
HP Scientific Briefing 

Seeing the climate through the trees: observing climate and forestry impacts 

on streamflow using a 60-year record 

T.P. Burt1*, N.J.K. Howden2, J.J. McDonnell3, J.A. Jones4, G.R. Hancock5 

1Department of Geography, Durham University, Durham DH1 3LE, UK. 
*Corresponding author 

t.p.burt@durham.ac.uk 
2 Department of Civil Engineering, University of Bristol, Queen’s Building, University 

Walk, Bristol, BS8 1TR, UK. 

nicholas.howden@bristol.ac.uk 
3 Global Institute for Water Security, School of Environment and Sustainability, 

University of Saskatchewan, Saskatoon, SK,  S7N 5C8, Canada and School of 

Geosciences, University of Aberdeen, Aberdeen UK 

Jeffrey.mcdonnell@usask.ca 
4 Geography, College of Earth, Ocean, and Atmospheric Sciences, Oregon State 

University, Corvallis, OR 97331, USA 

jonesj@geo.oregonstate.edu 
5School of Environmental and Life Sciences, Newcastle University, NSW, Australia. 

Greg.Hancock@newcastle.edu.au 
 

Abstract 

Paired watershed experiments involving the removal or manipulation of forest cover 

in one of the watersheds have been conducted for more than a century to quantify 

the impact of forestry operations on streamflow. Because climate variability is 

expected to be large, forestry treatment effects would be undetectable without the 

treatment-control comparison.  New understanding of climate variability provides an 

opportunity to examine whether climate variability interacts with forestry treatments, 

in a predictable manner. Here we use data from the HJ Andrews Experimental 

Forest, Oregon, USA, to examine the impact of the El Niño-Southern Oscillation 

(ENSO) on streamflow linked to forest harvesting. Our results show that the contrast 

between El Niño and La Niña events is so large that, whatever the state of the 

treated watershed in terms of re-growth of the forest canopy, extreme climatic 

variability related to ENSO remains the more dominant driver of streamflow response 

at this location. Improvements in forecasting inter-annual variation in climate might 

be used to minimise the impact of forestry treatments on streamflow by avoiding 

initial operations in La Niña years.  
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Paired watershed1 experiments have been used in forest hydrology for over one 

hundred years (Engler, 1919; Bates 1921; Bates and Henry, 1928) and such studies 

have been reviewed extensively (Bosch and Hewlett, 1982; Best et al, 2003; 

Andréassian, 2004). The method was refined at the Coweeta Hydrological 

Laboratory from the 1930s onwards (for review see Swank and Crossley, 1988) and 

has remained essentially unchanged since it was first formulated: identify two 

contiguous watersheds, as similar as possible in terms of climate, soil, topography 

and forest cover; monitor meteorological conditions and stream flow for several 

years under these similar conditions of forest cover. Then, alter one of the 

watersheds in terms its forest cover and continue the measurements as before, until 

the effects of the land use change upon the timing and amount of streamflow and the 

flux of particulate and dissolved material carried by the streams has been 

determined by comparison of hydrological records from the two watersheds. Such an 

approach can be applied to afforestation, deforestation, regrowth and forest 

conversion (Best et al., 2003). 

Whilst some studies have pointed out weaknesses in the before-after statistical 

treatment approach for paired watershed studies (e.g. Alila et al., 2009) and offered 

alternative model-based approaches (Seibert and McDonnell, 2010), little work has 

examined the effects of climate variability on streamflow in the context of the paired 

watershed approach. The paired watershed experimental design ‘controls’ for 

climate variability but within this control, climate variability may interact with forestry 

treatments. Here, we examine the effect of forest harvesting on streamflow using 

paired watershed data from the H.J. Andrews Experimental Forest, Oregon, USA to 

test the hypothesis that climate can be ignored. Links between the El Niño-Southern 

Oscillation (ENSO) and significant inter-annual variability in streamflow in the 

Cascade Mountains of north-western USA are well known (Piechota et al, 1997; 

Hamlet and Lettenmeier, 2007; Abatzoglou et al., 2014). In general, the warm phase 

(El Niño) of the ENSO cycle results in below-average streamflow in the Cascades; 

and vice versa in La Niña events - “in general” because there are different types of El 

Niño events (Fu et al, 1986) and so precipitation and streamflow responses may vary 

for a given type of event. For both El Niño and La Niña events, precipitation and 

streamflow anomalies are amplified on the high-precipitation, windward side of the 

Cascade Mountains (Leung et al., 2003), the location of our study site. 

Using paired watershed analysis from the HJ Andrews Experimental Forest, Oregon, 

USA, we ask the question: how does post-treatment runoff vary depending on inter-

annual climate variation? The significance of improved understanding of the 

influence of climate for landscape management is also briefly discussed.  

 

Methods 



We examined streamflow records for two first-order watersheds (WS) in the HJ 

Andrews Experimental Forest, WS1 and WS2. In both cases, daily mean flows (mm) 

are available from 1 October 1952 to 30 September 2011; the water year (WY) is 

taken to begin on 1 October so the records cover 59 complete WYs. In addition to 

runoff totals, flow duration curve analysis and Q-frequency analysis was used (Q1, 

Q5, Q10, Q90; where, for example, Q10 is the discharge exceeded on 10% of days 

for the period in question). The paired watersheds WS1 and WS2 have been 

described in many publications (e.g. Jones and Grant, 1996) so only a brief 

summary is provided here. WS1 and WS2 are low-elevation watersheds (460-990 m 

and 530-1070 m above sea level respectively: Jones and Grant, 1996). Mean annual 

precipitation (1958-2012) at the nearby CS2MET rain gauge is 2259 mm. Over 90% 

of the annual precipitation falls between October and May; some falls as snow. 

Results are confined here to the extended winter November to May (n-m) inclusive 

since over 90% of runoff occurs during this time. Given a control period of nine WYs, 

we have likewise divided the treatment period (TP) into five nine-year periods to 

enable comparison (Table1). 

WS1 was 100% clear-cut from 1962 to 1966 and broadcast burned in 1967. The 

adjacent WS2 was used as a control watershed. Before treatment, the vegetation of 

both watersheds consisted of old-growth Douglas fir (Pseudotsuga menziesii) with 

western hemlock (Tsuga heterophylla) and western red cedar (Thuja plicata) in 

closed-canopy stands ranging from 150 to 500 years in age. Data from the control 

period (data from the November-May period for WYs 1953-1961 inclusive) were 

used to predict WS1 response in the post-treatment period (Burt and Swank, 1992): 

total streamflow (Qn-m) and number of Q10 days (Q10n-m). Although the sample size 

is necessarily limited in each case (n=9), the regression equations were highly 

significant in both cases: R2 = 91%, p < 0.0001. Examination of flow duration curves 

(FDCs) also followed the approach of Burt and Swank (1992), allowing the 

influences of climate and land use to be compared over the study period. Flow data 

were divided into the control period (WYs 1953 – 1961) and five periods post-

treatment (all nine years long to match the control period). 

We used sea-surface temperature anomaly data for the NINO34 region (120°W – 

170°W, 5°S – 5°N) of the equatorial Pacific Ocean (Kaplan et al., 1998) to 

characterise ocean-atmosphere conditions in the Pacific, for which large positive 

values represent El Niño events and large negative values signify La Niña 

conditions. An extended series of SST anomaly data for equatorial regions of the 

Pacific Ocean based on Kaplan et al (1998) is available at: 

http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/.EXTENDED/. 

 

Results and discussion 

Changes in water yield 



Figure 1 shows the difference between predicted and actual values for Qn-m and 

Q10n-m. The influence of clear-cutting on streamflow in WS1 is unambiguous (Table 

1, Figure 1). In the control period, WS2 was wetter in every year except one; after 

clear-cutting, this has happened only twice in 45 years (1997, 2007). Despite the 

sustained increase in streamflow following clear-cutting at WS1, the response of 

both watersheds is very similar, dominated by rainfall inputs in both cases as 

expected. Annually, 59% of rainfall was converted into runoff at WS1 and 56% at 

WS2 and there were highly significant correlations between Pn-m and Qn-m in both 

cases (WS1: R2 = 0.93, WS2: R2 = 0.94) as expected.  

In Treatment Period 1, Qn-m from WS1 increased by 16% (Table 1). Total streamflow 

from WS1 was 300 mm greater than predicted at the start of the treatment period 

(Figure 1a). Thereafter, there was a steady and highly significant decline 

(p<<0.0001) but the predicted annual difference is still about 100 mm today and it 

may be several decades before total flow again becomes greater in WS2, as it was 

during the control period. It is apparent therefore that a 40-year-old forest still loses 

less water by evaporation and more in runoff than an old-growth stand. The pattern 

for predicted difference in number of Q10n-m events is more variable but there is 

nevertheless a clear pattern in the post-treatment period (Figure 1b): an initial 

increase of about 10 Q10n-m days per year and thereafter a steady, statistically 

significant (p=0.038) decline. However, when inter-annual climate variability is taken 

into account, some interesting and potentially important effects appear: streamflow 

response is not solely determined by the impact of forestry operations. This has 

been overlooked because the paired watershed experimental design, which 

estimates the effect as the difference between treatment and control (used to 

estimate treatment), has removed the climate variability. 

ENSO effects on flow  

For both watersheds there is a significant relationship between total streamflow  

(Qn-m) and the NINO34 index: 

WS1: Qn-m = 1307 – 195.NINO34n-m, R2 = 0.18, p = 0.004  (1) 

WS2: Qn-m = 1214 – 200.NINO34n-m, R2 = 0.18, p = 0.005  (2) 

This confirms earlier research that that streamflow tends to be higher in La Niña 

events and lower for El Niño events. Not surprisingly, rainfall amounts are strongly 

correlated with ENSO conditions too. Mean rainfall for November – May is 1912 mm, 

averaging 1638 mm in El Niño events and 2263 mm for La Niña events. The number 

of days per year receiving 25 mm or more (medium and high-flow events as defined 

by Seibert and McDonnell, 2010) increases from 20 (El Niño) to 30 (La Niña); the 

mean is 24.  

There is also a significant lag between ENSO conditions and streamflow response 

which may be helpful for forecasting purposes: Qn-m in both watersheds is 



significantly correlated with the average NINO34 value for the previous summer, 

June through October (NINO34j-o-1: i.e. the NINO34 average for the 5 months 

immediately preceding the November to May period): 

WS1: Qn-m = 1333 – 265.NINO34j-o-1, R
2 = 0.24, p = 0.0008  (3) 

WS2: Qn-m = 1240 – 272.NINO34j-o-1, R
2 = 0.24, p = 0.0009  (4) 

This raises the possibility of flow forecasting and varying management decisions, a 

matter to which we return later. 

Table 2 shows the influence of El Niño and La Niña events on the streamflow 

regime: as expected, El Niño events are drier than normal. There is lower total 

streamflow (Qn-m) and fewer high-flow days (Q10n-m, Q5n-m, Q1n-m); low flows (Q90n-

m) are not affected in winter, although they are in summer (results not shown). Table 

2 shows that, averaged over the entire treatment period, both watersheds have very 

similar results, emphasising the way in which hydroclimatic variability, as influenced 

by ENSO, introduces a source of variability of equivalent magnitude to that provided 

by land use change. Table 3 presents Q10n-m data for the control and post-treatment 

periods. In all cases except the control period, the number of Q10n-m days in an El 

Niño event is below the mean; the 1958 (control period) the El Niño was 

anomalously wet which accounts for above-average Q10n-m days. The large contrast 

between El Niño and La Niña events is once again very clear, indicating that, 

whatever the condition of the treated watershed in terms of re-growth of the forest 

canopy climatic variations related to ENSO remain the more dominant driver of 

streamflow variability at this location. 

Flow duration curve analysis 

Figure 2 shows FDCs for the control period and all post-treatment periods. During 

the control period, WS2 streamflow exceeds WS1 except for the highest flows (Q3 - 

Q1) where WS1 has marginally higher runoff for a given flow frequency. In the first 

treatment period, WS1 exceeds WS2 at above-average flow frequencies and at the 

lowest flows, showing that the additional runoff because of clear-cutting affects both 

stormflow and baseflow. By the fifth period, WS2 exceeds WS1 across most of the 

flow range, but WS1 still has higher numbers of high-discharge, low-frequency flows.  

Figure 3 includes FDCs for the largest El Niño and La Niña events in each period (as 

measured by the NINO34 index). In the control period, there is limited contrast 

between the two years (El Niño: 1958, La Niña: 1956) because this particular El Niño 

was quite wet so runoff remained quite high. The FDC for WS2 is only a little above 

that for WS1 in the La Niña year but the difference between watersheds is much 

greater in the drier El Niño year. In the control period therefore, WS2 always 

produced more runoff, especially in drier years.  

In the first post-treatment period, El Niño and La Niña years are very different. For 

the El Niño year (1973); the WS1 curve is entirely above that for WS2, as would be 



expected immediately after clear-cutting. However, for the La Niña year (1974), the 

very wet conditions seem to generate particularly high streamflow from WS2 which 

has higher low flows and only falls below WS1 for the highest flows. The same 

patterns are seen in Period 2. For later periods, FDCs for both watersheds are very 

similar but low flows in El Niño years are once again higher in WS2. The differences 

between El Niño and La Niña years are least in Period 4, probably because again 

the El Niño year was relatively wet. In the other periods, there is a clear difference 

between FDCs in El Niño and La Niña years; both watersheds have a very similar 

response for a given year.  

It is self-evident that runoff will be higher in wet years, and vice versa. What is 

apparent here is that high-frequency climate variation obscures the emerging pattern 

associated regrowth following clear-cutting. Unlike the results presented by Burt and 

Swank (1992), where clear differences between treatment and control FDCs were 

sustained throughout the treatment period, here the main contrast in FDCs is 

between wet and dry years, not between treatment and control. True, the expected 

pattern of change with forest regrowth is observed: the difference between expected 

and actual Qn-m from WS1 falls by about 150 mm over 40 years (Figure 1a); at the 

same time the number of Q10 events is halved. Nevertheless, significant short-term 

climatic variability imparts considerable noise to the hydrological record and 

obscures the longer-term trend driven by land-use change. Moreover, the two 

watersheds appeared to behave somewhat differently in wet and dry years, at least 

in treatment periods 1 and 2 (Figure 3) with relatively higher flows from WS2 in wet 

years. Given our improved knowledge of climate variability and its potential to 

produce differential effects on streamflow in control vs. treated watersheds, the 

control period in a paired watershed experiment should be long enough to capture 

this variability. 

A control out of control? 

Table 1 shows that the control period had the highest runoff total for WS2 but there 

are no significant trends over time for precipitation (P), streamflow (Q) or 

temperature (results not shown). What is significant is an increase in the difference 

between P and Q (P – Q : r = 0.37, p = 0.005, n = 55). This suggests an increase in 

evaporation for the November to May period, which could be the results of a 

combination of combined changes in temperature and wind speed. Further work is 

needed on this intriguing finding, which is beyond the scope of this discussion, but it 

suggests a possible non-stationarity in the control. Various alternative hypotheses for 

the apparent long-term trend in declining Q/P at WS2 include release of understory 

hemlock due to cumulative mortality of the 500-yr old over-storey Douglas fir or 

changing temperature. There is no long-term trend in measured (i.e. near-ground-

level) temperature but in a stepwise multiple regression analysis of the long-term P – 

Q trend, without itself being a significant addition, temperature does increase the 

variance explained from 14% to 21%. If temperature change were involved, this 

might be evident from above-canopy measurements but unfortunately we do not 



have records of air temperature trends at the top of the canopy (which is 80-90 m 

tall).  

This apart, the control period is notable for its lack of extreme ENSO conditions, 

compared to all but Treatment Period 5. This means that, with hindsight, the control 

period did not include the very dry or very wet conditions usually associated with El 

Niño and La Niña events respectively, meaning that the full range of possible climatic 

variability was not experienced during the control period. Nine years is a typical – 

even generous - length of control period but not long enough perhaps? 

Implications  

Three implications can be drawn from this analysis of relevance to paired watershed 

experiments and the management of water resources in forested watersheds:  

1. Wherever subtle processes are embedded within highly variable systems, a 

weak signal cannot be extracted from a noisy background without a long 

record (Burt, 1994). With respect to paired watershed experiments, this 

emphasises the need for continued monitoring over long (treatment) periods, 

especially at locations like H J Andrews where short-term climatic variation is 

significant compared to any long-term trend. 

2. It follows that, if the study site is in a region affected by extreme climatic 

variation, then the control period must be long enough to capture this 

variability. Otherwise, the extreme differences in runoff, for example between 

El Niño and La Niña conditions, might not be factored into calculations about 

available water resources. The expected increase in water yield would no 

doubt happen after deforestation but there might well be more inter-annual 

variability than expected. 

3. Provided that there is some leeway over and above economic considerations 

such as the price of timber, then the ability to forecast rainfall and streamflow 

might help avoid excessive runoff and erosion by delaying harvesting 

operations for a year. Looking at correlations between NINO34 and 

streamflow the following winter, the earliest month to provide a significant 

correlation is June (R2 = 0.1329, p = 0.016); however, despite being 

statistically significant, the level of variance explained is low and this would be 

a weak basis for forecasting. Nevertheless, since the June NINO34 index 

value would be available mid-July, this suggests that, if clear-cutting could be 

delayed until August, it would be possible to forecast whether the following 

winter is likely to be very wet (La Niña) or not, so avoiding the possibility of 

high surface runoff on unprotected soil. However, these comments need 

placing in context: the treatment in WS1 involved clear-cutting old-growth 

(150-500 year-old) forests; this has not been legal for 20 years in the Pacific 

Northwest.  The only places where clear-cutting is being done in the Pacific 

Northwest are private land on a 70-year rotation. Thus, our comment about 

forecasting might be relevant generally but not at H J Andrews specifically. 



Additionally, there are other practical issues related to harvest planning 

months or years into the future, including staffing and machinery. It is clear 

therefore that much more reliable forecasting methods will be needed before 

environmental impact can take priority over economic considerations. 

 

Concluding comments 

While it is intuitive that a wet year will have more runoff and sediment transport than 

a dry year, the results demonstrate that, whatever the condition of the treated 

watershed in terms of re-growth of the forest canopy, extreme climatic variations 

related to ENSO remain the more dominant driver of streamflow variability at this 

location. The important finding that streamflow response in both watersheds is 

significantly correlated with the average NINO34 value for the previous summer 

suggests the possibility of flow forecasting and varying management decision 

making.  

Whilst the paired-watershed approach is not compromised via our observations 

(although we do note the arguments made by Alila et al., 2009 that may compromise 

the paired watershed approach in other ways), this study suggests that greater 

caution is needed than previously realised in relation to the length of the initial 

“control” period. On the other hand, knowledge of potential climatic impacts may 

eventually benefit management decisions, avoiding particularly problematic La Niña-

impacted weather conditions. The ability to reliably forecast streamflow could help 

avoid excessive impact  by delaying harvesting operations.  

The findings here demonstrate the need for long-term environmental monitoring to 

enhance decision making and planning. Multi-decadal data sets are needed to better 

understand forestry management and watershed impacts. Understanding the 

response of runoff to climate and forestry management is critical but there may be 

unforeseen and unknown ecohydrological trends and effects that may only be 

revealed at long time scales. The findings here highlight the benefit of such 

observations.  

Finally, our analysis reinforces the emerging consensus that inter-annual climate 

variability is high relative to long-term trends in climate (see Abatzoglou et al., 2013); 

it makes sense that inter-annual streamflow variability will be high, too.  The 

Andrews Forest appears to be located at a latitude where it experiences climate 

variability associated with both the equatorial Pacific and the northern Pacific; future 

research might therefore explore the influence of indices in addition to ENSO (e.g. 

the Pacific Decadal Oscillation) to better explain streamflow variability. It is also the 

case that long-term climate change-related trends are evident in streamflow records 

for much of the Pacific Northwest, namely increases in spring flow and declining late 

summer flow (Hatcher and Jones, 2013; Dettinger, 2014). In relation to controls on 

orographic rainfall, Luce et al (2013) identified links between atmospheric circulation 



and precipitation totals in the Pacific Northwest similar to those identified by Burt and 

Howden (2013) for upland Britain and the Pacific Northwest. This raises the question 

as to whether significant climate variability effects on streamflow might also be 

apparent at other, mid-latitude, west-coast locations, such as Britain or Chile,   
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Footnote 

1. Given the location of the study area and names used at the H J Andrews 

Experimental Forest, we use here the American term “watershed” to denote 

the drainage basin or watershed. 

Figure captions 

Figure 1. The difference between actual and predicted values for WS1 for (a) 

streamflow (mm) and (b) the number of Q10 days. Both plots cover the extended 

winter period November through May. 

Figure 2. Flow duration curves for the control period and five treatment periods. WS1 

is shown in blue and WS2 in red. 

Figure 3. Flow duration curves for the two watersheds for the control period and five 

treatment periods. The years selected had the largest values of the NINO34 index 

within each period: positive for El Niño (red lines) and negative for La Niña (blue 

lines). For each pair of lines, WS1 is the darker colour and WS2 the paler colour. 

Table captions 

Table 1. Summary data for the control and five treatment periods. All results are for 

the extended winter November to May. Total runoff (TOT) is in millimetres. Values 

listed for the NINO34 index are the maximum and minimum November to May (n-m) 

average during each period. Dates refer to water years. 

Table 2. Mean values for a range of flow statistics at WS1 and WS2, for the 

treatment period (1967-2012) and for El Niño and La Niña events. All results are for 

the November to May (n-m) extended winter, except that summer low flow data 

(Q90j-o) are included in the right-hand column. Variables are defined in the text. 

Values of the NINO34 index greater than one standard deviation either side of the 

mean were used to identify El Niño and La Niña events. Note that this yields fewer 

“ENSO” periods than listed by Leung et al (2003). 1983 was an exceptionally wet El 

Niño; following Piechota et al (1997), this was excluded from the calculations. 

Table 3. Number of days November to May when streamflow exceeded Q10n-m. 

Given the small number of El Niño and La Niña events in each period, results from 

specific years rather than mean values are given. The years selected had the largest 

values of the NINO34 index within each period: positive for El Niño and negative for 

La Niña. Again, 1983 is excluded from the analysis. 


