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ABSTRACT. Motivated by a possible connection between the SU(N) instanton knot Floer homology
of Kronheimer and Mrowka and sl(/N) Khovanov-Rozansky homology, Lobb and Zentner recently
introduced a moduli problem associated to colourings of trivalent graphs of the kind considered
by Murakami, Ohtsuki and Yamada in their state-sum interpretation of the quantum sI(N) knot
polynomial. For graphs with two colours, they showed this moduli space can be thought of as
a representation variety, and that its Euler characteristic is equal to the sI(N) polynomial of the
graph evaluated at 1. We extend their results to graphs with arbitrary colourings by irreducible
anti-symmetric representations of s[(N).

1. INTRODUCTION

In their paper [3], Lobb and Zentner introduced a moduli space of assignments of lines and planes to
oriented trivalent graphs, corresponding to the Murakami, Ohtsuki and Yamada (MQOY) state model
interpretation of the Reshetikhin-Turaev quantum s{(/N) link polynomial. Trivalent graphs considered
by MOY have a decoration on edges, indicated by numbers ¢, corresponding to anti-symmetric tensor
powers AV of the standard N-dimensional representation V of sl(N), with the condition that at a
trivalent vertex the signed sum (with signs given by orientations) of decorations of each edge is 0.
Graphs considered by Lobb and Zentner are decorated with elements in G(i, N), with the condition
that at each trivalent vertex the span of the decorations of the ‘inward’ pointing edges equals the span
of the decorations of the ‘outward’ pointing edges, and decorations of edges pointing the same way are
orthogonal.

In [3], the authors proved that if a graph I is coloured with 1’s and 2’s, then the Euler characteristic
of their moduli space is equal to the value of the MOY polynomial evaluated at 1. In this paper, we
extend that result to all higher colourings of graphs.

The plan of this paper is to give the background for the s{(/N) graph polynomial in Section 2, then
state our result in Section 3 and relate the moduli space to a representation variety in Section 4, and
then prove the main theorem in Sections 5 and 6.

Acknowledgement. I would like to thank my advisor Andrew Lobb for suggesting the topic of this
paper.

2. THE SL(N) POLYNOMIAL FOR TRIVALENT GRAPHS

In their paper [4], MOY introduced a polynomial associated to certain coloured trivalent oriented
graphs, in order to provide a state model interpretation of the quantum sl(/N) polynomial for links.
The trivalent graphs considered are all oriented and planar, and are considered to have a colouring in
{1,..., N — 1} with the signed sum (signs given by the orientation) of colourings around a trivalent
vertex equal to 0. When drawing such graphs, we will usually suppress orientations, but use curved
lines to indicate the relative orientations of edges around a vertex. The s[(N) polynomial for links is
related to the MOY polynomial by the relations in figure 1

The edges in the knot diagram may be understood to be coloured 1, with the standard N-dimensional
representation V of sI[(N). MOY also introduced an invariant of framed coloured links, given by figures
2 and 3. Negative crossings are similar, with ¢ replaced by ¢~*.
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FiGure 3. MOY resolutions of a coloured knot diagram if ¢ > j

3. A MobpuLI SPACE OF COLOURINGS

In their paper [3] Lobb and Zentner introduced a moduli space .#(T") of colourings of a diagram T’
by associating to an i-coloured edge an element of the complex Grassmannian G(i, N) in such a way
that if the three edges around a vertex are coloured ¢, j and i+ j, then the i-plane and the j-plane are
orthogonal and span the (i + j)-plane in CVV. They showed that if I" is coloured with 1’s and 2’s, then

x(# (1)) = ()N (1)

ie. the Euler characteristic is the MOY polynomial evaluated at 1. It is tempting to think that in fact
the Poincaré polynomial of .#(T') is equal to (') 5, but Lobb and Zentner showed that this is false in

general.
In this paper, we show that the same relation holds for all higher colourings as well.

Theorem 3.1. For a coloured planar trivalent graph T, we have

X((T)) = (T)n(1).
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4. RELATIONSHIP WITH REPRESENTATION VARIETIES

Motivated by a conjectural relationship between Khovanov-Rozansky homology [1] and the instanton
knot Floer homology associated to SU(NV) of Kronheimer and Mrowka [2], we can relate this moduli
space to a space of representations of the fundamental group of the graph complement in S% into
SU(N). Let T" be the graph in question. In analogy to the Wirtinger presentation of the knot group,
the group Gr := m1(S®\I') can be presented as

<I1,...$m|R1,...,RC>

where x; represents a positively-oriented meridian to the jth edge, and the relations are given as
follows: at the ¢th trivalent vertex, either two edges flow into the vertex or two edges flow out. Let
x and y be the oriented meridians corresponding to these edges, and let z be the oriented meridian
corresponding to the remaining edge. Suppose, in the planar diagram, travelling in the anti-clockwise
direction around the vertex meets (z,y, z) in that order. Then if the two edges flow into the vertex,
let R; = xyz~!, and if the two edges flow out let R; = yxz~! (see figures 4 and 5).

z
Ry = zyz!
x Y
FIGURE 4
Y T
R, =yxz!
z
FIGURE 5
We define ¢ = exp(in/N), and for each j we set
®; = (Ydiag(—1,—1,---,—1,1,1,--- , 1)

which is a diagonal N x N matrix with the first j elements on the diagonal equal to —¢7, and the last
N — j elements equal to ¢7.

Now we let Rg,(Gr;SU(N)) be the subspace of homomorphisms p : Gr — SU(N), with the
compact-open topology, with the condition that an oriented meridian m to an edge coloured by j must
satisfy

p(m) ~ &;
ie. p(m) is conjugate to ®; in SU(N).

Lemma 4.1. If S,T € SU(N) are conjugate to ®; and ®; respectively, then ST is conjugate to ®;4;
if and only if the (—C?)-eigenspace of S is orthogonal to the (—(7)-eigenspace of T.

Proof. If v is in the (—(%)-eigenspace of S, then v is orthogonal to the (—(7)-eigenspace of T' and so
must be contained in the (/-eigenspace of T. Hence ST(v) = S((%v) = —¢*Jv. Similarly, if v is in
the (—(7)-eigenspace of T, then ST (v) = —(**/v. It follows by calculation that ST has an (i + j)-
dimensional (—(**7)-eigenspace, and a (N — i — j)-dimensional **/-eigenspace, and so is conjugate to
®;; as required. The converse is clear from the above argument. O
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We can therefore define a natural map
D: Rg,(Gr;SU(N)) — . (T')

by assigning to an i-coloured edge in I' the (—(*)-eigenspace of the image of its oriented meridian
in SU(NV). At a trivalent vertex we have the relation zy = z, so p(x)p(y) = p(z). As p(z) ~ @itj,
p(x) ~ ®; and p(y) ~ ®;, Lemma 4.1 implies that the (—(%)-eigenspace of p(z) is orthogonal to
the (—¢7)-eigenspace of p(y), so the assignment of these eigenspaces to the edges gives a permissible
colouring of T'.

Theorem 4.2. The map
D : R@J. (GF; SU(N)) — %(F)

s a homeomorphism.

Proof. We define an inverse as follows. Let A, be the colouring of edge e coloured 4, and let S4, be
the unique element in SU(N) that is conjugate to ®; and has A, as its (—(*)-eigenspace. Then define
p(me) = Sa, where m, is the meridian to e. Because of the conditions on the colourings in .Z(T'),
this satisfies the required relations to be an element in Rg, (Gr;SU(N)). It is then easy to see that
this is a continuous inverse of D. g

5. MOY MOVES

For convenience, we fix the following notation:

¢ —q* k=1 |, k-3 3-k |, 1-k
kl="—=¢""+¢ "+ +¢ "+q~

(k]! = [K][k = 1] - [2]

The MOY graph invariant satisfies the local relations in figure 6 (cf. MOY [4]).
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FIGURE 6. The six MOY moves

In all cases orientations can be chosen arbitrarily, but must be chosen consistently for two sides of
a given move.

Theorem 5.1. The siz MOY moves uniquely determine the MOY sl(N) polynomial for coloured
oriented trivalent planar graphs.

To prove this, we first specialise to {1, 2}-coloured graphs:

Proposition 5.2. The six MOY moves, specialised to colourings in {1,2}, determine the sI(N) poly-
nomial for oriented trivalent plane graphs coloured with {1,2}.

Proof. Given a diagram coloured in {1,2}, we can use Move 0 to remove closed loops coloured with
2, so suppose the remaining graph I' has n edges coloured 2. We use the relationship with knot
diagrams in Section 2 to construct a knot diagram D with n crossings for which the resolution with
the most 2-coloured edges is I'. With appropriate choice of crossings, we can ensure that D is a
diagram for an unlink U. By the work of MOY, if the polynomial satisfies the MOY moves it also
satisfies the Reidemeister moves, so the polynomial is a link invariant. Then (U)y = (—=1)"(T')n +
22”71(71)1@1-((1)51- (T';)n where each T'; has k; < n edges coloured with 2, and ¢; is the number of

i=1
positive crossings resolved into edges coloured 1 minus the number of negative crossings resolved into
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edges coloured with 1. By induction, we can use the MOY moves to calculate the values of (I';)y for

N
each i, and the s[(IV) polynomial for U is [N]? = (q::qq,lN) , where d is the number of components
of U. Hence we can calculate (I') 5 using MOY moves. O

Proof of Theorem 5.1. Suppose the largest colouring in the diagram is m, m > 2. The idea is that,
following Wu [5], we replace all the edges coloured with m with edges with colourings smaller than m.

If the diagram contains any disjoint circles, then remove them with Move 0. If there are any
remaining m edges, then locally the diagram is

l m—1
I = m
J m—j
with j,I < m. Then we have the equality in figure 7, using Move 2 and Move 3 twice. But then we
have the relation in figure 8 by expanding the central portion of the first term on the right hand side
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of figure 8 using Move 5. The right hand side of figure 8 has no colourings larger than m — 1, hence
we have written (I')y in terms of diagrams containing fewer m-colourings.

Thus for any coloured diagram T, there is a diagram I" that is coloured only in {1,2} such that
(T v = pr(I)n for some polynomial pr determined by the MOY moves. The result then follows from
Proposition 5.2. U

Remark 5.3. Proposition 5.2 is often used implicitly in the literature, but we have been unable to
find a source that gives a proof.

Remark 5.4. Note that we have not used the full strength of several of the MOY moves as written
above, so it is possible to further refine the list of MOY moves that are required to determine the MOY
polynomial. More precisely, Move 1 and Move 4 appear in Proposition 5.2, but do not appear in the
argument of Theorem 5.1 otherwise, so are only required in the case i = j = 1. Move 2 is only used in
the case j = 1, and Move 5 is only used in the case i = kK = 1. However, we include the more general
cases in the list because they are useful in calculations, and are used to show that the sl(N) coloured
framed link invariant is invariant under the Reidemeister moves 2 and 3 in MOY’s paper [4].

6. PROOFS

In this section, we give a proof of Theorem 3.1. By Theorem 5.1, it will suffice to show that x(.#(I"))
satisfies the MOY moves in Section 5, with polynomials evaluated at 1, thus the proof of Theorem 3.1
breaks into proofs of Lemmas 6.2, 6.3, 6.5, 6.6, 6.7 and 6.8.

It is well-known that the complex Grassmannian has only even-degree homology, for instance because
Schubert varieties give a CW-decomposition with only even dimensional cells. Given this fact, we show
that its Poincaré polynomial has the required form for our purposes. This lemma is well-known, but
we include it as the proof will use calculations using fibre bundles and the Serre spectral sequence,
which are techniques that will be used throughout the rest of this paper.

Lemma 6.1. Foralll1 <k<n<N,

w@e ) = | 7 .
where w(G(k,n))(q) is the Poincaré polynomial of the complex Grassmannian.

Proof. This statement is true whenever k& = 1 because G(1,n) = P"~!. For induction, assume that
it is true for (k — 1,n —1). Let G(k — 1,n — 1,n) be the flag variety of subspaces 0 C P C P’ C C"
where dim P = k — 1 and dim P’ = n — 1. We write P’ = [+ for a unique line [ in C™.

Then we have fibre bundles

Gk-1,n—-1)"“—=Gk—-1,n—1,n)

IPn71

and
P11~ G(k —1,n —1,n)

im
G(k,n)

where 7; maps P C I+ to [, and 75 sends P C I+ to P @ [. Both of these maps are well-defined and
continuous and it is clear that m; is a fibre bundle.

For my, let Uy = {P € G(k,n)|P N span(e;,,...,e;,,_,) = {0}} for each n — k element subset
I C {1,...n}. The set 7, '(Us) consists of all (k — 1) planes P in (n — 1)-planes [+ in C" with
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P &1 € Uy, so each [ in this preimage is contained in a single k-plane. Hence there is a map ¢ :
7y H({Ur) — Ur x PE=1 . (P C 1Y) = (P @1,1), which is a homeomorphism making the diagram

73 (Up) — 2> Uy x PF-1

™2 .
proj;

Ur

commute, where proj; is projection onto first coordinate. Therefore 75 is a fibre bundle.
Then by the Serre spectral sequence and the fact that the bases and fibres all have only even-degree
homology, we find that the Poincaré polynomials satisfy

(PP N (G(k,n)) = 7(P" Hr(G(k —1,n — 1))
which implies that

_ ne 1) (k—1)—(k—1)2 | P —1
¢ [k]7(G(k, n)) = g"~ n)g k=== [k_l}

and hence (G (k,n)) = q"k_kz% [ Z:i } = gnk—k’ [ Z } as required. O

Note in particular that x(G(k,n)) = { Z } lg=—1 = { Z } lo=1 = (})-

6.1. Move 0.

Lemma 6.2. For all0 <i< N,
w(#(O)) = | T

Proof. Since we colour the diagram by choosing an i-plane in C¥, it is clear that

A (i) 2660, N)
and the result follows by Lemma 6.1. O

6.2. Move 1.
Lemma 6.3. For all0<i,j7 <N,
i
S . N —i
x| A2\ j+i J = ( ; ) x| A\ i
i
i
Proof. The space A4 | j+1 j | isa G(j, N —i)-bundle over .Z | i because any permissible
i
colouring of the left-hand diagram has the j-plane in the orthogonal complement of the i-plane, and
we can choose this j-plane satisfying this condition arbitrarily. Therefore we have
i
x| A i+i] )i ||=xGUGN=-)) x| 4| i
i

by the Serre spectral sequence, which gives the result.
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Remark 6.4. In their paper [3], Lobb and Zentner conjectured that .#(I') has only even-degree
homology, and if this holds then in fact
i
wla|i+il )i||=mnGUN-))-x|a|i |]|=
i
by the Serre spectral sequence. A similar statement would hold in the case of Lemma 6.5 also.

6.3. Move 2.

Lemma 6.5. For all0 < j<i< N,

X| A j—t

Proof. Clearly .4 | j—1 Jj | is a G(j,¢)-bundle over .Z i | because the projection map
i
sends a colouring of the left-hand side to the same colouring of the right-hand side with the bifurcation

forgotten, and any choice of j-plane out of the i-plane will induce the same colouring on .# i |. O

6.4. Move 3.

Lemma 6.6. For alli,j,k, we have a homeomorphism as follows:

M i+ =
it+j+k

Proof. A permissible colouring of the left-hand diagram is given by three mutually orthogonal planes
of dimensions ¢, 7 and k, which is exactly the same as the right-hand side, so the moduli spaces are
equal. O

6.5. Move 4.

Lemma 6.7. For alli > 1, we have the following:

1\ i+1 /i
x| A i 1 = x| |1 7
1/ i+1\ ¢

Proof. Let I' denote the diagram in the left-hand side, and I'y and I's denote the two diagrams in
the right-hand side respectively. Consider the decorations in figure 9 where o, 3,7 € PY~! and
A; € G(i, N). There are three possibilities:
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FIGURE 9

(i) aCc A, and a=p

(i) « C A; and a # 8
(iil) a L A;.
To colour I' in case (i), we can choose v freely as a line in the orthogonal complement to 4;, and once
we have made this choice the rest of the colouring is determined. If we write A; = a ® A;_1, then we
see that there is a unique decoration of each of I'; and I'y, with decorations given as follows:

Ai_ 1 and « Az

In case (ii), we must choose 7 to be a line orthogonal to both A; and 8. There is no colouring of T'y,
and a unique colouring of I';. Letting A; = A;_1 @ «, the colourings are as in figure 10.

A;
« A;
v and Aiq
B A p
Ai1® B
Fi1GUuRrE 10

In case (iii), the colourings on T and I'y are uniquely determined by the data «, A;, with colourings
as in figure 11.

Treating . (T") as a real projective algebraic variety, evaluation at a, 8 and A; gives an algebraic
map from each of .# (T),.# (I'y) and .# (I's) to PN "1 x PN=1x G (i, N). Let V, Vi, V; be the respective
preimages of the subvariety A formed by the condition that « C A; and @ = 8. Then by Hardt triviality
there exists an open set U C PV~ x PV~1 x G(i, N) containing A such that the respective preimages
V, Vi and Vs of U are homotopy equivalent to V', V; and V5 respectively.

Since case (i) implies that colourings are uniquely determined for each of I'; and I'y, we have V; = 1,
naturally. Also, since the colouring of I' is determined by the choice of 7 in the orthogonal complement
to A;, V is a PV ~"~l_bundle over V; = V4, hence

X(V) =x(V) = (N —i)x(Vi) = (N —i — D)x(Vi) + x(Va) = (N —i — 1)x(V1) + x(Va).
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FIGURE 11

X(A(T) = x(ADNV)+x(V)=x(AT)\V)NV)

= X(AD\V) + (N —i—1x(Va) +x(Va) = x(V\V).

11

For case (ii), there is a colouring of I'y but no colouring of I'y, and for case (iii) there is a colouring
for Ty but no colouring of I';. Hence . (T')\V is the disjoint union of .#(T'2)\Va and a PN-i-2
bundle over .# (I'1)\V1, because of the number of colourings of I' corresponding to cases (ii) and (iii).

Similarly, V\V is a disjoint union of V5\V, and a PY~*~2-bundle over V;\V;. Therefore,

as required.

6.6. Move 5.

X (A (T2)\V2) + x(V2) — x(V2\V2)
+ (N —i— D) (x(#(T1)) +x(V1) — x(Vi\W))
X(A (T2)) + (N —i—1)x(#(T1))

x(#(I))

Lemma 6.8. For j >k > 1, we have the equation in figure 12.

li+j—1

FIGURE 12

Proof. As before, let T' denote the diagram on the left-hand side, and T'; and T's denote the two

diagrams on the right-hand side respectively. Consider the colouring of I' shown in figure 13.

Again, there are three cases to consider:
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« Aipj—

FIGURE 13

(1) aCA; and o L Ai+j—l

(11) o C Aj and o L A;

(i) & C A; and a not orthogonal to A;1;_1
To give a colouring of " in case (i), a fixed (i — 1)-plane equal to A;\a must flow left into A4;, so the
k-plane Ay can be chosen arbitrarily from the orthogonal complement of A;\a in A;4;_1, which is a
j-plane. In this case, there is a unique colouring of each of I'; and I's.

In case (ii), we must have o C Ag, so a colouring of I' is given by choosing a (k — 1)-plane from
the orthogonal complement of A; in A;4;_1, which is a (j — 1)-plane. In this case, there is a unique
colouring of I'y, but no colouring of I's.

In case (iii), @ L Aj so a colouring of T' is given by choosing a k-plane from the orthogonal
complement of A;\a in at N A;4;_1, which is a (j — 1)-plane. In this case, there is no permissible
colouring of I'y, but a unique colouring of I's.

As before, evaluation at «, A;, A; and A;4 ;1 gives an algebraic map from each of .Z(T"), .#(T'1),
M (T3) to PV "1 x G(i, N) x G(j, N) x G(i+j — 1, N). Let A be the subvariety given by the condition
that « C A; and o L A;; -1, and let V, V; and V5 be the preimages of this set in each of .Z(T'),
A (T1) and . (T'2). By Hardt triviality, we find an open set U containing A such that the preimages
V, Vi, Va are homotopic to V, V4, Vs respectively.

In case (i) there is a unique colouring of both I'y and I'y, so Vi = Va, and V' is a G(k, j)-bundle over

V1 = V5. Hence . ‘ .
)= ()xon = (7)o + (7

using binomial identities.

As before, outside of V' we have colourings corresponding to cases (ii) and (iii), which induce
colourings on exactly one of I'y and I'y. Hence .#(I')\V is a disjoint union of a G(k,j — 1)-bundle
over .4 (T'3)\Vz and a G(k — 1, j — 1)-bundle over .# (I';)\V1, with similar relations between V\V and
Vl\Vl and f/g\Vg Hence

XAD) = XD+ (V) = x(V)
= (1) AR V)~ (7))
(1) v xva) - )
= (I e+ ()
as required. 0

This concludes the proof of Theorem 3.1.
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