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ABSTRACT

Spacetrees are a popular formalism to describe dynamically adaptive Cartesian grids.

Even though they directly yield a mesh, it is often computationally reasonable to embed
regular Cartesian blocks into their leaves. This promotes stencils working on homoge-

neous data chunks. The choice of a proper block size is sensitive. While large block sizes

foster loop parallelism and vectorisation, they restrict the adaptivity’s granularity and
hence increase the memory footprint and lower the numerical accuracy per byte. In the

present paper, we therefore use a multiscale spacetree-block coupling admitting blocks

on all spacetree nodes. We propose to find sets of blocks on the finest scale throughout
the simulation and to replace them by fused big blocks. Such a replacement strategy

can pick up hardware characteristics, i.e. which block size yields the highest throughput,

while the dynamic adaptivity of the fine grid mesh is not constrained—applications can
work with fine granular blocks. We study the fusion with a state-of-the-art shallow water

solver at hands of an Intel Sandy Bridge and a Xeon Phi processor where we anticipate
their reaction to selected block optimisation and vectorisation.

Keywords: Spacetrees, shallow water, adaptive Cartesian meshes, vectorisation, block
fusion, shared memory parallelisation

1. Introduction

This paper addresses a conflict that many numerical simulations face. While the

algorithms strive to reduce the number of unknowns and operations per accuracy

via dynamic adaptivity in space and time, the hardware evolution asks for regular
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data access patterns. Algorithms favour data structures and data access patterns

that allow them to invest work where it pays off most. Recent hardware generations

favour uniform sequential data access with high arithmetic intensity that allows

to pipe data through the cores. The present paper investigates strategies to team

up the advantages of adaptive, octree-type meshes with regularly refined patches

(blocks). Plain shallow water equations act as test bed for our approach well-suited

for numerous partial differential equations (PDEs). The first-mentioned model a

wide range of problems of great societal and technical relevance: examples include

tsunamis [12] or storm surges on the continental scale, radiation-sensitive cooling

processes in manufacturing, as well as flow in blood vessels on the cell scale. Hy-

perbolic PDEs are often characterised by a multitude of scales in space and time,

such that accurate solutions demand for very fine meshes in certain regions yet

for a low time to solution, too. Tsunami prediction systems relying on hyperbolic

simulations, e.g., have to yield results within minutes.

The multitude of scales of interest for hyperbolic solvers and their local yet

transient behaviour in time imply that efficient computational meshes for these

problems need to be dynamically adaptive. Furthermore, local time stepping is

important where individual subgrids march in time with different time step sizes

determined by the wave propagation speed. The finer the granularity of the adap-

tivity in both space and time, the “better” is the algorithm—at least in terms of

the required number of unknowns and arithmetic operations.

If we express solvers with fine granular adaptivity in stencil notation, a large

variety of computationally cheap stencils matching multiple local mesh refinement

configurations is required. An application of a series of such stencils in turn exhibits

non-uniform data access. However, modern multi- and manycore systems offering

many hardware threads and broad vector facilities yield the best throughput for

algorithms with low memory footprint and high arithmetic intensity that are split

into a vast number of homogeneous tasks. This conflict of interest renders hyperbolic

solvers on adaptive Cartesian grids a prototype challenge for novel high-performance

computing architectures.

In the presented work, our meshes result from a k-spacetree formalism [16, 18]

with k = 2 yielding a quadtree in two dimensions, where regular Cartesian grids—

we denote them as blocks—are embedded into the leaves of the tree. Such a scheme

facilitates dynamic, structured block adaptivity where the adaptivity leads to a low

computational effort/memory footprint per accuracy ratio while a decent block size

allows us to exploit vectorisation and loop parallelism. On the blocks, we apply

the f -Wave wave propagation method to solve the Riemann problems with uniform

vectorised stencils [1, 4, 12]. More sophisticated solvers fit to the scheme seamlessly.

Yet, any increase in computational demands streamlines the challenge to design

a high-throughput algorithm. The inter-block coupling is realised through bilinear

conservative stencils in space and time from [14]. Similar techniques are proposed

in [6, 7, 13], e.g., for other challenges.

If the size of the blocks can be chosen freely, multiple spacetrees induce the same
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adaptive Cartesian grid—with a regular grid being a special case of an adaptive one.

As a rule of thumb, big blocks induce high computational throughput. Small blocks

in turn facilitate fine granular adaptive meshes. The latter gains importance if the

application faces hard memory constraints or if local time stepping is realised on

a per-block basis. In practice, one has to choose a block size compromise. In the

present paper, we start from kernels of fixed size and study their computational

potential with respect to vectorisation and shared memory parallelisation of their

loops (intra-block parallelism). For an artificial test case problem, we also relate the

block size selection to adaptive mesh refinement with local time stepping and a con-

current processing of multiple blocks by multiple threads (inter-block parallelism).

Experiments show that the reduction in computational efficiency due to small block

sizes is not always compensated by the reduction of total work due to adaptivity

in space and time. It also becomes evident that the previously mentioned rule is

invalid for big block sizes on some architectures and that the choice of one proper

parallelisation variant or a hybrid depends on the block size and number of cores

available. These insights do not answer which block size to select or what strategy to

follow if some instationary regions of the grid require huge regular grids while oth-

ers require very accurately trimmed adaptive meshes. We hence formalise the grid

traversal as automaton running through the spacetree and augment this automaton

with an analysed tree grammar [5]. Whenever the automaton encounters a set of

spacetree leaves whose blocks can be fused into one bigger regular Cartesian block

within the adaptive spacetree paradigm, these leaves are replaced accordingly—if

the performance studies permit. This optimisation does not constrain the adaptivity

pattern: once the grid refines in regions fused into a big regular grid, the automaton

decomposes the block again.

The proposed technique falls into the class of autotuning of stencil codes for

multicore SIMD architectures. It offers several selling points: The fusion of the

blocks is hidden from the kernels just specified over block sizes. It does not increase

the implementation complexity of the application code. The identification of grid

regions well-suited to be fused is embedded into the tree traversal and anticipates

dynamic adaptivity. It follows the grid evolution rather than opposing optimisation

restrictions on the numerical algorithm’s choice of discretisation. The loop fusion

increases the algorithmic homogeneity of the data access pattern. It is independent of

optimisations increasing the algorithmic intensity [8] though it can be combined with

these. Finally, the optimisation can be tailored to distinct hardware characteristics

without changing the compute kernels. Compared to our previous work [3], we detail

the discussion with insights on the Xeon Phi architecture and particularities of the

algorithms underlying the runtime tuning. New are an in-depth study of the two

underlying parallelisation strategies with respect to hardware characteristics and the

analysis of pessimistic vs. optimistic time stepping. We also start to put runtime

improvements into relation to the mean life time of regular block assemblies.
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Three research hypotheses drive the present paper:

(1) In terms of walltime, adaptivity with small block sizes as atomic mesh motif are

not by nature superior to more regular grids. There are setups where a higher

throughput of regular grids at least levels out a mesh cell increase.

(2) For these rather regular setups, the present approach exploits the studied ar-

chitectures in terms of vector registers and cores. To study the methodology,

getting as close to peak as possible is irrelevant. But the best throughput for

the most advantageous block size acts as reference value and thus has to mirror

the machine capabilities.

(3) Block fusion brings together the two advantages. It allows the application to

select reasonably small block sizes while a high throughput is retained.

The remainder is organised as follows: We introduce our mesh formalism in combi-

nation with an abstract presentation of the unknown updates in Section 2 before

we study the computational kernels in Section 3. The two orthogonal parallelisa-

tion schemes are sketched afterward. In Section 5, we introduce the block fusion.

Some numerical results (Section 7) follow the description of our experiments in Sec-

tion 6 and reveal the potential of the scheme. They also validate the underlying

assumptions. A brief outlook and a summary in Section 8 close the discussion.

2. Shallow Water Equations on Spacetrees

Let (0, 1) × (0, 1) ⊂ R2 be the bounding box of the computational domain. We

cut this domain equidistantly into k parts along each coordinate axis. This yields

k2 non-overlapping cubes of the same size. If we continue this splitting recursively

while we decide per cube autonomously whether to refine or not, we end up with an

adaptive Cartesian grid. Let C be the set of all cubes resulting from the construction

process. The refinement operation induces a parent-child relation v on C where each

cube has either k2 or no children at all. Cubes without children are leaves from the

set CL ⊆ C. The bounding box is the root.

The parent-child relation is a directed tree graph on C where a node’s level is

the path length from the root to the node. As the nodes of this graph are cubes,

i.e. spatial elements, this tree is a k-spacetree [16]. k = 2 gives the special case of a

quadtree. The height h of a spacetree is the length of the longest path in the graph.

For the trivial spacetree with C = CL = {(0, 1)×(0, 1)}, we end up with height zero.

All experiments of the present work are based upon the PDE framework Peano [17]

and thus use k = 3. We hence omit the parameter k from now on and refer to that

data structure variant as spacetree (Figure 1).

Volume-based discretisations of hyperbolic equations—or partial differential

equations in general—such as finite volumes or finite elements directly yield stencils

on any adaptive Cartesian grid induced by a spacetree formalism. While a direct

spacetree-based stencil or system matrix derivation offers great flexibility with re-

spect to the adaptivity, efficiency considerations as well as the intention to reuse
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Fig. 1: Left: Adaptive Cartesian spacetree grid (top layer, transparent) with k = 3.

The non-transparent layers below visualise the individual refinement steps, i.e. all

elements of C, with the tree relation v as black lines. Right: The grid (top) is

decomposed into patches (below with n = 5, n̂ = 1). Ghost layer exchange for

regular grids without local time stepping then is a plain copying of qold into the

neighbouring patches’ ghost cells (cmp. arrows).

existing software fragments suggest to add an additional mapping n : CL 7→ N that

embeds an equidistant Cartesian mesh with n(c) × n(c) cells into each spacetree

leaf. n ≡ 1 embeds a trivial grid of one cell into each leaf, i.e. each spacetree leaf is

a cell of the computational grid Ωh. In return,

n(c) = k` (1)

is equivalent to an n ≡ 1 spacetree grid created in two steps: we take a spacetree

and embed an additional regular spacetree of height ` into each leaf.

In the present paper, we start from a fixed n(c) = n ≥ 2 ∀c ∈ CL, and call

the embedded regular Cartesian grids blocks. The spacetree then defines a block-

structured adaptive Cartesian grid Ωh, and it yields a non-overlapping domain de-

composition of Ωh. If we extend each n×n block by a halo layer of n̂ cells, we obtain

an overlapping domain decomposition. The unknowns per cell are denoted as q.

1: for c ∈ CL do

2: Copy data from qold of surrounding blocks into ghost cell entries of qold

3: for i ∈ {n̂, n + n̂− 1} × {n̂, n + n̂− 1} do
4: qnewi ← computeNetUpdates(qold) . Evaluates neighbours of cell i.

5: end for . Loop also determines ∆t.

6: for i ∈ {n̂, n + n̂− 1} × {n̂, n + n̂− 1} do
7: qnewi ← ∆t · qnewi + qoldi . Time step update.

8: end for

9: end for

10: Switch qold and qnew for all updated blocks

Given a stencil code mapping (n + 2n̂) × (n + 2n̂) unknowns onto new values
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within the n × n grid and intergrid operators mapping a n × n grid onto the halo

layer of another grid, we can run over the spacetree’s finest level, befill the halo

layers of each individual block and update the unknowns (Algorithm ??).

3. The Shallow Water Block Update Kernels

In the present paper, we solve the shallow water equations on q = (h,u,v) given as

∂t

 h

hu

hv

 + ∂x

 hu

hu2 + 1
2gh

2

huv

 + ∂y

 hv

huv

hv2 + 1
2gh

2

 = S(t, x, y). (2)

h denotes the height of the water column (water depth), u and v encode the mo-

mentum in x- and y-direction, and g is the gravitational constant (g := 9.81m/s2).

The source term S(t, x, y) models effects of varying ocean depth (bathymetry) or

frictional or Coriolis forces. In this paper, we neglect them. Our solver routines [2]

realise an explicit finite volume scheme where a pair of unknown triples q is assigned

to each cell of the grid to allow us to store the previous and the current time step.

The six values are accompanied by a time stamp of the newer value plus the time

interval spanned by the two solutions.

This leads to two computational kernels executed in each time step per block as

soon as the halo layer also describing global boundary conditions is initialised:

• Computation of net updates: For each cell, we derive from the neighbouring cell

quantities qold the net updates ∆Qh,∆Qu,∆Qv. They determine the impact of

waves on the cell quantities that enter or leave the respective grid cell through

the edges. In the classical formulation, this step also derives from the wave

speeds the biggest time step size ∆t that one can chose without violating the

CFL condition.

• Updating the unknowns: For each cell, the quantities in q then are then updated

according to the balance equation

qnew = qold − ∆t

kh · n
(∆Qh,∆Qu,∆Qv). (3)

The loop kernel to compute the net updates approximately solves a Riemann prob-

lem on each edge, i.e. solves the one-dimensional analogon of equation (2) for a

piecewise constant initial condition given by the quantity vectors ql and qr ob-

tained from the two adjacent cells. As approximate Riemann solver we follow a

wave propagation approach by [4, 12], which determines the net updates from so-

called f -waves, which are computed from a locally linearised Riemann problem. Our

code provides a careful implementation of the resulting f -wave solver that allows

auto-vectorisation [1]. The resulting net update kernel has a computational inten-

sity, ratio of floating-point operations vs. accessed bytes of memory, of around two.

In contrast, (3) has the ratio 2/3.

The ghost data exchange between different blocks is a copy of rectangular grid

fragments as long as all blocks march in time with the same time step size and
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induce the same mesh size. Each ghost cell then coincides with an inner cell of

an adjacent block and qold from there is copied into the ghost cells’ qold. If blocks

can advance in time with different speed due to local time stepping, we have to

interpolate linearly in time to determine the ghost layer’s qold from qold and qnew

from the adjacent block. For adaptive grids, we have to interpolate linearly both

in time and space when we initialise the ghost layers, as the CFL condition makes

the maximum time step size scale linearly with the mesh size. To facilitate this, we

have to store per block the current and the previous time step. It is hence a natural

choice to reuse half of these records to hold ∆Q = (∆Qh,∆Qu,∆Qv) throughout the

block update. Such an in-situ scheme allows us to write the block updates without

additional temporary data structures. Technical details and a runtime model are

given in [14].

Water height h and bathymetry usually allow us to predict the maximum time

step size sharply. It is hence a natural choice to rewrite the pessimistic scheme from

above determining the time step size from ∆Q into an optimistic variant: Here, we

anticipate the scaling in (3) and merge the two algorithmic steps. If the net update

computation afterward reveals that the CFL condition has been harmed, we can

roll back the solution and restart the update with a halved time step size as qold

remains available. Roll-backs have never been observed for the present experiments.

4. Concurrency, Vectorisation and Parallelisation

The classic block-wise processing scheme exhibits two independent levels of con-

currency. For the following discussion, we rely on a recursive formulation of the

spacetree traversal (Algorithm ??) where a push-back automaton traverses the tree

mirroring a depth-first search and invokes the block updates on all leaves. Here,

both the spacetree and unknown traversal exhibit concurrency.

1: function iterate(c)

2: parallel for c′ v c do . Inter-block

3: if c′ ∈ CL then

4: Copy from qold of surrounding blocks into ghost cells of qold

5: Determine ∆t

6: parallel for i ∈ {n̂, n + n̂− 1} × {n̂, n + n̂− 1} do . Intra-block

7: qnewi ← qoldi

8: end parallel for

9: parallel for i ∈ {n̂, n + n̂− 1} × {n̂, n + n̂− 1} do . Intra-block

10: qnewi ← qnewi + ∆t · computeNetUpdates(qold)

11: end parallel for

12: If necessary: rollback and restart computation with ∆t/2

13: else

14: iterate(c′)

15: end if

16: end parallel for
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17: Switch qold and qnew for all updated blocks

18: end function

We first discuss the downstream parallelism, i.e. the block updates. The two-

dimensional loop iteration range of cardinality n2 is free of write dependencies.

Only when the loop terminates, we have to reduce the global time step size—either

as input data for the subsequent algorithmic step or as rollback criterion. Given

a maximum hardware concurrency level p, we can cut the kernel’s image elements

qnew(n̂,n̂), q
new
(n̂+1,n̂), q

new
(n̂+2,n̂), . . . , q

new
(n̂+n−1,n̂+n−1) either into segments of length p or p

equally sized segments. Segments of length p induce SIMD intra-block vectorisation:

one vector register befills p consecutive cells in the output array a time. p segments

induce shared memory intra-block parallelism: one thread befills n2/p consecutive

cells in the image array parallel to the other threads.

Upstream, our traversal scheme exhibits concurrency on the block level. Children

of one spacetree node can be processed concurrently for equidistant time stepping,

as their kernel result depends only on qold. For local time stepping or adaptive grids

where interpolation in time is required, write races however occur. These are resolved

by red-black colouring [5] or multiscale red-black colouring [15]. Given a maximum

hardware concurrency level p, we can update up to p blocks descending from a

refined node c in parallel. If we apply that scheme to SIMD, one vector register

updates entries from p different blocks a time. Such an inter-block vectorisation

equals a partial loop permutation of the inner and outer loop in Algorithm ??. If

applied to multiple threads, each of the p threads handles a distinct block before

all threads continue with the subsequent p blocks. This is inter-block parallelism.

We can sophisticate the latter’s block synchronous scheme by a task-based for-

malism where the dependencies between blocks stemming from local time stepping

and adaptivity are represented by a graph. It is then up to the scheduler to re-

solve potential block update races [9]. Task-based parallelism here however is over-

engineering. Our runtime per block depends linearly on the number of unknowns,

i.e. the p block updates run equally long. This can change for more sophisticated

Riemann solvers [1] where the update time per cell depends on entries in qold.

5. Block Fusion

Obviously, the concurrency levels of the intra- and inter-block parallelisation depend

on n. The bigger n the higher the intra-block concurrency. Big ns however make the

underlying spacetree shallower for a given Ωh. Consequently, the bigger n the smaller

the inter-block concurrency. Once n is fixed, both concurrency levels are fixed for

a given grid. We introduce a marker M on all spacetree nodes that characterises

both the concurrency and the regularity of the grid locally:



Preprint of an article published in Parallel Processing Letters, 24, 3, 2014
10.1142/S0129626414410060 c©World Scientific Publishing Company

Block fusion on dynamically adaptive spacetree grids for shallow water waves 9

M(c) =


0 if c ∈ CL

M̂ if c ∈ C \ CL∧
∃M̂ : ∀ci v c : (M(ci) = m− 1)

⊥ else

. (4)

We observe from (1) that we can take any node c in the spacetree with M(c) > 0

and replace all the blocks within the nodes deriving from c with a new block in c

with kM(c)n× kM(c)n cells. Such a replacement preserves Ωh.

Our block fusion algorithmic then reads as follows: First, traverse the spacetree

with Algorithm ??. Embed the computation of (4) into this traversal, i.e. compute

the markers on-the-fly. Second, whenever the traversal encounters M(c) > 0 in

subsequent traversals, embed a corresponding patch into this spacetree node c.

Continue to traverse, but copy all n× n leaf blocks overlapping with the new fused

block into the new data structure once the time step is completed. Flag these leaves

afterwards and free their blocks. Third, whenever one encounters a flagged leaf,

initialise the ghost data of the fused block on a coarser level instead of the ghost data

associated to the leaf. Pointers to these data are inherited recursively throughout

the traversal. Finally, whenever the call stack of the recursive traversal is reduced

and it automaton ascends through a fused block, update this one. The fusion’s

interplay with dynamic adaptivity is obvious. If a spacetree leaf whose block got

fused into a larger one identifies that the grid changes, it breaks down the fused

block back into its n× n components. Such a break down is simple copying.

Block fusion enables us to shift the concurrency profile of a grid with small n

from a high inter-block concurrency towards high intra-block concurrency on-the-fly.

In practice, fusing wherever possible is not a good strategy. But it does make sense

to establish a performance model predicting whether fusion along M(c) levels pays

off or it is better to fuse fewer levels along the spacetree hierarchy, and then to make

use of the fusion paradigm. We also point out that any throughput improvement due

to fusion in combination with a reduction of halo cell copying—within a fused block,

(kM(c) − 1)2 fewer halo cell faces have to be exchanged per subsequent spacetree

traversal, e.g.—first of all has to amortise a certain fuse overhead comprising the

copying of block data into the fused block and back if the grid structure changes.

Finally, we reiterate that fusion has an impact on local time stepping if the time

stepping is realised per block. All three ingredients depend on solver, setup and

hardware and thus fuse decisions should not be generic. The present paper hence

highlights insights that can guide fusion. It does not study one particular fusion

strategy.

6. Experiment Setup

The present experiments focus on Sandy Bridge and Xeon Phi processors instructed

by the Intel compiler 14.0.2. Shared memory parallelisation is realised through In-

tel’s TBB. The Sandy Bridge-EP Xeon E5-2650 processor with 2×8 cores and 4×16
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Fig. 2: The Durham University logo acts as sea level input for our shallow water

equation solver.

GByte RAM at 2.0 GHz acts as driver for two Xeon Phi 5110P with 8GByte at 1.054

GHz. Experiments either run on the two 8-core processors or on one coprocessor in

native mode. Hybrid runs, runs with two Phi coprocessors or runs on clusters of such

setups are beyond scope. All figures are normalised runtimes (throughput) given as

cell updates per second, i.e. computations of qnew divided by walltime. They include

administrative cost such as maintaining the spacetree structure, determining (4) or

fuse/inverse fusion copy overhead and are obtained in single precision.

Our testbed is an artificial wave propagation scenario starting from Figure 2 as

initial water height and applies simple settings: The dynamic refinement criterion

evaluates the maximum slope between the four corner points of each block and

refines the corresponding leaf if this slope exceeds 0.01. It coarsens grid regions

if the maximum slope of all contained blocks underruns 0.001. Our bathymetry is

constant everywhere. We linearly scale the time step with the mesh size to meet the

CFL condition as we set it to 0.001 · 3−`. ` is the level of a block. All meshes are

constrained by a minimum mesh size. If Ωh is regular, this is the cell width. If Ωh

is adaptive, we start from a 3n × 3n grid and make the refinement criterion refine

constrained by the fact that no mesh cell may underrun the minimum mesh size.

All experimental setups rely on the Peano framework [17] and thus rely on three-

partitioning. With k = 3, we start from n ∈ {6, 12} as smallest block sizes. They

are the smallest configurations where interpolation and restriction at grid resolution

boundaries simplify as centers of coarse cells coincide with cell centers of finer and

ghost meshes. For our search for advantageous block sizes in the huge n parameter

space, we multiply these basic values with three mirroring k step by step.

7. Results

We first track the number of cell updates over time for different block sizes on

adaptive grids (Figure 3). The smaller the block size n the smaller is the number

of cell updates at a particular time as the total number of cells is the smaller the

finer the adaptive granularity and as blocks with big cell sizes advance in time prior

to neighbouring blocks with small cells. For the latter, we observe the expected 3:1

pattern: per time step of a coarse cell, the next finer cells have to perform three

time steps. The impact of dynamic adaptivity is inrecognisable on a logarithmic
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Fig. 3: Adaptive meshes with minimum mesh sizes 1/8748 (left) and 1/13122 (right).

scale for such a short observation interval.

We perceive that a reduction of the block size by a factor of nine (“two block

sizes smaller”) reduces the total number of cells around a factor of two. It reduces

the memory footprint. The reduction pairs up with the fact that the few coarse cells

have to be updated less frequently than fine blocks. Our patch update measurements

reflect text book expectations and knowledge and do not contribute any new insight.

However, the measurements characterise the interplay of block choice and workload

footprint as well as workload homogeneity for the following experiments.

Observation. For the present experiments, a reduction of the block size reduces

the number of arithmetic operations to run the simulation with a given accuracy.

We next study the arithmetic throughput on a single core. Hereby, we distinguish

Xeon Phi from Sandy Bridge, optimistic from pessimistic time stepping and kernels

vectorised with #pragma simd from kernels without annotation. For all measure-

ments in this paper, the spacetree management required a single digit percentage of

the overall runtime. We hence focus on the impact of manual SIMD-sation on the

compute intensive block updates and the ghost cell exchange. Furthermore, only

intra-block vectorisation made a performance difference whatever the setup. We as-

cribe this to the reduced bandwidth available to each vector register in this scheme

and do not study it further though it might play a role on future architectures

providing data gather and scatter such as AVX2.

For regular grids, we observe that the explicit usage of simd pragmas yields a

speedup of around four on the Sandy Bridge as soon as the block size exceeds n =

128 (Table 1). For smaller blocks, the vectorisation is robust and increases linearly

with the patch size. However, the loop ranges are too small to exploit all vector

registers. Switching from pessimistic to an optimistic time stepping gives another

five percent. From hereon, only optimistic time stepping is studied further. The

measurements on the Xeon Phi reveal qualitatively the same behaviour (Table 2).
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Table 1. Cell updates per second for regular mesh on Sandy Bridge.
patch size pessimistic/simd pessimistic/no-vec optimistic/simd optimistic/no-vec

6 0.23 · 107 0.22 · 107 0.24 · 107 0.23 · 107

12 0.72 · 107 0.51 · 107 0.75 · 107 0.53 · 107

18 1.23 · 107 0.71 · 107 1.28 · 107 0.73 · 107

36 2.19 · 107 0.95 · 107 2.27 · 107 0.97 · 107

54 2.65 · 107 1.02 · 107 2.74 · 107 1.01 · 107

108 3.40 · 107 1.05 · 107 3.66 · 107 1.08 · 107

162 3.96 · 107 1.08 · 107 4.23 · 107 1.10 · 107

324 4.21 · 107 1.12 · 107 4.41 · 107 1.13 · 107

486 4.57 · 107 1.13 · 107 4.85 · 107 1.14 · 107

972 4.47 · 107 1.13 · 107 4.62 · 107 1.14 · 107

1458 4.43 · 107 1.12 · 107 4.77 · 107 1.14 · 107

2916 4.47 · 107 1.11 · 107 4.81 · 107 1.13 · 107

The impact of the vectorisation however is—enabled by the hardware—twice as big.

All results are in accordance with [1] working with higher clock rates.

Table 2. Cell updates per second for regular mesh on Xeon Phi.
patch size pessimistic/simd pessimistic/no-vec optimistic/simd optimistic/no-vec

6 0.03 · 107 0.03 · 107 0.03 · 107 0.03 · 107

12 0.10 · 107 0.06 · 107 0.10 · 107 0.06 · 107

18 0.16 · 107 0.08 · 107 0.17 · 107 0.08 · 107

36 0.38 · 107 0.11 · 107 0.40 · 107 0.11 · 107

54 0.50 · 107 0.11 · 107 0.53 · 107 0.12 · 107

108 0.66 · 107 0.12 · 107 0.72 · 107 0.12 · 107

162 0.70 · 107 0.12 · 107 0.81 · 107 0.12 · 107

324 1.01 · 107 0.13 · 107 1.11 · 107 0.13 · 107

486 1.10 · 107 0.13 · 107 1.20 · 107 0.13 · 107

972 1.23 · 107 0.13 · 107 1.34 · 107 0.13 · 107

Table 3. Cell updates for an adaptive mesh of minimum mesh size 1/26244.

patch size max height leaves simd(sb) no-vec(sb) simd(phi) no-vec(phi)

6 7 1170.24 0.18 · 107 0.18 · 107 0.02 · 107 0.02 · 107

12 7 1223.06 0.54 · 107 0.42 · 107 0.07 · 107 0.05 · 107

18 6 1053.52 0.91 · 107 0.59 · 107 0.10 · 107 0.06 · 107

36 6 1069.00 1.49 · 107 0.80 · 107 0.16 · 107 0.08 · 107

54 5 581.24 1.83 · 107 0.87 · 107 0.21 · 107 0.09 · 107

108 5 581.76 2.30 · 107 0.93 · 107 0.23 · 107 0.09 · 107

162 4 316.39 2.94 · 107 0.99 · 107 0.33 · 107 0.10 · 107

324 4 315.63 3.03 · 107 1.02 · 107 exceeds memory

486 3 137.96 3.90 · 107 1.08 · 107 0.58 · 107 0.12 · 107

972 3 137.93 3.74 · 107 1.07 · 107

1458 2 41.00 4.77 · 107 1.14 · 107

2916 2 41.00 4.80 · 107 1.13 · 107
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We continue to rerun the experiments on adaptive grids where we constraint the

finest mesh width to 1/26,244. Our measurements in Table 3 track the throughput,

the maximum spacetree height and the number of blocks averaged over an obser-

vation interval of t = 0.001. Sandy Bridge preserves the regular grid throughput

for reasonable big block sizes, for small n (36, e.g.) adaptive grids give around 70

percent of the regular throughput. Vectorisation yields a speedup of up to four. The

adaptive grid even yields a slightly higher throughput than the regular case, maybe

due to the tiling’s positive impact on cache reuse [11]. Xeon Phi behaves differently.

Adaptivity halves the throughput of the vectorised code while the variant without

vectorisation is adaptivity invariant. Interpolation and restriction along resolution

boundaries in this application field are predominantly memory movements, cannot

be vectorised, and might cause cache misses though the measurements do not re-

veal the exact reason for this breakdown. From hereon, all experiments study the

adaptive case.
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Fig. 4: Throughput for two different block sizes on Sandy Bridge with the two

different shared memory parallelisation paradigms.

Observation. The present code can exploit vector instruction sets. On single cores,

it is advantageous to make n as big as possible.

The simple ”bigger patches-better throughput” paradigm becomes invalid once

shared memory parallelisation is enabled. Selected runtimes are shown in Figures 4

and 5. On Sandy Bridge, we obtain the best throughput with n = 324. Up to this

size, the impact of the inter-block parallelisation outweighs the intra-block benefit.

Block sizes beyond 486 have a higher intra-block concurrency than an inter-block

scheme. Starting from this size, the throughput becomes the worse the bigger n.

Hyperthreading does not pay off. The Phis again behave differently. Two threads

per core, i.e. half the physical thread count, here are the configuration of choice,

while one out of 60 cores is reserved for the operating system. Furthermore, the

throughput improves linearly with the block size. No deterioration threshold is ob-

served. For reasonably big problem sizes, the coprocessor finally overtakes its host
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Fig. 5: Throughput for two different block sizes on Xeon Phi with the two different

shared memory parallelisation paradigms. Additional vertical lines at Threads ∈
{59, 118, 177}.

mainly due to its ability to exploit the intra-block parallelism.

Observation. For ns saturating the scalability, we obtain an efficiency of around

7/16 on the Sandy Bridge and 10/60 on Xeon Phi. As the algorithm has low arith-

metic intensity, we can state that it scales.

For real setups, plain throughput measurements are misleading. Instead, we have

to put the throughput in relation to updates required, i.e. to science per flop [10].

In this case, the sweet spot moves to the left: it champions smaller block sizes.

Although such a metric is strongly problem-dependent, we can derive examples

from the present experiments. For a fixed scenario, we frequently observe a halving

of computational load when we reduce the block size by one ninth. Whenever the

throughput increases by more than a factor of two due to an increase of n by a factor

of nine, it pays off to run for the bigger block size right away if memory permits.

We observe such a behaviour on the Xeon Phi when the throughput of ≈ 5.2 · 10‘8

for n = 1458 drops to a throughput smaller than 1.5 · 108 for n = 162 (not shown).

Observation. If scenarios cannot reduce the number of unknowns due to adaptivity

significantly, it sometimes pays off to choose extensive large n to reduce the total

time to solution.

We finally study block fusion. Previous experiments characterise the scalability

and vectorisation suitability of certain block sizes. We know the potential gain

of fusion. However, a quantification of the fusion overhead so far is missing: we

do not know how expensive it is to move from one grid fragment into a fused

representation, and how the fusion’s fragmentation of the ghost layers affects the

runtime. Transition cost means memory movements as the computation of (4) is

computationally insignificant. These costs depend on the mean life time (mlt) of

the blocks, i.e. the number of time steps before a fused blocks is destroyed again

by the adaptivity criterion. While we switch off multicore parallelisation to study
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Fig. 6: Fusion on Sandy Bridge (left) and Xeon Phi (right) for different maximum

fusion levels f and mean life time mlt.

the fusion overhead—otherwise overhead might be hidden behind other effects—

vectorisation can have an impact as the vector architectures provide wide moves.

Our studies focus on one esemble of small blocks with n̂ = 12 in the grid. It

is chosen such that the blocks can be fused into one block of size n ∈ {36, 324}
(Figure 6). Results for other configurations yield similar results. We start from the

throughput for the n configuration (no-fusion) as best-case result and successively

break it down into smaller blocks until we end up with the original block size n̂ = 12.

For n, we obtain results in-between the span of regular to adaptive experiments.

They are better than strongly adaptive runs as they average over the observation

time and the grid becomes more regular. They are worse then regular runs as the

grid is adaptive. For mlt ≥ 8, we observe that the block transition cost is amortised,

i.e. the fused throughput becomes saturated. For l = 1, i.e. the fusion of 3×3 blocks,

our results recover the throughput of the big block sizes. A similar reasoning holds

for the fusion of 27 × 27 blocks. If we fuse bigger esembles, the fusion stagnates

with two third of the best-case throughput on Sandy Bridge. On the Xeon Phi, we

obtain just half of the throughput.

Observation. Due to on-the-fly block fusion we can preserve the throughput of

block sizes that are up to nine times bigger than the chosen size.

8. Conclusion and Outlook

The present paper studies a dynamically adaptive shallow water equation solver

that starts from an adaptive spacetree and embeds blocks of fixed size into the

spacetree’s leaf nodes. Our results confirm the natural intuition that the through-

put of the solver is, as rule of thumb, the better the bigger the block sizes and they

show that the two introduced parallelisation concepts have the potential to exploit

current hardware. As small block sizes are desirable due to memory and total time-

to-solution considerations, we propose an on-the-fly identification of regular grid

regions and fuse the blocks there into big data chunks. A study on the overhead of
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this loop fusion reveals that dynamic block fusion helps to harvest scalability and

vectorisation characteristics of big blocks sizes though the algorithm may work with

small blocks of small memory footprint that track the solution characteristics accu-

rately. However, this statement holds if there are reasonably structured, i.e. regular,

grid regions and the mean time to reconstruction is not excessively small.

The proposed performance studies rely on one simple partial differential equa-

tion solver. However, we consider our algorithmic principles to be of potential rel-

evance for a broader community. When the techniques are adopted, it is however

of relevance to switch from manually tuned kernels to automatically tuned loop

assemblies as generated by modern stencil compiler, i.e. to benefit from the combi-

nation of the present approach improving the arithmetic data access homogeneity

with techniques increasing the arithmetic intensity [8]. One enabling code feature

for this future work—ghost layers with n̂ ≥ 2—is sketched.
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