Africa data set. 199 

 200 

Results 201 

 202 

Although the time budget data did not permit statistical analysis, substantial variation existed between 203 

populations.  For example, feeding time varies from 49% at Kakamega, Uganda, to just 28% at Lajuma, 204 

South Africa.  Latitude differences may not account for this variation, however, with large differences in 205 

resting time reported for the two South African populations (Lajuma 42%, Cape Vidal, 22%). There were no 206 

significant correlations involving group size or day journey length (Table 4), but these also differ markedly 207 

between populations. Day journey lengths vary from 799m in Jibat Forest to 1906m in Lajuma. The 208 

smallest average group size was found in the Jibat Forest with 9 individuals and the largest found in 209 

Kakamega Forest, Kenya with 43. There was one significant relationship involving home range size which 210 

was a positive correlation with the proportion of animal matter in the diet.  211 

 212 

The proportion of fruit in the diet of C. mitis had significant negative relationships with proportion of 213 

animal matter and leaves, indicating that populations consuming less fruit supplement their diet with 214 

animal matter and/or leaf material (Table 5).  The amount of leaf material in the diet shared no other 215 

significant relationships with any of the other variables considered.  Proportion of fruit in the diet had a 216 

significant positive relationship with temperature seasonality (Figure 2a), with animal matter showing the 217 

opposite trend with a significant negative relationship with temperature seasonality (Figure 2b).  The 218 

amount of animal matter in the diet was also significantly positive correlated to PPI (Figure 2c).  Other 219 

plant material in the diet was significantly negatively correlated with NDVI, with Figure 2d suggesting a 220 

non-linear relationship.  Indeed a significant quadratic relationship exists between the variables (R2 = 0.847, 221 



F = 27.721, p < 0.001).  The category “flowers” was not significantly correlated with any of the variables 222 

investigated. 223 

 224 

Using linear stepwise regression analyses equations were derived to describe how proportion of animal 225 

matter and fruit within the diet varied with climatic conditions.  We exclude other plant material from this 226 

analysis since the category includes a diversity of material and accounts for only a small proportion of the 227 

diet across populations (mean 5.2%) : 228 

 229 

Animal % = (−8.10 × Temperature seasonality) +22.71 230 

R2 = .561, F = 16.343, t = -4.043 231 

 232 

Fruit % = (8.22 × Temperature seasonality) +41.46 233 

R2 = .279, F = 5.651, t = 2.377 234 

 235 

The maps of the predicted dietary variation derived from these equations show that as temperature 236 

seasonality becomes more pronounced at southerly latitudes, the proportion of animal matter declines 237 

too, with a corresponding increase in the proportion of fruit in the diet (Figure 3).  Nevertheless, fruit 238 

remains the primary dietary component, with the analysis indicating that it comprises a minimum of 40% 239 

of the diet across the species' range, with maximum values of 75% of a population's diet.  Below a latitude 240 

of approximately 11°S, the proportion of animal matter in the diet is predicted to be very low in C. mitis. 241 

 242 

Discussion  243 

 244 

Previous studies have shown that time budgets and diet can vary considerably across primate species 245 

distributions [Lawes, 1991; Dunbar, 1992; Hill and Dunbar, 2002; Hill et al., 2003; Lehmann et al., 2008b; 246 

Willems and Hill, 2009; Korstjens et al., 2010].  Here we examined how C. mitis behaviour, and particularly 247 

diet composition, varied across the large geographic range of C. mitis.  Although sample sizes for the 248 

activity budget variables were insufficient for statistical analysis, the data suggest substantial variation 249 

between populations. Small sample size may account for the lack of any significant relationships involving 250 

day journey length and group size and may also be the reason for the positive relationship between home 251 

range size and proportion of animal matter in the diet, as there appears no obvious behavioural reason for 252 

this correlation (but see below for one possibility).  More data are required to investigate this potential 253 

relationship in more detail and assess whether there is a genuine correlation or if the result emerges as a 254 



Type I error. Nevertheless, the current available data suggest substantial variation in the behaviour and 255 

ecology of C. mitis throughout their range [Lawes, 1991; Chapman et al., 2002]. 256 

 257 

Only a single relationship existed between NDVI and any of the behavioural variables, with the percentage 258 

of other plant material in the diet significantly negatively correlated with NDVI.  The suggests that the 259 

consumption of other plant material declines as primary productivity increases, although the absence of 260 

relationships between NDVI and other dietary and behavioural parameters is perhaps surprising.  Willems 261 

and Hill [2009] found NDVI, and thus primary productivity, to be the most significant environmental 262 

parameter explaining vervet monkey distribution, with NDVI a significant predictor of feeding time (and 263 

thereby resting time), as well as the proportion of leaves in the diet, which itself influenced moving time 264 

demands.  Similarly, two previous studies on primate distribution reported that hypothetical circular home 265 

ranges of baboons and vervet monkeys in Eritrea had higher NDVI values than the broader study area 266 

[Zinner et al., 2001; 2002], while vervet monkeys prefer ranging areas with elevated productivity and 267 

reduced NDVI seasonality in South Africa [Willems et al., 2009].  Such small-scale selection for areas of high 268 

NDVI may account for the absence of relationships at a larger spatial scale for C. mitis.  As an arboreal 269 

species, the range of C mitis is restricted to forest habitat in these areas [Lawes, 1990; Skinner and 270 

Chimimba, 2005; Kingdon et al., 2008].  While some of the populations sampled in this study inhabit large 271 

areas of continuous forest (e.g. Kibale: Butynski [1990]; Budongo: Fairgrieve and Muhumuza [2003]), 272 

others live in isolated or fragmented forest pockets (e.g. Diani Beach: Moreno-Black and Maples [1977]; 273 

Zomba Plateau: Beeson et al. [1996]; Lajuma: Coleman [2013]).  As a consequence, despite using a small 274 

sampling area for NDVI estimation at each study site, the pixels selected may have incorporated non-forest 275 

habitat in the isolated or fragmented forest populations such that NDVI values may not precisely reflect 276 

primary productivity within their core ranging areas.  It is certainly the case that NDVI values were 277 

considerably lower for C. mitis populations outside of large forested areas (Table 3), with the values 278 

overlapping those reported for more open-habitat vervet monkey populations [Willems, 2007; Willems 279 

and Hill, 2009].  Temporal factors may also be important, since the 10-year average used here may not 280 

precisely depict the conditions when the studies were conducted.  Nevertheless, satellite-derived measure 281 

of photosynthetic activity offer enormous potential for future studies of primate ecology [Pettorelli et al., 282 

2011].  Studies examining patterns of habitat selection by C. mitis in relation to NDVI at an appropriately 283 

fine temporal and spatial resolution within populations will be invaluable in determining whether remotely 284 

sensed data on primary productivity can be used to explore biogeographical patterns in this species in 285 

future. 286 

 287 

As temperature seasonality increases there is an increase in the proportion of fruit in the diet of C. mitis.  288 

This is surprising since it suggest fruit consumption is increasing in areas of lower overall productivity, a 289 



result contrary to a previous study of baboons [Hill and Dunbar, 2002]. The most likely explanation reflects 290 

the availability of animal matter in the environment. Cercopithecines often consume relatively high 291 

proportions of invertebrates in their diets [Chapman et al., 2002], with diets of red tail monkeys 292 

(Cercopithecus ascanius) rarely comprising less than 20% insects.  This reflects the value of insects in 293 

offering a readily digestible source of protein [Redford and Dorea, 1984].  Both animal matter and fruit are 294 

thus “preferred” food sources, providing dietary protein and easily accessible carbohydrate respectively 295 

[Lawes, 1991], such that in areas where they are both abundant they are both likely to comprise a 296 

significant component of C. mitis diet. In contrast, the results here suggest that invertebrate availability is 297 

low for C. mitis populations inhabiting areas where temperature seasonality is high.  In the absence of 298 

invertebrates, C. mitis increase the proportion of time foraging on fruit in these highly seasonal 299 

environments, incorporating additional protein from a more diverse array of food sources.  In this respect 300 

it is interesting that we do not find a negative relationship between animal matter and the proportion of 301 

leaves or flowers in the diet, since both young leaves and flowers provide an alternative protein source, 302 

albeit in a less digestible form [Richard, 1985; Lawes, 1991].  An increase in the proportion of plant 303 

material in the diet would thus have been anticipated in response to a reduction in the availability of 304 

insects and it is possible that the coincidental seasonal availability of new leaves, flowers and invertebrates 305 

at higher latitudes may mask this expected correlation.  The fact that the proportion of fruit increases is 306 

unlikely to indicate a direct trade-off between fruit and animal matter, however, given their selection for 307 

carbohydrate and protein respectively.  Instead it could reflect the effects of increased competition from 308 

other primate species for populations at more equatorial latitudes ([Wolfheim, 1982; Cowlishaw and 309 

Hacker, 1997]; but see [Connell, 1980]).  For example, Lawes [1991] attributed the high levels of fruit 310 

consumption in the seasonal Cape Vidal population, South Africa, to the absence of other Cercopithecine 311 

primates and the presence of few frugivorous bird species and bats, and similar suggestions have been 312 

made for Ngoye Forest [Lawes et al., 1990]. 313 

 314 

Species richness for many animals increases in areas of high primary productivity [Currie, 1991; Kay et al., 315 

1997; Hawkins et al., 2003], with plant species richness generally positively correlated with precipitation 316 

[Obrien, 1993; Adler and Levine, 2007] and increased plant diversity leading to more diverse animal 317 

(including invertebrate) communities [Hawkins et al., 2003; Novotny et al., 2006]. The relationships 318 

between animal matter in the diet and temperature seasonality are consistent with a decline in insect 319 

species richness in non-equatorial populations.  Furthermore, with insect species diversity decreasing 320 

significantly during the dry season [Janzen and Schoener, 1968; Wolda, 1978], the increased seasonality 321 

with increasing latitude further underpins the absence of animal material in the diet in more southerly 322 

populations [Lawes, 1991]. 323 

 324 



Although the preceding discussion on fruit and animal matter intake highlights the flexibility in C. mitis 325 

diets, it doesn't provide compelling support for dietary diversity accounting for the geographic range of the 326 

species since fruit consumption increases in populations outside of the tropics.  Guenons are 327 

characteristically frugivorous, but C. mitis are better adapted than other guenons for leaf consumption 328 

[Bruorton and Perrin, 1988; Bruorton et al., 1991; Bruorton and Perrin, 1991]. The analyses conducted here 329 

showed no correlation between any climatic variables and proportion of leaves in the diet, although the 330 

proportion of leaves and fruit in C. mitis diet had a strong negative relationship. This indicates that leaves 331 

may be a ‘fall-back’ food in areas of lower fruit availability.  In some studies, leaf consumption is as high as 332 

50% and it is probably this capacity for leaf consumption that allows C. mitis to survive at lower latitudes 333 

than any other arboreal Cercopithecines [Wolfheim, 1982; Lawes, 1991]. Research on southerly samango 334 

populations has shown that leaves are an important dietary supplement during winter months, which 335 

supports this hypothesis [Lawes, 1991; Coleman, 2013]. Since previous studies have highlighted that leaves 336 

are a more important protein source where food is seasonally available [Beeson, 1989; Lawes, 1991] the 337 

absence of clear biogeographical relationships in the data is surprising.  Nevertheless, a flexible diet that 338 

allows the incorporation of significant levels of non-preferred fallback foods may be the explanation for the 339 

large geographical distribution of the species, allowing them to survive at seasonal southerly latitudes 340 

[Lawes, 1991] and in many different forest types [Kingdon et al., 2008].  341 

 342 

The ability for C. mitis to consume a more varied diet, often with a relatively high proportion of leaf 343 

material [Bruorton et al., 1991; Bruorton and Perrin, 1991; Chapman et al., 2002] is probably the main 344 

reason for their ability to occupy a more southerly range compared to other arboreal guenons [Wolfheim, 345 

1982; Lawes, 1990]. When food availability is low C. mitis are able to supplement their diet with a greater 346 

variety of foods [Rudran, 1978a; Lawes, 1991] with leaf material the major contributor to an increase in 347 

overall food intake in the Soutpansberg Mountains, South Africa [Coleman, 2013].  Such trade-offs were 348 

difficult to detect in the biogeographic relationships presented here, and further behavioural and dietary 349 

data from longer-term studies of C. mitis inhabiting a broader range of ecological conditions may help to 350 

distinguish these relationships.  Further studies investigating the value of NDVI and other remote sensing 351 

indices may be particularly valuable in this regard given its value as a measure of photoynthetic activity 352 

[Kerr and Ostrovsky, 2003; Pettorelli et al., 2011].  With the future of our climate currently uncertain, it is 353 

important to be able to predict how well certain species will be able to adapt to different conditions. 354 

However, we should be careful in the way we interpret the results from such studies. It is unlikely that 355 

climatic variables, and their associated impact on resource availability, are the only factors driving a 356 

species’ behaviour and information elements such as biotic interactions is needed (Pearson & Dawson 357 

2003). Nevertheless, the flexibility observed in C. mitis behaviour and diets should allow the species to 358 

tolerate greater degrees of change across its geographic range than other Cercopithecine primates. 359 
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List of Figures 525 

Figure 1: Map showing locations of the C. mitis sites used in this study (red circles) and the known 526 

distribution of the species in grey [Kingdon et al., 2008]. See Table 1 for details of numbered populations. 527 
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Figure 2: Relationships between diet and climatic variables across C. mitis populations. (a) percentage fruit 531 

in the diet and temperature seasonality (b) percentage of animal matter in the diet and temperature 532 

seasonality, (b) percentage of animal matter in the diet and PPI and (d) percentage of other plant material 533 

in the diet and NDVI. 534 

 535 
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Figure 3: Predicted proportion of (a) animal matter and (b) fruit in the diet of C. mitis throughout the 537 

species range. 538 
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Table 1 Details of the study populations used in the analyses. Abbreviations: Pop – Population (see Figure 1); Dur – Study Duration (months); HR – home range size (ha); DJL 
– day journey length (m) 
 

Location Pop Latitude Longitude Dur  
Group 

size 
HR DJL 

Feeding 
(%) 

Resting 
(%) 

Moving 
(%) 

Socialising 
(%) 

Other 
(%) 

Reference 

Jibat Forest, Ethiopia 1 8°43'N 37°33’E 10 9 72 799 - - - - - 
Tesfaye et al. 

[2013] 

Budongo Forest, 
Uganda 

2 
1°35’-
1°55’N 

31°18’-
31°42’E 

13 - 10 - - - - - - 
Fairgrieve and 

Muhumuza 
[2003] 

Kanyawara, Kibale 
Forest, Uganda 

3 0°34’N 30°21’E 24 20.8 72.5 - - - - - - Rudran [1978b] 

Kanyawara, Kibale 
Forest, Uganda 

3 0°34’N 30°21’E 63 18.4 32.4 1216 36.2 32.7 19.7 8.3 0 Butynski [1990] 

Ngogo, Kibale Forest 
Uganda 

4 
0°13’-
0°41’N 

30°19’-
30°32’E 

63 15 252.75 1406 31.7 36.2 24.7 7 0 Butynski [1990] 

Kakamega Forest, 
Kenya 

5 0°14’N 34°52’E 11 43 38 1136 49.4 31.7 15.8 1.2 1.9 
Cords [1986]; 

1987] 
Mgahinga Gorilla 

National Park, 
Uganda 

6 1°23'17''S 29°38'31''E 6 - - - - - - - - 
Twinomugisha et 

al. [2006] 

Nyungwe Forest, 
Rwanda 

7 
2°17’-
2°50’S 

29°07’-
29°26’E 

8 29 112.2 1306.7 - - - - - 
Kaplin et al. 

[1998]; Kaplin 
[2001] 

Diani Beach Forest, 
Kenya 

8 4°17’S 39°35’E 6 - - - - - - - - 
Moreno-Black 

and Maples 
[1977] 

Zomba Plateau, 
Malawi 

9 15°20’S 35°19’E 12 15 16.5 - - - - - - 
Beeson et al. 

[1996] 
Entabeni Forest, 

South Africa 
10 23°02’S 30°17’E 9 - - - - - - - - 

Breytenbach 
[1988] 

Lajuma, South Africa 11 23º02’23’’S 29º26’05’’E 12 40 54.7 1906 28.1 41.5 23.2 7.1 0.1 
Coleman [2013]; 
Coleman and Hill 

[2014] 
Cape Vidal Forest, 

South Africa 
12 28°05’35’’S 32°33’40’’E 13 32.5 15 - 35.8 22.6 29.4 12 0 Lawes [1990] 

Ngoye Forest, S.A. 13 28°50’S 31°42’E 12 16 - - - - - - - 
Lawes et al. 

[1990] 

 

  



Table 2: Diet composition data from all available C. mitis studies with a minimum study period of 6 months. Abbreviations: Obs – feeding observations; Fae – faecal analysis; 
Sto – Stomach content analysis; No. Spp. – number of food species.  
 

Location Method No. Spp. Fruit (%) Leaves (%) Flowers (%) Other (%) Animal (%) Fungi (%) Unknown (%) 

Jibat Forest, Ethiopia Obs 24 53.1 14.2 7.3 10.4 14.7 0 0.4 

Budongo Forest, Uganda Obs 40 44.9 29.0 6.2 10.3 9.7 0 0 

Kanyawara, Kibale Forest, Uganda 
(Rudran) 

Obs 59 42.7 21.3 11.8 4.4 19.8 0 0 

Kanyawara, Kibale Forest, Uganda 
(Butynski) 

Obs 40 27.7 33.0 6.9 0 37.7 0 0.6 

Ngogo, Kibale Forest Uganda Obs 52 30.1 22.8 9.8 0 35.9 0 1.3 

Kakamega Forest, Kenya Obs 104 54.6 18.9 3.7 5.5 16.8 0 0.5 

Mgahinga Gorilla National Park Fae 33 26.3 51.6 0 4.6 16.3 0 1.2 

Nyungwe Forest, Rwanda Obs 59 47.4 6.2 6.2 0 24.9 0 6.2 

Diani Beach Forest, Kenya Obs/Fae 27 57.1 7.1 14.3 21.4 0 0 0 

Zomba Plateau, Malawi Obs 33 53.5 32.6 10.2 2.9 0.8 0 0 

Entabeni Forest, South Africa Sto - 73.1 13 4.51 7.8 1.5 0 0 

Lajuma, South Africa Obs 35 51.7 43.9 0.4 1.1 1.3 1.6 0 

Cape Vidal Forest, South Africa Obs 57 51.7 25.8 13.4 0.9 5.8 0 2.3 

Ngoye Forest, South Africa Obs 30 91.1 3.0 2.1 0 0 0 3.8 

Ngoye Forest, South Africa Fae 30 84.4 1.6 0.6 8.9 0.4 0.5 0 

 

  



Table 3: Climatic data for C. mitis study sites used in the analyses. Abbreviations: DLV – Day length variation (mins); Alt – altitude (m); T - mean annual temperature (oC); 
DTR - diurnal temperature range (oC); TS - temperature seasonality; HT – highest temperature of warmest month (°C); LT - lowest temperature of coldest month (°C); ATR - 
Annual temperature range (°C); R - mean annual rainfall (mm); RS - rainfall seasonality (mm); PPI – Primary Productivity Index; NDVI - Normalised Difference Vegetation 
Index. 
 

Location DLV Alt T DTR TS HT LT ATR R RS PPI NDVI 

Jibat Forest, Ethiopia 61 2519 15.8 14.3 0.83 25.1 7.1 18.0 1359 81 9 0.644 

Budongo Forest, Uganda 12 1079 23.0 11.8 0.80 31.1 16.5 14.6 1330 43 9 0.650 

Kanyawara, Kibale Forest, 

Uganda 
3 1503 19.5 12.0 0.42 26.9 12.7 14.2 1446 44 12 

0.845 

Ngogo, Kibale Forest 

Uganda 
3 1450 20.7 12.2 0.40 27.6 13.9 13.7 1267 38 12 

0.840 

Kakamega Forest, Kenya 2 1144 21.5 10.8 0.54 28.3 15.3 13.0 1455 33 12 0.833 

Mgahinga Gorilla National 

Park 
9 2989 11.5 9.8 0.25 17.0 6.4 10.6 1823 42 12 

0.675 

Nyungwe Forest, Rwanda 18 2298 15.5 9.6 0.35 21.5 9.9 11.6 1663 51 11 0.725 

Diani Beach Forest, Kenya 30 14 26.6 8.2 1.44 33.1 20.4 12.7 1277 79 10 0.588 

Zomba Plateau, Malawi 131 1737 17.2 9.4 1.88 25.0 9.2 15.8 1416 96 6 0.707 

Entabeni Forest, S.A. 170 740 20.6 11.6 2.70 29.0 9.4 19.6 899 84 6 0.840 

Lajuma, South Africa 170 1372 17.0 12.9 3.35 26.1 3.8 22.3 799 83 7 0.699 

Cape Vidal Forest, S.A. 215 72 21.3 9.3 2.72 29.4 11.6 17.8 1063 37 12 0.825 

Ngoye Forest, S.A. 221 417 19.6 9.9 2.40 27.3 10.5 16.8 1140 44 10 0.842 

 

  



Table 4 Correlations between selected climatic variables and group size, home range and day journey length. Significant correlations (p=<.05) are presented in bold. 
Abbreviations: Alt – altitude (m); T - mean annual temperature (oC); DTR - diurnal temperature range (oC); TS - temperature seasonality; R - mean annual rainfall (mm); PPI – 
Primary Productivity Index; NDVI - Normalised Difference Vegetation Index; HR – home range size (ha); DJL – day journey length (m). 
 

Variable Statistic Alt T DTR TS R PPI NDVI 
Other 

(%) 

Flowers 

(%) 

Animal 

(%) 

Leaves 

(%) 

Fruit 

(%) 
HR DJL 

Group 

Size 

r 

p 

n 

-.317 

.406 

9 

.307 

.421 

9 

-.127 

.774 

9 

.325 

.393 

9 

-.274 

.476 

9 

.154 

.692 

9 

.156 

.689 

9 

-.415 

.267 

9 

-.325 

.393 

9 

-.166 

.670 

9 

.299 

.434 

9 

.050 

.898 

9 

-.113 

.809 

7 

.539 

.306 

6 

Day 

Journey 

Length 

r 

p 

n 

-.531 

.314 

6 

-.034 

.953 

6 

-.096 

.867 

6 

.553 

.291 

6 

-.683 

.165 

6 

-.414 

.449 

6 

.094 

.869 

6 

-.698 

.153 

6 

-.544 

.301 

6 

-.315 

.572 

6 

.722 

.133 

6 

-.124 

.828 

6 

  

Home 

Range 

r 

p 

n 

.701 

.053 

8 

-.619 

.102 

8 

.298 

.474 

8 

-.586 

.127 

8 

.388 

.342 

8 

.250 

.551 

8 

-.013 

.976 

8 

-.232 

.581 

8 

-.215 

.610 

8 

.730 

.040 

8 

-.619 

.102 

8 

.221 

.599 

8 

 

 

  



Table 5: Correlations between selected climatic variables and diet composition (n=13). Significant correlations (p=<.05) are presented in bold. Abbreviations: Alt – altitude 
(m); T - mean annual temperature (oC); DTR - diurnal temperature range (oC); TS - temperature seasonality; R - mean annual rainfall (mm); PPI – Primary Productivity Index; 
NDVI - Normalised Difference Vegetation Index. 
 

Variable Statistic Alt T DTR TS R PPI NDVI 
Other 

% 

Flowers 

% 

Animal 

% 

Leaves 

% 

Fruit % 
r 

p 

-.508 

.076 

.296 

.325 

-.158 

.607 

.583 

.037 

-.501 

.081 

-.432 

.141 

.192 

.530 

.173 

.572 

-.134 

.663 

-.645 

.017 

-.682 

.010 

Leaves % 
r 

p 

.419 

.154 

-.491 

.088 

.144 

.638 

.012 

.970 

.124 

.686 

-.033 

.916 

-.170 

.578 

-.310 

.303 

-.305 

.310 

.067 

.827 

Animal % 
r 

p 

.473 

.139 

-.226 

.458 

.311 

.301 

-.773 

.002 

.548 

.052 

.638 

.019 

.285 

.345 

-.434 

.139 

.070 

.819 

Flowers % 
r 

p 

-.406 

.169 

.534 

.060 

-.381 

.199 

-.072 

.815 

-.001 

.997 

.156 

.610 

-.064 

.836 

.276 

.362 

Other % 
r 

p 

-.291 

.362 

.518 

.070 

-.180 

.556 

-.009 

.976 

-.054 

.862 

-.205 

.501 

-.623 

.023 

  



 

Appendix 1: Results of correlation analysis between all climatic variables, altitude and day length. Significant correlations (p=<.05) are presented in bold. r = Pearson 

correlation coefficient, N = 13.  Abbreviations: NDVI - Normalised Difference Vegetation Index; PPI – Primary Productivity Index; RS - rainfall seasonality (mm); R - mean 

annual rainfall (mm); ATR - annual temperature range (°C); LT - lowest temperature of coldest month (°C); HT – highest temperature of warmest month (°C); DTR - diurnal 

temperature range (oC); TS - temperature seasonality; T - mean annual temperature (oC); DLV – day length variation (mins). 

 

Variable Statistic NDVI PPI RS R ATR LT HT TS DTR T DLV 

Altitude 
r -.272 .066 .046 .654 -.314 -.576 -.856 -.547 .368 -.855 -.476 

p .369 .830 .882 .015 .296 .039 <.001 .053 .216 <.001 .100 

Day length 

variation 

r 

p 

.281 -.475 .299 -.736 .775 -.400 .159 .895 -.130 -.003 

.352 .101 .332 .004 .002 .176 .604 <.001 .672 .992 

Mean annual 

temperature 

r .067 .026 -.063 -.391 .020 .863 .951 .176 -.245 

 

p .828 .932 .838 .187 .949 <.001 <.001 .566 .419 

Diurnal 

temperature 

range 

r .093 -.189 .091 -.237 .432 -.400 -.064 -.028 

 

p .761 .537 .767 .436 .140 .176 .836 .928 

Temperature 

seasonality 

r .154 -.624 .423 -.854 .857 -.278 .361 

 

p .616 .023 .150 <.001 <.001 .358 .226 

Highest 

temperature 

warmest month 

r .057 -.169 .095 -.586 .288 .712 

 

p .854 .580 .757 .035 .340 .006 

Lowest 

temperature 

coldest month 

r -.037 .356 -.306 .115 -.465 

 

p .905 .233 .309 .708 .110 

Temperature 

range 

r .141 -.664 .506 -.900 

 

p .646 .013 .078 <.001 

Mean annual 

rainfall 

r -.225 .535 -.377 

 
p .461 .059 .204 

Rainfall 

seasonality 

r -.444 -.857 
 

p .128 <.001 

PPI 
r .262 

p .387 

 

 


