
Discrete Applied Mathematics 190–191 (2015) 56–74

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Spectral distances on graphs
Jiao Gu a,b,c, Bobo Hua c,d, Shiping Liu c,e,∗

a School of Science, Jiangnan University, 214122, Wuxi, China
b Mathematics and Science college, Shanghai Normal University, 200234, Shanghai, China
c Max Planck Institute for Mathematics in the Sciences, 04103, Leipzig, Germany
d School of Mathematical Sciences, LMNS, Fudan University, Shanghai 200433, China
e Department of Mathematical Sciences, Durham University, DH1 3LE Durham, United Kingdom

a r t i c l e i n f o

Article history:
Received 28 October 2014
Received in revised form 20 March 2015
Accepted 16 April 2015
Available online 8 May 2015

Keywords:
Wasserstein distance
Spectral measure
Random rooted graph
Asymptotic behavior
Biological networks

a b s t r a c t

By assigning a probability measure via the spectrum of the normalized Laplacian to each
graph and using Lp Wasserstein distances between probability measures, we define the
corresponding spectral distances dp on the set of all graphs. This approach can even be
extended to measuring the distances between infinite graphs. We prove that the diameter
of the set of graphs, as a pseudo-metric space equippedwith d1, is one.We further study the
behavior of d1 when the size of graphs tends to infinity by interlacing inequalities aiming
at exploring large real networks. A monotonic relation between d1 and the evolutionary
distance of biological networks is observed in simulations.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One major interest in graph theory is to explore the differences of graphs in structure, that is, in the sense of graph
isomorphism. In computational complexity theory, the subgraph isomorphism problem, likemany combinational problems
in graph theory, is NP hard. Therefore, a method that gives a quick and easy estimate of the difference between two graphs
is desirable [34]. As we know, all the topological information of a graph can be found in its adjacency matrix. The spectral
graph theory studies the relationship between the properties of graphs and the spectra of their representing matrices, such
as adjacency matrices and Laplace matrices [14,18,17]. In particular, some important topological information of a graph can
be extracted from its specific eigenvalue like the first or the largest one, see e.g. [18,17,39,11,25,12,10]. The approach of
reading information from the entire spectrum of a graph was explored in [5–7,30,32] etc. In spite of the existence of co-
spectral graphs (see [38, Chapter 3] for a general construction and the references therein), the spectra of graphs can support
us one way on exploring problems that involve (sub-)graph isomorphism by the fast computation algorithms and the close
relationship with the structure of graphs.

A spectral distance on the set of finite graphs of the same size, i.e. the same number of vertices, was suggested in a
problem of Richard Brualdi in [37] to explore the so-called cospectrality of a graph. It was further studied in [26] using
the spectra of adjacency matrices. Employing certain Gaussian measures associated to the spectra of normalized Laplacians
and the corresponding L1 distances, the first named author, Jost, the third named author and Stadler [21,20] explored a
spectral distance well-defined on the set of all finite graphs without any constraint about sizes. In this paper, instead of
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the Gaussian measures, we assign Dirac measures to graphs through the spectra of normalized Laplacians and use the
Wasserstein distances between probability measures to propose spectral distances between graphs. In fact, this notion
of spectral distances provides a metrization of the notion of spectral classes of graphs introduced in [21] via the weak
convergence of the corresponding Diracmeasures. The spectral class can be considered as a weak notion of graph limits (see
the concepts of graphon, graphing and related theories in the monograph of Lovász [33]). This notion of spectral distances
is even adaptable for weighted infinite graphs. And we can prove diameter estimates with respect to these distances, which
are sharp for certain cases.

Aweighted graphG is a triple (V , E, θ)whereV is the set of vertices, E is the set of edges and θ : E → (0, ∞), (x, y) → θxy,
is the (symmetric) edge weight function. We write x ∼ y if (x, y) ∈ E. We assume that for any vertex x, the weighted degree
defined by θx :=


y∼x θxy is finite and θxx = 0 (i.e. there is no self-loops).

Let us first consider finite weighted graphs. The normalized Laplacian of G = (V , E, θ) is defined as, for any function
f : V → R and any x ∈ V ,

∆Gf (x) = f (x) −
1
θx


y∼x

f (y)θxy. (1)

This operator can be extended to an infinite weighted graph which has countable vertex set V but is not necessarily locally
finite (see [27] or Section 2 below). As a matrix, ∆G is unitarily equivalent to the Laplace matrix studied in [17].

If x ∈ V is an isolated vertex, i.e. θx = 0, (1) reads as ∆Gf (x) = f (x). This implies that an isolated vertex contributes an
eigenvalue 1 to the spectrum of∆G, denoted by σ(G). In this way, by the absence of the self-loops, the spectrum of any finite
weighted graph σ(G) = {λi}

N
i=1, counting the multiplicity, satisfies the trace condition

N
i=1

λi = N (2)

where N = |V |. It is well-known that σ(G) is contained in [0, 2]. We associate to σ(G) a probability measure on [0, 2] as
follows:

µσ(G) :=
1
N


i

δλi , (3)

where δλi is the Dirac measure concentrated on λi. We call µσ(G) the spectral measure for a finite weighted graph. (This is
known as the empirical distribution of the eigenvalues in randommatrix theory.) Denote by P([0, 2]) the set of probability
measures on the interval [0, 2]. For anyµ ∈ P([0, 2]), the first moment ofµ is defined asm1(µ) :=


[0,2] λ dµ(λ). The trace

condition (2) is then translated to

m1(µσ(G)) = 1. (4)

This is a key property of the spectral measures for our further investigations.
Let dWp (1 ≤ p < ∞) be the pth Wasserstein distance on P([0, 2]). That is, for any µ, ν ∈ P([0, 2]) (see e.g. [40]),

dWp (µ, ν) :=


inf

π∈Π(µ,ν)


[0,2]×[0,2]

d(x, y)pdπ(x, y)
1/p

,

where Π(µ, ν) denotes the collection of all measures on [0, 2] × [0, 2] with marginals µ and ν on the first and second
factors respectively, i.e. π ∈ Π(µ, ν) if and only if π(A × [0, 2]) = µ(A) and π([0, 2] × B) = ν(B) for all Borel subsets
A, B ⊆ [0, 2].

It is well-known that (P([0, 2]), dWp ) is a complete metric space for p ∈ [1, ∞) which induces the weak topology of
measures in P([0, 2])(see e.g. [40, Theorem 6.9]).

One can prove that diam(P([0, 2]), dWp ) = 2. Indeed, on one hand, for any µ, ν ∈ P([0, 2]) by the optimal transport
interpretation of Wasserstein distance, dWp (µ, ν) ≤ 2. On the other hand, dWp (δ0, δ2) = 2. (Recall that δ0, δ2 are the Dirac
measures concentrated on 0, 2, respectively.)

Definition 1.1. Given two finite weighted graphs G = (V , E, θ) and G′
= (V ′, E ′, θ ′), the spectral distance between G and G′

is defined as

dp(G,G′) := dWp (µσ(G), µσ(G′)). (5)

We denote by F G the space of all finite weighted graphs. Then for any 1 ≤ p < ∞, (F G, dp) is a pseudo-metric space.
This is not a metric space due to the existence of co-spectral graphs. However, in applications this spectral consideration
leads to the simplification of measuring the discrepancy of graphs.
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One of the main results of our paper is the following theorem.

Theorem 1.2. For any 1 ≤ p < ∞, we have

diam(F G, dp) ≤ 21− 1
p .

Remark 1.3. (a) Embedded as a subspace of P([0, 2]), F G is a proper subspace by considering the diameters.
(b) One can prove an upper bound directly by using Chebyshev inequality, see Theorem 2.4. Clearly, this theorem improves

that estimate.
(c) This estimate is tight for p = 1, i.e. diam(F G, d1) = 1, see Corollary 1.8.
(d) We do not claim the sharpness of upper bound estimates for p ∈ (1, ∞).

In fact, Theorem 1.2 follows from the estimates on the Wasserstein distance of probability measures in condition of the
first moments.

Theorem 1.4 (Measure-theoretic Version). For any µ, ν ∈ P([0, 2]) with m1(µ) = m1(ν) = 1 and p ∈ [1, ∞),

dWp (µ, ν) ≤ 21− 1
p . (6)

By Proposition 2.1 and Lemma 2.2 below, one easily shows that the above measure-theoretic estimate is equivalent to
the following analytic estimate.

Theorem 1.5 (Analytic Version). Let f , g : [0, 1] → [0, 2] be two nondecreasing functions such that
 1
0 f (x)dx =

 1
0 g(x)dx =

1. Then for any p ∈ [1, ∞) 1

0
|f − g|p(x)dx

 1
p

≤ 21− 1
p . (7)

Section 3 is devoted to the proofs of Theorems 1.2, 1.4 and 1.5.
We extend our approach of the spectral distance to infinite graphs (with countable vertex set V) in Section 4. Note that

in the above arguments we only use the normalization of the first moment of the spectral measures, i.e.m1(µσ(G)) = 1, our
results generalize to allweighted graphs including infinite ones. For spectralmeasureswith distinguished vertices on infinite
graphs, we refer toMohar–Woess [36]. We introduce two definitions of spectral measures for infinite graphs. One is defined
via the exhaustion of the infinite graphs by the spectralmeasures of normalized Dirichlet Laplacians on subgraphs. The other
is defined for random rooted graphs following Benjamini–Schramm [13], Aldous–Lyons [2] and Abért–Thom–Virág [1].

We denote by G the collection of all (possibly infinite) weighted graphs. For any G ∈ G, we define SM(G) as the spectral
measures of G by exhaustion, see Definition 4.1, which is a closed subset of P([0, 2]). Then G endowed with the Hausdorff
distance induced from the metric space (P([0, 2]), dWp ), denoted by dp,H , is a pseudo-metric space. A direct application of
Theorem 1.4 yields the following corollary (recalled below as Theorem 4.2).

Corollary 1.6. For p ∈ [1, ∞),

diam(G, dp,H) ≤ 21− 1
p .

For any D ≥ 1, we denote by RRGD the collection of random rooted graphs of degree D, see Section 4.2 for definitions.
Any finite weighted graph G gives rise to a random graph by assigning the root of G uniformly randomly. There are many
interesting class of random rooted graphs such as unimodular and sofic ones, see [1]. For each random rooted graph
G ∈ RRGD, we associate it with an expected spectral measure, denoted by µG. In this way, RRGD endowed with dWp
Wasserstein distance for expected spectral measures (dp in short) is a pseudo-metric space. By Theorem 1.4, one can prove
the following corollary (recalled below as Theorem 4.4).

Corollary 1.7. For p ∈ [1, ∞),

diam(RRGD, dp) ≤ 21− 1
p .

In fact, there are examples of finite graphs which saturate the upper bounds for p = 1, see Examples 2.5 and 2.6.

Corollary 1.8. All upper bounds on d1 are tight, i.e.

diam(F G, d1) = diam(G, d1,H) = diam(RRGD, d1) = 1.
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We then concentrate on the spectral distance d1. In Section 5, we calculate d1 on several particular classes of graphs. For
our purpose of applications to large real networks, we are more concerned with the behavior of d1 when the size of graphs
N tends to infinity. We observe convergence behaviors of order O(1/N2), O(1/N) in those examples.

The asymptotic behavior of d1 is studied in general in Section 6 by employing interlacing inequalities of the spectra
of finite weighted graphs. For two graphs G and G′, which differ from each other by some standard operations including
e.g. edge deleting, vertex replication, vertices contraction and edge contraction, we prove

d1(G,G′) ≤
C
N

, (8)

where C depends only on the operations and is independent of the size N of G (see Theorem 6.3). By this result, we further
derive a convergence result of graphs under the d1 distance.

In the last section, we apply the distance d1 to study the evolutionary process of biological networks by simulations. We
start from a Barabási–Albert scale-free network, which has proven to be a very common type of real large networks [8].
We then simulate the evolutionary process by the operations, edge-rewiring and duplication–divergence respectively. We
observe a monotonic relation between d1 and the evolutionary distance, which is a crucial point to anticipate further
applications in exploring evolutionary history of biological networks.

2. Preliminaries, spectral measures and spectral distances

In this section, we recall basics about graph spectra andWasserstein distances on the space of probability measures, and
define the spectral distances of finite graphs. The spectral distances of infinite graphs and random graphs will be postponed
to Section 4.

Let us consider a (possibly infinite) weighted graph G = (V , E, θ), where V is a countable set and θ : E → (0, ∞) is a
weight function on edges. For convenience, we extend θ to V × V , θ : V × V → (0, ∞), such that θxy > 0 iff (x, y) ∈ E. We
require that the weight function θ satisfies

y∈V

θxy < ∞, ∀x ∈ V .

The weighted degree of the vertex x ∈ V is still defined as θx :=


y∼x θxy. The graph is called connected if for every two
vertices x, y ∈ V there exists a finite path x = x0 ∼ x1 ∼ · · · ∼ xn = y connecting x and y.

We define the (formal) normalized Laplacian ∆ on the formal domain

F(V ) :=


f : V → R |


y∈V

θxy|f (y)| < ∞ for all x ∈ V


,

by

∆f (x) =
1
θx


y∈V

θxy(f (x) − f (y)).

As a linear operator, its restriction to the Hilbert space ℓ2(V , θ) := {f : V → R|


x∈V |f (x)|2θx < ∞}, denoted by ∆G,
coincides with the generator of the Dirichlet form

Q (f ) =
1
2


x,y∈V

θxy|f (x) − f (y)|2,

defined on ℓ2(V , θ), for details see [27].
If G = (V , E, θ) is a weighted graph without isolated vertices, i.e. θx > 0 for all x ∈ V , then the normalized Laplacian of

G can be rephrased as
∆G := I − D−1A,

where D is the degree operator and A is the adjacency operator (defined as Dτx = θxτx and Aτx =


y∼x θyxτy, where
τx(y) = 1 if y = x and 0 otherwise), i.e. for any finitely supported function f : V → R,

∆Gf (x) = f (x) −
1
θx


y∼x

f (y)θxy.

Since D−1A is a bounded selfadjoint operator with operator norm less than or equal to 1 on ℓ2(V , θ), the spectrum of ∆G,
denoted by σ(G), is contained in the interval [0, 2].

We order the spectrum of any finite weighted graph G in the nondecreasing way:
0 ≤ λ1 ≤ · · · ≤ λN ≤ 2,

where N = |V |. For convenience, we also denote the spectrum of G by a vector, called spectral vector of G, λG := (λi)
N
i=1 =

(λ1, λ2, . . . , λN) ∈ [0, 2]N .
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2.1. Spectral measures

Let G be a finite weighted graph. We denote by FG the cumulative distribution function associated to µσ(G) (recall (3)),
and by

F−1
G (x) := inf{t ∈ R : FG(t) > x}

the inverse cumulative distribution function. Since σ(G) ⊆ [0, 2], we have FG : [0, 2] → [0, 1] and F−1
G : [0, 1] → [0, 2].

Recalling the trace condition (2), we have the following proposition.

Proposition 2.1. Let G = (V , E, θ) be a finite weighted graph. Then the following are true:

(a) FG and F−1
G are nonnegative nondecreasing step functions;

(b)
 2
0 FG(x)dx = 1;

(c)
 1
0 F−1

G (x)dx = 1.

Proof. (a) is trivial. (c) follows from the trace condition (2). (b) is equivalent to (c) since the total area of the rectangle
[0, 1] × [0, 2] is 2. �

2.2. Spectral distances

Since the spectrum of the normalized Laplacian of a graph lies in the interval [0, 2] ⊂ R, one may calculate the spectral
distance (5) explicitly. This is an advantage of probabilitymeasures supported in the 1-dimensional space. In fact, the spectral
distance between two finite weighted graphs G, G′, i.e. the Wasserstein distance of two spectral measures µσ(G), µσ(G′), can
be calculated by the inverse cumulative distribution functions F−1

G and F−1
G′ thanks to the following lemma.

Lemma 2.2 (See [35, Theorem 8.1]). Let µ, ν ∈ P([0, 2]) and F−1
µ , F−1

ν be their inverse cumulative distribution functions. Then
for any p ∈ [1, ∞),

dWp (µ, ν) =

 1

0
|F−1

µ (x) − F−1
ν (x)|pdx

1/p

.

One can show that if two graphs having the same number of vertices, say N , then the spectral distance between them is
reduced to the ℓp distance between the spectral vectors, i.e. for any 1 ≤ p < ∞,

dp(G,G′) =
1
N

∥λG − λG′∥ℓp .

In this paper, we are interested in the diameter of the pseudo-metric space (F G, dp) for p ∈ [1, ∞). Recall that we
naturally have

diam(F G, dp) ≤ diam(P([0, 2]), dWp ) = 2.

We denote by {·} a graph consisting of a single vertex with no edge. Then by our convention, σ({·}) = {1}. Clearly, for
any weighted graph G,

dp(G, {·}) ≤ 1, for 1 ≤ p < ∞.

In the following, we use (integral) Chebyshev inequality to derive a refined upper bound for the diameter.

Lemma 2.3 (Chebyshev Inequality, See [22, Section 2.17] or [19]). For any nonnegative, monotonically increasing integrable
functions f , g : [0, 1] → [0, ∞), we have 1

0
f (x)g(x)dx ≥

 1

0
f (x)dx

 1

0
g(x)dx. (9)

Theorem 2.4. For any 1 ≤ p ≤ 2, we have

diam(F G, dp) ≤
√
2,

i.e. for any finite weighted graphs G and G′,

dp(G,G′) ≤
√
2.
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Proof. Let us denote f = F−1
G and g = F−1

G′ . Then by Chebyshev inequality (9) and Proposition 2.1(c), 1

0
fg ≥

 1

0
f
 1

0
g = 1.

Hence, for any 1 ≤ p ≤ 2 we have 1

0
|f − g|p

2/p

≤

 1

0
|f − g|2 =

 1

0
f 2 +

 1

0
g2

− 2
 1

0
fg

≤ 2
 1

0
f + 2

 1

0
g − 2 = 2,

where we have used that f ≤ 2 and g ≤ 2. This proves the theorem. �

In the next section, we will give a tighter upper bound for the diameter estimates. In particular, in the case of p = 1, we
derive an optimal upper bound, that is, we will prove that diam(F G, d1) = 1. The tightness of this estimate can be seen
from the following two examples.

Example 2.5. Let G = {·} and G′
= P2 be the path on two vertices. Then σ(G′) = {0, 2}. Hence we have

dp(G,G′) = 1, p ∈ [1, ∞).

The following example is more convincing.

Example 2.6. Let G′
= P2 be the path on two vertices and GN an unweighted (i.e. θxy = 1 for every edge xy) complete graph

on N vertices. Then it is known that

σ(GN) =

0,
N

N − 1
, . . . ,

N
N − 1  

N−1

 . (10)

Therefore we have

dp(GN ,G′) =


1
2

−
1
N


Np

(N − 1)p
+

1
2


2 −

N
N − 1

p 1
p

.

In particular, d1(GN ,G′) = 1 −
1

N−1 . Observe that

lim
N→+∞

dp(GN ,G′) = 1.

3. The proof of the diameter estimate

This section is devoted to the proofs of Theorems 1.2, 1.4 and 1.5. We first prove some lemmata.
We call a function f : [0, 1] → [0, 2] an admissible 2-step function if there exist a ∈ [0, 1

2 ] and b ∈ [
1
2 , 1] such that

f (x) =


0, 0 ≤ x < a,
2b − 1
b − a

, a ≤ x < b,

2, b ≤ x ≤ 1.

(11)

In particular, we say f jumps at a and b. Clearly,
 1
0 f (x)dx = 1 and

 2
0 f −1(x)dx = 1. The name for a 2-step function is

evident from the graph of the function. In particular, any inverse function F−1
G of a cumulative distribution function of a

graph G with 3 vertices is an admissible 2-step function.

Lemma 3.1. Let f , g be admissible 2 -step functions on [0, 1]. Then we have 1

0
|f − g|(x)dx ≤ 1, (12)
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Fig. 1. Subcase 1.1.

Fig. 2. Subcase 1.2.

where ‘‘=’’ holds if and only if (ignoring the order of f , g)

f (x) =


0, 0 ≤ x <

1
2
;

2,
1
2

≤ x ≤ 1,
g(x) = 1, 0 ≤ x ≤ 1. (13)

Observe that the inverse cumulative distribution functions in Example 2.5 are exactly the two functions in (13).

Proof. Let f : [0, 1] → [0, 2] (g : [0, 1] → [0, 2] resp.) be an admissible 2-step function jumping at a and b (c and d resp.).
Denote the height of the first jump of f and g by h1 :=

2b−1
b−a and h2 :=

2d−1
d−c respectively.

The proof is divided into four cases and several subcases as follows:
Case 1. 0 ≤ a ≤ c ≤

1
2 ≤ d ≤ b ≤ 2.

Subcase 1.1. h2 ≥ h1. See Fig. 1.
For each domain I (II resp.) in Fig. 1, we denote by |I| (|II| resp.) the area of that domain. We reflect the domain II along

the line {x = c} to obtain a new domain II′. By the fact that c ≤
1
2 , we have 1

0
|f − g| = |I| + |II| = |I| + |II′| ≤

 1

0
g = 1.

Subcase 1.2. h2 < h1. See Fig. 2.
Reflect the domain I along the line {x = d} to obtain I′. Then 1

0
|f − g| = |I| + |II| = |I′| + |II| ≤

 2

0
g−1(y)dy = 1.

Case 2. 0 ≤ a ≤ c ≤
1
2 ≤ b < d ≤ 2.

We claim that h1 ≤ h2. Suppose not, by Fig. 3, we have

1 =

 1

0
f >

 1

0
g = 1,

which is a contradiction. This proves the claim.
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Fig. 3. Case 2: the proof of h1 ≤ h2 .

Fig. 4. Subcase 2.1.

Subcase 2.1. h1 ≥ 1, see Fig. 4.
Reflect the domain II along the line {y = h1} to get II′. Since h1 ≥ 1, 1

0
|f − g| = |I| + |II| + |III| = |I| + |II′| + |III| ≤

 1

0
f = 1.

Subcase 2.2. h1 < 1. Further, we divide it into more subcases.
Subcase 2.2.1. h2 ≤ 1, see Fig. 5.
Reflect the domain II along the line {y = h2} to have II′. By h2 ≤ 1, 1

0
|f − g| = |I| + |II| + |III| = |I| + |II′| + |III| ≤

 2

0
g−1(y)dy = 1.

Subcase 2.2.2. h2 > 1. Moreover,
Subcase 2.2.2.1. h2 − h1 ≤ 1.
Then by the basic estimate, 1

0
|f − g| = |I| + |II| + |III| = (2 − h2)(d − b) + (h2 − h1)(b − c) + h1(c − a)

≤ d − b + b − c + c − a = d − a (by max{2 − h2, h2 − h1, h1} ≤ 1)
≤ 1.

Subcase 2.2.2.2. h2 − h1 > 1, see Fig. 6.
Reflect I along the line {y = h2} to obtain I′, and III along the line {x = c} to obtain III′. Then by the fact h2−h1 ≥ 1 ≥ 2−h2,

I′ ∩ III′ = ∅. Thus, 1

0
|f − g| = |I| + |II| + |III| = |I′| + |II| + |III′| ≤

 1

0
g = 1.

Case 3. 0 ≤ c < a ≤
1
2 ≤ b < d ≤ 2. By interchanging the role of a, b and c, d, this reduces to the Case 1.

Case 4. 0 ≤ c < a ≤
1
2 ≤ d ≤ b ≤ 2. This reduces to Case 2 by the same change as in Case 3.
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Fig. 5. Subcase 2.2.1.

Fig. 6. Subcase 2.2.2.

Combining all the cases and subcases, we prove (12). Finally, we can check case by case that the equality in (12) can be
achieved only when f and g are the functions given by the relation (13). This completes the proof. �

Before proving the next lemma, we recall some basic facts from the convex analysis. Let Ω be a convex subset of RN ,
possibly having lower Hausdorff dimension. A function f : Ω → R is called convex if for any x, y ∈ Ω and 0 ≤ t ≤ 1,

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y).

In particular, for any norm ∥ · ∥ on RN , the function f : RN
→ R defined by f (x) = ∥x − x0∥ for some fixed x0 is a convex

function. We say a point x ∈ Ω is extremal if it cannot be written as the nontrivial convex combination of two other points
in Ω , i.e. if x = tx1 + (1 − t)x2 for some 0 < t < 1 and x1, x2 ∈ Ω , then x = x1 = x2. The set of extremal points of a convex
set Ω is denoted by Ext(Ω). A subset P ⊂ RN is called a (closed) convex polytope if it is the intersection of finite many half
spaces, i.e. there exist K ∈ N linear functions {Lj}Kj=1 on RN such that

P =

K
j=1

{x ∈ RN
: Lj(x) ≤ 0}.

We state a well-known fact which will be used to prove the next lemma.

Fact 3.2. Let P be a compact convex polytope in RN and f : P → R a convex function. Then

max
P

f = max
Ext(P)

f . (14)

The following lemma is the special case of Theorem 1.2 when two graphs have the same number of vertices.

Lemma 3.3. Let N ≥ 1. Assume that α = (αi)
N
i=1 andβ = (βi)

N
i=1 satisfy 0 ≤ α1 ≤ · · · ≤ αN ≤ 2 and 0 ≤ β1 ≤ · · · ≤ βN ≤ 2

and

∥α∥ℓ1 = ∥β∥ℓ1 = N.

Then we have

∥α − β∥ℓ1 ≤ N.
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Proof. Let P denote the compact convex polytope {α ∈ RN
: 0 ≤ α1 ≤ · · · ≤ αN ≤ 2, ∥α∥ℓ1 = N}. Then by the induction

on N , one can show that the set of extremal points of P is

Ext(P) =

(0, . . . , 0  
k

, a, . . . , a  
N−k−l

, 2, . . . , 2  
l

) : 0 ≤ k, l ≤
N
2

, a =
N − 2l

N − k − l

 .

We divide the interval [0, 1] equally into N subintervals {[
i−1
N , i

N ]}
N
i=1. Then for any α ∈ P, we define a step function

fα : [0, 1] → [0, 2] by

fα|
[
i−1
N , i

N ]
= αi.

Clearly,
 1
0 fα =

1
N ∥α∥ℓ1 = 1. In addition, for any γ ∈ Ext(P), fγ is an admissible 2-step function defined in (11).

Note that for any fixed β0 ∈ RN , the function F : RN
∋ α → ∥α − β0∥ℓ1 ∈ R is a convex function on RN . We claim that

max
α∈P
β∈P

∥α − β∥ℓ1 = max
γ∈Ext(P)
θ∈Ext(P)

∥γ − θ∥ℓ1 . (15)

By Fact 3.2,

max
α∈P
β∈P

∥α − β∥ℓ1 = max
β∈P

max
α∈P

∥α − β∥ℓ1 = max
β∈P

max
γ∈Ext(P)

∥γ − β∥ℓ1

= max
γ∈Ext(P)

max
β∈P

∥γ − β∥ℓ1 = max
γ∈Ext(P)

max
θ∈Ext(P)

∥γ − θ∥ℓ1 .

This proves the claim.
For any γ , θ ∈ Ext(P), noting that fγ and fθ are admissible 2-step functions, by Lemma 3.1, we have

∥γ − θ∥ℓ1 = N
 1

0
|fγ − fθ | ≤ N.

Combining this with (15), we prove the lemma. �

Now we can prove Theorem 1.5. A function f : [0, 1] → [0, 2] is called a rationally distributed step function if there is
a (rational) partition 0 = r0 < r1 < r2 < · · · < rN = 1 with ri ∈ Q for all 0 ≤ i ≤ N and an increasing sequence
0 ≤ a1 < · · · < aN ≤ 2 such that

f (x) =


a1, 0 ≤ x < r1,
a2, r1 ≤ x < r2,
...
aN , rN−1 ≤ x ≤ 1.

Proof of Theorem 1.5. First, we consider p = 1. By the standard approximation argument, any such functions, f and g ,
can be approximated in L1 norm by a sequence of rationally distributed step functions, say {fn}∞n=1 and {gn}∞n=1, satisfying 1
0 fn =

 1
0 gn = 1. Hence it suffices to prove the theorem for rationally distributed step functions.

W.l.o.g., wemay assume f and g are rationally distributed step functions, say f |[ri−1,ri] = ai for 1 ≤ i ≤ L and g|[tj−1,tj] = bj
for 1 ≤ j ≤ K where L, K ∈ N. LetN denote the least commonmultiple of {mi}

L
i=1∪{nj}

K
j=1 wheremi, nj are the denominators

of ri =
ci
mi

and tj =
dj
nj

(ci,mi, dj, nj ∈ N), 1 ≤ i ≤ L, 1 ≤ j ≤ K . Then we have for any 1 ≤ p ≤ N

f |
[
p−1
N ,

p
N ]

= αp,

g|
[
p−1
N ,

p
N ]

= βp,

where αp = al and βp = bk for some 1 ≤ l ≤ L, 1 ≤ k ≤ K . Obviously, 0 ≤ α1 ≤ · · · ≤ αN ≤ 2, 0 ≤ β1 ≤ · · · ≤ βN ≤ 2
and

∥α∥ℓ1 = ∥β∥ℓ1 = N.

Hence Lemma 3.3 implies that

∥α − β∥ℓ1 ≤ N.

That is, 1

0
|f − g| ≤ 1.
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For p ∈ (1, ∞), it can be easily derived from the result for p = 1. 1

0
|f − g|p ≤ 2p−1

 1

0
|f − g|

≤ 2p−1.

This proves the theorem. �

Theorem 1.4 then follows directly.

Proof of Theorem 1.4. Let Fµ and Fν denote the cumulative distribution functions of the measures µ and ν respectively.
Since the total area of the square [0, 1] × [0, 2] is equal to 2, by the assumptionm1(µ) = m1(ν) = 1 we have 1

0
F−1
µ (x)dx =

 1

0
F−1
ν (x)dx = 1.

Then our theorem follows from Theorem 1.5 and Lemma 2.2. �

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. This follows from Theorem 1.4 directly. �

4. Spectral distances of infinite graphs

In this section, we introduce two definitions of spectral measures for infinite weighted graphs with countable vertex set
and extend our approach of spectral distance to this setting.

4.1. Spectral measures by exhaustion

Let G = (V , E, θ) be an infinite weighted graph and GΩ := (Ω, E|Ω , θ|Ω×Ω) a finite connected subgraph of G induced by
a subset Ω ⊂ V . We introduce the Dirichlet boundary problem of the normalized Laplacian on Ω , see e.g. [10]. Let ℓ2(Ω, θ)
denote the space of real-valued functions on Ω . Note that every function f ∈ ℓ2(Ω, θ) can be extended to a function
f̃ ∈ ℓ2(V , θ) by setting f̃ (x) = 0 for all x ∈ V \ Ω . The normalized Laplacian with the Dirichlet boundary condition on Ω ,
denoted by ∆GΩ

, is defined as ∆GΩ
: ℓ2(Ω, θ) → ℓ2(Ω, θ),

∆GΩ
f = (∆G f̃ )|Ω .

Thus for x ∈ Ω the Dirichlet normalized Laplacian is pointwise defined by

∆GΩ
f (x) = f (x) −

1
θx


y∈Ω

θxyf (y) = f̃ (x) −
1
θx


y∈V

θxy f̃ (y),

where θ(x) is theweighted degree of the entire graph. A simple calculation shows that∆GΩ
is a positive self-adjoint operator.

We arrange the eigenvalues of the Dirichlet Laplace operator ∆GΩ
in nondecreasing order, i.e. λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤

λN(Ω), where N is the cardinality of the set Ω , i.e. N = |Ω|. By the trace condition, we also have the key property
N
i=1

λi(Ω) = N.

As same as finite graphs, we associate it with the spectral measure,

µΩ =
1
N

N
i=1

δλi(Ω).

Hencem1(µΩ) = 1.
A sequence of finite connected subgraphs {Ωn}

∞

n=1 is called an exhaustion of the infinite graphG ifΩn ⊂ Ωn+1 for all n ∈ N
and ∪

∞

n=1 Ωn = V . Hence we have a sequence of probability measures {µΩn}
∞

n=1 on [0, 2]. Since P([0, 2]) is compact under
the weak topology, up to a subsequence, w.l.o.g. we haveµΩn ⇀ µ for someµ ∈ P([0, 2]). Note that any subsequence of an
exhaustion is still an exhaustion. Therefore we define the spectral measures of an infinite graph by all possible exhaustions.
Note that the convergence of the spectral structure was studied in more general setting by Kuwae–Shioya [29].

Definition 4.1. Let G be an infinite weighted graph. We define the spectral measures of G by exhaustion as

SM(G) := {µ ∈ P([0, 2]) : there is an exhaustion {Ωn}
∞

n=1 s.t. µΩn ⇀ µ}.
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One can show that SM(G) is a closed subset of P([0, 2]). Sincem1(µΩn) = 1 for any n ∈ N, by the weak convergence, we
havem1(µ) = 1 for any µ ∈ SM(G).

For any metric space (X, d), one can define the Hausdorff distance between the subsets of X . For any subset A ⊂ X , we
define the distance function to the subset A as X ∋ x → d(x, A) = inf{d(x, y)|y ∈ A}, and the r-neighborhood of A as
Ur(A) := {y ∈ X |d(y, A) < r}, r > 0. Given two subsets A, B ⊂ X , the Hausdorff distance between them is defined as

dH(A, B) := inf{r > 0|A ⊂ Ur(B), B ⊂ Ur(A)}.

One can show that the set of closed subsets of X endowed with the Hausdorff distance is a metric space.
Note that for p ∈ [1, ∞), P([0, 2]) endowed with the pth Wasserstein distance is a metric space and SM(G) is a closed

subset of P([0, 2]) for any weighted graph G. We denote by G the collection of all (possibly infinite) weighted graphs. Hence
G endowed with the Hausdorff distance induced from (P([0, 2]), dWp ), denoted by dp,H , is a pseudo-metric space.

A direct application of Theorem 1.4 yields

Theorem 4.2. For p ∈ [1, ∞),

diam(G, dp,H) ≤ 21− 1
p .

4.2. Spectral measures for random rooted graphs

We follow Benjamini–Schramm [13], Aldous–Lyons [2] and Abért–Thom–Virág [1] to define random rooted graphs.
For any D ≥ 1, we define a subcollection of G, GD := {(V , E, θ) ∈ G| degx ≤ D, θxy ≤ D for all x, y ∈ V } where

degx = |{y ∈ V |y ∼ x}|, i.e. the set of weighted graphs with bounded (unweighted) degree (≤D) and bounded edge weights
(≤D). Let RGD denote the set of graphs G in GD with a distinguished vertex, called the root of G.

For any x, y ∈ V of G = (V , E, θ), we denote by dC (x, y) the distance between x and y, i.e. dC (x, y) := inf{n| there exist
{xi}ni=0 s.t. x = x0 ∼ x1 ∼ · · · ∼ xn = y}, and by Bk(x) := {z ∈ V |dC (x, z) ≤ k}, k ∈ N ∪ {0}, the ball of radius k centered
at x. Let (G1, o1) and (G2, o2) be two rooted graphs with distinguished vertices o1 and o2, respectively. We call that Bk(o1) is
isomorphic to Bk(o2) if there exists a bijective map f : Bk(o1) → Bk(o2) such that f (o1) = f (o2) and x ∼ y for x, y ∈ Bk(o1)
if and only if f (x) ∼ f (y). For (G1, o1), (G2, o2) ∈ RGD with G1 = (V1, E1, θ1) and G2 = (V2, E2, θ2), we define the rooted
distance between G1 and G2 as 1/K where

K = max


k ∈ N| ∃ an isomorphism f : Bk(o1) → Bk(o2)

such that sup
x,y∈Bk(o1)

|θ1,xy − θ2,f (x)f (y)| ≤
1
k


,

θ1,xy, θ2,f (x)f (y) are edge weights of xy ∈ E1, f (x)f (y) ∈ E2, respectively. One can prove that RGD endowed with the rooted
distance is a compact metric space.

By a random rooted graph of degree D we mean a Borel probability distribution on RGD. We denote by RRGD the
collection of random rooted graphs of degreeD. Any finiteweighted graphG gives rise to a random rooted graph by assigning
the root of G uniformly randomly.

For a rooted weighted graph (G, o) ∈ RGD with G = (V , E, θ), the normalized Laplacian is a bounded self-adjoint
operator on ℓ2(V , θ) which is independent of o. By spectral theorem, there is a projection-valued measure, denoted by P•,
on [0, 2], i.e. PA is a projection on ℓ2(V , θ) for any Borel A ⊂ [0, 2], such that for any continuous function f ∈ C([0, 2]) we
have the functional calculus

f (∆G) =


[0,2]

f (x)dPx (16)

where Px = P[0,x]. We define the spectral measure of the rooted graph (G, o) as

µG,o(A) =
1
θo

⟨PAδo, δo⟩, ∀A ⊂ [0, 2],

where ⟨·, ·⟩ is the inner product for ℓ2(V , θ). One can easily show that µG,o is a probability measure on [0, 2]. Further
calculation by using (16) yieldsm1(µG,o) = 1. Nowwe can define the expected spectral measure for rooted random graphs.

Definition 4.3. Let G be a random rooted graph. We define the expected spectral measure of G as

µG = E(µG,o)

where the expectation is taken over the distribution on RGD.
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Fig. 7. Two complete graphs of size N andM .

Let G be a random rooted graph rising from a finite weighted graph with uniform distribution on its vertices. A similar
calculation as in Abért–Thom–Virág [1] shows that

µG =
1
N

N
i=1

δλi

where {λi}
N
i=1 is the spectrum of the finite graph. Hence the expected spectral measure of random rooted graphs generalizes

the spectral measure of finite graphs. There are other interesting classes of random rooted graphs such as unimodular and
sofic ones, see e.g. [1].

The set of random rooted graphs of degree D, RRGD, endowed with dWp Wasserstein distance for expected spectral
measures (dp in short) is a pseudo-metric space. By Theorem 1.4, one can prove the following theorem.

Theorem 4.4. For p ∈ [1, ∞),

diam(RRGD, dp) ≤ 21− 1
p .

5. Calculation of examples

From now on, we will concentrate on the study of the spectral distance d1. We calculate this distance for several classes
of graphs in this section. Rather than the exact value of the d1 distance between two graphs, we are more concerned with
the asymptotical behavior of the distance between two sequences of graphs which become larger and larger, as the sizes of
real networks in practice nowadays are typically huge. All example graphs we consider in this section are unweighted.

Proposition 5.1. For two complete graphs G and G′ with N and M (M > N) vertices respectively, we have

d1(G,G′) = 2
M − N

N(M − 1)
.

Proof. Recall the spectrum (10) of a complete graph. We then calculate the distance (i.e. the area of the gray region shown
in Fig. 7),

d1(G,G′) =
M

M − 1


1
N

−
1
M


+


N

N − 1
−

M
M − 1


1 −

1
N


= 2

M − N
N(M − 1)

. �

Remark 5.2. When the size differenceM − N of two complete graphs is a fixed constant C , we have

d1(G,G′) = O(1/N2) as N → ∞.

Proposition 5.3. For two connected complete bipartite graphs G and G′ of size N and M (M > N) respectively, we have

d1(G,G′) = 2
M − N
NM

.

Proof. The spectrum of a complete bipartite graph Gwith N vertices is

σ(G) = {0, 1, . . . , 1  
N−2

, 2}.
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Fig. 8. Two complete bipartite graphs of size N andM .

Then the distance is (the area of the gray region shown in Fig. 8)

d1(G,G′) =


1
N

−
1
M


+


M − 1
M

−
N − 1
N − 1


= 2

M − N
NM

. �

Remark 5.4. If the size difference M − N of two complete bipartite graphs is a fixed constant C , we again observe the
behavior

d1(G,G′) = O(1/N2) as N → ∞.

Proposition 5.5. For two cubes G and G′ of size 2N and 2N+1 respectively, we have

d1(G,G′) =
1

N + 1
.

Proof. The spectrum of the cube Gwith 2N vertices is
2i
N

with multiplicity

N
i


, i = 0, . . . ,N


.

Firstly, observe 2i
N =

2j
N+1 when i = j = 0 or i = N , j = N + 1. And for j = i, we have

2(i − 1)
N

<
2j

N + 1
<

2i
N

, for 1 ≤ i ≤ N.

Secondly, by the recursive formula
N+1

k


=
 N
k−1


+
N
k


, for 1 ≤ k ≤ N , we derive

1
2N+1

k
i=0


N + 1

i


<

1
2N

k
i=0


N
i


<

1
2N+1

k+1
i=0


N + 1

i


, for 0 ≤ k ≤ N − 1.

Therefore the distance between G and G′ equals the area of the gray region depicted in Fig. 9. Again by the recursive formula
of binomial numbers, we calculate,

d1(G,G′) =

N
k=1


2k

N + 1
−

2(k − 1)
N


1
2N

k−1
i=0


N
i


−

1
2N+1

k−1
i=0


N + 1

i



+


2k
N

−
2k

N + 1


1

2N+1

k
i=0


N + 1

i


−

1
2N

k−1
i=0


N
i



=
1

2NN(N + 1)


N

k=1

(N − k + 1)


2

k−1
i=0


N
i


−

k−1
i=0


N + 1

i



+ k


k

i=0


N + 1

i


− 2

k−1
i=0


N
i



=
1

2NN(N + 1)

N
k=1


(N − k + 1)


N

k − 1


+ k


N
k



=
2

2NN(N + 1)

N
k=1

k

N
k


=

2
2NN(N + 1)

· N · 2N−1
=

1
N + 1

. �
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Fig. 9. An example of two neighboring cubes with N = 3 and N + 1 = 4.

Fig. 10. An example of two neighboring paths with N = 4 and N + 1 = 5.

Remark 5.6. The distance between two neighboring cubes (N-cube and (N + 1)-cube) is O(1/N) as N tends to infinity.
Recall a crucial difference of this example from previous ones is that the size difference, 2N , is not uniformly bounded as
N → ∞.

Proposition 5.7. For two paths G and G′ of size N and N + 1 respectively, we have

d1(G,G′) =
1

N(N + 1)


cot2

π

2N
− cot2

π

2(N − 1)
+ 1


.

Proof. The spectrum of the path G with N vertices is
1 − cos

π i
N − 1

, i = 0, 1, . . . ,N − 1


.

Since 1 − cos iπ
N−1 < 1 − cos (i+1)π

N < 1 − cos (i+1)π
N−1 for i = 0, . . . ,N − 2, and every eigenvalue of a path has multiplicity

one, the situation is similar to Proposition 5.5, as shown in Fig. 10.

d1(G,G′) =

N−1
k=1


cos

k − 1
N − 1

π − cos
k
N

π


k
N

−
k

N + 1


+


cos

k
N

− cos
k

N − 1
ππ


k + 1
N + 1

−
k
N


=

2
N(N + 1)

N−1
k=1

k

cos

k − 1
N − 1

π − cos
k
N

π


=

1
N(N + 1)


cot2

π

2N
− cot2

π

2(N − 1)
+ 1


.

For the last equality above we use Lagrange’s trigonometric identities

N
k=1

sin kx =
cos 1

2x − cos(n +
1
2 )x

2 sin 1
2x

,

N
k=1

cos kx =
sin(n +

1
2 )x − sin 1

2x

2 sin 1
2x

,

and their derivatives. �
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Remark 5.8. By a Taylor expansion argument, we observe that

cot2
π

2N
− cot2

π

2(N − 1)
= O(N), as N → +∞.

Therefore in this example, we have d1(G,G′) = O(1/N) as N tends to infinity.

We can calculate the example of cycles similarly.

Proposition 5.9. For two cycles G and G′ of size N and N + 1 respectively, we have

d1(G,G′) =


1
N

+
1

N(N + 1)


1

1 − cos( π
N+1 )

−
4

1 − cos( 2π
N )


, if N is even;

1
N + 1

−
1

N(N + 1)


1

1 − cos(π
N )

−
4

1 − cos( 2π
N+1 )


, if N is odd.

Remark 5.10. For N- and (N + 1)-cycles, we also have d1(G,G′) = O(1/N) as N tends to infinity.

6. Distance between large graphs

In this sectionwe explore the behaviors of the spectral distance d1 between large graphs in general. We require two large
graphs are different from each other only by finite steps of operations which will be made clear in Remark 6.1. The main
tool we employ is the so-called interlacing inequalities, which describe the changes of the spectrumwhenwe perform some
operations on the underlying graph. Such kind of results for normalized Laplacian of a graph have been studied in [16,31,
15,23,3]. In fact, we can observe the interlacing phenomena of eigenvalues for paths and cycles in Propositions 5.7 and 5.9.

Let the cardinality of vertices of G and G′ be N and N − j respectively, where j ∈ Z can be either negative or positive.
Assume

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN and 0 ≤ λ′

1 ≤ λ′

2 ≤ · · · ≤ λ′

N−j

are the spectra of the corresponding normalized Laplacian ∆G and ∆G′ . Then interlacing inequalities have the following
general form.

λi−k1 ≤ λ′

i ≤ λi+k2 , for each i = 1, 2, . . . ,N − j, (17)

with the notation that λi = 0 for i ≤ 0 and λi = 2 for i > N , and k1, k2 are constants independent of the index i.

Remark 6.1. G′ can be obtained from G by performing the following operations.

• G′ is the proper difference of G and one of its subgraph L. We say L is a subgraph of G if the weights θL,uv ≤ θG,uv for all
u, v. And the proper difference of G and L is a weighted graph with weights θG − θL. In this case,

k1 = number of vertices in L − number of connected components of L

and

k2 = number of vertices in L

(Horak–Jost [23, Corollary 2.11], see also Butler [15]). This includes the operation of deleting an edge (see Chen et al. [16]
for the result for this particular operation). Symmetrically, this also covers the operation of adding a graph, see Butler [15]
for particular results and Atay–Tunçel [3] for vertex replication.

• G′ is the image of an edge-preserving map ϕ : G → G′. By an edge-preserving map here we mean an onto map from the
vertices of G to vertices of G′, such that

θG′,xy =


u∈ϕ−1(x)
v∈ϕ−1(y)

θG,uv

for all vertices x, y of G′, and the degree of vertices are defined according to the edge weights as usual in both graphs.
Notice that for our purpose, we do not allow ϕ maps two neighboring vertices in G to the same vertex in G′ in order to
avoid self-loops. In this case,

k1 = 0 and k2 = j.

(Horak–Jost [23, Theorem 3.8].) This includes the operation of contracting vertices u, v such thatN(u)∩(N(v)∪{v}) = ∅

(see Chen et al. [16]), where N(u) stands for the neighborhood of u.
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• G′ is obtained from G by contracting an edge.We only consider edges uv in G such that du, dv > 1. By edge contractingwe
mean deleting the edge (u, v) and identifying u and v (Horak–Jost [23, Definition 4.2]). Denote the number of common
neighbors of u, v bym. Then

whenm ≠ 0, k1 = 2m, k2 = 1 + 2m; whenm = 0, k1 = 0, k2 = 2.

(Horak–Jost [23, Theorem4.1],where the unweightednormalized Laplacian casewas discussed.Wedonot knowwhether
it is also true for weighted normalized Laplacian.)

Remark 6.2. To the knowledge of the authors, the above three classes of operations includes all the operations discussed in
the literature for interlacing results of normalized Laplacian.

We prove the following result.

Theorem 6.3. Let G, G′ be two graphs, for which the spectra of corresponding normalized Laplacians satisfy (17). Then we have

d1(G,G′) ≤ C(k1, k2, j)
1
N

. (18)

Proof. By definition, we have

d1(G,G′) = dW1


1
N

N
i=1

δλi ,
1

N + j

N+j
i+1

δλ′
i


.

By symmetry, w.l.o.g., we can suppose j ≥ 0. We use a particular transport plan to derive the upper bound estimate. We
move the mass 1

N from λi to λ′

i for i = 1, 2, . . . ,N − j. We then move the mass at the remaining positions λN−j+1, . . . , λN

to fill the gaps at λ′

1, λ
′

2, . . . , λ
′

N−j with a cost for every transportation at most 2. That is, we have

d1(G,G′) ≤
1
N

N−j
i=1

|λi − λ′

i| +
j
N

× 2

≤
1
N

N+j
i=1

|λi+k2 − λi−k1 | +
2j
N

≤
k1 + k2 + 1

N

N
i=1

|λi+1 − λi| +
2j
N

≤ 2(k1 + k2 + j + 1)
1
N

.

In the second inequality above, we used interlacing inequalities (17). This complete the proof. �

Remark 6.4. The disjoint union of a path of size N and an isolated vertex can be obtained from a path of size N + 1 by
deleting an edge. A cycle of size N can be obtained from a cycle of size N + 1 by contracting an edge. Recall our calculation
in Propositions 5.7 and 5.9, we see the estimate (18) is sharp in the order of 1/N .

Remark 6.5. This theorem tells that if two large graphs share similar structure, then the spectral distance between them is
small.

If G′ is the graph obtained from G by performing operations such that k1, k2 are bounded (then j is also bounded), we say
G′ differs from G by a bounded operation.

Corollary 6.6. Let {Gi}
∞

i=1 be a sequence of graphs with size Ni tending to infinity. Assume that for any i, G′

i differs from Gi by a
uniformly bounded operation, then

lim
i→∞

d1(Gi,G′

i) = 0.

7. Applications to biological networks

In real biological networks, such as protein–protein interaction networks, edge-rewiring and duplication–divergence
are two edit operations which have been proven to be closely related to some evolutionary mechanism, see [24,28]. For a
spectral analysis of the effect of such operations on protein–protein interaction networks, we refer to [4]. In this section,
we apply the spectral distance d1 to capture evolutionary signals in protein–protein interaction networks through detecting
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Fig. 11. (a) Edge-rewiring; (b) duplication–divergence.

Fig. 12. The relation between the spectral distance d1 and the evolutionary distance. Edit operations includes (a) edge-rewiring; (b) duplication–
divergence.

their structural differences. We evolve graphs by operations of edge-rewiring and duplication–divergence, and then check
the connection between the spectral distance d1 and the evolutionary distance (i.e. the number of evolutionary operation
steps). We restrict our simulations in the following to unweighted graphs.

Let us first explain the two edit operations on an unweighted graph G = (V , E) explicitly.

• Edge-rewiring: Select randomly two edges (v1, v3), (v4, v5) ∈ E on four distinct vertices v1, v3, v4, v5 ∈ V (see Fig. 11(a)).
Delete these two edges (v1, v3), (v4, v5) and add new edges (v1, v4), (v3, v5). The size of the graph is preserved by this
operation, and so is the degree sequence.

• Duplication–divergence: Select randomly a target vertex v3 ∈ V . Add a replica v2 of v3 and new potential edges
connecting v2 with every neighbor of v3. Each of these potential edges is activated with certain probability (0.5 in our
simulations). Then if at least one of these potential edges is established, keep the replica v2; otherwise, delete the replica
v2 (see Fig. 11(b)).

Our simulations are designed as follows. We start form a Barabási–Albert scale-free graph with 1000 vertices. This is
obtained through a mechanism incorporating growth and preferential attachment from a small complete graph of size 10,
see [8,9]. For each step of preferential attachment, we add one vertex with two edges. We remark that the Barabási–Albert
scale-free graph is not necessarily the best starting model for any biological network. However, it is closer to biological
networks in many cases than the other two popular models, the Erdős–Rényi random graph and the Watts–Strogatz small-
world graph. Therefore, we use it as our starting point here. We carry out the operation of edge-rewiring (duplication-
divergence, resp.) on this graph iteratively, and plot the relationship of the spectral distance and the evolutionary distance
between new obtained graphs and the original one.

In the plot of Fig. 12, we observe that the spectral distance between graphs obtained by edge-rewiring operations and
the original one increases more quickly than that obtained by duplication–divergence operations. This indicates that, after
the same number of operation steps, edge-rewiring brings in more randomness to the graph than duplication–divergence.
Recall also the fact that the sizes of graphs are invariant in the former case and vary in the later case.

Although there is no strictly linear relation between the two distances, the spectral distance increases monotonically
with respect to the evolutionary distance. Based on this crucial point, the spectral distance is very useful for exploring the
hiding evolutionary history of large real networks.
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