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Abstract: The three-loop four-point function of stress-tensor multiplets in N = 4 super

Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition

to the known, ladder-type integrals. In this paper we evaluate the unknown integrals, thus

obtaining the three-loop correlation function analytically. The integrals have the generic

structure of rational functions multiplied by (multiple) polylogarithms. We use the idea of

leading singularities to obtain the rational coefficients, the symbol — with an appropriate

ansatz for its structure — as a means of characterising multiple polylogarithms, and the

technique of asymptotic expansion of Feynman integrals to obtain the integrals in certain

limits. The limiting behaviour uniquely fixes the symbols of the integrals, which we then

lift to find the corresponding polylogarithmic functions. The final formulae are numerically

confirmed. The techniques we develop can be applied more generally, and we illustrate this

by analytically evaluating one of the integrals contributing to the same four-point function

at four loops. This example shows a connection between the leading singularities and the

entries of the symbol.
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1 Introduction

The work presented in this paper is motivated by recent progress in planar N = 4 super

Yang-Mills (SYM) theory in four dimensions, although the methods that we exploit and

further develop should be of much wider applicability.

N = 4 SYM theory has many striking properties due to its high degree of symmetry;

for instance it is conformally invariant, even as a quantum theory [1–8], and the spec-

trum of anomalous dimensions of composite operators can be found from an integrable

system [9–11]. Most strikingly perhaps, it is related to IIB string theory on AdS5×S5 by

the AdS/CFT correspondence [12–14]. This is a weak/strong coupling duality in which the

same physical system is conveniently described by the field theory picture at weak coupling,

while the string theory provides a way of capturing its strong coupling regime. The strong

coupling limit of scattering amplitudes in the model has been elaborated in ref. [15] from a

string perspective. The formulae take the form of vacuum expectation values of polygonal

Wilson loops with light-like edges.

This duality between amplitudes and Wilson loops remains true at weak coupling [16–

19], extending to the finite terms in N = 4 SYM previously known relations between the

infrared divergences of scattering amplitudes and the ultra-violet divergences of (light-like)

Wilson lines in QCD [20–25]. Furthermore, it was recently discovered that both sides of

this correspondence can be generated from n-point correlation functions of stress-tensor

multiplets by taking a certain light-cone limit [26–28].

The four-point function of stress-tensor multiplets was intensely studied in the early

days of the AdS/CFT duality, in the supergravity approximation [29–32] as well as at weak

coupling. The one-loop [33–35] and two-loop [36, 37] corrections are given by conformal

ladder integrals.

A Feynman-graph based three-loop result has never become available because of the

formidable size and complexity of multi-leg multi-loop computations. Already the two par-

allel two-loop calculations [36, 37] drew heavily upon superconformal symmetry. However,

a formulation on a maximal (‘analytic’) superspace [38, 39] makes it apparent that the loop

corrections to the lowest x-space component are given by a product of a certain polynomial

with linear combinations of conformal integrals, cf. ref. [40–43]. Then in ref. [44, 45], using

a hidden symmetry permuting integration variables and external variables, the problem of

finding the three-loop integrand was reduced down to just four unfixed coefficients without

any calculation and further down to only one overall coefficient after a little further anal-

ysis. This single overall coefficient can then easily be fixed e.g. by comparing to the MHV

four-point three-loop amplitude [46] via the correlator/amplitude duality or by requiring

the exponentiation of logarithms in a double OPE limit [44].
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Beyond the known ladder and the ‘tennis court’, the off-shell three-loop four-point

correlator contains two unknown integrals termed ‘Easy’ and ‘Hard’ in ref. [44]. In this

work we embark on an analytic evaluation of the Easy and Hard integrals postulating that

• the integrals are sums
∑

i Ri Fi, where Ri are rational functions and Fi are pure

functions, i.e. Q-linear combinations of logarithms and multiple polylogarithms [47],

• the rational functions Ri are given by the so-called leading singularities (i.e. residues

of global poles) of the integrals [48],

• the symbol of each Fi can be pinned down by appropriate constraints and then

integrated to a unique transcendental function.

The principle of uniform transcendentality, innate to the planarN = 4 SYM theory, implies

that the symbols of all the pure functions are tensors of uniform rank six. Our strategy will

be to make an ansatz for the entries that can appear in the symbols of the pure functions and

to write down the most general tensor of uniform rank six of this form. We then impose a set

of constraints on this general tensor to pin down the symbols of the pure functions. First of

all, the tensor needs to satisfy the integrability condition, a criterion for a general tensor to

correspond to the symbol of a transcendental function. Next the symmetries of the integrals

induce additional constraints, and finally we equate with single variable expansions corre-

sponding to Euclidean coincidence limits. The latter were elaborated for the Easy and Hard

integrals in ref. [49, 50] using the method of asymptotic expansion of Feynman integrals [51].

This expansion technique reduces the original higher-point integrals to two-point integrals,

albeit with high exponents of the denominator factors and complicated numerators.

To be specific, up to three loops the off-shell four-point correlator is given by [33–37, 44]

G4(1, 2, 3, 4) = G
(0)
4 +

2 (N2
c − 1)

(4π2)4
R(1, 2, 3, 4)

[

aF (1) + a2F (2) + a3F (3) +O(a4)
]

, (1.1)

Here Nc denotes the number of colors and a is the ’t Hooft coupling. G
(0)
4 represents the

tree-level contribution and R(1, 2, 3, 4) is a universal prefactor, in particular taking into

account the different SU(4) flavours which can appear (see ref. [44, 45] for details). Our

focus here is on the loop corrections. These can be written in the compact form (exposing

the hidden S4+ℓ symmetry) as

F (ℓ)(x1, x2, x3, x4) =
x212x

2
13x

2
14x

2
23x

2
24x

2
34

ℓ! (π2)ℓ

∫

d4x5 . . . d
4x4+ℓ f̂

(ℓ)(x1, . . . , x4+ℓ) , (1.2)

where

f̂ (1)(x1, . . . , x5) =
1

∏

1≤i<j≤5 x
2
ij

, (1.3)

f̂ (2)(x1, . . . , x6) =
1
48x

2
12x

2
34x

2
56 + S6 permutations
∏

1≤i<j≤6 x
2
ij

, (1.4)
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f̂ (3)(x1, . . . , x7) =
1
20(x

2
12)

2(x234x
2
45x

2
56x

2
67x

2
73) + S7 permutations

∏

1≤i<j≤7 x
2
ij

. (1.5)

Writing out the sum over permutations in the above expressions, these are written as follows

F (1) = g1234 , (1.6)

F (2) = h12;34 + h34;12 + h23;14 + h14;23 (1.7)

+ h13;24 + h24;13 +
1

2

(
x212x

2
34 + x213x

2
24 + x214x

2
23

)
[ g1234]

2 ,

F (3) = [L12;34 + 5 perms ] + [T12;34 + 11 perms ] (1.8)

+ [E12;34 + 11 perms ] + 1
2 [x

2
14x

2
23H12;34 + 11 perms ]

+ [ (g × h)12;34 + 5 perms ] ,

which involve the following integrals:

g1234 =
1

π2

∫
d4x5

x215x
2
25x

2
35x

2
45

, (1.9)

h12;34 =
x234
π4

∫
d4x5 d

4x6
(x215x

2
35x

2
45)x

2
56(x

2
26x

2
36x

2
46)

.

At three-loop order we encounter

(g × h)12;34 =
x212x

4
34

π6

∫
d4x5d

4x6d
4x7

(x215x
2
25x

2
35x

2
45)(x

2
16x

2
36x

2
46)(x

2
27x

2
37x

2
47)x

2
67

,

L12;34 =
x434
π6

∫
d4x5 d

4x6 d
4x7

(x215x
2
35x

2
45)x

2
56(x

2
36x

2
46)x

2
67(x

2
27x

2
37x

2
47)

,

T12;34 =
x234
π6

∫
d4x5d

4x6d
4x7 x217

(x215x
2
35)(x

2
16x

2
46)(x

2
37x

2
27x

2
47)x

2
56x

2
57x

2
67

, (1.10)

E12;34 =
x223x

2
24

π6

∫
d4x5 d

4x6 d
4x7 x216

(x215x
2
25x

2
35)x

2
56(x

2
26x

2
36x

2
46)x

2
67(x

2
17x

2
27x

2
47)

,

H12;34 =
x234
π6

∫
d4x5 d

4x6 d
4x7 x257

(x215x
2
25x

2
35x

2
45)x

2
56(x

2
36x

2
46)x

2
67(x

2
17x

2
27x

2
37x

2
47)

.

Here g, h, L are recognised as the one-loop, two-loop and three-loop ladder integrals, respec-

tively, the dual graphs of the off-shell box, double-box and triple-box integrals. Off-shell,

the ‘tennis court’ integral T can be expressed as the three-loop ladder integral L by using

the conformal flip properties1 of a two-loop ladder sub-integral [52]. The only new integrals

are thus E and H (see figure 1).

Conformal four-point integrals are given by a factor carrying their conformal weight,

say, (x213x
2
24)

n times some function of the two cross ratios

u =
x212x

2
34

x213x
2
24

= x x̄ , v =
x214x

2
23

x213x
2
24

= (1− x)(1− x̄) . (1.11)

1Such identities rely on manifest conformal invariance and will be broken by the introduction of most

regulators. For instance, the equivalence of T and L is not true for the dimensionally regulated on-shell

integrals.

– 4 –



J
H
E
P
0
8
(
2
0
1
3
)
1
3
3

3

1

4

2

1

2

3

4

E12;34 H12;34

Figure 1. The Easy and Hard integrals contributing to the correlator of stress tensor multiplets

at three loops.

Ladder integrals are explicitly known for any number of loops, see ref. [53, 54] where they

are very elegantly expressed as one-parameter integrals. Integration is simplified by the

change of variables from the cross-ratios (u, v) to (x, x̄) as defined in the last equation. The

unique rational prefactor, x213x
2
24 (x− x̄), is common to all cases and can be computed by

the leading singularity method as we illustrate shortly. This is multiplied by pure polylog-

arithm functions which fit with the classification of single-valued harmonic polylogarithms

(SVHPLs) in ref. [55]. The associated symbols of the ladder integrals are then tensors

composed of the four letters {x, x̄, 1− x, 1− x̄}.

On the other hand, for generic conformal four-point integrals (of which the Easy and

Hard integrals are the first examples) there are no explicit results. Fortunately, in recent

years a formalism has been developed in the context of scattering amplitudes to find at least

the rational prefactors (i.e. the leading singularities), which are given by the residues of the

integrals [48]. There is one leading singularity for each global pole of the integrand and it is

obtained by deforming the contour of integration to lie on a maximal torus surrounding the

pole in question, i.e. by computing the residue at the global pole. As an illustration,2 let

us apply this technique to the massive one-loop box integral g1234 defined in eq. (1.9). Its

leading singularity is obtained by shifting the contour to encircle one of the global poles of

the integrand, where all four terms in the denominator vanish. To find this let us consider

a change of coordinates from xµ5 to pi = x2i5. The Jacobian for this change of variables is

J = det

(
∂pi
∂xµ5

)

= det (−2xµi5) , J2 = det (4xi5 · xj5) = 16 det
(
x2ij − x2i5 − x2j5

)
,

(1.12)

where the second identity follows by observing that det(M) =
√

det(MMT ). Using this

2The massless box-integral (i.e. the same integral in the limit x2
i,i+1 → 0) is discussed in ref. [56] in terms

of twistor variables as the simplest example of a ‘Schubert problem’ in projective geometry. The off-shell

case that we discuss here was also recently discussed by S. Caron-Huot (see [57]).
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change of variables the massive box becomes

g1234 =
1

π2

∫
d4pi

p1p2p3p4 J
. (1.13)

To find its leading singularity we simply compute the residue around all four poles at pi = 0

(divided by 2πi). We obtain

g1234 →
1

4π2λ1234
, λ1234 =

√

det(x2ij)i,j=1..4 = x213x
2
24 (x− x̄) (1.14)

in full agreement with the analytic result [53, 54].

Note that we do not consider explicitly a contour around the branch cut associated

with the square root factor J in the denominator of (1.13). Because there is no pole at

infinity, the residue theorem guarantees that such a contour is equivalent to the one we

already considered. On the other hand, in higher-loop examples, Jacobians from previous

integrations cannot be discarded in this manner. In all the examples we consider, these

Jacobians always collapse to become simple poles when evaluated on the zero loci of the

other denominators and thereby contribute non-trivially to the leading singularity.

The main results of this paper are the analytic evaluations of the Easy and Hard in-

tegrals. Due to Jacobian poles, the Easy integral has three distinct leading singularities,

out of which only two are algebraically independent, though. The Hard integral has two

distinct leading singularities, too. Armed with this information we then attempt to find

the pure polylogarithmic functions multiplying these rational factors. Our main inputs for

this are analytic expressions for the integrals in the limit x̄ → 0 obtained from the results

in [50]. Matching these asymptotic expressions with an ansatz for the symbol of the pure

functions we obtain unique answers for the pure functions.

The pure functions contributing to the Easy integral are given by SVHPLs, corre-

sponding to a symbol with entries drawn from the set {x, 1−x, x̄, 1− x̄}. In this case there

is a very straightforward method for obtaining the corresponding function from its asymp-

totics, by essentially lifting HPLs to SVHPLs as we explain in the next section. However,

the SVHPLs are not capable of meeting all constraints for the pure functions contributing

to the Hard integral, so that we need to enlarge the set of letters. A natural guess is to

include x− x̄ (cf. ref. [58]) since it also occurs in the rational factors, and indeed this turns

out to be correct. Ultimately, one of the pure functions is found to have a four-letter symbol

corresponding to SVHPLs, but the symbol of the other function contains the new letter:

the corresponding function cannot be expressed through SVHPLs alone, but it belongs to

a more general class of multiple polylogarithms.

Let us stress that the analytic evaluation of the Easy and Hard integrals completes

the derivation of the three-loop four-point correlator of stress-tensor multiplets in N = 4

SYM. The multiple polylogarithms that we find can be numerically evaluated to very high

precision, which paves the way for tests of future integrable system predictions for the

four-point function, or for instance for further analyses of the operator product expansion.

Finally, since our set of methods has allowed to obtain the analytic result for the

Easy and Hard integrals in a relatively straightforward way (despite the fact that these are

– 6 –
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Figure 2. The four-loop integral I
(4)
14;23 defined in eq. (1.15).

not at all simple to evaluate by conventional techniques) we wish to investigate whether

this can be repeated to still higher orders. We examine a first relatively simple looking,

but non-trivial, four-loop example from the list of integrals contributing to the four-point

correlator at that order [45]:

I
(4)
14;23 =

1

π8

∫
d4x5d

4x6d
4x7d

4x8 x214x
2
24x

2
34

x215x
2
18x

2
25x

2
26x

2
37x

2
38x

2
45x

2
46x

2
47x

2
48x

2
56x

2
67x

2
78

. (1.15)

The computation of its unique leading singularity follows the same lines as at three loops.

However, just as for the Hard integral, the alphabet {x, 1 − x, x̄, 1 − x̄} and the corre-

sponding function space are too restrictive. Interestingly, this integral is related to the

Easy integral by a differential equation of Laplace type. Solving this equation promotes

the denominator factor 1−u of the leading singularities of the Easy integral to a new entry

in the symbol of the four-loop integral. Similarly we observe that (x − x̄) appears as a

leading singularity at one loop and two loops and then appears in the symbol of the Hard

integral at three loops, but in this case we do not know any explicit differential equation.

The paper is organised as follows:

• In section 2, we give definitions of the concepts introduced here: symbols, harmonic

polylogarithms, SVHPLs, multiple polylogarithms and so on.

• In section 3, we comment on the asymptotic expansion of Feynman integrals.

• In sections 4 and 5 we derive the leading singularities, symbols and ultimately the pure

functions corresponding to the Easy and Hard integrals. We also present numerical

data indicating the correctness of our results.

• In section 7, we perform a similar calculation for the four-loop integral, I(4).

• Finally we draw some conclusions. We include several appendices collecting some

formulae for the asymptotic expansions of the integrals and alternative ways how to

derive the analytic results.
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2 Conformal four-point integrals and single-valued polylogarithms

The ladder-type integrals that contribute to the correlator are known. More precisely, if

we write

g13;24 =
1

x213x
2
24

Φ(1)(u, v) ,

h13;24 =
1

x213x
2
24

Φ(2)(u, v) ,

l13;24 =
1

x213x
2
24

Φ(3)(u, v) ,

(2.1)

then the functions Φ(L)(u, v) are given by the well-known result [53, 54],

Φ(L)(u, v) = −
1

L! (L− 1)!

∫ 1

0

dξ

v ξ2 + (1− u− v) ξ + u
logL−1 ξ

×
(

log
v

u
+ log ξ

)L−1 (

log
v

u
+ 2 log ξ

)

= −
1

x− x̄
f (L)

(
x

x− 1
,

x̄

x̄− 1

)

,

(2.2)

where the conformal cross ratios are given by eq. (1.11) and where we defined the pure

function

f (L)(x, x̄) =
L∑

r=0

(−1)r(2L− r)!

r! (L− r)!L!
logr(xx̄) (Li2L−r(x)− Li2L−r(x̄)) . (2.3)

At this stage, the variables (x, x̄) are simply a convenient parametrisation which ratio-

nalises the two roots of the quadratic polynomial in the denominator of eq. (2.2). We note

that x and x̄ are complex conjugate to each other if we work in Euclidean space while they

are both real in Minkowski signature.

The particular combination of polylogarithms that appears in eq. (2.2) is not random,

but it has a particular mathematical meaning: in Euclidean space, where x and x̄ are

complex conjugate to each other, the functions Φ(L) are single-valued functions of the

complex variable x. In other words, the combination of polylogarithms that appears in the

ladder integrals is such that they have no branch cuts in the complex x plane. In order to

understand the reason for this, it is useful to look at the symbols of the ladder integrals.

2.1 The symbol

One possible way to define the symbol of a transcendental function is to consider its total

differential. More precisely, if F is a function whose differential satisfies

dF =
∑

i

Fi d logRi , (2.4)

where the Ri are rational functions, then we can define the symbol of F recursively by [59]

S(F ) =
∑

i

S(Fi)⊗Ri . (2.5)

– 8 –
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As an example, the symbols of the classical polylogarithms and the ordinary logarithms

are given by

S(Lin(z)) = −(1− z)⊗ z ⊗ . . .⊗ z
︸ ︷︷ ︸

(n−1) times

and S

(
1

n!
lnn z

)

= z ⊗ . . .⊗ z
︸ ︷︷ ︸

n times

. (2.6)

In addition the symbol satisfies the following identities,

. . .⊗ (a · b)⊗ . . . = . . .⊗ a⊗ . . .+ . . .⊗ b⊗ . . . ,

. . .⊗ (±1)⊗ . . . = 0 ,

S (F G) = S(F )∐∐S(G) ,

(2.7)

where ∐∐ denotes the shuffle product on tensors. Furthermore, all multiple zeta values are

mapped to zero by the symbol map. Conversely, an arbitrary tensor
∑

i1,...,in

ci1...inωi1 ⊗ . . .⊗ ωin (2.8)

whose entries are rational functions is the symbol of a function only if the following inte-

grability condition is fulfilled,
∑

i1,...,in

ci1...in d logωik ∧ d logωik+1
ωi1 ⊗ . . .⊗ ωik−1

⊗ ωik+2
⊗ . . .⊗ ωin = 0 , (2.9)

for all consecutive pairs (ik, ik+1).

The symbol of a function also encodes information about the discontinuities of the

function. More precisely, the singularities (i.e. the zeroes or infinities) of the first entries of a

symbol determine the branching points of the function, and the symbol of the discontinuity

across the branch cut is obtained by dropping this first entry from the symbol. As an

example, consider a function F (x) whose symbol has the form

S(F (x)) = (a1 − x)⊗ . . .⊗ (an − x) , (2.10)

where the ai are independent of x. Then F (x) has a branching point at x = a1, and the

symbol of the discontinuity across the branch cut is given by

S [disca1F (x)] = 2πi (a2 − x)⊗ . . .⊗ (an − x) . (2.11)

If F is a Feynman integral, then the branch cuts of F are dictated by Cutkosky’s rules. In

particular, for Feynman integrals without internal masses the branch cuts extend between

points where one of the Mandelstam invariants becomes zero or infinity. As a consequence,

the first entries of the symbol of a Feynman integral must necessarily be Mandelstam in-

variants [60]. In the case of the four-point position space integrals we are considering in

this paper, the first entries of the symbol must then be distances between two points, x2ij
for i, j = 1 . . . 4. Combined with conformal invariance, this implies that the first entries of

the symbols of conformally invariant four-point functions can only be cross ratios. As an

example, consider the symbol of the one-loop four-point function,

S
[

f (1)(x, x̄)
]

= u⊗
1− x

1− x̄
+ v ⊗

x̄

x
. (2.12)
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The first entry condition puts strong constraints on the transcendental functions that

can contribute to a conformal four-point function. In order to understand this better let

us consider a function whose symbol can be written in the form

S(F ) = u⊗ Su + v ⊗ Sv = (xx̄)⊗ Su + [(1− x)(1− x̄)]⊗ Sv , (2.13)

where Su and Sv are tensors of lower rank. Let us assume we work in Euclidean space where

x and x̄ are complex conjugate to each other. It then follows from the previous discussion

that F has potential branching points in the complex x plane at x ∈ {0, 1,∞}. Let us com-

pute for example the discontinuity of F around x = 0. Only the first term in eq. (2.13) can

give rise to a non-zero contribution, and x and x̄ contribute with opposite signs. So we find

S [disc0(F )] = 2πi Su − 2πi Su = 0 . (2.14)

The argument for the discontinuities around x = 1 and x = ∞ is similar. We thus con-

clude that F is single-valued in the whole complex x plane. This observation puts strong

constraints on the pure functions that might appear in the analytical result for a conformal

four-point function. In particular, the ladder integrals Φ(L) are related to the single-valued

analogues of the classical polylogarithms,

Dn(x) = Rn

n−1∑

k=0

Bk2
k

k!
logk|x|Lin−k(x) , (2.15)

where Rn denotes the real part for n odd and the imaginary part otherwise and Bk are

the Bernoulli numbers. For example, we have

f (1)(x, x̄) = 4iD2(x) . (2.16)

2.2 Single-Valued Harmonic Polylogarithms (SVHPLs)

For more general conformal four-point functions more general classes of polylogarithms may

appear. The simplest extension of the classical polylogarithms are the so-called harmonic

polylogarithms (HPLs), defined by the iterated integrals3 [61]

H(a1, . . . , an;x) =

∫ x

0
dt fa1(t)H(a2, . . . , an; t) , ai ∈ {0, 1} , (2.17)

with

f0(x) =
1

x
and f1(x) =

1

1− x
. (2.18)

By definition, H(x) = 1 and in the case where all the ai are zero, we use the special

definition

H(~0n;x) =
1

n!
logn x . (2.19)

The number n of indices of a harmonic polylogarithm is called its weight. Note that the

harmonic polylogarithms contain the classical polylogarithms as special cases,

H(~0n−1, 1;x) = Lin(x) . (2.20)

3In the following we use the word harmonic polylogarithm in a restricted sense, and only allow for

singularities at x ∈ {0, 1} inside the iterated integrals.
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In ref. [63] it was shown that infinite classes of generalised ladder integrals can be ex-

pressed in terms of single-valued combinations of HPLs. Single-valued analogues of HPLs

were studied in detail in ref. [55], and an explicit construction valid for all weights was pre-

sented. Here it suffices to say that for every harmonic polylogarithm of the form H(~a;x)

there is a function L~a(x) with essentially the same properties as the ordinary harmonic

polylogarithms, but in addition it is single-valued in the whole complex x plane. We will

refer to these functions as single-valued harmonic polylogarithms (SVHPLs). Explicitly,

the functions L~a(x) can be expressed as

L~a(x) =
∑

i,j

cij H(~ai;x)H(~aj ; x̄) , (2.21)

where the coefficients cij are polynomials of multiple ζ values such that all branch cuts

cancel.

There are two natural symmetry groups acting on the space of SVHPLs. The first

symmetry group acts by complex conjugation, i.e., it exchanges x and x̄. The conformal

four-point functions we are considering are real, and thus eigenfunctions under complex

conjugation, while the SVHPLs defined in ref. [55] in general are not. It is therefore

convenient to diagonalise the action of this symmetry by defining

L~a(x) =
1

2

[

L~a(x)− (−1)|~a|L~a(x̄)
]

,

L~a(x) =
1

2

[

L~a(x) + (−1)|~a|L~a(x̄)
]

,

(2.22)

where |~a| denotes the weight of L~a(x). Note that we have apparently doubled the number

of functions, so not all the functions L~a(x) and L~a(x) can be independent. Indeed, one can

observe that

L~a(x) = [product of lower weight SVHPLs of the form L~a(x) ] . (2.23)

The functions L~a(x) can thus always be rewritten as linear combinations of products of

SVHPLs of lower weights. In other words, the multiplicative span of the functions L~a(x)

and multiple zeta values spans the whole algebra of SVHPLs. As an example, in this basis

the ladder integrals take the very compact form

f (L)(x, x̄) = (−1)L+1 2L0, . . . , 0
︸ ︷︷ ︸

L−1

,0,1,0, . . . , 0
︸ ︷︷ ︸

L−1

(x) . (2.24)

While we present most of our result in terms of the L~a(x), we occasionally find it convenient

to employ the L~a(x) and the L~a(x) to obtain more compact expressions.

The second symmetry group is the group S3 which acts via the transformations of the

argument

x → x , x → 1− x , x → 1/(1− x) , (2.25)

x → 1/x , x → 1− 1/x , x → x/(x− 1) .
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This action of S3 permutes the three singularities {0, 1,∞} in the integral representations

of the harmonic polylogarithms. In addition, this action has also a physical interpretation.

The different cross ratios one can form out of four points xi are parametrised by the group

S4/(Z2×Z2) ≃ S3. The action (2.25) is the representation of this group on the cross ratios

in the parametrisation (1.11).

2.3 The x̄ → 0 limit of SVHPLs

We will be using knowledge of the asymptotic expansions of integrals in the limit x̄ → 0

in order to constrain, and even determine, the integrals themselves. If the function lives

in the space of SVHPLs there is a very direct and simple way to obtain the full function

from its asymptotic expansion.

This direct procedure relies on the close relation between the series expansion of SVH-

PLs around x̄ = 0 and ordinary HPLs. In the case where SVHPLs are analytic at (x, x̄) = 0

(i.e. when the corresponding word ends in a ‘1’) then

lim
x̄→0

Lw(x) = Hw(x) . (2.26)

Similar results exist in the case where Lw(x) is not analytic at the origin. In that case

the limit does strictly speaking not exist, but we can, nevertheless, represent the function

in a neighbourhood of the origin as a polynomial in log u, whose coefficients are analytic

functions. More precisely, using the shuffle algebra properties of SVHPLs, we have a unique

decomposition

Lw(x) =
∑

p,w′

ap,w′ logp uLw′(x) , (2.27)

where ap,w′ are integer numbers and Lw′(x) are analytic at the origin (x, x̄) = 0.

Conversely, if we are given a function f(x, x̄) that around x̄ = 0 admits the asymptotic

expansion

f(x, x̄) =
∑

p,w

ap,w logp uHw(x) +O(x̄) , (2.28)

where the ap,w are independent of (x, x̄) and w are words made out of the letters 0 and

1 ending in a 1, there is a unique function fSVHPL(x, x̄) which is a linear combination of

products of SVHPLs that has the same asymptotic expansion around x̄ = 0 as f(x, x̄).

Moreover, this function is simply obtained by replacing the HPLs in eq. (2.28) by their

single-valued analogues,

fSVHPL(x, x̄) =
∑

p,w

ap,w logp uLw(x) . (2.29)

In other words, f(x, x̄) and fSVHPL(x, x̄) agree in the limit x̄ → 0 up to power-suppressed

terms.

It is often the case that we find simpler expressions by expanding out all products, i.e.

by not explicitly writing the powers of logarithms of u. More precisely, replacing log u by

log x + log x̄ in eq. (2.28) and using the shuffle product for HPLs, we can write eq. (2.28)

in the form

f(x, x̄) =
∑

w

aw Hw(x) + log x̄ P (x, log x̄) +O(x̄) , (2.30)
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where P (x, log x̄) is a polynomial in log x̄ whose coefficients are HPLs in x. From the pre-

vious discussion we know that there is a linear combination of SVHPLs that agrees with

f(x, x̄) up to power-suppressed terms. In fact, this function is independent of the actual

form of the polynomial P , and is completely determined by the first term in the left-hand

side of eq. (2.30),

fSVHPL(x, x̄) =
∑

w

aw Lw(x) . (2.31)

So far we have only described how we can always construct a linear combination of

SVHPLs that agrees with a given function in the limit x̄ → 0 up to power-suppressed

terms. The inverse is obviously not true, and we will encounter such a situation for the

Hard integral. In such a case we need to enlarge the space of functions to include more

general classes of multiple polylogarithms. Indeed, while SVHPLs have symbols whose

entries are all drawn from the set {x, x̄, 1 − x, 1 − x̄}, it was observed in ref. [58] that

the symbols of three-mass three-point functions (which are related to conformal four-point

functions upon sending a point to infinity) in dimensional regularisation involve functions

whose symbols also contain the entry x − x̄. Function of this type cannot be expressed

in terms of HPLs alone, but they require more general classes of multiple polylogarithms,

defined recursively by G(x) = 1 and,

G(a1, . . . , an;x) =

∫ x

0

dt

t− a1
G(a2, . . . , an; t) , G(~0p;x) =

logp(x)

p!
, (2.32)

where ai ∈ C. We will encounter such functions in later sections when constructing the

analytic results for the Easy and Hard integrals.

3 The short-distance limit

In this section we sketch how the method of ‘asymptotic expansion of Feynman integrals’

can deliver asymptotic series for the x̄ → 0 limit of the Easy and the Hard integral. These

expansions contain enough information about the integrals to eventually fix ansätze for the

full expressions.

In ref. [49, 50] asymptotic expansions were derived for both the Easy and Hard integrals

in the limits where one of the cross ratios, say u, tends to zero. The limit u → 0, v → 1 can

be described as a short-distance limit, x2 → x1. Let us assume that we have got rid of the

coordinate x4 by sending it to infinity and that we are dealing with a function of three coor-

dinates, x1, x2, x3, one of which, say x1, can be set to zero. The short-distance limit we are

interested in then corresponds to x2 → 0, so that the coordinate x2 is small (soft) and the

coordinate x3 is large (hard). This is understood in the Euclidean sense, i.e. x2 tends to zero

precisely when each of its component tends to zero. One can formalise this by multiplying

x2 by a parameter ρ and then considering the limit ρ → 0 upon which u ∼ ρ2, v − 1 ∼ ρ.

For a Euclidean limit in momentum space, one can apply the well-known formulae for

the corresponding asymptotic expansion written in graph-theoretical language (see ref. [51]

for a review). One can also write down similar formulae in position space. In practice, it is

often more efficient to apply the prescriptions of the strategy of expansion by regions [51, 64]
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(see also Chapter 9 of ref. [65] for a recent review), which are equivalent to the graph-

theoretical prescriptions in the case of Euclidean limits. The situation is even simpler in

position space where we work with propagators 1/x2ij . It turns out that in order to reveal all

the regions contributing to the asymptotic expansion of a position-space Feynman integral

it is sufficient to consider each of the integration coordinates xi either soft (i.e. of order x2)

or hard (i.e. of order x3). Ignoring vanishing contributions, which correspond to integrals

without scale, one obtains a set of regions relevant to the given limit. One can reveal this

set of regions automatically, using the code described in refs. [66, 67].

The most complicated contributions in the expansion correspond to regions where the

internal coordinates are either all hard or soft. For the Easy and Hard integrals, this gives

three-loop two-point integrals with numerators. In ref. [49], these integrals were evaluated

by treating three numerators as extra propagators with negative exponents, so that the

number of the indices in the given family of integrals was increased from nine to twelve.

The integrals were then reduced to master integrals using integration-by-parts (IBP) iden-

tities using the c++ version of the code FIRE [68]. While this procedure is not optimal, it

turned out to be sufficient for the computation in ref. [49]. In ref. [50], a more efficient way

was chosen: performing a tensor decomposition and reducing the problem to evaluating in-

tegrals with nine indices by the well-known MINCER program [69], which is very fast because

it is based on a hand solution of the IBP relations for this specific family of integrals. This

strategy has given the possibility to evaluate much more terms of the asymptotic expansion.

It turns out that the expansion we consider includes, within dimensional regularisation,

the variable u raised to powers involving an amount proportional to ǫ = (4 − d)/2. A

characteristic feature of asymptotic expansions is that individual contributions may exhibit

poles. Since the conformal integrals we are dealing with are finite in four dimensions, the

poles necessarily cancel, leaving behind some logarithms. The resulting expansions contain

powers and logarithms of u times polynomials in v − 1. Instead of the variable v, we turn

to the variables (x, x̄) defined in eq. (1.11). Note that it is easy to see that in terms of

these variables the limit u → 0, v → 1 corresponds to both x and x̄ becoming small.

In fact, we only need the leading power term with respect to u and all the terms with

respect to x. The results of ref. [50] were presented in terms of infinite sums involving

harmonic numbers, i.e., for each inequivalent permutation of the external points, it was

shown that one can write

I(u, v) =
3∑

k=0

logk u fk(x) +O(u) , (3.1)

where I(u, v) denotes either the Easy or the Hard integral, and v = 1 − x + O(x̄). The

coefficients fk(x) were expressed as combinations of terms of the form

∞∑

s=1

xs−1

si
S~(s) or

∞∑

s=1

xs−1

(1 + s)i
S~(s) , (3.2)

where S~(s) are nested harmonic sums [70],

Si(s) =
s∑

n=1

1

ni
and Si~(s) =

s∑

n=1

S~(n)

ni
. (3.3)
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To arrive at such explicit results for the coefficients fk(x) a kind of experimental

mathematics suggested in ref. [62] was applied: the evaluation of the first terms in the

expansion in x gave a hint about the possible dependence of the coefficient at the n-th

power of x. Then an ansatz in the form of a linear combination of nested sums was

constructed and the coefficients in this ansatz were fixed by the information about the first

terms. Finally, the validity of the ansatz was confirmed using information about the next

terms. The complete x-expansion was thus inferred from the leading terms.

For the purpose of this paper, it is more convenient to work with polylogarithmic

functions in x rather than harmonic sums. Indeed, sums of the type (3.2) can easily be

performed in terms of harmonic polylogarithms using the algorithms described in ref. [71].

We note, however, that during the summation process, sums of the type (3.2) with i = 0

are generated. Sums of this type are strictly speaking not covered by the algorithms of

ref. [71], but we can easily reduce them to the case i 6= 0 using the following procedure,

∞∑

s=1

xs−1 Si~(s) =
1

x

∞∑

s=1

xs
s∑

n=1

1

ni
1

S~(n) =
1

x

∞∑

s=0

xs
s∑

n=0

1

ni
S~(n) , (3.4)

where the last step follows from S~(0) = 0. Reshuffling the sum by letting s = n1 + n, we

obtain the following relation which is a special case of eq. (96) in ref. [62]:

∞∑

s=1

xs−1 Si~(s) =
1

x

∞∑

n1=0

xn1

∞∑

n=0

xn

ni
S~(n) =

1

1− x

∞∑

s=1

xs−1

si
S~(s) . (3.5)

The last sum is now again of the type (3.2) and can be dealt with using the algorithms of

ref. [71].

Performing all the sums that appear in the results of ref. [50], we find for example

x213 x
2
24E14;23 =

log u

x

(

H2,2,1 −H2,1,2 +H1,3,1 + 2H1,2,1,1 −H1,1,3 − 2H1,1,1,2 (3.6)

−6ζ3H2 − 6ζ3H1,1

)

−
2

x

(

2ζ3H2,1 − 4ζ3H1,2 + 4ζ3 H1,1,1 +H3,2,1

−H3,1,2 +H2,3,1 −H2,1,3 + 2H1,4,1 + 2 H1,3,1,1 + 2H1,2,2,1 − 2H1,1,4

−2H1,1,2,2 − 2H1,1,1,3 − 6 ζ3H3

)

+O(u) ,

x413 x
4
24H12;34 =

4 log u

x2

(

H1,1,2,1 −H1,1,1,2 − 6ζ3H1,1

)

−
2

x2

(

4H2,1,2,1 − 4 H2,1,1,2 (3.7)

+4H1,1,3,1 −H1,1,2,1,1 − 4H1,1,1,3 +H1,1,1,2,1 − 24ζ3H2,1 + 6ζ3H1,1,1

)

+O(u) ,

where we used the compressed notation, e.g., H2,1,1,2 ≡ H(0, 1, 1, 1, 0, 1;x). The results

for the other orientations are rather lengthy, so we do not show them here, but we collect

them in appendix A. Let us however comment about the structure of the functions fk(x)

that appear in the expansions. The functions fk(x) can always be written in the form

fk(x) =
∑

l

Rk,l(x)× [HPLs in x] , (3.8)
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where Rk,l(x) may represent any of the following rational functions

1

x2
,

1

x
,

1

x(1− x)
. (3.9)

We note that the last rational function only enters the asymptotic expansion of H13;24.

The aim of this paper is to compute the Easy and Hard integrals by writing for each

integral an ansatz of the form
∑

i

Ri(x, x̄)Pi(x, x̄) , (3.10)

and to fix the coefficients that appear in the ansatz by matching the limit x̄ → 0 to the

asymptotic expansions presented in this section. In the previous section we argued that a

natural space of functions for the polylogarithmic part Pi(x, x̄) are functions that are single-

valued in the complex x plane in Euclidean space. We however still need to determine the

rational prefactors Ri(x, x̄), which are not constrained by single-valuedness.

A natural ansatz would consist in using the same rational prefactors as those appearing

in the ladder type integrals. For ladder type integrals we have

Rladder
i (x, x̄) =

1

(x− x̄)α
, α ∈ N , (3.11)

plus all possible transformations of this function obtained from the action of the S3 sym-

metry (2.25). Then in the limit u → 0 we obtain

lim
x̄→0

Rladder
i (x, x̄) =

1

xα
. (3.12)

We see that the rational prefactors that appear in the ladder-type integrals can only give

rise to rational prefactors in the asymptotic expansions with are pure powers of x, and so

they can never account for the rational function 1/(x(1−x)) that appears in the asymptotic

expansion ofH13;24. We thus need to consider more general prefactors than those appearing

in the ladder-type integrals. This issue will be addressed in the next sections.

4 The Easy integral

4.1 Residues of the Easy integral

The Easy integral is defined as

E12;34 =
x223x

2
24

π6

∫
d4x5 d

4x6 d
4x7 x216

(x215x
2
25x

2
35)x

2
56(x

2
26x

2
36x

2
46)x

2
67(x

2
17x

2
27x

2
47)

. (4.1)

To find all its leading singularities we order the integrations as follows

E12;34 =
x223x

2
24

π6

[∫
d4x6 x216
x226x

2
36x

2
46

(∫
d4x5

x215x
2
25x

2
35x

2
56

)(∫
d4x7

x217x
2
27x

2
47x

2
67

)]

. (4.2)

First the x7 and x5 integrations: they are both the same as the massive box computed

in the Introduction and thus give leading singularities (see eq. (1.14))

±
1

4λ1236
±

1

4λ1246
, (4.3)
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respectively. So we can move directly to the final x6 integration

1

16π6

∫
d4x6 x216

x226x
2
36x

2
46λ1236λ1246

. (4.4)

Here there are five factors in the denominator and we want to take the residues when

four of them vanish to compute the leading singularity, so there are various choices to con-

sider. The simplest option is to cut the three propagators 1/x2i6. Then on this cut we have

λ1236|cut = ±x216x
2
23 and λ1246|cut = ±x216x

2
24, where the vertical line indicates the value on

the cut, and the integral reduces to the massive box. This simplification of the λ factors is

similar to the phenomenon of composite leading singularities [72]. Thus cutting either of

the two λs will result in4

leading singularity #1 of E12;34 = ±
1

64π6λ1234
. (4.5)

The only other possibility is cutting both λ’s. There are then three possibilities, firstly

we could cut x226 and x236 as well as the two λ
′s. On this cut λ1236 reduces to±x216x

2
23 and one

obtains residue #1 again. Similarly in the second case where we cut x226, x
2
46 and the two λs.

So finally we consider the case where we cut x236, x
2
46 and the two λ’s. In this case

λ1236|cut = ±(x216x
2
23 − x213x

2
26) and λ1246|cut = ±(x216x

2
24 − x214x

2
26). Notice that setting

λ1236 = λ1246 = 0 means setting x216 = x226 = 0. We then need to compute the Jacobian

associated with cutting x236, x
2
46, λ1236, λ1246

det

(
∂(x236, x

2
46, λ1236, λ1246)

∂xµ6

)∣
∣
∣
∣
cut

= ±16 det
(

xµ36, xµ46, xµ16x
2
23 − x213x

µ
26, xµ16x

2
24 − x214x

µ
26

)∣
∣
∣
cut

= ±16 det (xµ36, x
µ
46, x

µ
16, x

µ
26)(x

2
23x

2
14 − x224x

2
13)
∣
∣
cut

= ±4λ1234(x
2
23x

2
14 − x224x

2
13) ,

(4.6)

The result of the x6 integral (4.4) is

1

64π6

x216
x226λ1234(x223x

2
14 − x224x

2
13)

∣
∣
∣
∣
cut

(4.7)

At this point there is a subtlety, since on the cut we have simultaneously x216x
2
23 −

x213x
2
26 = x216x

2
24 − x214x

2
26 = 0, i.e. x216 = x226 = 0 and so

x2
16

x2
26

is undefined. More specifically,

the integral depends on whether we take x216x
2
23−x213x

2
26 = 0 first or x216x

2
24−x214x

2
26 = 0 first.

So we get two possibilities (after multiplying by the external factors x223x
2
24 in eq. (4.1)):

leading singularity #2 of E12;34 = ±
x213x

2
24

64π6 λ1234(x223x
2
14 − x224x

2
13)

(4.8)

leading singularity #3 of E12;34 = ±
x214x

2
23

64π6 λ1234(x223x
2
14 − x224x

2
13)

. (4.9)

4With a slight abuse of language, in the following we use the word ‘cut’ to designate that we look at the

zeroes of a certain denominator factor.
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We conclude that the Easy integral takes the ‘leading singularity times pure function’

form5

E12;34 =
1

x213x
2
24

[

E(a)(x, x̄)

x− x̄
+

E(b)(x, x̄)

(x− x̄)(v − 1)
+

v E(c)(x, x̄)

(x− x̄)(v − 1)

]

. (4.10)

We note that the x3 ↔ x4 symmetry relates E(b) and E(c). Furthermore, putting every-

thing over a common denominator it is easy to see that E(a) can be absorbed into the other

two functions. We conclude that there is in fact only one independent function, and the

Easy integral can be written in terms of a single pure function E(x, x̄) as

E12;34 =
1

x213x
2
24 (x− x̄)(v − 1)

[

E(x, x̄) + v E

(
x

x− 1
,

x̄

x̄− 1

)]

. (4.11)

The function E(x, x̄) is antisymmetric under the interchange of x, x̄

E(x̄, x) = −E(x, x̄) , (4.12)

to ensure that E12;34 is a symmetric function of x, x̄, but it possesses no other symmetry.

The other two orientations of the Easy integral are then found by permuting various

points and are given by

E13;24 =
1

x213x
2
24 (x− x̄)(u− v)

[

uE

(
1

x
,
1

x̄

)

+ v E

(
1

1− x
,

1

1− x̄

)]

, (4.13)

E14;23 =
1

x213x
2
24 (x− x̄)(1− u)

[

E(1− x, 1− x̄) + uE

(

1−
1

x
, 1−

1

x̄

)]

. (4.14)

It is thus enough to have an expression for E(x, x̄) to determine all possible orientations

of the Easy integral. The functional form of E(x, x̄) will be the purpose of the rest of this

section.

4.2 The symbol of E(x, x̄)

In this subsection we determine the symbol of E(x, x̄), and in the next section we describe

its uplift to a function. This strategy seems over-complicated in the case at hand, because

E(x, x̄) can in fact directly be obtained in terms of SVHPLs of weight six from its asymp-

totic expansion using the method described in section 2.3. The two-step derivation (symbol

and subsequent uplift) is included mainly for pedagogical purposes because it equally ap-

plies to the Hard integral and our four-loop example, where the functions are not writeable

in terms of SVHPLs only so that a direct method yet has to be found.

Returning to the Easy integral, we start by writing down the most general tensor of

rank six that

• has all its entries drawn from the set {x, 1− x, x̄, 1− x̄},

• satisfies the first entry condition, i.e. the first factors in each tensor are either xx̄ or

(1− x)(1− x̄),

• is odd under an exchange of x and x̄.

5A similar form of the Easy leading singularities, as well as those of the Hard integral discussed in the

next section, was independently obtained by S. Caron-Huot.
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This results in a tensor that depends on 2 · 45/2 = 1024 free coefficients (which we assume

to be rational numbers). Imposing the integrability condition (2.9) reduces the number of

free coefficients to 28, which is the number of SVHPLs of weight six that are odd under an

exchange of x and x̄. The remaining free coefficients can be fixed by matching to the limit

u → 0, v → 1, or equivalently x̄ → 0.

In order to take the limit, we drop every term in the symbol containing an entry 1− x̄

and we replace x̄ → u/x, upon which the singularity is hidden in u. As a result, every

permutation of our ansatz yields a symbol composed of the three letters {u, x, 1−x}. This

tensor can immediately be matched to the symbol of the asymptotic expansion of the Easy

integral discussed in section 3. Explicitly, the limits

x213x
2
24E12;34 → −

1

x2

[

lim
x̄→0

E(x, x̄) + lim
x̄→0

E

(
x

x− 1
,

x̄

x̄− 1

)]

+
1

x
lim
x̄→0

E

(
x

x− 1
,

x̄

x̄− 1

)

(4.15)

x213x
2
24E13;24 → −

1

x
lim
x̄→0

E

(
1

1− x
,

1

1− x̄

)

(4.16)

x213x
2
24E14;23 →

1

x
lim
x̄→0

E(1− x, 1− x̄) (4.17)

can be matched with the asymptotic expansions recast as HPLs. All three conditions are

consistent with our ansatz; each of them on its own suffices to determine all remaining

constants. The resulting symbol is a linear combination of 1024 tensors with entries drawn

from the set {x, 1− x, x̄, 1− x̄} and with coefficients {±1, ±2}.

Note that the uniqueness of the uplift procedure for SVHPLs given in section 2.3

implies that each asymptotic limit is sufficient to fix the symbol.

4.3 The analytic result for E(x, x̄): uplifting from the symbol

In this section we determine the function E(x, x̄) defined in eq. (4.11) starting from its

symbol. As the symbol has all its entries drawn from the set {x, 1 − x, x̄, 1 − x̄}, the

function E(x, x̄) can be expressed in terms of the SVHPLs classified in [55]. Additional

single-valued terms6 proportional to zeta values can be fixed by again appealing to the

asymptotic expansion of the integral.

We start by writing down an ansatz for E(x, x̄) as a linear combination of weight six of

SVHPLs that is odd under exchange of x and x̄. Note that we have some freedom w.r.t. the

basis for our ansatz. In the following we choose basis elements containing a single factor

of the form L~a(x). This ensures that all the terms are linearly independent.

Next we fix the free coefficients in our ansatz by requiring its symbol to agree with

that of E(x, x̄) determined in the previous section. As we had started from SVHPLs with

the correct symmetries and weight, all coefficients are fixed in a unique way. We arrive at

6In principle we cannot exclude at this stage more complicated functions of weight less than six multiplied

by zeta values.
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the following expression for E(x, x̄):

E(x, x̄) = 4L2,4 − 4L4,2 − 2L1,3,2 + 2L2,1,3 − 2L3,1,2 + 4L3,2,0

− 2L2,2,1,0 + 8L3,1,0,0 + 2L3,1,1,0 − 2L2,1,1,1,0

(4.18)

For clarity, we suppressed the argument of the L functions and we employed the com-

pressed notation for HPLs, e.g., L3,2,1 ≡ L0,0,1,0,1,1(x, x̄). The asymptotic limits of the last

expression correctly reproduce the terms proportional to zeta values in eq. (3.7) and the

formulae in appendix A.

4.4 The analytic result for E(x, x̄): the direct approach

Here we quickly give the direct method for obtaining E(x, x̄) explicitly from its asymptotics

via the method outlined in section 2.3.

The asymptotic value of the Easy integral in the permutation E12;34 is given in ap-

pendix A. Comparing eq. (A.1) with eq. (4.15) and further writing log u = log x + log x̄

and expanding out products of functions we find for the asymptotic value of E(x, x̄):

E(x, x̄) = 4ζ3H2,1 + 2H2,4 − 2H4,2 +H1,2,3 −H1,3,2 − 2H1,4,0 +H2,1,3 −H3,1,2

+ 2H3,2,0 −H1,3,1,0 +H2,1,2,0 − 2H2,2,0,0 −H2,2,1,0 +H3,1,1,0 + 2H1,2,0,0,0

+H1,2,1,0,0 −H2,1,1,0,0 − 20ζ5H1 + 8ζ3H3 + 2ζ3H1,2

+ log x̄ P (x, log x̄) +O(x̄) ,

(4.19)

where P is a polynomial in log x̄ with coefficients that are HPLs in x. From the discussion

in section 2.3 we know that there is a unique combination of SVHPLs with this precise

asymptotic behavior, and so we find a natural ansatz for E(x, x̄),

E(x, x̄) = 4ζ3L2,1 + 2L2,4 − 2L4,2 + L1,2,3 − L1,3,2 − 2L1,4,0 + L2,1,3 − L3,1,2 + 2L3,2,0

− L1,3,1,0 + L2,1,2,0 − 2L2,2,0,0 − L2,2,1,0 + L3,1,1,0 + 2L1,2,0,0,0 + L1,2,1,0,0

− L2,1,1,0,0 − 20ζ5L1 + 8ζ3L3 + 2ζ3L1,2 . (4.20)

We have lifted this function from its asymptotics in just one limit x̄ → 0 while we also

know two other limits of this function given in eq. (3.7) and appendix A. Remarkably,

eq. (4.20) is automatically consistent with these two limits, giving a strong indication that

it is indeed the right function. Furthermore, eq. (4.18) can then in turn be rewritten in

a way that makes the antisymmetry under exchange of x and x̄ manifest, and we recover

eq. (4.20). Note also that antisymmetry in x ↔ x̄ was not input anywhere, and the fact

that the resulting function is indeed antisymmetric is a non-trivial consistency check.

As an aside we also note here that the form of E(x, x̄), expressed in the particular basis

of SVHPLs we chose to work with, is very simple, having only coefficients ±1 or ±2 for

the polylogarithms of weight six. Indeed other orientations of E have even simpler forms,

for instance

E(1/x, 1/x̄) = L2,4 − L3,3 − L1,2,3 + L1,3,2 − L1,4,0 − L2,1,3 + L3,1,2 − L4,0,0 + L4,1,0

+ L1,3,0,0 + L1,3,1,0 − L2,1,2,0 + L2,2,1,0 + L3,0,0,0 − L3,1,1,0 − L1,2,1,0,0

− L2,1,0,0,0 + L2,1,1,0,0 + 8ζ3L3 − 2ζ3L1,2 − 6ζ3L2,0 − 4ζ3L2,1 , (4.21)
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with all coefficients of the weight six SVHPLs being ±1, or in the manifestly antisymmetric

form with all weight six SVHPLs with coefficient +1

(4.22)E(1/x, 1/x̄) = L2,4 + L1,3,2 + L3,1,2 + L4,1,0 + L1,3,0,0

+ L1,3,1,0 + L2,2,1,0 + L3,0,0,0 + L2,1,1,0,0 + 6ζ3L3 − 2ζ3L2,1.

4.5 Numerical consistency tests for E

We have determined the analytic result for the Easy integral relying on the knowledge of

its residues, symbol and asymptotic expansions. In order to check the correctness of the

result, we evaluated E14;23 numerically7 and compared it to a direct numerical evaluation

of the coordinate space integral using FIESTA [76, 77].

To be specific, we evaluate the conformally-invariant function x213x
2
24E14;23. Applying

a conformal transformation to send x4 to infinity, the integral takes the simplified form,

lim
x4→∞

x213x
2
24E14;23 =

1

π6

∫
d4x5d

4x6d
4x7 x

2
13x

2
16

(x215x
2
25)x

2
56(x

2
26x

2
36)x

2
67(x

2
17x

2
37)

, (4.23)

with only 8 propagators. We use the remaining freedom to fix x213 = 1 so that u = x212
and v = x223. Other numerical values for x213 are possible, of course, but we found that this

choice yields relatively stable numerics.

After Feynman parameterisation, the integral is only seven-dimensional and can be

evaluated with off-the-shelf software. We generate the integrand with FIESTA and perform

the numerical integration with a stand-alone version of CIntegrate. Using the algorithm

Divonne,8 we obtain roughly five digits of precision after five million function evaluations.

In total, we checked 40 different pairs of values for the cross ratios and we found very

good agreement in all cases. A sample of the numerical checks is shown in table 1. Note that

δ denotes the relative error between the analytic result and the number obtained by FIESTA,

δ =

∣
∣
∣
∣

Nanalytic −NFIESTA

Nanalytic +NFIESTA

∣
∣
∣
∣
. (4.24)

5 The Hard integral

5.1 Residues of the Hard integral

To find all the leading singularities we consider each integration sequentially as follows

H12;34 =
x234
π6

{∫
d4x6

x216x
2
26x

2
36x

2
46

[∫
d4x5 x256

x215x
2
25x

2
35x

2
45

(∫
d4x7

x237x
2
47x

2
57x

2
67

)]}

. (5.1)

Let us start with the x7 integration,
∫

d4x7
x237x

2
47x

2
57x

2
67

. (5.2)

7All polylogarithms appearing in this paper have been evaluated numerically using the GiNaC [73] and

HPL [74, 75] packages.
8Experience shows that Divonne outperforms other algorithms of the Cuba library for problems roughly

this size.

– 21 –



J
H
E
P
0
8
(
2
0
1
3
)
1
3
3

u v Analytic FIESTA δ

0.1 0.2 82.3552 82.3553 6.6e-7

0.2 0.3 57.0467 57.0468 3.2e-8

0.3 0.1 90.3540 90.3539 5.9e-8

0.4 0.5 37.1108 37.1108 1.9e-8

0.5 0.6 31.9626 31.9626 1.9e-8

0.6 0.2 54.2881 54.2881 6.9e-8

0.7 0.3 42.6519 42.6519 4.4e-8

0.8 0.9 23.0199 23.0199 1.7e-8

0.9 0.5 30.8195 30.8195 2.4e-8

Table 1. Numerical comparison of the analytic result for x2
13x

2
24 E14;23 against FIESTA for several

values of the conformal cross ratios.

This is simply the off-shell box considered in section 1, and so its leading singularities are

(see eq. (1.14))

±
1

4λ3456
. (5.3)

Next we turn to the x5 integration, which now takes the form
∫

d4x5 x256
x215x

2
25x

2
35x

2
45λ3456

. (5.4)

There are five factors in the denominator, and we want to cut four of them to compute

the leading singularity. The simplest option is to cut the four propagators 1/x2i5. Doing

so would yield a new Jacobian factor 1/λ1234 (exactly as in the previous subsection) and

freeze λ3456|cut = ±x256x
2
34. This latter factor simply cancels the numerator and we are left

with the final x6 integration being that of the box in the Introduction. Putting everything

together, the leading singularity for this choice is

leading singularity #1 of H12;34 = ±
1

64π6 λ2
1234

. (5.5)

Returning to the x5 integration, eq. (5.4), we must consider the possibility of cutting

λ3456 and three other propagators. Cutting x235 and x245 immediately freezes λ3456|cut =

±x256x
2
34 which is canceled by the numerator. Thus it is not possible to cut these two

propagators and λ3456. However, cutting x215, x
2
25, x

2
35 and λ3456 is possible (the only other

possibility, i.e. cutting x215, x
2
25, x

2
45 and λ3456, gives the same result by by invariance of the

integral under exchange of x3 and x4). Indeed one finds that when x235 = 0,

λ3456 = ±(x245x
2
36 − x256x

2
34) . (5.6)

To compute the leading singularity associated with this pole we need to compute the

Jacobian

J = det

(
∂(x215, x

2
25, x

2
35, λ3456)

∂xµ5

)

, (5.7)
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As in the box case, it is useful to consider the square of J (on the cut),

J2 = 16det

(

x2ij −2xi · ∂λ3456/∂x5

−2xi · ∂λ3456/∂x5 (∂λ3456/∂x5)
2

)

. (5.8)

The result of the x5 integration is then simply

x256
Jx245

∣
∣
∣
∣
cut

=
x236
Jx234

∣
∣
∣
∣
cut

, (5.9)

where the second equality follows since x256 and x245 are to be evaluated on the cut (indicated

by the vertical line) for which x245x
2
36−x256x

2
34 = 0. Finally we need to turn to the remaining

x6 integral. We are simply left with

1

16π6

∫
d4x6

x216x
2
26x

2
46J

∣
∣
∣
∣
cut

, (5.10)

where we note that the x236 propagator term has canceled with the numerator in eq. (5.9).

So we have no choice left for the quadruple cut as there are only four poles. In fact on the

other cut of the three propagators we find J|cut = 4(x214x
2
23−x213x

2
24)x

2
36, and so this brings

back the propagator x236.

Computing the Jacobian associated with this final integration thus yields the final

result for the leading singularity,

leading singularity #2 of H12;34 = ±
1

64π6 (x214x
2
23 − x213x

2
24)λ1234

. (5.11)

We conclude that the Hard integral can be written as these leading singularities times

pure functions, i.e. it has the form

H12;34 =
1

x413x
4
24

[

H(a)(x, x̄)

(x− x̄)2
+

H(b)(x, x̄)

(v − 1)(x− x̄)

]

, (5.12)

where H(a),(b) are pure polylogarithmic functions. The pure functions must furthermore

satisfy the following properties

H(a)(x, x̄) = H(a)(x̄, x) , H(b)(x, x̄) = −H(b)(x̄, x) , (5.13)

H(a)(x, x̄) = H(a)(x/(x− 1), x̄/(x̄− 1)) , H(b)(x, x̄) = H(b)(x/(x− 1), x̄/(x̄− 1)) ,

in order that H12;34 be symmetric in x, x̄ and under the permutation x1 ↔ x2. Furthermore

we would expect that H(a)(x, x) = 0 in order to cancel the pole at x − x̄. In fact it will

turn out in this section that even without imposing this condition by hand we will arrive

at a unique result which nevertheless has this particular property.

By swapping the points around we automatically get

H13;24 =
1

x413x
4
24

[

H(a)(1/x, 1/x̄)

(x− x̄)2
+

H(b)(1/x, 1/x̄)

(u− v)(x− x̄)

]

, (5.14)

H14;23 =
1

x413x
4
24

[

H(a)(1− x, 1− x̄)

(x− x̄)2
+

H(b)(1− x, 1− x̄)

(1− u)(x− x̄)

]

. (5.15)
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Weight Even Odd

1 2 0

2 3 1

3 6 3

4 12 9

5 28 24

6 69 65

Table 2. Dimensions of the spaces of integrable symbols with entries drawn from the set {x, 1 −

x, x̄, 1− x̄, x− x̄} and split according to the parity under exchange of x and x̄.

5.2 The symbols of H(a)(x, x̄) and H(b)(x, x̄)

In order to determine the pure functions contributing to the Hard integral, we proceed just

like for the Easy integral and first determine the symbol. For the Hard integral we have to

start from two ansätze for the symbols S[H(a)(x, x̄)] and S[H(b)(x, x̄)]. While both pure

functions are invariant under the exchange x1 ↔ x2, S[H
(a)] must be symmetric under the

exchange of x, x̄ and S[H(b)] has to be antisymmetric, cf. eq. (5.13). Going through exactly

the same steps as for E we find that the single-variable limits of the symbols cannot be

matched against the data from the asymptotic expansions using only entries from the set

{x, 1− x, x̄, 1− x̄}. We thus need to enlarge the ansatz.

Previously, the letter x − x̄ ∼ λ1234 has been encountered in ref. [58, 78] in a simi-

lar context. We therefore consider all possible integrable symbols made from the letters

{x, 1 − x, x̄, 1 − x̄, x − x̄} which obey the initial entry condition (2.13). In the case of the

Easy integral, the integrability condition only implied that terms depending on both x and

x̄ come from products of single-variable functions. Here, on the other hand, the condition

is more non-trivial since, for example,

d log
x

x̄
∧ d log(x− x̄) = d log x ∧ d log x̄ ,

d log
1− x

1− x̄
∧ d log(x− x̄) = d log(1− x) ∧ d log(1− x̄) .

(5.16)

We summarise the dimensions of the spaces of such symbols, split according to parity under

exchange of x and x̄, in table 2.

Given our ansatz for the symbols of the functions we are looking for, we then match

against the twist two asymptotics as described previously. We find a unique solution for

the symbols of both H(a) and H(b) compatible with all asymptotic limits. Interestingly,

the limit of H13;24 leaves one undetermined parameter in S[H(a)], which we may fix by

appealing to another limit. In the resulting symbols, the letter x − x̄ occurs only in the

last two entries of S[H(a)] while it is absent from S[H(b)]. Although we did not impose

this as a constraint, S[H(a)] goes to zero when x → x̄, which is necessary since the integral

cannot have a pole at x = x̄.
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5.3 The analytic results for H(a)(x, x̄) and H(b)(x, x̄)

In this section we integrate the symbol of the Hard integral to a function, i.e. we determine

the full answers for the functions H(a)(x, x̄) and H(b)(x, x̄) that contribute to the Hard

integral H12;34.

In the previous section we already argued that the symbol of H(b)(x, x̄) has all its en-

tries drawn from the set {x, 1−x, x̄, 1− x̄}, and so it is reasonable to assume that H(b)(x, x̄)

can be expressed in terms of SVHPLs only. We may therefore proceed by lifting directly

from the asymptotic form as we did in section 4.4 for the Easy integral. By comparing the

form of H13;24, eq. (5.14), with its asymptotic value (1.14) we can read off the asymptotic

form of H(1/x, 1/x̄). Writing log u as log x + log x̄, expanding out all the functions and

neglecting log x̄ terms, we can the lift directly to the full function by simply converting

HPLs to SVHPLs. In this way we arrive at

H(b)(1/x, 1/x̄) = 2L2,4 − 2L3,3 − 2L1,1,4 − 2L1,4,0 + 2L1,4,1 − 2L2,3,1 + 2L3,1,2

− 2L4,0,0 + 2L4,1,0 + 2L1,1,1,3 + 2L1,1,3,0 + 2L1,3,0,0 − 2L1,3,1,1

− 2L2,1,1,2 + 2L2,1,2,1 + 2L3,0,0,0 − 2L3,1,1,0 − 2L1,1,1,2,1 − 2L1,1,2,1,0

+ 2L1,1,2,1,1 − 2L1,2,1,0,0 + 2L1,2,1,1,0 − 2L2,1,0,0,0 + 2L2,1,1,0,0

+ 16ζ3L3 − 16ζ3L2,1 .

(5.17)

Other orientations although still quite simple do not all share the property that they only

have coefficients ±2. Using the basis of SVHPLs that makes the parity under exchange of

x and x̄ explicit, we can write the last equation in the equivalent form

H(b)(x, x̄) = 16L2,4 − 16L4,2 − 8L1,3,2 − 8L1,4,1 + 8L2,1,3 − 8L2,2,2 + 8L2,3,1 − 8L3,1,2

+ 16L3,2,0 + 8L3,2,1 − 8L4,1,1 + 4L1,2,2,1 − 8L1,3,1,1 − 4L2,1,1,2 + 8L2,1,2,1

− 8L2,2,1,0 − 4L2,2,1,1 + 8L3,1,1,0 − 4L1,1,2,1,1 − 24L2,1,1,1,0 . (5.18)

Next, we turn to the function H(a)(x, x̄). As the symbol of H(a)(x, x̄) contains the

entry x− x̄, it cannot be expressed through SVHPLs only. Single-valued functions whose

symbols have entries drawn from the set {x, 1 − x, x̄, 1 − x̄, x − x̄} have been studied

up to weight four in ref. [58], and a basis for the corresponding space of functions was

constructed. The resulting single-valued functions are combinations of logarithms of x

and x̄ and multiple polylogarithms G(a1, . . . , an; 1), with ai ∈ {0, 1/x, 1/x̄}. Note that the

harmonic polylogarithms form a subalgebra of this class of functions, because we have, e.g.,

G

(

0,
1

x
,
1

x
; 1

)

= H(0, 1, 1;x) . (5.19)

This class of single-valued functions thus provides a natural extension of the SVHPLs we

have encountered so far. In the following we show how we can integrate the symbol of

H(a)(x, x̄) in terms of these functions. The basic idea is the same as for the case of the

SVHPLs: we would like to write down the most general linear combination of multiple

polylogarithms of this type and fix their coefficients by matching to the symbol and the
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asymptotic expansion of H(a)(x, x̄). Unlike the SVHPL case, however, some of the steps

are technically more involved, and we therefore discuss these points in detail.

Let us denote by G the algebra generated by log x and log x̄ and by multiple polylog-

arithms G(a1, . . . , an; 1), with ai ∈ {0, 1/x, 1/x̄}, with coefficients that are polynomials in

multiple zeta values. Note that without loss of generality we may assume that an 6= 0. In

the following we denote by G± the linear subspaces of G of the functions that are respec-

tively even and odd under an exchange of x and x̄. Our first goal will be to construct a

basis for the algebra G, as well as for its even and odd subspaces. As we know the gener-

ators of the algebra G, we automatically know a basis for the underlying vector space for

every weight. It is however often desirable to choose a basis that “recycles” as much as

possible information from lower weights, i.e. we would like to choose a basis that explicitly

includes all possible products of lower weight basis elements. Such a basis can always eas-

ily be constructed: indeed, a theorem by Radford [79] states that every shuffle algebra is

isomorphic to the polynomial algebra constructed out of its Lyndon words. In our case, we

immediately obtain a basis for G by taking products of log x and log x̄ and G(a1, . . . , an; 1),

where (a1, . . . , an) is a Lyndon word in the three letters {0, 1/x, 1/x̄}. Next, we can eas-

ily construct a basis for the eigenspaces G± by decomposing each (indecomposable) basis

function into its even and odd parts. In the following we use the shorthands

G±
m1,...,mk

(x1, . . . , xk) =
1

2
G

(

0, . . . , 0
︸ ︷︷ ︸

m1−1

,
1

x1
, . . . , 0, . . . , 0

︸ ︷︷ ︸

mk−1

,
1

xk
; 1

)

± (x ↔ x̄) . (5.20)

In doing so we have seemingly doubled the number of basis functions, and so not all the

eigenfunctions corresponding to Lyndon words can be independent. Indeed, we have for

example

G+
1,1(x, x̄) =

1

2
G+

1 (x)
2 −

1

2
G−

1 (x)
2 . (5.21)

It is easy to check this relation by computing the symbol of both sides of the equation.

Similar relations can be obtained without much effort for higher weight functions. The

resulting linearly independent set of functions are the desired bases for the eigenspaces.

We can now immediately write down the most general linear combination of elements of

weight six in G+ and determine the coefficients by matching to the symbol of H(a)(x, x̄).

As we are working with a basis, all the coefficients are fixed uniquely.

At this stage we have determined a function in G+ whose symbol matches the symbol of

H(a)(x, x̄). We have however not yet fixed the terms proportional to zeta values. We start

by parametrising these terms by writing down all possible products of zeta values and basis

functions in G+. Some of the free parameters can immediately be fixed by requiring the

function to vanish for x = x̄ and by matching to the asymptotic expansion. Note that our

basis makes it particularly easy to compute the leading term in the limit x̄ → 0, because

lim
x̄→0

G±
~m(. . . , x̄, . . .) = 0 . (5.22)

In other words, the small u limit can easily be approached by dropping all terms which

involve (non-trivial) basis functions that depend on x̄. The remaining terms only depend
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on log x̄ and harmonic polylogarithms in x. However, unlike for SVHPLs, matching to the

asymptotic expansions does not fix uniquely the terms proportional to zeta values. The

reason for this is that, while in the SVHPL case we could rely on our knowledge of a basis

for the single-valued subspace of harmonic polylogarithms, in the present case we have been

working with a basis for the full space, and so the function we obtain might still contain

non-trivial discontinuities. In the remainder of this section we discuss how on can fix this

ambiguity.

In ref. [58] a criterion was given that allows one to determine whether a given func-

tion is single-valued. In order to understand the criterion, let us consider the algebra

G generated by multiple polylogarithms G(a1, . . . , an; an+1), with ai ∈ {0, 1/x, 1/x̄} and

an+1 ∈ {0, 1, 1/x, 1/x̄}, with coefficients that are polynomials in multiple zeta values. Note

that G contains G as a subalgebra. The reason to consider the larger algebra G is that G car-

ries a Hopf algebra structure9 [80], i.e. G can be equipped with a coproduct ∆ : G → G⊗G.

Consider now the subspace GSV of G consisting of single-valued functions. It is easy to see

that GSV is a subalgebra of G. However, it is not a sub-Hopf algebra, but rather GSV is a

G-comodule, i.e. ∆ : GSV → GSV ⊗ G. In other words, when acting with the coproduct on

a single-valued function, the first factor in the coproduct must itself be single-valued. As

a simple example, we have

∆(L2) =
1

2
L0 ⊗ log

1− x

1− x̄
+

1

2
L1 ⊗ log

x̄

x
. (5.23)

Note that this is a natural extension of the first entry condition discussed in section 2. This

criterion can now be used to recursively fix the remaining ambiguities to obtain a single-

valued function. In particular, in ref. [58] an explicit basis up to weight four was constructed

for GSV . We extended this construction and obtained a complete basis at weight five, and

we refer to ref. [58] about the construction of the basis. All the remaining ambiguities can

then easily be fixed by requiring that after acting with the coproduct, the first factor can

be decomposed into the basis of GSV up to weight five. We then finally arrive at

H(a)(x, x̄) = H(x, x̄)−
28

3
ζ3L1,2 + 164ζ3L2,0 +

136

3
ζ3L2,1 −

160

3
L3L2,1 − 66L0L1,4

−
148

3
L0L2,3 +

64

3
L2L3,1 +

52

3
L0L3,2 + 16L1L3,2 + 36L0L4,1 + 64L1L4,1

+
70

3
L0L1,2,2 + 24L0L1,3,1 +

26

3
L1L1,3,1 − 8L2L2,1,1 + 64L0L2,1,2

−
58

3
L0L2,2,0 − 4L0L2,2,1 +

50

3
L1L2,2,1 − 12L0L3,1,0 −

88

3
L0L3,1,1

+ 18L1L3,1,1 −
32

3
L0L1,1,2,1 − 18L0L1,2,1,1 +

166

3
L0L2,1,1,0 − 8L0L2,1,1,1

+ 328ζ3L3 + 32L3
2 − 64L2L4 .

(5.24)

9Note that we consider a slightly extended version of the Hopf algebra considered in ref. [80] that allows

us to include consistently multiple zeta values of even weight, see ref. [81, 82].
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The function H(x, x̄) is a single-valued combination of multiple polylogarithms that cannot

be expressed through SVHPLs alone,

H(x, x̄) = −128G+
4,2̄

− 512G+
5,1̄

− 64G+
3,1,2̄

+ 64G+
3,1̄,2

− 64G+
3,1̄,2̄

− 128G+
3,2̄,1̄

+ 64G+
4,1,1̄

− 64G+
4,1̄,1

− 448G+
4,1̄,1̄

+ 64G+
2,1̄,2,1

+ 64G+
2,1̄,2̄,1̄

+ 64G+
2,2,1,1̄

+ 64G+
2,2,1̄,1

− 64G+
2,2,1̄,1̄

+ 128G+
2,2̄,1,1

+ 128G+
2,2̄,1̄,1̄

+ 256G+
3,1,1,1̄

+ 128G+
3,1,1̄,1

− 128G+
3,1,1̄,1̄

+ 192G+
3,1̄,1,1

− 64G+
3,1̄,1,1̄

− 64G+
3,1̄,1̄,1

+ 192G+
3,1̄,1̄,1̄

+ 128H+
2,4 − 128H+

4,2

+
640

3
H+

2,1,3 −
64

3
H+

2,3,1 −
256

3
H+

3,1,2 + 64H+
2,1,1,2 − 64H+

2,2,1,1 + 64L0G
+
3,2̄

(5.25)

+ 256L0G
+
4,1̄

+ 32L0G
+
2,1,2̄

+ 64L0G
+
2,2,1̄

+ 96L0G
+
3,1,1̄

+ 32L0G
+
3,1̄,1

+ 96L0G
+
3,1̄,1̄

− 64L0G
+
2,1,1,1̄

+ 64L0G
+
2,1̄,1̄,1̄

− 32L1G
+
3,2̄

− 128L1G
+
4,1̄

− 16L1G
+
2,1,2̄

− 32L1G
+
2,2,1̄

− 80L1G
+
3,1,1̄

− 16L1G
+
3,1̄,1

− 16L1G
+
3,1̄,1̄

− 64L2G
−
2,1̄,1̄

+ 64L4G
−
1,1̄

+ 32L2,2G
−
1,1̄

−
32

3
H+

2 H+
2,2 − 64H+

2 H+
2,1,1 − 128H+

2 H+
4 − 64H−

1 L0G
−
2,1̄,1̄

− 32L2
0G

+
3,1̄

− 32L2
0G

+
2,1̄,1̄

+ 32L2
0G

+
1,1,1,1̄

+ 32L1L0G
+
3,1̄

+ 16L1L0G
+
2,1,1̄

+ 16L1L0G
+
2,1̄,1̄

−
80

3
H−

1 L0L2,2 − 48H−
1 L0L2,1,1 + 12H−

1 L1L2,2 + 16L2
0H

+
2,2

+ 32L2
0H

+
2,1,1 − 64H−

1 L4L0 + 16H−
1 L1L4 + 64L3G

+
1,1,1̄

−
640

3
H−

3 H−
2,1

+ 64(H−
2,1)

2 + 128(H−
3 )2 + 32L0L2G

−
2,1̄

− 32L0L2G
−
1,1,1̄

− 16L1L2G
−
2,1̄

+
16

3
L0L2H

−
2,1 + 16H−

1 L2L2,1 −
112

3
H+

2 L0L2,1 − 8H+
2 L1L2,1 − 32H−

3 L0L2

− 48H−
1 L3L2 + 32H+

2 L0L3 + 16H+
2 L1L3 + 32H−

1 L2
0G

−
2,1̄

− 16H−
1 L1L0G

−
2,1̄

+
16

3
L3
0G

+
2,1̄

+
16

3
L3
0G

+
1,1,1̄

− 8L1L
2
0G

+
2,1̄

− 8L1L
2
0G

+
1,1,1̄

+
16

3
H−

1 L2
0H

−
2,1

− 16(H−
1 )2L0L2,1 − 32H−

1 H−
3 L2

0 +
8

3
(H−

1 )2L3L0 − 12(H−
1 )2L1L3 + 28H+

2 L2
2

+
368(H+

2 )3

9
− 16L2

0L2G
−
1,1̄

− 8L0L1L2G
−
1,1̄

+
56

3
H−

1 H+
2 L0L2 − 8H−

1 H+
2 L1L2

+ 8(H−
1 )2L2

2 + 8(H+
2 )2L2

0 + 8(H+
2 )2L0L1 +

28

3
(H−

1 )2H+
2 L2

0 − 4(H−
1 )2H+

2 L0L1

− 96H−
2 (H−

1 )3L0 +
160

3
(H−

1 )3L0L2 +
52

3
H−

1 L3
0L2 + 4H−

1 L0L
2
1L2

+ 4H−
1 L2

0L1L2 +H+
2 L0L

3
1 +

2

3
H+

2 L2
0L

2
1 − 8H+

2 L3
0L1 +

148

3
(H−

1 )4L2
0

+
10

3
(H−

1 )2L4
0 + 5(H−

1 )2L2
0L

2
1 −

10

3
(H−

1 )2L3
0L1 − 128ζ3G

+
2,1̄

− 128ζ3G
+
1,1,1̄

+
16

3
ζ3(H

−
1 )2L0 + 24ζ3(H

−
1 )2L1 +

64

3
ζ3H

−
1 L2 ,

where we used the obvious shorthand

H±
~m ≡

1

2
H~m(x)± (x ↔ x̄) . (5.26)
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u v Analytic FIESTA δ

0.1 0.2 269.239 269.236 6.4e-6

0.2 0.3 136.518 136.518 1.9e-6

0.3 0.1 204.231 204.230 1.3e-6

0.4 0.5 61.2506 61.2505 5.0e-7

0.5 0.6 46.1929 46.1928 3.5e-7

0.6 0.2 82.7081 82.7080 7.4e-7

0.7 0.3 57.5219 57.5219 4.7e-7

0.8 0.9 24.6343 24.6343 2.0e-7

0.9 0.5 34.1212 34.1212 2.6e-7

Table 3. Numerical comparison of the analytic result for x4
13x

4
24 H13;24 against FIESTA for several

values of the conformal cross ratios.

and similarly for G±
~m. In addition, for G±

~m the position of x̄ is indicated by the bars in the

indices, e.g.,

G±
1,2̄,3̄

≡ G±
1,2,3(x, x̄, x̄) . (5.27)

Note that we have expressed H(x, x̄) entirely using the basis of G+ constructed at the be-

ginning of this section. As a consequence, all the terms are linearly independent and there

can be no cancellations among different terms.

5.4 Numerical consistency checks for H

In the previous section we have determined the analytic result for the Hard integral. In

order to check that our method indeed produced the correct result for the integral, we

have compared our expression numerically against FIESTA. Specifically, we evaluate the

conformally-invariant function x413x
4
24H13;24. Applying a conformal transformation to send

x4 to infinity, the integral takes the simplified form,

lim
x4→∞

x413x
4
24H13;24 =

1

π6

∫
d4x5d

4x6d
4x7 x

4
13x

2
57

(x215x
2
25x

2
35)x

2
56(x

2
36)x

2
67(x

2
17x

2
27x

2
37)

, (5.28)

with 9 propagators. As we did for E14;23, we use the remaining freedom to fix x213 = 1 so

that u = x212 and v = x223, and perform the numerical evaluation using the same setup. We

compare at 40 different values, and find excellent agreement in all cases. A small sample

of the numerical checks is shown in table 3.

6 The analytic result for the three-loop correlator

In the previous sections we computed the Easy and Hard integrals analytically. Using

eq. (1.8), we can therefore immediately write down the analytic answer for the three-loop
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correlator of four stress tensor multiplets. We find

x213 x
2
24 F3 =

6

x− x̄

[

f (3)(x) + f (3)

(

1−
1

x

)

+ f (3)

(
1

1− x

)]

+
2

(x− x̄)2
f (1)(x)

[

v f (2)(x) + f (2)

(

1−
1

x

)

+ u f (2)

(
1

1− x

)]

(6.1)

+
4

x− x̄

[
1

v − 1
E(x) +

v

v − 1
E

(
x

x− 1

)

+
1

1− u
E(1− x)

+
u

1− u
E

(

1−
1

x

)

+
u

u− v
E

(
1

x

)

+
v

u− v
E

(
1

1− x

)]

+
1

(x− x̄)2

[

(1 + v)H(a)(x) + (1 + u)H(a) (1− x) + (u+ v)H(a)

(
1

x

)]

+
1

x− x̄

[
v + 1

v − 1
H(b)(x) +

1 + u

1− u
H(b) (1− x) +

u+ v

u− v
H(b)

(
1

x

)]

.

The pure functions appearing in the correlator are defined in eqs. (2.3), (4.20), (5.17)

and (5.24). For clarity, we suppressed the dependence of the pure functions on x̄, i.e. we

write f (L)(x) ≡ f (L)(x, x̄) and so on. All the pure functions can be expressed in terms

of SVHPLs, except for H(a) which contains functions whose symbols involve x − x̄ as an

entry. We checked that these contributions do not cancel in the sum over all contributions

to the correlator.

7 A four-loop example

In this section we will discuss a four-loop integral to illustrate how our techniques can be

applied at higher loops. The example we consider contributes to the four-loop four-point

function of stress-tensor multiplets in N = 4 SYM. Specifically, we consider the Euclidean,

conformal, four-loop integral,

I
(4)
14;23 =

1

π8

∫
d4x5d

4x6d
4x7d

4x8x
2
14x

2
24x

2
34

x215x
2
18x

2
25x

2
26x

2
37x

2
38x

2
45x

2
46x

2
47x

2
48x

2
56x

2
67x

2
78

=
1

x213x
2
24

f(u, v) , (7.1)

where the cross ratios u and v are defined by eq. (1.11). As we will demonstrate in the

following sections, this integral obeys a second-order differential equation whose solution is

uniquely specified by imposing single-valued behaviour, similar to the generalised ladders

considered in ref. [63].

The four-loop contribution to the stress-tensor four-point function in N = 4 SYM con-

tains some integrals that do not obviously obey any such differential equations, and with

the effort presented here we also wanted to learn to what extent the two-step procedure of

deriving symbols and subsequently uplifting them to functions can be repeated for those

cases. Our results are encouraging: the main technical obstacle is obtaining sufficient data

from the asymptotic expansions; we show that this step is indeed feasible, at least for I(4),

and present the results in section 7.1. Ultimately we find it simpler to evaluate I(4) by

solving a differential equation, and in this case the asymptotic expansions provide stringent

consistency checks.
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7.1 Asymptotic expansions

Let us first consider the limits of the four-loop integral (7.1) and its point permutations

for x12, x34 → 0. We derive expressions for its asymptotic expansion in the limit where

u → 0, v → 1 similar to those for the Easy and Hard integrals obtained in section 3. The

logarithmic terms can be fully determined, while the non-logarithmic part of the expansion

requires four-loop IBP techniques that allow us to reach spin 15. This contains enough

information to fix the ζn log
0(u) terms (important for beyond-the-symbol contributions)

while the purely rational part of the asymptotic series remains partially undetermined.

However, our experience with Easy and Hard has shown that each of the three coincidence

limits is (almost) sufficient to pin down the various symbols. Inverting the integrals from

one orientation to another ties non-logarithmic terms in one expansion to logarithmic ones

in another, so that we do in fact command over much more data than it superficially seems.

It is also conceivable to take into account more than the lowest order in u.

We start by investigating the asymptotic expansion of the integral I
(4)
14;23 whose coinci-

dence limit x12, x34 → 0 diverges as log2 u. There are three contributing regions: while in

the first two regions the original integral factors into a product of two two-loop integrals or

a one-loop integral and a trivial three-loop integral, the third part corresponds to the four-

loop ‘hard’ region in which the original integral is simply expanded in the small distances.

The coefficients of the logarithmically divergent terms in the asymptotic expansion, i.e.

the coefficients of log2 u and log u, can be worked out from the first two regions alone. It

is easy to reach high powers in x and we obtain a safe match onto harmonic series of the

type (3.2) with i > 1. Similar to the case of the Easy and Hard integrals discussed in

section 3, we can sum up the harmonic sums in terms of HPLs. Note that the absence of

harmonic sums with i = 1 implies the absence of HPLs of the form H1,...(x).

In the hard region, we have explicitly worked out the contribution from spin zero

through eight, i.e., up to and including terms of O(x8). By what has been said above

about the form of the series, this amount of data is sufficient to pin down the terms involv-

ing zeta values, while we cannot hope to fix the purely rational part where the dimension of

the ansatz is larger than the number of constraints we can obtain. The linear combination

displayed below was found from the limit x̄ → 0 of the symbol of the four-loop integral

derived in subsequent sections. Its expansion around x = 0 reproduces the asymptotic

expansion of the integral up to O(x8). We find

x213 x
2
24 I

(4)
14;23 = (7.2)

1

2x
log2 u

[

H2,1,3 −H2,3,1 +H3,1,2 −H3,2,1 + 2H2,1,1,2 − 2H2,2,1,1 + ζ3(6H3 + 6H2,1)
]

+

1

x
log u

[

−4H2,1,4 + 4H2,4,1 − 3H3,1,3 + 3H3,3,1 − 3H4,1,2 + 3H4,2,1 − 4H2,1,1,3 − 4H2,1,2,2

+ 4H2,2,2,1 + 4H2,3,1,1 − 2H3,1,1,2 + 2H3,2,1,1 + ζ3(−18H4 − 8H2,2 − 2H3,1 + 8H2,1,1)
]

+

1

x

[

10H2,1,5 + 2H2,2,4 − 2H2,3,3 − 10H2,5,1 + 8H3,1,4 − 8H3,4,1 + 6H4,1,3 − 6H4,3,1

+ 6H5,1,2 − 6H5,2,1 + 8H2,1,1,4 + 6H2,1,2,3 + 8H2,1,3,2 − 2H2,1,4,1 + 2H2,2,2,2 − 4H2,2,3,1

− 4H2,3,1,2−10H2,3,2,1−4H2,4,1,1+4H3,1,1,3+6H3,1,2,2−6H3,2,2,1−4H3,3,1,1+4H2,1,1,2,2
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− 4H2,1,2,2,1 − 4H2,2,1,1,2 + 4H2,2,2,1,1 + ζ3(36H5 + 8H2,3 + 12H3,2 − 12H4,1 − 4H2,1,2

− 16H2,2,1 − 8H3,1,1) + ζ5(10H3 + 10H2,1)
]

+O(u) .

Next we turn to the asymptotic expansion of the orientation I
(4)
12;34. Here the Euclidean

coincidence limit x12, x34 → 0 is finite, and thus the only region we need to analyse is the

four-loop hard region, for which we have determined the asymptotic expansion up to and

including terms of O(x15). Just like for the non-logarithmic part in the asymptotic expan-

sion of I
(4)
14;23, eq. (7.2), we have fixed the terms proportional to zeta values by matching

an ansatz in terms of HPLs onto this data, and once again, the terms not containing zeta

values are taken from the relevant limit of the symbol. We find

x213 x
2
24 I

(4)
12;34 = (7.3)

1

x

[

4H1,3,4 − 4H1,5,2 + 2H1,1,2,4 − 2H1,1,4,2 + 2H1,2,1,4 − 2H1,2,3,2 + 2H1,3,1,3 + 2H1,3,3,1

− 2H1,4,1,2−2H1,5,1,1+H1,1,2,1,3+H1,1,2,3,1−H1,1,3,1,2−H1,1,3,2,1+H1,2,1,1,3+H1,2,1,3,1

−H1,2,2,1,2 +H1,2,2,2,1 − 2H1,2,3,1,1 +H1,3,1,2,1 −H1,3,2,1,1 +H1,2,1,1,2,1 −H1,2,1,2,1,1+

ζ3(8H1,1,3 − 8H1,2,2 + 4H1,1,2,1 − 4H1,2,1,1) + 70 ζ7H1

]

+O(u) .

The expansion around x = 0 of this expression reproduces the asymptotic expansion of the

integral up to O(x15).

The most complicated integrals appearing in the asymptotic expansion of I
(4)
14;23, I

(4)
12;34

are four-loop two-point dimensionally regularised (in position space) integrals which belong

to the family of integrals contributing to the evaluation of the five-loop contribution to the

Konishi anomalous dimension [49],

G(a1, . . . , a14) =

∫
ddx6d

dx7d
dx8d

dx9
(x216)

a1(x217)
a2(x218)

a3(x219)
a4(x26)

a5(x27)
a6(x28)

a7

×
1

(x29)
a8(x267)

a9(x268)
a10(x269)

a11(x278)
a12(x279)

a13(x289)
a14

, (7.4)

with various integer indices a1, . . . , a14 and d = 4− 2ǫ.

The complexity of the IBP reduction to master integrals is determined, in a first

approximation, by the number of positive indices and the maximal deviation from the

corner point of a sector, which has indices equal to 0 or 1 for non-positive and positive

indices, correspondingly. This deviation can be characterised by the number
∑

i∈ν+
(ai −

1) −
∑

i∈ν−
ai where ν± are sets of positive (negative) indices. So the most complicated

(for an IBP reduction) integrals appearing in the contribution of spin s to the asymptotic

expansion in the short-distance limit have nine positive indices and the deviation from the

corner point is equal to 2s− 2. It was possible to get results up to spin 15.

As in ref. [49] the IBP reduction was performed by the c++ version of the code FIRE [68].

The master integrals of this family either reduce, via a dual transformation, to the cor-

responding momentum space master integrals [83, 84] or can be taken from ref. [49]. To

arrive at contributions corresponding to higher spin values, FIRE was combined with a

recently developed alternative code to solve IBP relations LiteRed [85] based on the alge-

braic properties of IBP relations revealed in ref. [86]. (See ref. [87] where this combination

was presented within the Mathematica version of FIRE.)
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7.2 A differential equation

We can use the magic identity [52] on the two-loop ladder subintegral

I(2)(x1, x2, x4, x7) = h17;24 =
1

π4

∫
d4x5d

4x6x
2
24

x215x
2
25x

2
26x

2
45x

2
46x

2
67x

2
56

. (7.5)

The magic identity reads

I(2)(x1, x2, x4, x7) = I(2)(x2, x1, x7, x4) , (7.6)

and using it on the four-loop integral we find

I
(4)
14;23 =

1

π4

∫
d4x7d

4x8x
2
14x

2
34

x218x
2
37x

2
38x

2
47x

2
48x

2
78

I(2)(x1, x2, x4, x7)

=
1

π4

∫
d4x7d

4x8x
2
14x

2
34

x218x
2
37x

2
38x

2
47x

2
48x

2
78

I(2)(x2, x1, x7, x4)

=
1

π8

∫
d4x5d

4x6d
4x7d

4x8x
2
17x

2
14x

2
34

x218x
2
37x

2
38x

2
47x

2
48x

2
78x

2
25x

2
15x

2
16x

2
75x

2
76x

2
64x

2
56

. (7.7)

The resulting integral (7.7) is ‘boxable’, i.e. we may apply the Laplace operator at the

point x2. The only propagator which depends on x2 is the one connected to the point x5
and we have

�2
1

x225
= −4π2δ4(x25) . (7.8)

The effect of the Laplace operator is therefore to reduce the loop order by one [52]. Thus

on the full integral I(4) we have

�2I
(4)
14;23 = −

4

π6

∫
d4x6d

4x7d
4x8x

2
17x

2
14x

2
34

x218x
2
37x

2
38x

2
47x

2
48x

2
78x

2
12x

2
16x

2
72x

2
76x

2
64x

2
26

= −4
x214

x212x
2
24

E14;23 , (7.9)

where we have recognised the Easy integral,

E14;23 =
1

π6

∫
d4x6d

4x7d
4x8x

2
34x

2
24x

2
17

x218x
2
37x

2
38x

2
47x

2
48x

2
78x

2
16x

2
72x

2
76x

2
64x

2
26

=
1

x213x
2
24

fE(u, v) . (7.10)

The differential equation (7.9) becomes an equation for the function f ,

�2
1

x213x
2
24

f(u, v) = −4
x214

x212x
2
13x

4
24

fE(u, v) . (7.11)

Applying the chain rule we obtain the following equation in terms of u and v,

∆(2)f(u, v) = −
4

u
fE(u, v) , (7.12)

where

∆(2) = 4[2(∂u + ∂v) + u∂2
u + v∂2

v − (1− u− v)∂u∂v] . (7.13)

In terms of (x,x̄) we have

xx̄∂x∂x̄f̂(x, x̄) = −f̂E(x, x̄) , (7.14)
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where

f̂(x, x̄) = −(x− x̄)f(u, v) (7.15)

and similarly for f̂E . Note that f̂(x, x̄) = −f̂(x̄, x). Now we recall that the function

fE(u, v) defined by eq. (7.10) in the orientation E14;23 is of the form

fE(u, v) =
1

(x− x̄)(1− xx̄)

[

E(1− x, 1− x̄) + xx̄E
(

1−
1

x
, 1−

1

x̄

)]

. (7.16)

Hence we find the following equation for f̂ ,

(1− xx̄)xx̄∂x∂x̄f̂(x, x̄) = −
[

E(1− x, 1− x̄) + xx̄E
(

1−
1

x
, 1−

1

x̄

)]

. (7.17)

Without examining the equation in great detail we can immediately make the following

observations about f̂ .

• The function f̂ is a pure function of weight eight. From eq. (7.15) the only leading

singularity of the four-loop integral I(4) is therefore of the 1/(x− x̄) type, just as for

the ladders.

• The final entries of the symbol of f̂(x, x̄) can be written as functions only of x or of x̄,

but not both together. This follows because the right-hand side of eq. (7.17) contains

only functions of weight six, whereas there would be a contribution of weight seven

if the final entries could not be separated into functions of x or x̄ separately. Indeed

the final entries can only be x or x̄ themselves due to the form of the prefactor on

the l.h.s. of (7.17).

• The factor (1− xx̄) on the left-hand side implies that the next-to-final entries in the

symbol of f̂(x, x̄) contain the letter (1−xx̄). This can be seen from the fact that the

r.h.s. of equation (7.17) has no overall factor of (1−xx̄). Therefore the prefactor (1−

xx̄) on the l.h.s. of (7.17) must be cancelled by a denominator obtained by the action

of the differential operator on the symbol entries of f̂ . Since the final entries are only x

or of x̄, the factor (1−xx̄) must appear in some of the penultimate slots of the symbol.

In ref. [63], slightly simpler, but very similar, equations were analysed for a class of

generalised ladder integrals. The analysis of ref. [63] can be adapted to the case of the

four-loop integral I(4) and, as in ref. [63], the solution to the equation (7.17) is uniquely

determined by imposing single-valued behaviour on f̂ .

First of all we note that any expression of the form h(x)−h(x̄) obeys the homogeneous

equation and antisymmetry under the exchange of x and x̄ and hence can be added to any

solution of eq. (7.17). However, the conditions of single-valuedness,

[discx − discx̄]f̂(x, x̄) = 0 , [disc1−x − disc1−x̄]f̂(x, x̄) = 0 , (7.18)

and that 0 and 1 are the only singular points, fix this ambiguity.

Let us see how the ambiguity is fixed. Imagine that we have a single-valued solution

and we try to add h(x) − h(x̄) to it so that it remains a single-valued solution. Then the
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conditions (7.18) on the discontinuites tell us that h can have no branch cuts at x = 0 or

x = 1. Since these are the only places that the integral has any singularities, we conclude

it has no branch cuts at all. Since the only singularities of the integral are logarithmic

branch points, h has no singularities at all and the only allowed possibility is that h is

constant, which drops out of the combination h(x) − h(x̄). Thus there is indeed a unique

single-valued solution to eq. (7.17). The argument we have just outlined is identical to the

one used in ref. [63] to solve for the generalised ladders.

A very direct way of obtaining the symbol of the single-valued solution to eq. (7.17) is

to make an ansatz of weight eight from the five letters

{x, 1− x, x̄, 1− x̄, 1− xx̄} , (7.19)

and impose integrability and the initial entry condition. Then imposing that the differential

equation is satisfied directly at symbol level leads to a unique answer.

7.3 An integral solution

Now let us look at the differential equation (7.17) in detail and construct the single-valued

solution. It will be convenient to organise the right-hand side of the differential equa-

tion (7.17) according to symmetry under x ↔ 1/x. We define

E+(x, x̄) =
1

2

[

E(1− x, 1− x̄) + E
(

1−
1

x
, 1−

1

x̄

)]

,

E−(x, x̄) =
1

2

[

E(1− x, 1− x̄)− E
(

1−
1

x
, 1−

1

x̄

)]

. (7.20)

Then the differential equation reads

(1− xx̄)xx̄∂x∂x̄f̂(x, x̄) = −(1− xx̄)E−(x, x̄)− (1 + xx̄)E+(x, x̄) . (7.21)

We may now split the equation (7.21) into two parts

xx̄∂x∂x̄fa(x, x̄) = −E−(x, x̄) , (7.22)

(1− xx̄)xx̄∂x∂x̄fb(x, x̄) = −(1 + xx̄)E+(x, x̄) . (7.23)

Note that we may take both fa and fb to be antisymmetric under x ↔ 1/x.

The equation (7.22) is of exactly the same form as the equations considered in ref. [63].

Following the prescription given in ref. [63], section 6.1, it is a simple matter to find a single-

valued solution to the equation (7.22) in terms of single-valued polylogs. We find

fa(x, x̄) = L3,4,0 − 2L4,3,0 + L5,2,0 + 2L3,2,2,0 − 2L4,1,2,0 − L4,2,0,0 − 2L4,2,1,0 + L5,0,0,0

+ 2L5,1,0,0 + 2L5,1,1,0 + 2L4,1,1,0,0 − 4ζ3(L̄5 − 2L̄3,2 + 2L̄4,0 + 3L̄4,1) (7.24)

We now treat the equation (7.23) for fb. Let us split it into two parts so that fb(x, x̄) =

f1(x, x̄) + f2(x, x̄),

(1− xx̄)xx̄∂x∂x̄f1(x, x̄) = −E+(x, x̄) ,
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(1− xx̄)∂x∂x̄f2(x, x̄) = −E+(x, x̄) . (7.25)

We may write integral solutions

f1(x, x̄) = −

∫ x

1

dt

t

∫ x̄

1

dt̄

t̄

E+(t, t̄)

1− tt̄
(7.26)

and

f2(x, x̄) = −f1(1/x, 1/x̄) = −

∫ x

1
dt

∫ x̄

1
dt̄
E+(t, t̄)

1− tt̄
(7.27)

which obey the equations (7.25).

It follows that the full function f̂ is given by

f̂(x, x̄) = fa(x, x̄) + f1(x, x̄) + f2(x, x̄) + h(x)− h(x̄) (7.28)

for some holomorphic function h. We note that f̂(x, 1)− fa(x, 1) = h(x)− h(1).

Now we examine the function f2 in more detail. Writing E+(t, t̄) =
∑

iHwi
(t)Hw′

i
(t̄)

we find

f2(x, x̄) =
∑

i

∫ x

1

dt

t
Hwi

(t)Iw′

i
(t, x̄) (7.29)

where, for a word w made of the letters 0 and 1,

Iw(x, x̄) =

∫ x̄

1

dt̄

t̄− 1/x
Hw(t̄) = (−1)d(G(

1

x
,w; x̄)−G(

1

x
,w; 1)) . (7.30)

We may now calculate the symbol of f2. We note that

df2(x, x̄) = d log x
∑

i

Hwi
(x)Iw′

i
(x, x̄)− (x ↔ x̄) . (7.31)

The symbol of Iw is obtained recursively using

S(Iw(x, x̄)) = S(Hw(x̄))⊗
1− xx̄

1− xa0
− (−1)a0S(Iw′(x, x̄))⊗

x

1− xa0
, (7.32)

where w = a0w
′. When w is the empty word I(x, x̄) is a logarithm,

I(x, x̄) = log
1− xx̄

1− x
. (7.33)

Using the relations (7.31), (7.32), (7.33) we obtain the symbol of f2(x, x̄). One finds that

the result does not obey the initial entry condition (i.e. the first letters in the symbol are

not only of the form u = xx̄ or v = (1 − x)(1 − x̄)). However, the inital entry condition

can be uniquely restored by adding the symbols of single-variable functions in the form

S(h2(x)) − S(h2(x̄)). Inverting x ↔ 1/x we may similarly treat f1(x, x̄) = −f2(1/x, 1/x̄).

Combining everything we obtain the symbol

S(f̂(x, x̄)) = S(fa(x, x̄)+f2(x, x̄)+h2(x)−h2(x̄)−f2(1/x, 1/x̄)−h2(1/x)+h2(1/x̄)) . (7.34)

The symbol obtained this way agrees with that obtained by imposing the differential equa-

tion on an ansatz as described around eq. (7.19).
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Given that single-valuedness uniquely determines the solution of the differential equa-

tion (7.17) one might suspect that we can use this property to give an explicit representation

of the function h2(x). Indeed this is the case. The integral formula (7.29) can, in principle,

have discontinuities around any of the five divisors obtained by setting a letter from the

set (7.19) to zero.

Let us consider the discontinuity of f2(x, x̄) at x = 1/x̄,

discx=1/x̄f2(x, x̄) =

∫ x

1/x̄
dt disct=1/x̄

∫ x̄

1
dt̄
E+(t, t̄)

1− tt̄

=

∫ x

1/x̄
dt discx̄=1/t

∫ x̄

1
dt̄
E+(t, t̄)

1− tt̄

= −

∫ x

1/x̄

dt

t
(2πi)E+(t, 1/t) . (7.35)

The above expression vanishes due to the symmetry of E+ under x ↔ 1/x and the anti-

symmetry under x ↔ x̄. The absence of such discontinuities is the reason that we split the

original equation into two pieces, one for fa and one for fb.

Now let us consider the discontinuity around x = 1. We find

disc1−xf2(x, x̄) = −

∫ x

1

dt

t
disc1−t

∫ x̄

1

dt̄

t̄− 1/t
E+(t, t̄)

= −(2πi)

∫ x

1

dt

t
E+(t, 1/t) +

∫ x

1
dt

∫ x̄

1
dt̄

disc1−tE+(t, t̄)

1− tt̄
. (7.36)

The first term above again vanishes due to the symmetries of E+. The second term will

cancel against the corresponding term involving disc1−t̄E+(t, t̄) in the integrand when we

take the combination [disc1−x − disc1−x̄]f2(x, x̄). The discontinuities at x = 1 and x̄ = 1

of f2 therefore satisfy the single-valuedness conditions (7.18) since E+ does.

For the discontinuities at x = 0 we find

discxf2(x, x̄) =

∫ x

0
dt disct

∫ x̄

1
dt̄
E+(t, t̄)

1− tt̄
=

∫ x

0
dt

∫ x̄

1

dt̄

1− tt̄
disctE+(t, t̄) . (7.37)

Now writing the t̄ integral above as
∫ x̄
1 =

∫ x̄
0 −

∫ 1
0 and using [disct−disct̄]E+(t, t̄) = 0 we find

[discx − discx̄]f2(x, x̄) =

[

−

∫ x

0
dt

∫ 1

0

dt̄

1− tt̄
disctE+(t, t̄)

]

+ (x ↔ x̄)

= discx

[

−

∫ x

0
dt

∫ 1

0

dt̄

1− tt̄
E+(t, t̄)

]

+ (x ↔ x̄) (7.38)

Thus f2(x, x̄) is not single-valued by itself since the above combination of discontinu-

ities (7.38) does not vanish. Note however that eq. (7.38) is of the form k(x) + k(x̄), as

necessary in order for it to be cancelled by adding a term of the form h2(x) − h2(x̄) to

f2(x, x̄). We now construct such a function h2(x).

Let

h02(x) =

∫ x

0
dt

∫ 1

0

dt̄

1− tt̄
E+(t, t̄) . (7.39)
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Writing E+(t, t̄) =
∑

iHwi
(t)Hw′

i
(t̄) we find

h02(x) = −

∫ x

0

dt

t

∑

i

H(wi; t)

∫ 1

0

dt̄

t̄− 1/t
H(w′

i; t̄) . (7.40)

We can write
∫ 1

0

dt̄

t̄− 1/t
Hw′

i
(t̄) = (−1)dG(1/t, w′

i(0, 1); 1) , (7.41)

where we have made explicit that w′
i is a word in the letters 0 and 1 and d is the number

of 1 letters. One can always rewrite this in terms of HPLs at argument t. Indeed we can

recursively apply the formula

G(
1

t
, a2, a3 . . . , an; 1) =

∫ t

0

dr

r − 1
G(

a2
r
, a3, . . . , an; 1)−

∫ t

0

dr

r
G(

1

r
, a3, . . . , an; 1) . (7.42)

to achieve this. Note that ai ∈ {0, 1} in the above formula. We also need

G(
1

t
, 0q; 1) = (−1)q+1Hq+1(t) . (7.43)

Once this has been done, one can use standard HPL relations to calculate the products

Hwi
(t)G(1/t, w′

i; 1) (7.44)

and perform the remaining integral from 0 to x w.r.t. t. We thus obtain a function h02
whose discontinuity at x = 0 is minus that of the x-dependent contribution to [discx −

discx̄]f2(x, x̄).

In ref. [63] an explicit projection operator F was introduced which removes the dis-

continuity at x = 0 of a linear combination of HPLs while preserving the discontinuity

at x = 1. The orthogonal projector (1 − F) removes the discontinuity at x = 1 while

preserving that at x = 0. We define

h2(x) = (1−F)h02(x) . (7.45)

Explicitly we find

h2(x) =
151

16
ζ6H2 +

15

2
ζ23H2 −

3

2
ζ2ζ3H2,0 −

15

4
ζ5H2,0 − ζ2ζ3H2,1 +

19

4
ζ4H2,2 + 2ζ3H2,3

− ζ2H2,4 +
21

8
ζ4H2,0,0 +

19

4
ζ4H2,1,0 +

17

2
ζ4H2,1,1 + 5ζ3H2,1,2 − ζ2H2,1,3 −

3

2
ζ3H2,2,0

+ ζ3H2,2,1 − ζ2H2,2,2 +
1

2
ζ2H2,3,0 − ζ2H2,3,1 −

3

2
ζ3H2,0,0,0 − 3ζ3H2,1,0,0 − 3ζ3H2,1,1,0

+ 4ζ3H2,1,1,1 + ζ2H2,1,2,0 − 2ζ2H2,1,2,1 +
1

2
H2,1,4,0 + ζ2H2,2,1,0 +

1

2
H2,3,2,0 −

1

2
H2,4,0,0

−H2,4,1,0 +
1

2
ζ2H2,1,0,0,0 + ζ2H2,1,1,0,0 + 2ζ2H2,1,1,1,0 +H2,1,1,3,0 +H2,1,2,2,0 −H2,1,3,0,0

+ 2H2,1,1,1,2,0 −H2,1,3,1,0 +H2,2,1,2,0 −
1

2
H2,2,2,0,0 −H2,2,2,1,0 +

1

2
H2,3,0,0,0 −H2,3,1,1,0
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−H2,1,1,2,0,0 +
1

2
H2,1,2,0,0,0 −H2,1,2,1,0,0 − 2H2,1,2,1,1,0 +H2,2,1,0,0,0 +H2,2,1,1,0,0

+H2,1,1,1,0,0,0 . (7.46)

Here the H functions are all implicitly evaluated at argument x.

The contribution from f1(x, x̄) = −f2(1/x, 1/x̄) is made single-valued by inversion on

x. So we define

h(x) = h2(x)− h2(1/x) . (7.47)

Finally we deduce that the combination

f̂(x, x̄) = fa(x, x̄) + f1(x, x̄) + f2(x, x̄) + h(x)− h(x̄) (7.48)

is single-valued and obeys the differential equation (7.17) and hence describes the four-

loop integral I(4) defined in equation (7.1). The equations (7.29), (7.46), (7.47) and (7.48)

therefore explicitly define the function f̂ .

7.4 Expression in terms of multiple polylogarithms

Now let us rewrite the integral form (7.29), (7.30) for f2(x, x̄) in terms of multiple poly-

logarithms. We use the following generalisation of relation (7.42),

G(
1

y
, a2, . . . , an; z) =

(

G

(
1

z
; y

)

−G

(
1

a2
; y

))

G(a2, . . . , an; z)

+

∫ y

0

(
dt

t− 1
a2

−
dt

t

)

G

(
1

t
, a3, . . . , an; z

)

(7.49)

to recursively rewrite the G(1t , . . .) appearing in the Iw′

i
(t, x̄) in eq. (7.29) so that the t

appears as the final argument. Note that in eq. (7.49), the two terms involving an explicit

appearance of 1/a2 vanish in the case a2 = 0. The recursion begins with

G(
1

y
; z) = log(1− yz) = G

(
1

z
; y

)

. (7.50)

The recursion allows us to write the products Hwi
(t)Iw′

i
(t, x̄) as a sum of multiple polylog-

arithms of the form G(w; t) where the weight vectors depend on x̄. Then we can perform

the final integration dt/t to obtain an expression for f2 in terms of multiple polylogs.

We may relate f1(x, x̄) directly to f2(x, x̄) since

f1(x, x̄) = −

∫ x

1

dt

t

∫ x̄

1

dt̄

t̄

E+(t, t̄)

1− tt̄
=

∫ x

1

dt

t2

∫ x̄

1

dt̄

t̄(t̄− 1/t)
E+(t, t̄)

=

∫ x

1

dt

t

[∫ x̄

1

dt̄

t̄− 1/t
E+(t, t̄)−

∫ x̄

1

dt̄

t̄
E+(t, t̄)

]

= f2(x, x̄)−
∑

i

[H0wi
(x)−H0wi

(1)][H0w′

i
(x̄)−H0w′

i
(1)] . (7.51)

For a practical scheme we express E+ as a sum over Hwi
(t)Hw′

i
(t̄) and do the t̄ integration.

In any single term of the integrand of f2, the recursion (7.49) will lead to multiple poly-

logarithms of the type G(. . . , 1/x̄; t). Next, we take the shuffle product with the second

polylogarithm and integrate over t.
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In this raw form our result is not manifestly antisymmetric under x ↔ x̄. Remarkably,

in the sum over all terms only G(0, 1/x̄, . . . ;x) remain. Upon rewriting

G

(

0,
1

x̄
, a1, . . . , an;x

)

= G(0;x)G

(
1

x̄
, a1, . . . , an;x

)

−

∫ x

0

dt

t− 1
x̄

G(0; t)G(a1, . . . , an; t)

(7.52)

we can use (7.49) to swap G(1/x̄, . . . ;x) for (a sum over) G(. . . , 1/x; x̄). Replacing the

original two-variable polylogarithms by 1/2 themselves and 1/2 the x, x̄ swapped version,

we can obtain a manifestly antisymmetric form. The shuffle algebra is needed to remove

zeroes from the rightmost position of the weight vectors and to bring the letters 1/x, 1/x̄

to the left of all entries 1. Finally we rescale to argument 1.

In analogy to the notation introduced for the Hard integral let us write

G3̂,2,1 = G

(

0, 0,
1

xx̄
, 0,

1

x
,
1

x
; 1

)

(7.53)

etc. Collecting terms, we find

I
(4)
14;23(x, x̄) = (7.54)

− L2,2,4+2L2,3,3−L2,4,2−2L2,1,1,4+2L2,1,2,3−2L2,1,3,2+2L2,1,4,1+2L2,2,1,3−2L2,2,2,2

− 2L2,2,3,1 + 2L2,3,1,2 + 2L2,3,2,0 + 2L2,3,2,1 − 2L2,4,1,0 − 2L2,4,1,1 − 2L3,1,3,0 + 2L3,3,1,0

− 4L2,1,1,2,2 + 4L2,1,2,2,1 + 4L2,2,1,1,2 − 4L2,2,2,1,0 − 4L2,2,2,1,1 − 4L3,1,1,2,0 + 2L3,2,1,0,0

+ 4L3,2,1,1,0 + L0 (−H−
1,2,4 + 2H−

1,3,3 −H−
1,4,2 − 2H−

1,1,1,4 + 2H−
1,1,2,3 − 2H−

1,1,3,2 + 2H−
1,1,4,1

+ 2H−
1,2,1,3−2H−

1,2,2,2−2H−
1,2,3,1+2H−

1,3,1,2+2H−
1,3,2,1−2H−

1,4,1,1−4H−
1,1,1,2,2+4H−

1,1,2,2,1

+ 4H−
1,2,1,1,2 − 4H−

1,2,2,1,1) + 4H−
1,2,5 − 4H−

1,3,4 − 4H−
1,4,3 + 4H−

1,5,2 + 8H−
1,1,1,5 − 4H−

1,1,2,4

+ 4H−
1,1,4,2 − 8H−

1,1,5,1 − 4H−
1,2,1,4 + 8H−

1,2,3,2 + 4H−
1,2,4,1 − 8H−

1,3,1,3 − 4H−
1,4,1,2 − 4H−

1,4,2,1

+ 8H−
1,5,1,1 + 8H−

1,1,1,2,3 + 8H−
1,1,1,3,2 − 8H−

1,1,2,3,1 − 8H−
1,1,3,2,1 − 8H−

1,2,1,1,3 + 8H−
1,2,3,1,1

− 8H−
1,3,1,1,2 + 8H−

1,3,2,1,1 + ζ3 (8L̄2,3 − 12L̄3,2 − 12L̄2,1,2 + 12L̄2,2,1 − 12L̄3,1,0 − 16L̄3,1,1

− 12L0H
−
1,1,2 + 12L0H

−
1,2,1 + 16H−

1,1,3 − 16H−
1,3,1 − 16H−

1,1,1,2 + 16H−
1,2,1,1) + 2L̄3ζ5

+ ζ23 (−24L2 − 72H−
2 − 48H−

1,1)+

G+
2̂
(−L4,2 − L4,0,0 − 2L4,1,0 − 2L4,1,1 − 4L̄2,1ζ3 + 4L0ζ3H

−
2 + 4L1ζ3H

−
2

+ 3L̄2H
−
4 + 2L̄1,1H

−
4 − 4L1H

−
5 + 4ζ3H

−
1,2 − 2L̄0,0H

−
1,3 + 5L0H

−
1,4 − 2L1H

−
1,4 − 12H−

1,5

+ 12ζ3H
−
2,1 − L̄0,0H

−
2,2 + 2L0H

−
2,3 − 2L1H

−
2,3 − 6H−

2,4 + L0H
−
3,2 − 2L1H

−
3,2 − 4L0H

−
4,1

− 2L1H
−
4,1+2H−

4,2+16H−
5,1+16ζ3H

−
1,1,1−2L̄0,0H

−
1,1,2+6L0H

−
1,1,3−12H−

1,1,4−2L̄0,0H
−
1,2,1

+ 6L0H
−
1,2,2−8H−

1,2,3+2L0H
−
1,3,1−8H−

1,3,2+4H−
1,4,1+2L̄0,0H

−
2,1,1+2L0H

−
2,1,2−4H−

2,1,3

− 2L0H
−
2,2,1 − 4H−

2,2,2 + 4H−
2,3,1 − 6L0H

−
3,1,1 + 4H−

3,1,2 + 12H−
3,2,1 + 12H−

4,1,1

+ 4L0H
−
1,1,1,2 − 8H−

1,1,1,3 − 8H−
1,1,2,2 − 4L0H

−
1,2,1,1 + 8H−

1,2,2,1 + 8H−
1,3,1,1 − L2H

+
4 )+

G+
3̂
(2L̄3,2 + 4L̄3,1,0 + 4L̄3,1,1 − 8ζ3H

−
2 − 6L̄2H

−
3 − 2L̄0,0H

−
3 − 4L̄1,1H

−
3 + 8L0H

−
4

+ 6L1H
−
4 − 20H−

5 − 8ζ3H
−
1,1 + 8L0H

−
1,3 + 4L1H

−
1,3 − 20H−

1,4 + 6L0H
−
2,2 + 4L1H

−
2,2
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− 16H−
2,3 + 4L0H

−
3,1 + 4L1H

−
3,1 − 16H−

3,2 − 8H−
4,1 + 4L0H

−
1,1,2 − 16H−

1,1,3 + 4L0H
−
1,2,1

− 16H−
1,2,2−8H−

1,3,1−4L0H
−
2,1,1−8H−

2,1,2+8H−
3,1,1−8H−

1,1,1,2+8H−
1,2,1,1+2L2H

+
3 )+

G+
2̂,1

(2L̄3,2 − L̄4,0 − 2L̄4,1 + 2L̄3,1,0 − 12L2ζ3 + 16ζ3H
−
2 − 4L̄2H

−
3

− 2L̄0,0H
−
3 + 8L0H

−
4 + 8L1H

−
4 − 20H−

5 + 16ζ3H
−
1,1 + 4L0H

−
1,3 − 16H−

1,4 + 4L0H
−
2,2

− 12H−
2,3 − 12H−

3,2 + 4L0H
−
1,1,2 − 8H−

1,1,3 − 8H−
1,2,2 − 4L0H

−
2,1,1 + 8H−

2,2,1 + 8H−
3,1,1)+

G+
4̂
(3L0H

−
3 − 12H−

4 + 3L0H
−
1,2 − 12H−

1,3 + 6L0H
−
2,1 − 12H−

2,2 − 12H−
3,1 + 6L0H

−
1,1,1

− 12H−
1,1,2 − 12H−

1,2,1) +G+
3̂,1

(2L3,0 + 4L3,1 − 8ζ3H
−
1 + 2L0H

−
3 − 4L1H

−
3 − 8H−

4

+ 4L0H
−
1,2 − 8H−

1,3 + 4L0H
−
2,1 − 8H−

2,2 − 8H−
1,1,2 + 8H−

2,1,1) +G+
2̂,2

(L4 + L3,0 + 4L3,1

− 16ζ3H
−
1 − 4L1H

−
3 + 4H−

1,3 + 4H−
2,2 + 8H−

3,1 − 4L0H
−
1,1,1 + 8H−

1,2,1 + 8H−
2,1,1)+

G+
2̂,1,1

(−2L4 + 2L3,0 + 16ζ3H
−
1 + 4L0H

−
1,2 − 8H−

1,3 − 8H−
2,2)+

G+
5̂
(−4H−

3 − 4H−
1,2 − 8H−

2,1 − 8H−
1,1,1) +G+

4̂,1
(−6L̄2,1 + 3L0H

−
2 + 6L1H

−
2 − 12H−

3

− 12H−
1,2 − 12H−

2,1) +G+
3̂,2

(−2L̄3 − 8L̄2,1 + 2L0H
−
2 + 8L1H

−
2 − 4H−

3 − 8H−
1,2

− 8H−
2,1 + 8H−

1,1,1) +G+
3̂,1,1

(4L̄3 + 4L0H
−
2 − 16H−

3 − 8H−
1,2) +G+

2̂,3
(−4L̄3 − 8L̄2,1

+ 2L0H
−
2 + 8L1H

−
2 − 4H−

1,2 − 8H−
2,1 + 8H−

1,1,1) +G+
2̂,2,1

(4L̄3 − 8H−
3 − 8H−

1,2)+

G+
2̂,1,2

(4L̄3 + 4L̄2,1 − 4L1H
−
2 − 4H−

3 + 8H−
2,1) +G+

2̂,1,1,1
(4L0H

−
2 − 8H−

3 )+

(10G+
2̂,4

+ 8G+
3̂,3

+ 3G+
4̂,2

− 8G+
2̂,1,3

− 8G+
2̂,2,2

− 4G+
2̂,3,1

− 8G+
3̂,1,2

− 8G+
3̂,2,1

− 6G+
4̂,1,1

+ 4G+
2̂,1,1,2

− 4G+
2̂,2,1,1

)L2 + (−16G+
2̂,4

− 12G+
3̂,3

− 6G+
4̂,2

− 4G+
5̂,1

+ 12G+
2̂,1,3

+ 12G+
2̂,2,2

+ 8G+
2̂,3,1

+ 8G+
3̂,1,2

+ 8G+
3̂,2,1

− 8G+
2̂,1,1,2

− 8G+
2̂,1,2,1

− 8G+
3̂,1,1,1

)H−
2 +

(−16G+
2̂,4

− 16G+
3̂,3

− 12G+
4̂,2

− 8G+
5̂,1

+ 8G+
2̂,1,3

+ 8G+
2̂,2,2

+ 8G+
3̂,1,2

)H−
1,1+

(20G+
2̂,5

+ 20G+
3̂,4

+ 12G+
4̂,3

+ 4G+
5̂,2

− 16G+
2̂,1,4

− 12G+
2̂,2,3

− 12G+
2̂,3,2

− 16G+
3̂,1,3

− 16G+
3̂,2,2

− 8G+
3̂,3,1

− 12G+
4̂,1,2

− 12G+
4̂,2,1

− 8G+
5̂,1,1

+ 8G+
2̂,1,1,3

+ 8G+
2̂,1,2,2

− 8G+
2̂,2,2,1

− 8G+
2̂,3,1,1

+ 8G+
3̂,1,1,2

− 8G+
3̂,2,1,1

)H−
1 +

G−
2̂,1

(2L3,2 − L4,0 − 2L4,1 + L3,0,0 + 2L3,1,0 − 12L̄2ζ3 + 8ζ3H
+
2 − 4L̄2H

+
3

+ 8L1H
+
4 − 16ζ3H

+
1,1 − 4H+

2,3 + 4L0H
+
3,1 − 4H+

3,2 − 16H+
4,1 − 4L0H

+
1,1,2 + 8H+

1,1,3

+ 8H+
1,2,2 + 4L0H

+
2,1,1 − 8H+

2,2,1 − 8H+
3,1,1)+

G−
3̂,1

(2L̄3,0 + 4L̄3,1 + 4L1ζ3 − 6L0H
+
3 − 4L1H

+
3 + 20H+

4 − 4L0H
+
1,2 + 16H+

1,3

− 4L0H
+
2,1 + 16H+

2,2 + 8H+
3,1 + 8H+

1,1,2 − 8H+
2,1,1) +G−

2̂,2
(L̄4 + L̄3,0 + 4L̄3,1 + 8L1ζ3

− 2L0H
+
3 − 4L1H

+
3 + 4H+

4 + 4H+
1,3 + 4H+

2,2 + 4L0H
+
1,1,1 − 8H+

1,2,1 − 8H+
2,1,1)+

G−
2̂,1,1

(−2L̄4 + 2L̄3,0 − 8L1ζ3 − 4L0H
+
3 + 16H+

4 − 4L0H
+
1,2 + 8H+

1,3 + 8H+
2,2)+

G−
4̂,1

(−3L2,0 − 6L2,1 + 3L0H
+
2 + 6L1H

+
2 ) +G−

3̂,2
(−2L3 − 2L2,0 − 8L2,1+
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2L0H
+
2 + 8L1H

+
2 − 8H+

1,2 − 8H+
2,1 − 8H+

1,1,1) +G−
3̂,1,1

(4L3 − 2L2,0 + 8H+
1,2)+

G−
2̂,3

(−4L3 − 2L2,0 − 8L2,1 − L0,0,0 − 8ζ3 + 2L0H
+
2 + 8L1H

+
2 − 12H+

1,2

− 8H+
2,1 − 8H+

1,1,1) +G−
2̂,2,1

(4L3 + 2L0,0,0 + 16ζ3 + 8H+
1,2) +G−

2̂,1,2
(4L3 + L2,0

+ 4L2,1+L0,0,0+8ζ3−2L0H
+
2 −4L1H

+
2 +8H+

1,2) +G−
2̂,1,1,1

(−2L2,0−2L0,0,0−16ζ3)+

G−
5̂,1

(4H+
2 + 8H+

1,1) +G−
4̂,2

(3L̄2 + 12H+
1,1) +G−

4̂,1,1
(−6L̄2 + 12H+

2 ) +G−
3̂,3

(8L̄2 + 2L̄0,0

− 4H+
2 + 16H+

1,1) +G−
3̂,2,1

(−8L̄2 − 4L̄0,0 + 8H+
2 ) +G−

3̂,1,2
(−8L̄2 − 2L̄0,0 + 8H+

2

− 8H+
1,1) +G−

3̂,1,1,1
(4L̄0,0 + 8H+

2 ) +G−
2̂,4

(10L̄2 + 4L̄0,0 − 4H+
2 + 16H+

1,1)+

G−
2̂,3,1

(−4L̄2−4L̄0,0) +G−
2̂,2,2

(−8L̄2−4L̄0,0+4H+
2 −8H+

1,1) +G−
2̂,2,1,1

(−4L̄2+8H+
2 )+

G−
2̂,1,3

(−8L̄2−4L̄0,0+4H+
2 −8H+

1,1) +G−
2̂,1,2,1

(4L̄0,0+8H+
2 ) +G−

2̂,1,1,2
(4L̄2+4L̄0,0)+

(−10G−
2̂,5

− 8G−
3̂,4

− 3G−
4̂,3

+ 10G−
2̂,1,4

+ 8G−
2̂,2,3

+ 8G−
2̂,3,2

+ 4G−
2̂,4,1

+ 8G−
3̂,1,3

+ 8G−
3̂,2,2

+ 8G−
3̂,3,1

+ 3G−
4̂,1,2

+ 6G−
4̂,2,1

− 8G−
2̂,1,1,3

− 8G−
2̂,1,2,2

− 4G−
2̂,1,3,1

− 4G−
2̂,2,1,2

+ 4G−
2̂,3,1,1

− 8G−
3̂,1,1,2

− 8G−
3̂,1,2,1

− 6G−
4̂,1,1,1

+ 4G−
2̂,1,1,1,2

− 4G−
2̂,1,2,1,1

)L0+

(−10G−
2̂,5

− 10G−
3̂,4

− 6G−
4̂,3

− 2G−
5̂,2

+ 8G−
2̂,1,4

+ 6G−
2̂,2,3

+ 6G−
2̂,3,2

+ 8G−
3̂,1,3

+ 8G−
3̂,2,2

+ 4G−
3̂,3,1

+ 6G−
4̂,1,2

+ 6G−
4̂,2,1

+ 4G−
5̂,1,1

− 4G−
2̂,1,1,3

− 4G−
2̂,1,2,2

+ 4G−
2̂,2,2,1

+ 4G−
2̂,3,1,1

− 4G−
3̂,1,1,2

+ 4G−
3̂,2,1,1

)L1+

20G−
2̂,6

+ 20G−
3̂,5

+ 12G−
4̂,4

+ 4G−
5̂,3

− 20G−
2̂,1,5

− 16G−
2̂,2,4

− 12G−
2̂,3,3

− 12G−
2̂,4,2

− 20G−
3̂,1,4

− 16G−
3̂,2,3

− 16G−
3̂,3,2

− 8G−
3̂,4,1

− 12G−
4̂,1,3

− 12G−
4̂,2,2

− 12G−
4̂,3,1

− 4G−
5̂,1,2

− 8G−
5̂,2,1

+16G−
2̂,1,1,4

+12G−
2̂,1,2,3

+12G−
2̂,1,3,2

+8G−
2̂,2,1,3

+8G−
2̂,2,2,2

−8G−
2̂,3,2,1

−8G−
2̂,4,1,1

+ 16G−
3̂,1,1,3

+16G−
3̂,1,2,2

+8G−
3̂,1,3,1

+8G−
3̂,2,1,2

−8G−
3̂,3,1,1

+12G−
4̂,1,1,2

+12G−
4̂,1,2,1

+ 8G−
5̂,1,1,1

− 8G−
2̂,1,1,1,3

− 8G−
2̂,1,1,2,2

+ 8G−
2̂,1,2,2,1

+ 8G−
2̂,1,3,1,1

− 8G−
3̂,1,1,1,2

+ 8G−
3̂,1,2,1,1

7.5 Numerical consistency tests for I(4)

In order to check the correctness of the result from the previous section, we evaluated

I(4) numerically and compared it to a direct numerical evaluation of the coordinate space

integral using FIESTA. In detail, we evaluate the conformally-invariant function f(u, v) =

x213x
2
24 I

(4)(x1, x2, x3, x4) by first applying a conformal transformation to send x4 to infinity,

the integral takes the simplified form,

lim
x4→∞

x213x
2
24 I

(4)
14;23 =

1

π8

∫
d4x5d

4x6d
4x7d

4x8 x
2
13

x215x
2
18x

2
25x

2
26x

2
37x

2
38x

2
56x

2
67x

2
78

, (7.55)

and then using the remaining freedom to fix x213 = 1 so that u = x212 and v = x223. In com-

parison with the two 3-loop integrals, the extra loop in this case yields a moderately more

cumbersome numerical evaluation. As such, we modify the setup for the 3-loop examples

slightly and only perform 5×105 integral evaluations. We nevertheless obtain about 5 dig-
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u v Analytic FIESTA δ

0.1 0.2 156.733 156.733 4.9e-7

0.2 0.3 116.962 116.962 5.9e-8

0.3 0.1 110.366 110.366 2.8e-7

0.4 0.5 84.2632 84.2632 1.4e-7

0.5 0.6 75.2575 75.2575 1.4e-7

0.6 0.2 78.3720 78.3720 3.7e-8

0.7 0.3 70.7417 70.7417 6.8e-8

0.8 0.9 58.6362 58.6363 1.4e-7

0.9 0.5 60.1295 60.1295 1.1e-7

Table 4. Numerical comparison of the analytic result for x2
13x

2
24 I

(4)(x1, x2, x3, x4) against FIESTA

for several values of the conformal cross ratios.

its of precision, and excellent agreement with the analytic function at 40 different points.

See table 4 for an illustrative sample of points.

8 Conclusions

Recent years have seen a lot of advances in the analytic computation of Feynman inte-

grals contributing to the perturbative expansion of physical observables. In particular, a

more solid understanding of the mathematics underlying the leading singularities and the

classes of functions that appear at low loop orders have opened up new ways of evaluating

multi-scale multi-loop Feynman integrals analytically.

In this paper we applied some of these new mathematical techniques to the computation

of the two so far unknown integrals appearing in the three-loop four-point stress-tensor

correlator in N = 4 SYM, and even a first integral occurring in the planar four-loop

contribution to the same function. The computation was made possible by postulating

that these integrals can be written as a sum over all the leading singularities (defined

as the residues at the global poles of the loop integrand), each leading singularity being

multiplied by a pure transcendental function that can be written as a Q-linear combination

of single-valued multiple polylogarithms in one complex variable. After a suitable choice

was made for the entries that can appear in the symbols of these functions, the coefficients

can easily be fixed by matching to some asymptotic expansions of the integrals in the limit

where one of the cross ratios vanishes. In all cases we were able to integrate the symbols

obtained from this procedure to a unique polylogarithmic function, thus completing the

analytic computation of the three-loop four-point stress-tensor correlator in N = 4 SYM.

While for the Easy integral the space of polylogarithmic function is completely classified in

the mathematical literature, new classes of multiple polylogarithms appear in the analytic

results for the Hard integral and the four-loop integral we considered.
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One might wonder, given that the Hard integral function H(a) involves genuine two-

variable functions, whether there could have been a similar contribution to the Easy inte-

gral, compatible with all asymptotic limits. Indeed there does exist a symbol of a single-

valued function, not expressible in terms of SVHPLs alone, which evades all constraints

from the asymptotic limits. In other words the function is power suppressed in all limits,

possibly up to terms proportional to zeta values. However, the evidence we have presented

(in particular the numerical checks) strongly suggests that such a contribution is absent

and therefore the Easy integral is expressible in terms of SVHPLs only.

We emphasise that the techniques we used for the computation are not limited to the

rather special setting of the N = 4 model. First, by sending a point to infinity a conformal

four-point integral becomes a near generic three-point integral. Such integrals appear as

master integrals for phenomenologically relevant processes, like for example the quantum

corrections to the decay of a heavy particle into two massive particles. Second, the con-

formal integrals we calculated have the structure
∑

Ri Fi (so residue times pure function)

that is also observed for integrals contributing to on-shell amplitudes. However, we believe

that this is in fact a common feature of large classes of Feynman integrals (if not all) and

one purpose of this work is to advocate our combination of techniques as a means of solving

many other diagrams.

Further increasing the loop-order or the number of points might eventually hamper our

prospects of success. Indeed, beyond problems of merely combinatorial nature there are

also more fundamental issues, for example to what extent multiple polylogarithms exhaust

the function spaces. It is anticipated in ref. [88, 89] that elliptic integrals will eventually

appear in higher-point on-shell amplitudes. Via the correlator/amplitude duality this ob-

servation will eventually carry over to our setting. Nevertheless, some papers [89, 90] also

hint at a more direct albeit related way of evaluating loop-integrals by casting them into

a ‘d log-form’, which should have a counterpart for off-shell correlators.
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A Asymptotic expansions of the Easy and Hard integrals

In this appendix we collect the asymptotic expansions of the different orientations of the

Easy and Hard integrals in terms of harmonic polylogarithms. The results for E14;23 and

H12;34 were already presented in section 3. The results for the other orientations are given

below.

x213x
2
24E12;34 = log3 u

[

−
1

3x2

(

2H1,2 +H1,1,1

)

+
1

3x

(

H1,2 +H1,1,1

)]

(A.1)

+ log2 u
[ 2

x2

(

2H2,2 +H2,1,1 + 2H1,3 +H1,1,2

)

−
1

2x

(

− 4H2,2 − 3H2,1,1 − 4H1,3 −H1,2,1 − 4H1,1,2

)]

+ log u
[ 1

x2

(

− 16H3,2 − 8H3,1,1 − 16H2,3 − 8H2,1,2 − 8H1,4 + 4 H1,3,1

−4H1,2,2 −H1,2,1,1 − 4H1,1,3 + 2 H1,1,2,1 −H1,1,1,2

+
1

x

(

8H3,2 + 5H3,1,1 + 8H2,3 +H2,2,1 + 6H2,1,2 + 4 H1,4 −H1,3,1

+5H1,2,2 +H1,2,1,1 + 4H1,1,3 − 2 H1,1,2,1 +H1,1,1,2

)]

+
1

x2

(

4ζ3H1,2 + 2ζ3H1,1,1 + 32H4,2 + 16H4,1,1 + 32 H3,3 + 16H3,1,2

+16H2,4 − 8H2,3,1 + 8H2,2,2 + 2 H2,2,1,1 + 8H2,1,3 − 4H2,1,2,1 + 2H2,1,1,2

−8H1,4,1 + 4 H1,3,2+4H1,3,1,1+4H1,2,3−2H1,2,2,1+2H1,2,1,2−4 H1,1,3,1

+H1,1,2,1,1 −H1,1,1,2,1

)

+
1

x

(

− 4ζ3H2,1 − 6ζ3H1,2 − 2ζ3H1,1,1 − 16 H4,2

−10H4,1,1 − 16H3,3 − 10H3,1,2 − 8H2,4 + 4H2,3,1 − 8 H2,2,2 − 2H2,2,1,1

−6H2,1,3 + 4H2,1,2,1 − 2H2,1,1,2 + 2 H1,4,1 − 6H1,3,2 − 4H1,3,1,1 − 6H1,2,3

+2H1,2,2,1 − 2H1,2,1,2 + 4H1,1,3,1 −H1,1,2,1,1 +H1,1,1,2,1 − 8ζ3 H3

+20ζ5H1

)

+O(u) ,

x213x
2
24E13;24 =

log u

x

(

H2,2,1 −H2,1,2 +H1,3,1 −H1,2,1,1 −H1,1,3 +H1,1,2,1 − 6 ζ3H2

)

+
1

x

(

4ζ3H2,1 − 2ζ3H1,2 − 2H3,2,1 + 2H3,1,2 − 2H2,3,1 +H2,2,1,1 + 2H2,1,3

−2H2,1,2,1 +H2,1,1,2 − 4H1,4,1 + 3H1,3,1,1 +H1,2,1,2 + 4H1,1,4 − 2H1,1,3,1

−H1,1,2,2 −H1,1,2,1,1 −H1,1,1,3 +H1,1,1,2,1 + 12ζ3H3

)

+O(u) , (A.2)

x413x
4
24H13;24 = log3 u

[ 1

3x2

(

2H2,1 −H1,2 −H1,1,1

)

+
1

3(1− x)x

(

H2,1 −H3

)]

(A.3)

+ log2 u
[ 1

x2

(

− 4H3,1 − 2H2,2 + 2H1,3 + 2H1,2,1 + 2H1,1,2

)

+
1

(1− x)x

(

− 2H3,1 −H2,2 −H2,1,1 −H1,3 +H1,2,1 + 4H4

)]

+ log u
[ 1

x2

(

16H3,2 + 8H3,1,1 + 8H2,3 − 8H2,2,1 − 4H1,4 − 12H1,3,1

−4H1,2,2 + 2H1,2,1,1 − 4H1,1,3 − 2H1,1,1,2

)

+
1

(1− x)x

(

4H4,1 + 4H3,2
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+6H3,1,1 + 4H2,3 + 2H2,1,2 + 8H1,4 − 4H1,3,1 − 2H1,2,2 − 2H1,2,1,1

−2H1,1,3 + 2H1,1,2,1 − 20H5

)]

+
1

x2

(

32ζ3H2,1 − 16ζ3H1,2 − 16ζ3H1,1,1

+64H5,1 − 32H4,2 − 32H4,1,1 − 24H3,3 + 16H3,2,1 − 16H3,1,2 − 24H2,4

+40H2,3,1 − 4H2,2,1,1 − 8H2,1,3 + 4H2,1,1,2 + 40H1,4,1 + 4H1,3,2

−8H1,3,1,1 − 4H1,2,3 + 4H1,2,2,1 − 4H1,2,1,2 + 8H1,1,1,3

)

+
1

(1− x)x

(

16ζ3H2,1 − 4H4,2 − 12H4,1,1 − 4H3,3 − 12H3,2,1 − 8H3,1,2

−12H2,4 + 4H2,3,1 + 2H2,2,1,1 − 4H2,1,2,1 + 2H2,1,1,2 − 20H1,5 + 4H1,4,1

+4H1,3,2 + 6H1,3,1,1 + 4H1,2,3 + 2H1,2,1,2 + 8H1,1,4 − 4H1,1,3,1 − 2H1,1,2,2

−2H1,1,2,1,1 − 2H1,1,1,3 + 2H1,1,1,2,1 − 16ζ3H3 + 40H6

)

+O(u) ,

x413x
4
24H14;23 =

log3 u

3x

[1

x

(

2H2,1 −H1,2 + 2H1,1,1

)

− 2H2,1 −H1,2 − 2H1,1,1 −H3

]

+ log2 u
[

−
2

x2

(

2H3,1 +H2,2 −H1,3 + 2H1,2,1 + 2H1,1,2

)

(A.4)

+
4

x

(

H3,1 +H2,2 +H1,3 +H1,2,1 +H1,1,2 +H4

)]

+ log u
[ 4

x2

(

4H3,2 − 4H3,1,1 + 2H2,3 + 4H2,1,2 −H1,4 + 2H1,3,1 + 4H1,2,2

−2H1,2,1,1 + 4H1,1,3 + 2H1,1,1,2

)

+
4

x

(

2H4,1 + 4H3,2 − 2H3,1,1 + 4H2,3

+2H2,1,2 + 5H1,4 + 2H1,3,1 + 4H1,2,2 − 2H1,2,1,1 + 4H1,1,3 + 2H1,1,1,2

+5H5

)]

+
8

x2

(

4ζ3H2,1 − 2ζ3H1,2 + 4ζ3H1,1,1 + 8H5,1 − 4H4,2 + 8H4,1,1

−6H3,3 + 4H3,2,1 − 4H3,1,2 − 3H2,4 + 2H2,3,1 − 4H2,2,2 + 2H2,2,1,1

−6H2,1,3 − 2H2,1,1,2 + 2H1,4,1 − 3H1,3,2 + 4H1,3,1,1 − 5H1,2,3 + 2H1,2,2,1

−2H1,2,1,2 − 4H1,1,4 − 2H1,1,2,2 − 2H1,1,1,3

)

+
8

x

(

− 4ζ3H2,1 − 2ζ3H1,2

−4ζ3H1,1,1 + 3H4,2 − 2H4,1,1 + 3H3,3 − 2H3,2,1 + 4H2,4 + 2H2,2,2

+2H2,1,3 + 5H1,5 + 3H1,3,2 − 2H1,3,1,1 + 3H1,2,3 − 2H1,2,2,1 + 4H1,1,4

+2H1,1,2,2 + 2H1,1,1,3 − 2ζ3H3 + 5H6

)

+O(u) ,

B An integral formula for the Hard integral

We want to find an integral formula for pure functions which involve x− x̄ in the symbol

as well as x, x̄, 1− x, 1− x̄. We are interested in single-valued functions, i.e. ones obeying

the constraints on the discontinuities,

[discx − discx̄]f(x, x̄) = 0 , [disc1−x − disc1−x̄]f(x, x̄) = 0 . (B.1)

and with no other discontinuities.
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It will be sufficient for us to consider functions whose symbols have final letters drawn

from a restricted set of letters,

S(F ) = S(X)⊗
x

x̄
+ S(Y )⊗

1− x

1− x̄
+ S(Z)⊗ (x− x̄) . (B.2)

where X,Y, Z are single-valued functions of x, x̄.

We will suppose also that the function F obeys F (x, x) = 0, as required to remove the

poles at x = x̄ present in the leading singularities of the conformal integrals. We therefore

take Z(x, x) = 0 also. If F has a definite parity under x ↔ x̄ then X and Y have the

opposite parity while Z has the same parity.

The functions X,Y and Z are not independent of each other. Integrability (i.e. d2F =

0) imposes the following restrictions,

dX ∧ d log
x

x̄
+ dY ∧ d log

1− x

1− x̄
+ dZ ∧ d log(x− x̄) = 0 . (B.3)

We may then define the derivative of F w.r.t. x to be

∂xF (x, x̄) =
X

x
−

Y

1− x
+

Z

x− x̄
, (B.4)

so that

F (x, x̄) =

∫ x

x̄
dt

[
X(t, x̄)

t
−

Y (t, x̄)

1− t
+

Z(t, x̄)

t− x̄

]

. (B.5)

A trivial example is the Bloch-Wigner dilogarithm function, defined via,

F2(x, x̄) = log xx̄ (H1(x)−H1(x̄))− 2(H2(x)−H2(x̄)) . (B.6)

It has a symbol of the form (B.2) where

X1 = log(1− x)(1− x̄), Y1 = − log xx̄ Z1 = 0 . (B.7)

Thus we can write the integral formula (B.5) for F2.

B.1 Limits

We want to be able to calculate the limits of the functions to compare with the asymptotic

expressions obtained in section 3. The formula (B.5) allows us to calculate the limit x̄ → 0

(which means dropping any power suppressed terms in this limit). We may commute the

limit and integration

lim
x̄→0

F (x, x̄) =

∫ x

x̄
dt lim

x̄→0

[
X(t, x̄)

t
−

Y (t, x̄)

1− t
+

Z(t, x̄)

t

]

. (B.8)

In the second and third terms one may also set the lower limit of integration to zero.

directly. In the first one should take care that contributions from X(t, x̄) which do not

vanish as t → 0 produce extra logarithms of x̄, beyond those explicitly appearing in the

limit of X, as the lower limit approaches zero.
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B.2 First non-trivial example (weight three)

The first example of a single-valued function whose symbol involves x − x̄ is at weight

three [58]. There is exactly one such function at this weight, i.e. all single-valued

functions can be written in terms of this one and single-valued functions constructed from

single-variable HPLs with arguments x and x̄ only. It obeys F3(x, x̄) = −F3(x̄, x). The

symbol takes the form (B.2) with

X2 = − log(xx̄)(H1(x) +H1(x̄)) +
1

2
(H1(x) +H1(x̄))

2 ,

Y2 = −
1

2
log2(xx̄) + log(xx̄)(H1(x) +H1(x̄)) ,

Z2 = 2 log xx̄ (H1(x)−H1(x̄))− 4(H2(x)−H2(x̄)) . (B.9)

Note that X2, Y2 and Z2 are single-valued and that Z2 is proportional to the Bloch-Wigner

dilogarithm (it is the only antisymmetric weight-two single-valued function so it had to

be). They obey the integrability condition (B.3) so we can write the integral formula (B.5)

to define the function F3.

We have constructed a single-valued function with a given symbol, but in fact this

function is uniquely defined since there is no antisymmetric function of weight one which

is single-valued which could be multiplied by ζ2 and added to our result. Moreover, since

it is antisymmetric in x and x̄, we cannot add a constant term proportional to ζ3.

Looking at the limit x̄ → 0 we find, following the discussion above,

lim
x̄→0

F3(x, x̄) =
1

2
log2 x̄H1(x) + log x̄(H2(x) +H1,0(x)−H1,1(x))

− 3H3(x)−H1,2(x) +H2,0(x) +H2,1(x) +H1,0,0(x)−H1,1,0(x) (B.10)

Starting from the original symbol for F3 and taking the limit x̄ → 0 we see that the above

formula indeed correctly captures the limit.

B.3 Weight five example

We now give an example directly analogous to the weight-three example above but at

weight five. The example we are interested in is symmetric F5(x, x̄) = F5(x̄, x). It has a

symbol of the canonical form (B.2) with

X4(x, x̄) = (L0,0,1,1 − L1,1,0,0 − L0,1,1,1 + L1,1,1,0) ,

Y4(x, x̄) = (L0,0,0,1 − L1,0,0,0 − L0,0,1,1 + L1,1,0,0) ,

Z4(x, x̄) = (L0,0,1,1 + L1,1,0,0 − L0,1,1,0 − L1,0,0,1) . (B.11)

The above functions are single-valued and obey the integrability condition and there-

fore define a single-valued function of two variables of weight five via the integral formula.

Taking the limit x̄ → 0 we find

lim
x̄→0

F5(x, x̄) = H1,1H̄0,0,0 + (H1,1,0 −H1,1,1)H̄0,0

+ (−H3,1 +H2,1,1 +H1,1,0,0 −H1,1,1,0)H̄0
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−H1,4 −H2,3 + 2H4,1 +H1,3,1 −H3,1,0 −H3,1,1

+H2,1,1,0 +H1,1,0,0,0 −H1,1,1,0,0 + 2H1,1ζ3 . (B.12)

This formula correctly captures the limit taken directly on the symbol of F5. This weight-

five function plays a role in the construction of the Hard integral.

B.4 The function H(a) from the Hard integral

The function H(a) from the Hard integral is a weight-six symmetric function obeying

the condition H(a)(x, x) = 0. The symbol of H(a) is known but is not of the form (B.2).

However, we can use shuffle relations to rewrite the symbol in terms of logarithms of u

and v and functions which end with our preferred set of letters. We find the symbol can

be represented by a function of the form

H(a)(1− x, 1− x̄)

= (2H0,0(u) + 4H0(u)H0(v) + 8H0,0(v))(L0,0,1,1 + L1,1,0,0 − L0,1,1,0 − L1,0,0,1)

− 8F5(H0(u) + 2H0(v)) + F6 . (B.13)

Here F5 is the weight-five function defined in section B.3. The function F6 is now one

whose symbol is of the form (B.2), where the functions X5, Y5 and Z5 take the form

X5 = 20L0,0,0,1,1 + 12L0,0,1,1,0 − 32L0,0,1,1,1 − 8L0,1,0,1,1 − 12L0,1,1,0,0 − 8L0,1,1,0,1

+ 16L0,1,1,1,1 − 8L1,0,0,1,1 + 8L1,0,1,1,0 − 20L1,1,0,0,0 + 8L1,1,0,0,1 + 8L1,1,0,1,0

+ 32L1,1,1,0,0 − 16L1,1,1,1,0 − 16L1,1ζ3 , (B.14)

Y5 = 20L0,0,0,0,1 − 32L0,0,0,1,1 − 8L0,0,1,1,0 + 16L0,0,1,1,1 − 8L0,1,0,0,1 + L0,1,1,0,0

− 20L1,0,0,0,0 + 8L1,0,0,1,0 + 16L1,0,0,1,1 + 8L1,0,1,0,0 + 32L1,1,0,0,0 − 16L1,1,0,0,1

− 16L1,1,1,0,0 − 16L1,0ζ3 + 64L1,1ζ3 . (B.15)

Z5 = 32F5 . (B.16)

Note that the ζ3 terms have been chosen in such a way the functions X5, Y5 and Z5 obey

the integrability condition (B.3). The integral formula for F6 based on the above functions

will give a single-valued function with the correct symbol, i.e. one such that H(a) defined

in eq. (B.13) has the correct symbol and is single-valued.

We recall that the Hard integral takes the form

H14;23 =
1

x413x
4
24

[
H(a)(1− x, 1− x̄)

(x− x̄)2
+

H(b)(1− x, 1− x̄)

(1− xx̄)(x− x̄)

]

. (B.17)

Calculating the limit x̄ → 0 we find that H(a) reproduces the terms proportional to 1/x2

in the limit exactly, including the zeta terms. Note that in this limit the contributions of

H(a) and H(b) are distinguishable since the harmonic polylogarithms come with different

powers of x. Since there are no functions of weight four or lower which are symmetric in

x and x̄ and which vanish at x = x̄ and which vanish in the limit x̄ → 0, we conclude that

H(a) defined in eq. (B.13) is indeed the function. Comparing numerically with the formula

obtained in section 5 we indeed find agreement to at least five significant figures.
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C A symbol-level solution of the four-loop differential equation

In this appendix we sketch an alternative approach to the evaluation of the four-loop

integral. More precisely, we will show how the function I(4) can be determined using

symbols and the coproduct on multiple polylogarithms. We start from the differential

equation (7.17), which we recall here for convenience,

∂x∂x̄f̂(x, x̄) = −
1

(1− xx̄)xx̄
E1(x, x̄)−

1

(1− xx̄)
E2(x, x̄) , (C.1)

where we used the abbreviations E1(x, x̄) = E(1− x, 1− x̄) and E2(x, x̄) = E(1− 1/x, 1−

1/x̄). We now act with the symbol map S on the differential equation, and we get

∂x∂x̄S[f̂(x, x̄)] = −
1

(1− xx̄)xx̄
S[E1(x, x̄)]−

1

(1− xx̄)
S[E2(x, x̄)] , (C.2)

where the differential operators act on tensors only in the last entry, e.g.,

∂x[a1 ⊗ . . .⊗ an] = [∂x log an] a1 ⊗ . . .⊗ an−1 , (C.3)

and similarly for ∂x̄. It is easy to see that the tensor

S1 = S[E1(x, x̄)]⊗

(

1−
1

xx̄

)

⊗ (xx̄) + S[E2(x, x̄)]⊗ (1− xx̄)⊗ (xx̄) (C.4)

solves the equation (C.2). However, S1 is not integrable in the pair of entries (6,7), and

so S1 is not yet the symbol of a solution of the differential equation. In order to obtain

an integrable solution, we need to add a solution to the homogeneous equation associated

to eq. (C.2). The homogeneous solution can easily be obtained by writing down the most

general tensor S2 with entries drawn from the set {x, x̄, 1− x, 1− x̄, 1− xx̄} that has the

correct symmetries and satisfies the first entry condition and

∂x∂x̄S2 = 0 . (C.5)

In addition, we may assume that S2 satisfies the integrability condition in all factors of

the tensor product except for the pair of entries (6, 7), because S1 satisfies this condition

as well. The symbol of the solution of the differential equation is then given by S1 + S2,

subject to the constraint that the sum is integrable. It turns out that there is a unique

solution, which can be written in the schematic form

S[f̂(x, x̄)] = s−1 ⊗ u⊗ u+ s−2 ⊗ v ⊗ u+ s−3 ⊗
1− x

1− x̄
⊗

x

x̄
+ s+4 ⊗

x

x̄
⊗ u

+ s+5 ⊗ u⊗
x

x̄
+ s+6 ⊗

1− x

1− x̄
⊗ u+ s+7 ⊗ v ⊗

x

x̄
+ s−8 ⊗

x

x̄
⊗

x

x̄

+ s−9 ⊗ (1− u)⊗ u ,

(C.6)

where s±i are (integrable) tensor that have all their entries drawn from the set

{x, x̄, 1− x, 1− x̄} and the superscript refers to the parity under an exchange of x and x̄.
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The form (C.6) of the symbol of f̂(x, x̄) allows us to make the following more refined

ansatz: as the s±i are symbols of SVHPLs, and using the fact that the symbol is the

maximal iteration of the coproduct, we conclude that there are linear combinations

f±
i (x, x̄) of SVHPLs of weight six (including products of zeta values and SVHPLs of lower

weight) such that S[f±
i (x, x̄)] = s±i and

∆6,1,1[f̂(x, x̄)] = f−
1 (x, x̄)⊗ log u⊗ log u+ f−

2 (x, x̄)⊗ log v ⊗ log u

+ f−
3 (x, x̄)⊗ log

1− x

1− x̄
⊗ log

x

x̄
+ f+

4 (x, x̄)⊗ log
x

x̄
⊗ log u

+ f+
5 (x, x̄)⊗ log u⊗ log

x

x̄
+ f+

6 (x, x̄)⊗ log
1− x

1− x̄
⊗ log u

+ f+
7 (x, x̄)⊗ log v ⊗ log

x

x̄
+ f−

8 (x, x̄)⊗ log
x

x̄
⊗ log

x

x̄

+ f−
9 (x, x̄)⊗ log(1− u)⊗ u .

(C.7)

The coefficients of the terms proportional to zeta values and SVHPLs of lower weight

(which were not captured by the symbol) can easy be fixed by appealing to the differential

equation, written in the form10

(id⊗∂x⊗∂x̄)∆6,1,1[f̂(x, x̄)] = −
1

(1− xx̄)xx̄
E1(x, x̄)⊗1⊗1−

1

(1− xx̄)
E2(x, x̄)⊗1⊗1 . (C.8)

The expression (C.7) has the advantage that it captures more information about the

function f̂(x, x̄) than the symbol alone. In particular, we can use eq. (C.7) to derive an

iterated integral representation for f̂(x, x̄) with respect to x only. To see how this works,

first note that there must be functions A±(x, x̄), that are respectively even and odd under

an exchange of x and x̄, such that

∆7,1[f̂(x, x̄)] = A−(x, x̄)⊗ log u+A+(x, x̄)⊗ log
x

x̄
. (C.9)

with

∆6,1[A
−(x, x̄)] = f−

1 (x, x̄)⊗ log u+ f−
2 (x, x̄)⊗ log v + f+

4 (x, x̄)⊗ log
x

x̄

+ f+
6 (x, x̄)⊗ log

1− x

1− x̄
+ f−

9 (x, x̄)⊗ log(1− u) ,

∆6,1[A
+(x, x̄)] = f−

3 (x, x̄)⊗ log
1− x

1− x̄
+ f+

5 (x, x̄)⊗ log u

+ f+
7 (x, x̄)⊗ log v + f−

8 (x, x̄)⊗ log
x

x̄
.

(C.10)

The (6,1) component of the coproduct of A+(x, x̄) does not involve log(1− u), and so

it can entirely be expressed in terms of SVHPLs. We can thus easily obtain the result for

A+(x, x̄) by writing down the most general linear combination of SVHPLs of weight seven

that are even under an exchange of x and x̄ and fix the coefficients by requiring the (6,1)

component of the coproduct of the linear combination to agree with eq. (C.10). In this

10We stress that differential operators act in the last factor of the coproduct, just like for the symbol.

– 51 –



J
H
E
P
0
8
(
2
0
1
3
)
1
3
3

way we can fix A+(x, x̄) up to zeta values of weight seven (which are integration constants

of the original differential equation).

The coproduct of A−(x, x̄), however, does involve log(1 − u), and so it cannot be

expressed in terms of SVHPLs alone. We can nevertheless derive a first-order differential

equation for A−(x, x̄). We find

∂xA
−(x, x̄) =

1

x

[
f−
1 (x, x̄) + f+

4 (x, x̄)
]
−

1

1− x

[
f−
2 (x, x̄) + f+

6 (x, x̄)
]

−
x̄

1− xx̄
f−
9 (x, x̄)

≡ K(x, x̄) .

(C.11)

The solution to this equation is

A−(x, x̄) = h(x̄) +

∫ x

x̄
dtK(t, x̄) , (C.12)

where h(x̄) is an arbitrary function of x̄. The integral can easily be performed in terms

of multiple polylogarithms. Antisymmetry of A−(x, x̄) under an exchange of x and x̄

requires h(x̄) to vanish identically, because

A−(x, x̄) = h(x̄)+

∫ x

x̄
dt ∂tA

−(t, x̄) = h(x̄)+A−(x, x̄)−A−(x̄, x̄) = h(x̄)+A−(x, x̄) . (C.13)

We thus obtain a unique solution for A−(x, x̄).

Having obtained the analytic expressions for A±(x, x̄) (up to the integration constants

in A+(x, x̄)), we can easily obtain a first-order differential equation for f̂(x, x̄),

∂xf̂(x, x̄) =
1

x
[A−(x, x̄) +A+(x, x̄)] . (C.14)

The solution reads

f̂(x, x̄) =

∫ x

x̄

dt

t
[A−(t, x̄) +A+(t, x̄)] . (C.15)

The integral can again easily be performed in terms of multiple polylogarithms and the

antisymmetry of f̂(x, x̄) under an exchange of x and x̄ again excludes any arbitrary function

of x̄ only. The solution to eq. (C.14) is however not yet unique, because of the integration

constants in A+(x, x̄), and we are left with three free coefficients of the form,

(c1 ζ7 + c2 ζ5 ζ2 + c3 ζ4 ζ3) log
x

x̄
. (C.16)

The free coefficients can be fixed using the requirement that f̂(x, x̄) be single-valued (see

the discussion in section 7). Alternatively, they can be fixed by requiring that f̂(x, x̄) be

odd under inversion of (x, x̄) and vanish at x = x̄. We checked that the resulting function

agrees analytically with the result derived in section 7.
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