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Abstract The size of a shallow landslide is a fundamental control on both its hazard and geomorphic
importance. Existing models are either unable to predict landslide size or are computationally intensive
such that they cannot practically be applied across landscapes. We derive a model appropriate for natural
slopes that is capable of predicting shallow landslide size but simple enough to be applied over entire
watersheds. It accounts for lateral resistance by representing the forces acting on each margin of potential
landslides using earth pressure theory and by representing root reinforcement as an exponential function of
soil depth. We test our model’s ability to predict failure of an observed landslide where the relevant
parameters are well constrained by field data. The model predicts failure for the observed scar geometry and
finds that larger or smaller conformal shapes are more stable. Numerical experiments demonstrate that
friction on the boundaries of a potential landslide increases considerably the magnitude of lateral
reinforcement, relative to that due to root cohesion alone. We find that there is a critical depth in both
cohesive and cohesionless soils, resulting in a minimum size for failure, which is consistent with observed
size-frequency distributions. Furthermore, the differential resistance on the boundaries of a potential
landslide is responsible for a critical landslide shape which is longer than it is wide, consistent with observed
aspect ratios. Finally, our results show that minimum size increases as approximately the square of failure
surface depth, consistent with observed landslide depth-area data.

1. Introduction

Shallow landslides usually involve only the colluvial soil mantle and are generally translational, failing along a
quasi-planar surface. They are important as agents of landscape-scale sediment transfer and erosion as well
as potential hazards to life and infrastructure [Spiker and Gori, 2003]. The importance of each landslide is
defined by its location and size.

While much progress has been made in mechanistic prediction of landslide location [e.g., Montgomery and
Dietrich, 1994; Casadei et al., 2003a; Tarolli and Tarboton, 2006; Baum et al., 2010; Lanni et al., 2012] we remain
limited in our understanding of what controls landslide size (area and depth), which is fundamental to both
hazard [Hungr et al., 2008] and geomorphic change [Dietrich et al., 2008]. Field mapped inventories of shallow
landslides (Figure 1) [Rice et al., 1969;Montgomery, 1991;Morgan et al., 1997; Gabet and Dunne, 2002; Paudel et al.,
2003;Warburton et al., 2008; Larsen et al., 2010] show that their scar size varies across several orders of magnitude
in volume (100–105m3) and area (101–104m2). All six inventories have clear modes (Figure 1a) and 70% of
the scar areas are between 30 and 300m2. The landslides are generally longer than they arewide (Figure 1b; L>W
for 70–100% of landslides), and wider than they are deep (W>D for 99% of landslides). Since the landslides
are generally restricted to the soil mantle they rarely extend beyond a few meters deep, and the majority are
between 0.1 and 1m deep (Figure 1c). Landslide depth appears to scale as a power function of surface area both
for some individual inventories (Figure 1d) and for global compilations of soil and bedrock landslides, albeit
with almost 2 orders of magnitude of scatter in the global compilation [Guzzetti et al., 2009; Larsen et al., 2010].

Why do shallow landslide depth and area distributions have these characteristics, and why does landslide
depth scale with area? Why are landslides longer than they are wide and wider than they are deep?

An absolute upper limit to size is defined by hillslope length and width, which limit the area of the soil mantle
that can fail as a single body [Frattini and Crosta, 2013]. In practice the upper limit is considerably smaller
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and is likely to relate to the spatial extent of low-strength areas [Pelletier et al., 1997; Frattini and Crosta, 2013;
Alvioli et al., 2014]. Soil thickness sets an upper limit on shallow landslide depth, and most shallow
landslides fail at the base of the colluvial soil where typically the permeability decreases and strength
increases [Larsen et al., 2010]. There is a theoretical lower limit to both landslide depth and area in cohesive
material because a landslide must be large enough for its driving force to overcome the constant stress-
independent cohesion on its failure surface. This has been demonstrated for a range of depth-varying
cohesion fields representative of soil and rock [Frattini and Crosta, 2013]; as well as root cohesion, which
dominates in many colluvial soils [Reneau and Dietrich, 1987; Casadei et al., 2003b; Gabet and Dunne, 2002;
Dietrich et al., 2008].

Between these limits to landslide depth, Dietrich et al. [2008] and Frattini and Crosta [2013] have shown that
frictional resistance and cohesion on the margins of a landslide interact to create a least stable depth that
can be within rather than at the base of the soil profile. Distributions of scar area have been explained by:
the dynamics of rupture propagation [Piegari et al., 2006; Stark and Guzzetti, 2009; Lehmann and Or, 2012]
or the distribution of low-strength patches [Pelletier et al., 1997; Katz and Aharonov, 2006; Frattini and
Crosta, 2013; Alvioli et al., 2014]. The presence of cohesion is essential to almost all these explanations; in its
absence, the controls on the lower limit to landslide depth and area have not been identified.

Klar et al. [2011] used a two-dimensional analytical model to give the first mechanistic explanation for the
observed scaling relationship between landslide depth and area (Figure 1d). Applying the model to slopes
of varying length, they found that depth scaled as approximately the square root of landslide length,
where landslide length is defined by slope length and depth is the free parameter. This can be used to
reproduce the square root dependence of landslide depth on area under the following assumptions: (1) that
landslide width is a linear function of length, and (2) that either landslide length is always constrained and

Figure 1. Observed landslide properties from six published inventories showing empirical PDFs of (a) landslide scar area,
(b) scar length (L) to width (W) ratio, (c) scar depth, and (d) a scatter plot showing the power relationship between scar
depth and area. The inventories are from (1) the Appalachian mountains [Morgan et al., 1997]; (2) Hakoishi, Japan
[Paudel et al., 2003]; (3) San Gabriel Mountains, California [Rice et al., 1969]; (4) Santa Barbara County, California [Gabet and
Dunne, 2002]; (5) Cumbria, England [Warburton et al., 2008]; and (6) Oregon Coast Range [Montgomery, 1991; Larsen et al.,
2010]. Grey diamonds in Figure 1d are the scar dimensions for soil landslides from a global compilation by Larsen et al.
[2010]. PDFs are generated using kernel density functions after Epanechnikov [1969], with optimized half widths given
in brackets in each legend.
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depth the free parameter or the modeled length-depth relationship can be inverted to predict length
when depth is constrained and length the free parameter [Klar et al., 2011].

Observed landslide length and width almost always exceed depth, with depths generally less than 2m
and areas greater than 4m2 [Larsen et al., 2010]. It is commonly acknowledged that length exceeds width
[e.g., Gabet and Dunne, 2002; Rickli et al., 2008; Marchesini et al., 2009]. However, very few studies have
attempted to explain this behavior. Lehmann and Or [2012] were able to reproduce, but not explain, the
general behavior of length and width using a fiber bundle model to represent progressive failure but
suggested that their results were strongly dependent on model choices as well as local heterogeneities.

We aim (1) to examine whether resistances on the margins of a landslide influence its length and width,
(2) to extend the existing theory on lower limits to landslide depth and area from cohesive soils into
cohesionless soils, and (3) to develop an alternative physically based explanation for the observed
landslide depth-area scaling. To do this, we need a slope stability model that can test the stability of
potential landslides of varying three-dimensional geometries with different material properties and that is
suitable for application to natural slopes. Since none of the currently available stability models fully
satisfy these requirements (see review in section 2), we derive a new model that retains the low data
requirements of existing models but is more faithful to the key processes that control the stability of
natural slopes (section 3). We demonstrate the implications of the new analysis in section 4 then test it for
an observed landslide where the parameters are well constrained by field measurement (section 5).
Finally, we apply the model to identify the physical mechanisms that explain the observations above.

2. Existing Slope Stability Models

Most slope stability models perform a limit equilibrium analysis for a defined failure surface, assuming that
stresses are uniformly mobilized over the whole failure surface and that the soil mass behaves as one or more
rigid blocks. Shallow landslide models almost exclusively use the simplest form of this analysis: the one-
dimensional infinite slope equation [Haefeli, 1948; Taylor, 1948; Skempton and DeLory, 1957] coupled with a
hydrological model to estimate the local pore pressure field [e.g., Montgomery and Dietrich, 1994; Iverson,
2000; Casadei et al., 2003a; Tarolli and Tarboton, 2006; Baum et al., 2008; Lanni et al., 2012]. However,
understanding landslide size and shape requires a three-dimensional model where the dimensions of the
landslide can be examined explicitly and where the resistance on the margins of a potential landslide can
be represented.

The simplest three-dimensional approaches consider the forces acting on a single block in limiting
equilibrium and treat either lateral root reinforcement [Burroughs, 1985; Reneau and Dietrich, 1987;
Montgomery et al., 2000; Gabet and Dunne, 2002; Casadei et al., 2003b] and/or boundary pressure on the
margins of the block [Chen, 1981; Burroughs, 1985]. When included, root reinforcement is generally treated as
an effective cohesion. Boundary pressures are modeled using earth pressure theory and assuming an
active wedge upslope of the block (driving failure), a passive wedge downslope (resisting failure), and
pressure on the cross-slope sides generating shear resistance due to friction. With the exception of Burroughs
[1985], the upslope and downslope wedges were assumed to be horizontal (i.e., earth pressure coefficients
depended only on soil friction angle). Furthermore, cohesion is either ignored or represented as an
additive term on the upslope and downslope boundaries, rather than acting on the wedges themselves.
This is particularly problematic in the downslope case where the soil is failing under compression.

An alternative approach is to extend the two-dimensional method of slices [e.g.,Morgenstern and Price, 1965;
Spencer, 1967] into the third dimension, discretizing the landscape into columns [e.g., Hovland, 1977;
Lam and Fredlund, 1993]. However, these methods do not consider shear resistance (due to friction
or cohesion) on the cross-slope boundary between stable and unstable columns and so underestimate
shear resistance on that boundary [Stark and Eid, 1998; Chugh, 2003].

Dietrich et al. [2008] applied a framework similar to Hovland’s [1977] method, but parameterized the forces
on the margins of the landslide using methods similar to Burroughs [1985]. Dietrich et al. [2008] assumed
horizontal upslope and downslope wedges to enable an analytical solution but inclined the resultant forces
by the soil friction angle to represent friction on the margin between the blocks. As in Burroughs [1985]
they assumed that the upslope and downslope wedges are cohesionless, and then added cohesion to each
of the block’s vertical boundaries.

Journal of Geophysical Research: Earth Surface 10.1002/2014JF003135

MILLEDGE ET AL. ©2014. The Authors. 2483



In a limit equilibrium analysis, all forces are assumed to occur at the same instant. However, some
slides may develop incrementally with a small area failing first and its load then being transferred to
neighboring areas, causing them to fail. This style of progressive failure is normally modeled using a
Finite Element Model [Duncan, 1996; Griffiths and Marquez, 2007], but Lehmann and Or [2012] attempted to
approximate progressive failure in a limit equilibrium framework by treating deformation implicitly
using rigid columns, but removing and re-distributing the load of each column once it had failed by
basal shear. They represented the driving and resisting forces acting on the basal, upslope, downslope,
and cross-slope margins of each column, focusing on cohesive effects. They did not represent friction
on the cross-slope margin and an upslope cell only exerts a driving force on its downslope neighbors
once it has failed at its base. They represented the critical downslope stress required to cause failure
using a water-dependent compression strength threshold [Mullins and Panayiotopoulos, 1984] that
does not account for the self-weight of the soil, which is appropriate for unconfined samples but not for
natural slopes.

These models have enabled analysis of discrete landslides within a limit equilibrium framework and are
capable of representing the lateral forces acting on a potential landslide, which is essential for a three-
dimensional treatment. However, they are generally limited by their treatment of upslope and downslope
margins, either assuming that the ground surface is horizontal above and below the landslide, incorrectly
accounting for cohesion on these margins or neglecting the self-weight of the soil. This is a problem
because the forces acting on these margins can strongly affect both the stability of the slope and the
geometry of the landslide. To address this problem, we extend the method presented by Dietrich et al. [2008],
relaxing the assumption that the upslope and downslope wedges have a horizontal surface, and include
the effect of cohesion on their failure surface (i.e., earth pressure coefficients depend on friction angle, slope,
and cohesion). This approach retains the simplicity and analytical tractability of standard limit equilibrium
approaches but is a more faithful representation of natural slope conditions.

3. The Multidimensional Shallow Landslide Model

The MD-STAB model satisfies horizontal and vertical force equilibrium while ignoring moment equilibrium.
A shallow landslide is represented by three connected three-dimensional hillslope segments: an active
(upslope) wedge, a central block and a passive (downslope) wedge. A force balance is calculated on the
central block. Figure 2 shows the geometry of the three segments and force polygons which illustrate the
magnitude and orientation of the forces acting on the central block. The central block is assumed to be
rigid and to fail by shear on a plane parallel to the ground surface at a prescribed depth. Typically, this plane is
the soil-bedrock interface, which is often the location of the largest contrast in material strength in
hillslope soils. We also explore the influence of failure plane depth on the stability and size of a potential
landslide. We assume that failure occurs in drained conditions and that groundwater flow is steady
and parallel to the slope surface, although other groundwater assumptions could also be used to predict a
pore water pressure field. We also ignore any infiltration, suction, or capillary rise effects in an unsaturated
zone and simply partition the landslide block into saturated and unsaturated zones. This allows
definition of a saturation ratio (m = h/z) where h is the height of the water table and z is the depth to the
failure surface. Driving forces include the downslope component of the central block mass plus the force
on the central block from the upslope wedge where active earth pressure conditions are assumed.
Resisting forces are considered on all boundaries of the central block, and include the passive earth
pressure from the downslope wedge and soil friction and root cohesion on the base, cross-slope, upslope,
and downslope sides. Cohesion is not directly added at the upslope and downslope vertical boundaries
of the central block. Instead, resistance due to cohesion is incorporated in the passive and active
wedges themselves and affects the corresponding earth pressures that those wedges impose on their
boundaries with the central slide block. The following sections describe in detail the conceptualization of
the driving and resisting forces internal and external to the central slide block, and how the forces are
combined to evaluate the factor of safety of a potential landslide.

3.1. Central Block Driving Force (Fdc)

This model component represents the driving force caused by the mass of the slide block itself. We
follow closely the standard formulation used in other plane strain landslide analyses, such as a method of
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slices or the infinite slope method, but eventually calculate a driving force, rather than stress, for a
finite three-dimensional slide (Figure 2a). The total vertical geostatic stress σz at depth z caused by the
soil above it is

σz ¼ γs z (1)

where γs is the unit weight of the soil (γs= g ρs), ρs is the constant bulk density of soil and g is gravitational
acceleration. Note that in common with many other studies [e.g., Montgomery and Dietrich, 1994; Iverson,
2000; Gabet and Dunne, 2002; Baum et al., 2008; Lanni et al., 2012], we assume a single soil density
independent of soil moisture content since it ultimately has very little impact on the computed factor
of safety. The driving component of this stress τ acts downslope along the failure surface and is

τ ¼ σzsinθcosθ ¼ γs zsinθcosθ (2)

where θ is the slope inclination (Figure 2). The corresponding driving force Fdc acting downslope along
the failure surface is the driving stress integrated over the planimetric length and width of the slide
(polygon P1 in Figure 2c):

Fdc ¼ γsz wl sin θ cos θ (3)

where l is the slide length and w is its width (Figure 2).

Figure 2. Schematic showing forces and lengths for the three-dimensional slope stability problem in (a) 3-D, (b) cross section,
(c) profile, and (d) plan. MD-STAB computes the stability of a potential landslide by calculating the forces on each of the
planes shown here. The red arrows in Figures 2a–2d show the forces acting on each margin of the block. The red arrows in
Figure 2b show the stress distribution on the cross-slope sides of the block. Red force polygons P1–P6 in Figures 2c and 2d
illustrate the magnitude and orientation of forces acting on the block and their combination (i.e., vector sum) to give
resultant forces: (P1) normal and driving forces on the central block; (P2) active force on the upslope margin; (P3) passive
force on the downslope margin; (P4) normal and resisting forces on the base central block; and (P5) and (P6) normal and
resisting forces on the cross-slope sides.
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3.2. Block Cross-Slope Boundaries (Frl)

Shear resistance on the two parallel and vertical cross-slope sides of the slide block Frl results from friction
and cohesion. These sides are the surfaces ABB′A′ and DCC′D′ in Figure 2a, and the forces acting on them
are shown by polygons P5 and P6 in Figure 2d. Following Stark and Eid [1998], we represent friction by
assuming that external horizontal and vertical forces act at the centers of the two sides and that these forces
can be predicted from standard earth pressure theory. For a homogeneous soil with isotropic frictional
properties, the shear resistance due to lateral earth pressure on the cross-slope sides is the product of the
horizontal stress at a point and the soil friction angle (polygons P5 and P6 in Figure 2d). We assume that in
the cross-slope direction, earth pressure in the soil layer is in an intermediate or “at-rest” condition (i.e., it
does not experience active or passive yield during failure). The at-rest lateral earth pressure σ′x at any point is
conventionally calculated from the vertical effective pressure σ′z as

σ ′x ¼ Ko σ ′z (4)

where K0 is the coefficient of at-rest earth pressure. Since σ′z increases linearly with depth, σ′x has the
triangular stress distribution shown in Figure 2b. The at-rest earth pressure coefficient is poorly constrained
for soils with cohesion. In particular, when roots contribute to this cohesion they may support some of
the vertical geostatic stress reducing the value of K0, but this effect is difficult to quantify. As a result, most
applications use Jaky’s [1944] empirical formula for cohesionless, normally consolidated soils, commonly
found on natural slopes [Das, 2009]. Under these assumptions the at-rest earth pressure coefficient is

Ko ¼ 1� sinϕ′ (5)

whereϕ′ is the effective friction angle of the soil. The cross-slope resisting stress sc on the vertical sides of the
slide block is

sc ¼ Ko σ ′ztanϕ′ (6)

To calculate the resisting force Frc on a cross-slope boundary, we integrate equation (6) over the cross-slope
area of the slide block, (l z cos θ) and add the depth averaged cohesion C’rl acting over the same area
(polygons P5 and P6 in Figure 2d):

Frl ¼ 1
2
Ko γs � γwm

2
� �

lz2 cos θ tanφ′ þ C ′
rl l z cos θ (7)

where γw is the unit weight of water, m is the saturation ratio (m= h/z), and h is the height of the water
table above the failure surface.

3.3. Block Upslope (Fdu) and Downslope (Frd) Boundaries

For a landslide to occur, i.e., for shear to develop on the base of the central block, the downslope wedge
must fail and mobilize under passive or compressive earth pressure conditions. At the same time, the
failing central block will move away from the soil upslope of it, creating active or tensile conditions in the
upslope wedge. We model the interfaces between these wedges and the central block as vertical boundaries
(see the surfaces BCC′B′ and ADD′A′ in Figure 2a). The effects of these two soil wedges on the central
block are calculated from the active Fa and passive Fp forces that they impose on these upslope and
downslope vertical boundaries (polygons P2 and P3, in Figure 2c). The active and passive forces are defined
using standard earth pressure theory (e.g., used to analyze retaining wall stability), but including cohesion
in the upslope/downslope wedges and an inclined soil layer appropriate for natural slopes.

Classical soil mechanics theory includes three primary methods of active and passive earth pressure
prediction, the Rankine, Coulomb, and log-spiral methods, which are described in standard soil mechanics
textbooks [e.g., Das, 2009]. All three methods assume a homogeneous and isotropic soil. The Rankine [1857]
method is a lower bound plasticity solution based on statically admissible stress fields, while the Coulomb
[1776] and log-spiral methods [Caquot and Kerisel, 1948; Chen, 1975] are upper bound solutions based
on kinematically admissible velocity fields [Das, 2009]. The three methods have also been modified to
allow for a sloping soil layer and cohesive soil [Chugh and Smart, 1987; Mazindrani and Ganjali, 1997;
Gnanapragasam, 2000; Soubra and Macuh, 2002].
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These earth pressure theories primarily differ in how they treat stress conditions on their boundaries with
the central block and how they model the failure surface beneath the wedges. During failure the upslope
block will tend to move vertically downward along the interface with the central block as they both translate
downslope. This introduces a downward shear along the upslope boundary of the central block that reorients
the resultant active force by some angle δ from horizontal (polygon P2 in Figure 2c). On the downslope
passive interface, shear develops in the opposite sense and again the passive force is reoriented from
horizontal (polygon P3 in Figure 2c). The Rankine method assumes that the force reorientations are equal to
the slope angle (i.e., δ= θ), while δ can take any value from 0 to ϕ′ in the Coulomb and log-spiral methods
[Duncan and Mokwa, 2001]. The Rankine and Coulomb methods assume that the failure surfaces beneath
the active and passive wedges are planar, but theory and observation demonstrate that they are curved
[Terzaghi, 1967]. In the active case the curvature is small and a planar assumption causes little error
[Craig, 2004]. But in the passive case, a planar failure surface results in passive pressure predictions that are
much too large, particularly if δ> 0.4 φ′ [Duncan and Mokwa, 2001]. Terzaghi [1967] described a failure surface
that took the form of the arc of a logarithmic spiral and passive earth pressure predictions using this
wedge geometry were found to be more accurate over any value of δ [Soubra, 2000; Zhu and Qian, 2000].
However, this requires optimizing the two parameters that describe the failure surface for each combination
of slope, friction angle, cohesion, and soil thickness.

Because of the uncertainty in analytical predictions of the active and passive forces on the central block, we
calculate lower and upper bounds. To obtain a lower bound estimate, we use the Rankine method at
both margins. To obtain an upper bound estimate, we use the log-spiral method, which can allow for
curvature on the failure surface, at the downslope margin and the simpler Coulomb method at the upslope
margin, which is typically planar. Following Mazindrani and Ganjali [1997], the Rankine solution for cohesive
soils on a hillslope gives the lower bound active, Ka and passive, Kp earth pressure coefficients:

Kp; Ka¼ 1
cos2ϕ′

2cos2θþ2
C′rl
γsz

� �
cosϕ′sinϕ′± 4cos2θ cos2θ�cos2ϕ′

� �þ4
C′rl
γsz

� �2
cos2ϕ′þ8

C′rl
γsz

� �
cos2θ sinϕ′ cosϕ′

 !0:5 !
�1

(8)

where ϕ′ is the soil friction angle, θ is the slope angle, C′rl is the depth averaged cohesion, γs is the soil unit
weight, z is the depth of the failure plane of the central block, and the negative and positive signs are for
the active and passive cases, respectively. Following Chugh and Smart [1987], the Coulomb active earth
pressure coefficient Ka for sloping cohesive soils is defined as

Ka ¼
cos β cos θ sin β � ϕ′ð Þ � 2

C′rl
γsz

� �
cos θ cosϕ′

cos β � δ� ϕ′ð Þsin β � θð Þ (9)

where β is the inclination from horizontal of a planar failure surface from the base of the central block to
the ground surface upslope. We solve equation (9) numerically to find the most critical failure plane
(for θ� 1°< β< 89°) which maximizes the active earth pressure coefficient [Chugh and Smart, 1987].

We use the version of the log-spiral method derived by Soubra and Macuh [2002] to provide an upper
bound solution for the passive resistance of sloping cohesive soils downslope of a potential slide mass.
Soubra and Macuh [2002] employed a rotational logarithmic spiral failure surface on the basis that under
these conditions an energy balance is equivalent to moment equilibrium about the center of the logarithmic
spiral. The solution requires identification of the most critical log-spiral failure plane (i.e., minimizing
passive pressure), and yields

Kp ¼ Kpγ þ 2Kpc
C′rl
γsz

� �
(10)

where Kpγ and Kpc are the friction and cohesion components of the passive earth pressure coefficient,
respectively. The passive earth pressure coefficient is thus a function of slope, friction angle, cohesion,
soil unit weight, soil depth, and two geometry parameters α0 and α1, which define the geometry of the
logarithmic-spiral failure surface (full equations provided in Appendix A). Following Soubra and Macuh [2002],
we solve equation (10) numerically using a generalized reduced gradient algorithm [Lasdon et al., 1978]
to find the log-spiral failure surface that minimizes the passive earth pressure coefficient.
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By treating the upslope and downslope margins as analogous to the wall in an earth pressure retaining
wall problem the active σa and passive σp stresses on the upslope or downslope margin of the central block
can be calculated as the product of the vertical effective pressure (σ′z) and the active or passive earth
pressure coefficients from equations (8), (9), or (10). For the passive downslope margin

σp ¼ Kpz γs � γwmð Þ (11)

To calculate the total passive force on the downslope margin (ADD′A′ in Figure 2a) we integrate equation (11)
over the downslope boundary of the block (wz) perpendicular to the direction of sliding. This passive force Fp,
is the resultant of both the normal and shear forces (due to friction) on the boundary between the
central block and the wedge and is inclined at the boundary friction angle δ. We assume that δ= θ, in the
lower bound case and δ= φ′ in the upper bound case. As a result, the passive force needs to be decomposed
into its slope-parallel component, which acts as a resisting force Frd:

Frd ¼ Fpcos δ� θð Þ ¼ 1
2
Kp z

2 γs � γwm
2

� �
wcos δ� θð Þ (12)

and a slope normal component Fnd, which modifies the normal force on the base of the central block
(polygon P3 in Figure 2c):

Fnd ¼ 1
2
Kpz

2 γs � γwm
2

� �
wsin δ� θð Þ (13)

The active stress σa on the upslope margin follows the same form as the passive stress and can be calculated
from equation (11) by replacing the passive coefficient with an active earth pressure coefficient Ka for
sloping soils. The net driving force on the upslopemargin Fdu can then be calculated from equation (12) making
the same substitution (Figure 2c). For soils with a strong cohesive component the active earth pressure
coefficient, and therefore, the net driving force on the upslopemargin, is negative since the resisting forces due
to cohesion exceed the driving force of the upslope wedge. In this case the negative Fdu represents a net
resisting force on the upslope margin of the central block. Note that cohesion on the wedge failure surface is
included within the active and passive earth pressure coefficients and does not need to be applied to the
vertical upslope or downslope boundaries (equations (12) and (13)). The slope normal component of the active
force Fnu, whichmodifies the normal force on the base of the central block, can be calculated fromequation (13)
by replacing the passive with the active earth pressure coefficient (P2 in Figure 2c).

Standard earth pressure methods use a hydrostatic analysis to calculate earth pressure on the upslope
and downslope boundaries of the unstable block [Das, 2009]. In reality, slope-parallel seepage will exert a
force on these boundaries increasing the driving force on the upslope boundary and reducing passive
resistance on the downslope boundary. However, to our knowledge, there is currently no suitable earth
pressure method that can account for seepage forces in the upslope active wedge and downslope passive
wedge. We discuss the impact of this simplification on our findings in section 6.4.

3.4. Basal Resistance Force (Frb)

Resistance along the base of the slide block Frb develops by a combination of cohesion C′rb and friction, the
product of normal force on the failure surface and the tangent of the friction angle. The normal force Fnt is the
effective normal stress on the failure surface integrated over its area (thus accounting for pore pressure). It includes
the normal force due to the self-weight of the central block (Fnc , polygon P1 in Figure 2c), and the components
of the upslope Fnu and downslope Fnd forces that act normal to the failure surface (polygon P4 in Figure 2c):

Fnt ¼ Fnc þ Fnu � Fnd ¼ γs � γw mð Þz cos2θw l � 1
2

Kp � Ka
� �

z2 γs � γwm
2

� �
wsin δ� θð Þ (14)

Fnd acts to decrease the normal force on the base of the central block when δ> θ and to increase it when
δ< θ. The opposite is true of Fnu ; however, Fnu can also change sign in response to a negative active force at
the upslope margin. Given this definition of the normal force on its base, the basal resistance force on
the central block is then

Frb¼C ′
rbw l þ Fnt tanϕ′ ¼ C ′

rbþ γs�γw mð Þ z cos2θ tanϕ′
� �

w l � 1
2

Kp � Ka
� �

z2 γs � γwm
2

� �
w sin δ� θð Þtanϕ′

(15)
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3.5. Complete Formulation

The Factor of Safety FS for the block can then be calculated as the ratio of driving to resisting forces by
combining each of these components from equations (3), (7), (13), and (15):

FS ¼ Frb þ 2Frc þ Frd � Fdu
Fdc

(16)

Substituting equations (3), (7), (13), and (15) into equation (16) and rearranging, the general form of the
equation is

FS¼ C′rbþcos2θ z γs�γwmð Þtanφ′ð Þlwþ C′rlþK0
1
2 z γs�γwm

2ð Þtanφ′� �
cosθ z2 lþ Kp�Ka

� �
1
2 z

2 γs�γwm
2ð Þw cos δ�θð Þ�sin δ�θð Þtanφ′ð Þ

sin θ cos θ zγs lw

(17)

In the upper bound case we assume that δ=φ′ and equation (17) becomes

FS¼
C′rbþcos2θ z γs�γwmð Þtanφ′ð Þlwþ C′rlþK0

1
2 z γs�γwm

2ð Þtan φ′
� �

cos θ z2 lþ Kp�Ka
� �

1
2 z

2 γs�γwm
2ð Þw cos 2φ′�θð Þ

cos φ′

� �
sin θ cos θ zγs lw

(18)

In the lower bound case we assume that δ= θ and equation (17) becomes

FS ¼ C′rb þ cos2θ z γs � γwmð Þtan φ′ð Þlw þ C′rl þ K0
1
2 z γs � γwm

2ð Þ tan φ′
� �

cos θ z2 l þ 1
2 Kp � Ka
� �

z2 γs � γwm
2ð Þw

sin θ cos θ zγs lw

(19)

While these equations allow us to calculate the stability of a soil block, they do not include the variability in
soil properties, slope geometry, and pore water pressure that occurs within an unstable hillslope, which is an
important control on slope stability in natural landscapes. In the following section, we apply the same
equations within a grid-based framework, which allows us to represent spatial variability in the
model parameters.

3.6. Grid-Based Application

Following Hovland [1977], the normal and shear forces acting on the base of each column are derived as
components of their weight and FS is calculated from the ratio of total available resistance to the total
mobilized stress along the failure surface. As in Hovland [1977], we assume that there are no intercolumn
shear forces within the group of columns that make up an unstable block. No progressive failure with strain
softening, pore water pressure dynamics, or other unequal stress-strain behavior is considered. The resistive
forces are applied to the outer boundary of the group of columns (i.e., the base and sides). Total resistance is
the sum of these basal and lateral components (equations (7), (13) and (15)). The total driving force is the
vector sum of the driving force vectors of each column within the potential landslide (equation (3)) and
Figure 2). Since the grid is not oriented, slope-parallel most columns will have more than one force
component (upslope, downslope, and cross-slope) acting on them. We decompose the lateral resistance on
each column margin into its components by assigning a fraction of the edge length to each resistance
component. For example, the upslope boundary of a grid cell that is oriented 30° from slope parallel will be
assigned 63% upslope and 37% cross-slope resistance.

3.7. Parameterization of Cohesion

Cohesion acts on the base and lateral sides of a potential landslide and our model requires an assumption
about the form of its variation with soil depth. Here we focus on colluvial slopes where the net soil cohesion is
dominated by root strength [Schroeder and Alto, 1983; Schmidt, 1999]. Other forms of cohesion (e.g., due to
cementation or suction) could easily be added given an expression for their variation with depth. Generally,
root cohesion is not uniform with depth, as it is a function of root density, which typically declines
exponentially with depth [e.g., Roering, 2008]. Following Dunne [1991] and Benda and Dunne [1997], we
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represent root cohesion as an
exponential function of depth so that
root cohesion on the basal failure
plane C′rb is defined as

C′rb ¼ C′r0e
�zj (20)

where z is failure plane depth, C′r0 is
a coefficient representing the
maximum root cohesion value at the
surface, and j is an e-folding length
scale. Root cohesion can be integrated
over the block depth z (in the vertical
coordinate zc) to obtain the average
lateral root cohesion C′rl per unit
perimeter area:

C′rl ¼ 1
z ∫

z

0

C′r0e
�zc jdzc

¼ C′r0
jz

1� e�zj
� �

(21)

Equation (21) is applied to the cross-
slope vertical boundaries and to the
failure surfaces of the upslope and
downslope wedges. When the
downslope wedge failure surface is
very curved this may result in a slight
underestimation of cohesion on
this boundary. This is a necessary
approximation because the iterative
method developed by Soubra
and Macuh [2002] requires profile-
averaged cohesion.

4. Significance of Model Assumptions

Estimated earth pressure coefficients can vary widely depending on which formulation is used to calculate
them. In section 4.1 we compare our earth pressure coefficients with those that have previously been
used in other stability models discussed in section 2. In section 4.2 we assess the relative contribution of
friction and cohesion to lateral resistance on an example slope and examine the sensitivity of the resistive
terms to slope geometry and material properties.

4.1. Effect of Different Earth Pressure Coefficients

Figure 3a shows the earth pressure coefficients in a cohesionless soil as a function of slope angle using
different methods of prediction. The simplest formulation estimates earth pressure by assuming that the
ground surface is horizontal in the upslope (active) and downslope (passive) wedges and that there is no
friction on the boundaries between the wedges and the central block. In this classic soil mechanics approach
[Chen, 1981; Dietrich et al., 2008], earth pressure is only dependent on the friction angle. Using both
upper and lower bound methods, the active Kah and passive Kph coefficients of earth pressure are the familiar

Kah ¼ tan2 45� ϕ′
2

� �
(22)

Kph ¼ tan2 45þ ϕ′
2

� �
(23)

and these pressures act perpendicular to the respective boundaries [Das, 2009].

Figure 3. Earth pressure coefficients calculated using different methods.
Parameter values used are z = 1; θ = 0–60°;m= 1; ϕ′ = 40°; γs= 15.7 kNm�3;
and (a) C′rl = 0 kPa, (b) 1 kPa, and (c) 5 kPa. Shaded areas are defined by
the upper and lower bound solutions. All lower bound solutions are
derived using the Rankine method. Upper bound solutions for the active
case at the head of a landslide are by the Coulomb method and for the
passive case at the slide toe the solutions are by the log-spiral method. The
horizontal coefficient results in an overestimate of passive resistance
on steep slopes. The coefficients that account for sloping soils become
indeterminate on cohesionless slopes greater than the friction angle. This
problem is reduced by representing cohesion in the earth pressure
coefficient (Figures 3b and 3c). Note that in this case the upper bound
coefficient can fall below the lower bound coefficient at very high slopes
suggesting that the treatment of earth pressure is approximate for slopes
steeper than the friction angle.
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Earth pressures predicted by the lower bound
(Rankine) and upper bound (log-spiral and
Coulomb) methods modified for sloping
cohesionless soils illustrate the effects of slope
angle (Figure 3a). The active pressure increases
slightly at slopes between 38° and 40°, while the
passive pressure declines sharply at steeper
slopes until it equals the active pressure when the
slope reaches the friction angle (here assumed to
be 40°). The horizontal active earth pressure
coefficient (Kah) agrees well with the modified
upper and lower bound coefficients, although it
results in a slight underestimation of the active
earth pressure when the slope is >38°. The
passive coefficient assuming a horizontal ground
surface (Kph) falls between the upper and lower
bound solutions for slopes gentler than 25° but
results in a considerable overestimation of the
passive earth pressure for slopes steeper than 25°,
on which landslides are most likely.

On cohesionless slopes greater than the friction
angle, earth pressure predictions become
indeterminate for all the methods that account
for sloping ground: the Rankine coefficients

become complex because the square root term in equation (8) becomes negative; the Coulomb active
coefficient goes to infinity because the failure surface that maximizes equation (9) becomes parallel with the
slope and the active wedge becomes infinitely long; and the log-spiral slip surface degenerates to a planar
surface with radii approaching infinity, violating the optimization constraints [Soubra and Macuh, 2002].

In practice, cohesionless soil is rarely found on slopes steeper than the friction angle, as some cohesion
(provided by clay minerals, cementing agents, or more commonly vegetation roots) is usually necessary to
maintain soil mass stability on steep slopes [Das, 2009]. Figures 3b and 3c show the earth pressure
coefficients accounting for cohesion for two different scenarios: one where the cohesion is relatively low,
representing weak roots (Figure 3b) such as have been measured in grasslands [Buchanan et al., 1990]
and another where the cohesion is larger, but still modest, representing a more dense root network or
stronger roots (Figure 3c) such as might be found in a forest [Schmidt et al., 2001]. Figure 3 shows that even a
modest amount of additional cohesion considerably extends the range of slopes over which the earth
pressure coefficients can be predicted. Figure 3 also shows that when cohesion is included in the earth
pressure coefficient, the upper and lower bounds can cross at very high slopes suggesting that the treatment
of earth pressure is approximate for slopes steeper than the friction angle. However, the bounds do not
significantly diverge on high slopes, suggesting that the approximation is reasonable. In practice, shallow
landslides are not common on these extreme slopes where a soil mantle is unlikely to persist in the absence
of high cohesion.

4.2. Lateral Strength Contribution of Friction

While lateral root cohesion has been included in a few stability models for natural slopes [Reneau and Dietrich,
1987; Montgomery et al., 2000; Gabet and Dunne, 2002; Casadei et al., 2003a] lateral friction has generally
been ignored. Figure 4 compares the lateral resistance due to cohesion and friction on a cross-slope margin
and the net downslope resistance (i.e., resistance from the soil downslope of a block minus the driving
stress from the soil upslope). The example shown in Figure 4 is for a block with a failure plane depth of 1m,
a friction angle of 40° and a saturation ratio of 0.5.

Friction on the cross-slope boundary provides ~2 kPa of resistance, independent of the block’s inclination
(Figure 4). This suggests that cross-slope friction can be important in weakly rooted soils, as it is nearly half of
the resistance provided by roots (Figure 4). Cross-slope friction is highly sensitive to failure plane depth
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Figure 4. Lateral and net downslope resistances from different
strength components at different slope angles for a block of
soil with γs = 15.7 kNm�3, ϕ′ = 40°, z = 1m, and m = 0.5, for a
weak roots case (C′rl = 5 kPa) and a stronger roots case
(C′rl = 10 kPa). Shaded areas are defined by the upper and
lower bound earth pressure solutions. Cohesion and cross-
slope friction are invariant with slope. The net resistance on
the downslope margin (i.e., downslope resistance-upslope
drive) is always more than twice as large as the root cohesion,
and becomes more important on shallower slopes.
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(with a z2 dependence) but insensitive to friction angle (equation (7)). This is because as the friction angle
increases, the earth pressure coefficient that controls the conversion from vertical to lateral stress decreases
as 1� sinϕ′, while shear strength varies as normal stress multiplied by tanϕ′. The product of these (tanϕ′
(1� sinϕ′)) ranges from 0.26 to 0.30 for friction angles from 25° to 55° with its maximum at 38°.

Net downslope resistance is considerably larger than cross-slope resistance (Figure 4). It is most strongly
dependent on cohesion but provides more strength than would be expected from cohesion alone;
increasing cohesion by 5 kPa in Figure 4 increases net resistance by between 8 and 15 kPa. This amplified
increase in resistance reflects the geometry of the upslope and downslope wedges. Since their failure surface
is always longer than the failure depth, the additional strength is more than just the additional cohesion. Net
downslope resistance also has a strong (z2) dependence on failure plane depth, a strong dependence on
slope, a weak dependence on saturation ratio, and a negligible dependence on unit weight for both upper
and lower bound solutions with resistance increasing with depth and unit weight but decreasing with
slope angle and saturation ratio (equation (12)). Net resistance has a dependence on friction angle (not
shown) that differs between the two formulations, increasing with friction angle in the lower bound case, and
decreasing in the upper bound case. This reflects the influence of boundary friction (δ), which is assumed
equal to soil friction angle (ϕ′) in the upper bound case, in reducing net resistance. The influence of boundary
friction is absent from the lower bound case (i.e., δ= θ) so that net resistance increases with soil friction,
reflecting the additional strength of the soil.

5. A Test of the Model

To test the model, we applied it to the highly instrumented Coos Bay (CB-1) slope that failed as a large debris
flow in November 1996 [Anderson et al., 1997; Montgomery et al., 1997; Torres et al., 1998; Montgomery et al.,
2009]. We chose this site because, whereas there remains some uncertainty over the geotechnical and
hydrologic conditions appropriate for the site, the instrumentation at CB-1 provides one of the most
comprehensive data sets in existence for a natural shallow landslide. At CB-1 we tested the model’s ability to
predict failure under the conditions measured during the 1996 storm, and whether the predicted failure
was of a similar size to that which was observed.

5.1. Test Site Description

The CB-1 site, which was clear-cut in 1987, is located along Mettman Ridge approximately 15 km north of
Coos Bay in the Oregon Coast Range. The hydrological behavior of the CB-1 experimental site was studied
in detail over a period of 10 years [Anderson et al., 1997; Montgomery et al., 1997; Torres et al., 1998]. CB-1 is
a 51m long (860m2) unchanneled valley with an average slope of 43°. The instrumentation at CB-1
included a grid of piezometers and tensiometers with continuous total head measurements from 1990 to the
time of failure (in 1996). Piezometer records show that subsurface storm flow in the shallow, fractured-rock zone
exerts the most significant control on pore pressure development in the CB-1 colluvium [Montgomery et al.,
1997]. We use the piezometric surface at the time of slope failure estimated by Montgomery et al. [2009] from
piezometers recording at the time of failure, but without any adjustment of the original pore pressure data.

The soil is well-mixed, nonplastic gravelly sand derived from weathered turbidite sandstone [Schmidt et al.,
2001]. Low confining stress triaxial tests for samples from the site gave internal friction angles of 39.5° and
41° with effective soil cohesion of 0 to 1.8 kPa [Montgomery et al., 2009]. The soil bulk density (ρs) ranges
from 1200 to 1600 kgm�3 [Schmidt et al., 2001]. The soil thickness is well defined from soil borings [Schmidt,
1999]. Montgomery et al. [2009] measured basal and lateral root cohesions using the methods described
by Schmidt et al. [2001]. They report a nonlinear decline in root cohesion with depth resulting in a spatially
weighted average lateral root cohesion of 4.6 kPa and a basal cohesion of 0.1 kPa.

5.2. Method

On the basis of these observations, we back calculate the stability of the observed landslide under a set of
500 feasible site conditions sampled from distributions to account for uncertainty in observed conditions
at the site. For each prediction, we provide a lower bound on the stability estimate using the Rankine
method and an upper bound using the Coulomb (upslope) and log-spiral (downslope) methods. We assume
a spatially uniform soil density and sample from a uniform distribution with range 1200–1600 kgm�3

(unit weight = 15.7 kNm�3). We sample the friction angle from a normal distribution with mean 40° and
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standard deviation 2°; and the effective soil cohesion from a uniform distribution with the range 0–1.8 kPa.
We use measured surface topography, soil depth, and pore water pressure data interpolated to a 1m
grid (Figures 5a and 5b). Topography and soil depth are very well constrained, we account for error in the
pore water pressure data by uniformly introducing normally distributed error with a standard deviation
of 10%. To represent the depth-varying lateral root cohesion we fit an exponential curve to the root cohesion

Figure 5. Model application to the CB-1 hillslope (Oregon, USA). (a) Map of the site showing the observed landslide scar
(red), and the larger and smaller conformal shapes (blue) tested for stability. White contours show elevation (m), gray
scale contours show soil depth (m). (b) Map showing elevation contours in black and piezometric surface contours in
blue (m), soil unit weight (γs = 15.7 kNm�3), friction angle (~40°) and root cohesion (~4 kPa) are also well constrained at the
site. (c) The predicted factor of safety for the observed landslide (size growth = 0) and smaller and larger shapes generated
by expanding and contracting the observed landslide geometry by a radial distance indicated on the x axis. Upper
(blue) and lower (red) bounds are obtained using upper and lower bound earth pressure solutions. Pale lines show each of
the 500 model runs described in section 5.2. thick dark lines show the mean FS from these runs ±1 standard deviation.
Figures 5a and 5b are modified from Montgomery et al. [2009]. The model predicts failure for the observed scar geometry
and finds that larger or smaller conformal shapes are more stable.
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with depth observations of Montgomery et al. [2009] from the CB-1 site, with the additional constraint that
the average lateral root cohesion should be within ±0.1 kPa of the spatially weighted mean lateral
root cohesion observed at the site. The best fit parameters within these constraints are C′r0 = 22 kPa and
j= 4.96m�1 (equation (20)); we sample these parameters from normal distributions using these mean values
and standard errors of: 0.5 kPa and 0.73m�1, respectively (ignoring covariance).

Montgomery et al. [2009] mapped the entire evacuated area at CB-1 and identified a smaller upper section
of the failure, which they suggest was the initiation area on the basis of their onsite observations. Using
the grid-based formulation of MD-STAB, we test the stability of this initiation area by using its geometry to
define the group of potentially unstable columns in the stability model. To explore whether smaller or
larger shapes would result in different outcomes, we shrink and expand the original shape by a constant
distance around its perimeter and test their stability (Figure 5a).

5.3. Results

Figure 5c shows the factor of safety calculated from MD-STAB for the observed landslide geometry and a
series of smaller and larger conformal shapes. Instability is confined within a range of sizes for these
tested shapes. Shrinking the observed shape radially by 2m or expanding it by more than 5m results in
stability in more than 95% of cases (defined by the different parameter sets). This sets limits on the possible
size of the unstable area.

However, while most cases result in at least one stable shapemany also predict at least one shape with FS< 1
(88% for lower bound and 51% for upper bound). This is not possible in reality since a landslide would
already have initiated as soon as driving force exceeded resistance. In the CB-1 case a model run that predicts
FS< 1 for any shape is likely associated with an unrealistically weak parameter set and a run that predicts
FS> 1 for all shapes with an unrealistically strong set. Failure, with FS = 1, for the observed shape and
no other is associated with an intermediate parameter set for the upper bound model and a high strength
parameter set for the lower bound model (Figure 5c).

Of all the tested shapes, the observed landslide geometry is the least stable in 96% of cases. When size
decreases the area-perimeter ratio also decreases, reducing both driving and basal resisting forces relative
to the lateral resisting forces. When size increases under spatially variable conditions, the likelihood of
including areas of increased strength also increases. We suggest that the interaction of these two effects
defines an optimum, least stable, landslide geometry for a specific set of conditions. The CB-1 test shows that
without any calibration MD-STAB produces stability predictions for this slope that are consistent with the
observed landslide both in terms of its size and the conditions required for failure.

6. Discussion
6.1. Critical Depth and Area

Smaller patches with low-strength conditions are more likely than larger ones in a natural (heterogeneous)
landscape, and thus, in the absence of any other control, the frequency of landslides should continuously
increase with decreasing size [Pelletier et al., 1997; Frattini and Crosta, 2013; Alvioli et al., 2014]. Instead,
many investigators have observed that there is a peak, or “rollover,” to the size-frequency distribution with
fewer numbers of very small slides [e.g., Hovius et al., 1997; Stark and Hovius, 2001; Malamud et al., 2004;
Frattini and Crosta, 2013]. We suggest that the minimum area that can fail under a given set of conditions
(hereafter called the critical area) provides a mechanistic explanation of the infrequency of small landslides
while the right tail is controlled by the size distribution of low-strength areas [Pelletier et al., 1997; Katz
and Aharonov, 2006; Frattini and Crosta, 2013; Alvioli et al., 2014]. By setting FS equal to 1.0, equation (17) can
be solved for the critical basal area Ac at failure:

Ac ¼
2c′rl z þ K0z2 γs � γwm

2ð Þtanφ′ð Þcosθ l
w

� �1
2 þ Kp�Ka
� �

1
2 z

2 γs�γwm
2ð Þ cos δ� θð Þ � sin δ� θð Þtanφ′ð Þ l

w

� ��1
2

sinθcosθ zγs � c′rb � cos2θ z γs � γwmð Þtanφ′

 !2

(24)

To explore how critical area changes with failure depth on a homogeneous slope, we examine a block
with the material properties measured at CB-1 (friction angle = 40°, soil unit weight = 15.7 kN m�3, and
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exponential cohesion profile with C0 = 22 kPa
and j= 4.96) and a slope angle of 36°, the average
slope for the wider Coos Bay study area in which
the landslide inventory shown in Figure 1 was
collected [Montgomery et al., 2000].

When soil strength is provided entirely by friction,
Ac increases with depth from a minimum at the
surface (Figure 6), whereas when it is provided
entirely by cohesion Ac decreases with depth from
a maximum at the surface (note log scale on
vertical axis). This is because the stability of a
soil block is controlled by the relationship
between its mass-dependent driving force and
the resistance on its perimeter, both of which
vary with failure depth. Driving force increases
linearly with depth but friction resistance
increases as the square of depth (z2 terms on
top half of equation (24)), while root cohesion
decreases exponentially with depth (equations
(20) and (21)). When soil strength is provided by
both friction and cohesion (“Full” lines in Figure 6),
the interplay between the two components
results in a range of depths with similar Ac , and a
critical depth that minimizes Ac (indicated by filled
circles in Figure 6). Although there is a range of
depths that are close to critical, failure planes
that are both shallower and deeper than this

point are more stable and therefore require a larger Ac for failure (Figure 6). This is true for both upper and
lower bound solutions, which envelop the true value. These findings support those of Dietrich et al. [2008]
and Frattini and Crosta [2013] that suggest a least stable depth, and imply that this least stable depth
minimizes the critical area.

A critical depth in the range 0.5–3m is consistent with observed shallow landslide depths (Figure 1c). A
parameter exploration (not shown) suggests that increasing cohesion (by increasing C0 or by decreasing j ) or
friction (by decreasing θ or increasing ϕ′) results in a larger minimum critical area. However, increasing
cohesion increases the depth at which theminimum critical area occurs, while increasing friction decreases it.
Similar experiments (not shown) using uniform rather than depth-varying cohesion result in the same
behavior but with an increase in the depth at which the minimum critical area occurs. This is because, when
root cohesion is uniform, its contribution to basal resistance does not depend on depth, so its relative
contribution to total resistance is very large at shallow depths and decreases rapidly with depth. Decreasing
cohesion with depth simply enhances this effect. Figure 6 also shows that the difference between the upper
and lower bound earth pressure solutions is large when cohesion is included and negligible when only
friction is considered.

The critical area and the corresponding failure depth for this parameter set are in the range observed for
shallow landslides (Figures 1a and 1c), and closely correspond to the modal landslide depth and area for
landslides from the Coos Bay site on which the parameters have been based (Figure 6) [Montgomery,
1991; Larsen et al., 2010]. However, where soils are shallower than the critical depth, landslides will be very
likely to fail at the soil-bedrock interface rather than within the harder bedrock. This is generally the case
at Coos Bay, where most landslides failed at the soil-bedrock interface [Montgomery et al., 2000], which may
explain the portion of observed Coos Bay failures with depths less than our prediction.

As noted above, the predicted critical depth and area can be close to zero in the case of a saturated
cohesionless soil (Figure 6). This motivates the question: are there any constraints on critical depth and
area for cohesionless soils? To address this we examine the behavior of a cohesionless block of soil 5m long,

Figure 6. Critical area with depth for an equidimensional
homogeneous block of soil at a slope of 36°, friction angle
of 40°, γs = 15.7 kN m�3 with a water table at the ground
surface (i.e., fully saturated soil), assuming a l/w ratio of
1 (representative of the CB-1 scar). Note logarithmic y axis.
Filled circles show the depths at which the critical area is
minimized (Ac = 23 m2 at z = 1.9 m in the lower bound case
and Ac = 42 m2 at z = 2.18 m in the upper bound case).
Shaded areas are defined by the upper and lower bound earth
pressure solutions; in the friction-only case these nearly coincide
and the cohesion-only case does not have upper and lower
bounds. The grey PDFs on the x and right axes show depth and
area distributions respectively for 19 landslides in the Coos Bay
catchment [Montgomery, 1991; Larsen et al., 2010].
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5mwide, and 2m deep, with a friction angle of 40°
and a soil unit weight of 15.7 kNm�3. The slope
angle is reduced from the average slope of the
Coos Bay site to 30° to reflect the characteristics of
cohesionless slopes. We test the stability of
this block using equation (17) for slope-parallel
failure planes at depths from 0.02m to 10m
in increments of 0.01m, beginning with an
unsaturated block and increasing the water table
height until failure occurs within the block.

Under dry conditions, the block is stable for all
failure plane depths and FS increases linearly
with depth (red curve in Figure 7a). This is because
both the driving force and basal resistance
increase linearly with depth, and lateral resistance
increases as the square of depth (equation (17)).
With a water table of 0.2m below the ground
surface or lower, the block remains stable at any
depth (i.e., FS> 1) but there is a minimum FS
within the profile (blue curves in Figure 7). When
the failure plane is above the water table FS is the
same as in the unsaturated case. Once the failure
plane is below the water table, the saturated
fraction of the soil column above the failure plane
increases with failure plane depth causing FS to
decrease. FS reaches a minimum at 1.2m then
begins to increase (blue curves in Figure 7a)
because the lateral resistance increases at a higher
rate compared to the reduction of shear resistance
resulting from the increase of the saturated soil
fraction (equation (24)). If the water table
continues to rise, the block will fail at ~0.8m depth
once the water table reaches 0.09m depth
(black curves in Figure 7a). As the water table
approaches the surface, FS continues to decrease
(cyan curve in Figure 7a).

Figure 7b shows that as the water table rises both the critical area and critical depth decrease. As the water
table approaches the ground surface, the critical depth approaches zero and the critical area declines
rapidly. When the water table reaches the ground surface the saturated fraction of the soil column no
longer varies with depth, and the minimum FS is at the surface (green curve in Figure 7a) due to the more
rapid increase of resisting force relative to driving force with depth (equation (24)). This explains why
the critical failure plane depth and critical landslide size are both zero for cohesionless saturated soils
(green curve in Figure 7b). Note that there is a critical area when Zw = 0.2 (Ac= 75m2), indicating that failure
is possible at this water table depth but requires a much larger size than the 5 by 5m block used in
Figure 7a. The dry case is stable at any area since the slope is shallower than the friction angle and thus it
has no critical area and does not appear in Figure 7b.

For a specific set of conditions, in a cohesive or cohesionless soil the water table height determines both the
critical size and critical failure depth. Instability can occur when the area having that water table height
expands to the critical size, or when a local increase of the water table sufficiently reduces the critical size.
This suggests that the dynamics of the water table are an important control on landslide size and that
topography exerts a strong control on landslide size not only through local slope but also through its
influence on soil depth and water table height. These results also suggest that while cohesion leads to a
minimum landslide size [Reneau and Dietrich, 1987; Dietrich et al., 2008; Frattini and Crosta, 2013], slide size is

Figure 7. The factor of safety (a) and critical area (b) with depth
for a block of soil where θ = 30°, ϕ′ = 40°, γs= 15.7 kNm�3, for a
range of water table depths (Zw). In both panels there are
two lines for each water table depth, representing upper and
lower bound solutions. The symbols above each plot indicate
water table locations within the profile. Figure 7a shows the
factor of safety for a 5 × 5m block while Figure 7b shows the
critical block area Ac, which can vary. The dry case is stable at
any area since tanϕ′> tanθ; thus, it has no critical area and
does not appear in Figure 7b; the case of zw = 0.2 is stable for
the 5 × 5m block but appears in Figure 7b because it becomes
unstable for critical areas >75m2. Both factor of safety and
critical area are minimized within the profile for partially
saturated conditions.
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limited even in cohesionless landscapes. This
provides a physical basis for a rollover in the
landslide size distribution, albeit at a
considerably smaller size than commonly
reported [e.g., Hovius et al.,1997; Stark and
Hovius, 2001; Malamud et al., 2004; Stark and
Guzzetti, 2009].

6.2. Critical Shape

While it is commonly observed that landslide
length exceeds width [Gabet and Dunne, 2002;
Rickli et al., 2008; Marchesini et al., 2009],
this behavior has not been fully explained. In
a second set of experiments using the
saturated cohesive scenario (θ =36°, ϕ′=40°,
γs=15.7 kNm�3, C0 = 22 kPa, j=4.96), we
explore the impact of shape (in terms of the
length-width ratio) on FS and critical area of
a potential landslide. We calculate FS and
critical area of blocks of depth 0.5, 1, 2, and
5m, varying the length-width ratio from
0.01 to 100 to find the ratio that minimizes FS
and critical area (Figure 8). Here we show
only results using the lower bound earth
pressure formulation (i.e., Rankine’s method),
which is conservative in terms of its
predicted FS, critical area and depth because it
predicts shallower failures with a smaller
minimum area. Results (not shown) using the
upper bound earth pressure formulation
generally exhibit similar behavior, but differ
slightly in their absolute values, due to the
increased resistance on the upslope and
downslope margins.

The least stable shape is that which minimizes resisting force relative to driving force. When lateral strength is
provided by cohesion alone (dashed lines in Figure 8) the least stable shape is equidimensional (i.e., l/w=1
minimizes FS and Ac) independent of block depth, because this minimizes perimeter length for a given area.
Once a friction component is introduced, resistance on the upslope and downslope margins dominates
(Figure 4), and scales with the cross-sectional area of these margins. On natural slopes failure depth is limited
by soil depth (typically to a maximum of a few meters). Width is thus the main control on the cross-sectional
area of the upslope and downslope margins, leading to wider shapes having a higher FS for a given area
(Figure 8a) or a larger critical area (Figure 8b). FS and critical area increase again when l/w ratio is greater than
3 as the perimeter to area ratio is then large enough to overcome the effect of the strength difference
between the margins.

The least stable shapes (marked with filled circles in Figure 8) are consistently longer than they are wide. The
least stable l/w ratio increases with increasing block depth from 1.5 to 5, due to the increased strength on
the downslope margin. This is because, as depth increases, a greater fraction of the resistance is provided
by friction, and the strength on the downslope boundary becomes more important. A parameter
exploration (not shown) suggests that length exceeds width for all parameter combinations except when
the slope exceeds the friction angle.

These results imply that for similar size low-strength patches, the patch that is oriented with its long axis
downslope should be less stable. This is consistent both with the general observation that shallow
landslide scars are longer than they are wide (Figure 1b) and with the l/w ratios of landslides observed in the

Figure 8. The (a) factor of safety and (b) critical area as a function
of length-width (l/w) ratio for a block of soil with θ = 36°, ϕ′ = 40°,
and γs = 15.7 kN m�3, with a water table at the ground surface
(i.e., fully saturated soil) and where resistance is provided by
cohesion only (dashed lines) and both friction and cohesion
(solid lines). Filled circles indicate l/w ratios that minimize FS and
critical area for each depth. In Figure 8a the block area is held
constant at 60m2 (representative of the CB-1 scar) to calculate FS.
In Figure 8b the grey PDFs on the x and right axes show l/w ratio
and area distributions, respectively, for 19 landslides in the Coos
Bay catchment [Montgomery, 1991; Larsen et al., 2010]. The black
rectangles between Figures 8a and 8b are illustrative of the l/w
ratios corresponding to their x axis location. Least stable shapes
are equidimensional considering only cohesion but longer than
they are wide once friction is included.
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Coos Bay catchment, which was used to parameterize the model (Figure 8b) [Montgomery, 1991]. However, it
is unlikely that the strength difference between the downslope and cross-slope margins is the sole reason
for this pattern. The shape of an unstable patch is controlled by the spatial pattern of the driving
parameters (particularly, pore water pressure and soil depth), which is not random, but rather is strongly
controlled by topography and often oriented with greater values in the downslope direction.

6.3. Depth-Area Scaling

Finally, we explore the relationship between critical area and the depth that minimizes that area. We perform
a set of numerical experiments where soil unit weight and friction angle are held constant at the values
measured at CB-1. We test a range of slopes with different combinations of slope angle (θ = 20°, 30°, and 40°),
root cohesion (C′r0 = 0, 1, 22, and 52 kPa; j=4.96m�1) and water table depth (0–10m in 0.02m increments).
These conditions represent typical ranges for landscapes in which shallow landslides occur. For each
combination, failure planes are tested (in 0.02m increments) from the surface to the base of the soil column
to find the minimum critical area and record its corresponding depth. For simplicity, only the lower
bound solutions (i.e., from Rankine’s method) are shown in Figure 9. The upper bound solutions (using
Coulomb and log-spiral methods) result in slightly larger critical areas.

The curves in Figure 9 show critical area and depth for slopes with the same material properties but varying
saturation, for different cohesion scenarios. They are compared to a global compilation of observations
from Larsen et al. [2010]. In the cohesionless case there is an approximately square root relationship between
critical area and depth (Figure 9a). All but one of the observations have scar areas that exceed those defined

Figure 9. Grey diamonds show landslide scar depth and area for a global compilation of soil landslides [Larsen et al., 2010].
Colored lines show the modeled relationship between failure plane depth and critical area for slopes with θ = 20°, 30°,
and 40°, ϕ′ = 40°, and γs = 15.7 kNm�3. Different panels reflect different root cohesion scenarios: (a) C′ r0 = 0, (b) C′r0 = 1,
(c) C′ r0 = 22 (the CB-1 value), and (d) C′r0 = 52 kPa (representing old growth forest). In every case j = 4.96 kPa�1. Solid lines
indicate the relationship between critical depth and area when neither are constrained, with filled circles indicating
where these areminimized. Dashed lines represent the relationship for a saturated soil where depth is limited by soil depth.
The model predicts a theoretical lower limit to landslide area given depth, and the θ = 40° curve is a lower bound on
the observed scar areas. When landslide depth becomes limited by soil depth, critical area increases as depth decreases,
creating a theoretical lower limit on landslide area for a given depth.
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by the 40° curve. When cohesion is introduced, critical area and depth both decrease with increasing
saturation following a similar square root relationship to a lower limit at fully saturated conditions
(filled circles in Figures 9b–9d). However, on natural slopes soil depth is often less than a few meters and
many landslides have their failure plane at the base of the soil [e.g.,Montgomery et al., 2000]. When landslide
depth is limited by soil depth (as suggested by Larsen et al. [2010]), the failure surface is forced to the base of
the soil column and critical area increases as soil depth decreases (dashed colored lines in Figures 9b–9d).
This is because the resistance due to root cohesion becomes increasingly dominant relative to the driving
force. The dashed colored lines in Figure 9 represent the minimum critical area occurring under fully
saturated conditions. Reducing saturation results in an increase of critical area at a given depth (not shown).

Varying the slope angle has a strong impact on the coefficient but a weak impact on the exponent of the
depth-area relationship, suggesting similar scaling behavior independent of the material properties. The
three cohesion scenarios shown in Figures 9b–9d encompass conditions from weak grassland to strong
natural forest root networks. When cohesion is low (Figure 9b), the depth-area curve provides a lower
bound to the observations. Increasing cohesion results in curves that encompass progressively fewer
observations (Figures 9c–9d). Our results show that increasing cohesion increases both the minimum
landslide depth and critical area, suggesting that in landscapes with stronger cohesion landslides should be
both larger and deeper consistent with observations [e.g., Selby, 1976; Gabet and Dunne, 2002].

The roughly square root dependence of depth on area is consistent with the observations; the best fit
for observed soil landslides yields an exponent of 0.4 [Larsen et al., 2010]. In cohesionless soils, the predicted
exponent is always 0.5 and equation (24) can be rearranged to solve for depth in terms of critical area:

z ¼ kAc
1
2 (25)

where

k ¼ sinθcosθ γs � cos2θ γs � γwmð Þtanϕ′
K0 γs � γwm2ð Þtanϕ′cosθ l

w

� �1
2 þ Kp � Ka
� �

1
2 γs � γwm2ð Þ cos δ� θð Þ � sin δ� θð Þtanϕ′ð Þ l

w

� ��1
2

(26)

When cohesion is introduced, the lateral resistance becomes a more complex function of depth and thus the
exact relationship becomes dependent on the specific conditions, how cohesion is parameterized, and the
relative importance of friction and cohesion.

The modeled depth-area curves represent the critical failure plane depth and the minimum landslide area for
a given set of conditions. Our findings differ from those of Klar et al. [2011] in that we suggest that depth
only imposes a lower bound on size, whereas they suggested that area defines depth. As a result our
model only explicitly explains the trend in observed minimum landslide area with depth, which is well
captured by the θ =40° curve in Figure 9b. However, since smaller low-strength patches are likely to be more
common in a natural (heterogeneous) landscape [Pelletier et al., 1997; Frattini and Crosta, 2013], wemight expect
landslide areas to cluster near their lower size limit, explaining the similar trend in maximum landslide area for a
given depth with the majority of the data plotting between the modeled 20° and 30° curves (Figure 9). We
suggest that our model is an alternative explanation of the observed landslide depth-area scaling to that of
Klar et al. [2011], both based on limit equilibrium slope stability models. Since Klar et al. find the depth-area
scaling from experiments in which length is constrained, their approachmight suggest that landslide area is set
first (e.g., by slope length or the area of a low-strength patch) and that landslide depth is then dependent on
this area. Since we find the critical (or minimum) landslide area for a given landslide depth, our approach
might suggest that depth is set first (e.g., by pore pressure or soil depth) and that landslide area is then
dependent on depth. Both situations are conceivable on natural slopes and it is interesting that both approaches
result in approximately square root relationships between landslide depth and area.

6.4. Model Assumptions and Requirements

MD-STAB is a shallow landslide slope stability model and as such is limited in its application to failures within
or at the base of the soil. In common with most other shallow landslide models, our model assumes that
failure occurs under drained conditions. This is appropriate for the colluvial soils found on many natural
slopes but not for clay-rich materials.
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Our model also assumes hydrostatic conditions in the calculation of active and passive pressures on the
upslope and downslope margins of the central block. In reality slope-parallel seepage will alter these
pressures but we currently lack methods that account for them. A reduction in net downslope resistance due
to seepage forces would slightly reduce critical area, increase optimum depth, and make the least stable
shape slightly rounder. However, this does not alter our general findings that (1) there is a critical area and
minimum depth for both cohesive and cohesionless soils, (2) blocks that are longer than they are wide are
least stable, and (3) critical area scales as the square of optimum depth under most conditions found in
natural landscapes.

Jaky’s [1944] empirical formula, which assumes cohesionless soil, may overestimate the cross-slope earth
pressure coefficient. However, resistance due to at-rest earth pressure on the cross-slope boundary is
small relative to other components (Figure 4), so small changes to the value of K0 will have little impact on
the net resistance. To assess the potential impact of this assumption, we tested the extreme case of
neglecting the cross-slope earth pressure term (i.e., K0 = 0) and found that our results show very little
sensitivity to the value of this coefficient. Moreover, changes in K0 do not alter the linear dependence of
at-rest earth pressure on depth, which drives our findings on optimum depth and depth-area scaling.

In our model the landslide is assumed to have a parallelepipedal shape, with vertical sides. The assumption
that cross-slope margins are vertical rather than inclined or curved will minimize their surface area and
resulting resistance [Stark and Eid, 1998]. This is consistent with field observations, which suggest that the
head scarps of shallow landslides are generally near-vertical and that their cross-slope margins are also steep.
Failure geometry at the downslope boundary is poorly constrained by observations, because of subsequent
erosion following failure. Nevertheless, where observation has been possible, a low-angle failure surface
generally connects the ground surface with the basal failure plane [Milledge, 2008], consistent with the
wedge representation used here. The assumption that the failure plane is parallel to the ground surface is
reasonable for shallow translational landslides where the radius of curvature of the failure surface is typically
very low, and enables us to limit the search space for critical failure depth to one dimension.

In MD-STAB the potential failure mass is treated as a rigid block although in reality a failure may occur
progressively if small-scale cracks coalesce into a continuous failure plane [Petley et al., 2005] or locally
high strain induces liquefaction [Iverson et al., 2000]. At present representing such progressive failure is
generally limited to computationally intensive continuum methods, although Lehmann and Or [2012] have
developed an innovative approach to represent this progressive failure implicitly. We have applied our
boundary force equations within a limit equilibrium framework to examine their implications for landslide
size and shape. However, we note that our equations could easily be applied within a framework similar to
that of Lehmann and Or [2012], which would account for the forces acting on the margins due to the self-
weight of the soil and would result in a more appropriate method for natural slopes.

The parameters required to run MD-STAB are the same as those required to evaluate the infinite slope
equation: surface slope and friction angle, soil cohesion and unit weight, failure plane depth, and water table
height. Several of these parameters are either derived from or strongly influenced by topography; for
example, local slope, soil depth, and pore water pressure could be modeled in a similar way to Dietrich et al.
[1995, 2008]. Other parameters are likely to vary in space, but the magnitude and correlation length of
their variability are unknown in most landscapes so that they are generally assumed spatially uniform as we
have done here. Cohesion due to roots is likely to vary with depth below the surface. There is reasonable
observational support for an exponential relationship between root cohesion and depth in many landscapes
[Hales et al., 2009] enabling root cohesion to be simply represented with the addition of only one parameter.
However, MD-STAB is not bound to this particular representation, requiring only a root strength field.
Similarly, we have chosen a very simple representation of pore water pressure (assuming steady slope-
parallel flow), but more complex alternatives that provide a pore pressure field could be utilized. The only
additional data requirement for MD-STAB is the identification of cells that are within the shape whose stability
is to be tested. However, this is a key barrier to the model’s application to a discretized landscape. While
stability can be calculated analytically for each potential landslide, testing all possible combinations of cells
would be exponentially complex; the number of tests goes as 2(nrows × ncols) or 10,000 combinations for a
10 by 10 cell grid. In forthcoming papers this model is coupled with a novel search algorithm to predict
landslides across a landscape (D. Bellugi et al., A spectral clustering search algorithm for predicting shallow
landslide size and location, submitted to Journal of Geophysical Research: Earth Surface, 2014a; D. Bellugi et al.,
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Predicting shallow landslide size and location across a natural landscape: Application of a spectral clustering
search algorithm, submitted to Journal of Geophysical Research: Earth Surface, 2014b).

7. Conclusion

In this paper we derive MD-STAB, a new multidimensional shallow slope stability model, which predicts that
observed shallow landslide depth-area scaling in both cohesive and cohesionless soils arises from depth-
varying friction on the margins of a potential landslide. MD-STAB accounts for the forces acting on all
boundaries of a potential landslide and is statically determinate. It represents lateral root cohesion and
earth pressure on inclined slopes, making it suitable for natural landscapes. This model is easily applied to
spatially gridded data, requires only a modest parameterization (i.e., the same as the infinite slope) and is
therefore suitable for landscape-scale application.

MD-STAB successfully predicts the failure of a well-documented shallow landslide in which measured
parameters, including pore pressure and root strength, are used. The model also predicts that larger or
smaller shapes conformal to that observed are indeed more stable. For smaller shapes stability is due to
the increased influence of resistance on themargins, whereas for larger shapes stability is due to the inclusion
of areas of increased strength.

We explore the influence of lateral friction and cohesion on slope stability and landslide scale (depth and
area) using an inclined block of soil with fixed strength parameters but varying pore pressure and soil depth.
Lateral friction on the boundaries of a potential landslide increases considerably the magnitude of lateral
reinforcement. Friction and cohesion interact to create a critical depth at which shallower and deeper
potential failure planes are more stable. This critical depth develops even in cohesionless soils when they are
less than fully saturated. As a result, landslides should have a minimum area for failure in both cohesive
and cohesionless soils. Friction and cohesion also impose a least stable shape that is longer than it is wide,
even in homogeneous hillslope conditions. Minimum scar area is predicted to increase as approximately the
square of failure plane depth, consistent with, and bounding, observed landslide depth-area data.

These findings suggest that a peak, or rollover, in observed landslide size-frequency distributions should be
expected, and that the observed depth-area scaling is related to the depth-varying lateral frictional
resistance. We hypothesize that the right tail of observed landslide size-frequency distributions is controlled
by the heterogeneity of local conditions. Exploring this hypothesis will require applying this model to real
landscapes to determine size and location of landslides under a variety of conditions.

Appendix A

Below are the equations for the log-spiral earth pressure representation for sloping soils that include both
friction and cohesion strength following Soubra and Macuh [2002].

kpy ¼ �kaγ ¼ 2
z
r0
� �2 f1� f2� f3

f4
(A1)

kpc ¼ kac ¼ 1
z
r0

f7� f5
f4

(A2)

f1 ¼ ±
e3 α1�α0ð Þtanφ 3tanφ sin α1 ± cos α1ð Þ ± 3 tanφsinα0 þ cos α0

3 9 tan2φþ 1ð Þ
� 	
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1
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f5 ¼ ±
z
r0

tan δ
tan φ

sin �α0ð Þ (A7)
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1

2tanφ
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z
r0

¼ �e∓ α1�α0ð Þtanφ cos α1 � θð Þ þ cos α0 � θð Þ
cosθ

(A10)

Notation

Variable Units Description

Ac m2 critical basal area of the central block required for failure
C′r0 Pa coefficient representing the maximum root cohesion value at the surface
C′rb Pa root cohesion on the basal failure surface
C′rl Pa depth averaged lateral root cohesion
Fdc N central block driving force
Fdu N slope-parallel component of the active force
Fnc N normal force due to the central block weight force acting on the failure surface
Fnd N slope normal component of the passive force
Fnt N total normal force acting on the basal failure surface of the central block
Fnu N slope normal component of the active force (negative for a net resisting force) on the upslope

margin of the central block
Fp N passive force
Frc N resisting force on each cross-slope side of the slide block
Frd N slope-parallel component of the passive force
FS - factor of safety
Fw N central block weight force
g m s�2 gravitational acceleration
h m water table height above failure surface
j m�1 e-folding length scale for root cohesion with depth in the soil profile
K0 - coefficient of at-rest earth pressure
Ka - active earth pressure coefficient
Kah - horizontal active earth pressure coefficient
Kp - passive earth pressure coefficient
Kph - horizontal passive earth pressure coefficient
Kpc - cohesion component of Soubra and Macuh’s [2002] passive earth pressure coefficient
Kpγ - friction component of Soubra and Macuh’s [2002] passive earth pressure coefficient
l m true downslope length of the slide block
m - saturation ratio (h/z)
sc Pa resisting stress on the cross-slope sides of the slide block
w m cross-slope width of the slide block
xc m cross-slope planimetric coordinate
yc m downslope planimetric coordinate
zc m vertical coordinate
z m failure surface depth below the ground surface
zw m water table depth below the ground surface
α0, α1 ° geometry parameters for the logarithmic-spiral failure surface
β ° inclination from horizontal of failure plane from base of central block to ground surface upslope
δ ° boundary friction angle
γs Nm�3 unit weight of the soil
γw Nm�3 unit weight of water
φ′ ° soil friction angle
ρs kgm�3 bulk density of soil
σ′x Pa at-rest lateral earth pressure
σ′z Pa vertical effective stress
σa Pa active stress on the upslope margin of the central block
σp Pa passive stress on the downslope margin of the central block
σz Pa total vertical geostatic stress
θ ° slope inclination
τ Pa driving stress
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