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Abstract 16 

The size of a shallow landslide is a fundamental control on both its hazard and geomorphic 17 

importance. Existing models are either unable to predict landslide size or are computationally intensive such 18 

that they cannot practically be applied across landscapes. We derive a model appropriate for natural slopes 19 

that is capable of predicting shallow landslide size but simple enough to be applied over entire watersheds. It 20 

accounts for lateral resistance by representing the forces acting on each margin of potential landslides using 21 

earth pressure theory, and by representing root reinforcement as an exponential function of soil depth. We 22 

test our model’s ability to predict failure of an observed landslide where the relevant parameters are well 23 

constrained by field data. The model predicts failure for the observed scar geometry and finds that larger or 24 

smaller conformal shapes are more stable. Numerical experiments demonstrate that friction on the 25 

boundaries of a potential landslide increases considerably the magnitude of lateral reinforcement, relative to 26 



that due to root cohesion alone. We find that there is a critical depth in both cohesive and cohesionless soils, 27 

resulting in a minimum size for failure, which is consistent with observed size frequency distributions. 28 

Furthermore, the differential resistance on the boundaries of a potential landslide is responsible for a critical 29 

landslide shape which is longer than it is wide, consistent with observed aspect ratios. Finally, our results 30 

show that minimum size increases as approximately the square of failure surface depth, consistent with 31 

observed landslide depth-area data.  32 
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1. Introduction 37 

Shallow landslides usually involve only the colluvial soil mantle, and are generally translational, 38 

failing along a quasi-planar surface. They are important as agents of landscape-scale sediment transfer and 39 

erosion as well as potential hazards to life and infrastructure [Spiker and Gori, 2003]. The importance of 40 

each landslide is defined by its, location and size.  41 

While much progress has been made in mechanistic prediction of landslide location [e.g. Montgomery 42 

and Dietrich, 1994; Casadei et al., 2003a; Tarolli and Tarboton, 2006; Baum et al. 2010; Lanni et al., 2012] 43 

we remain limited in our understanding of what controls landslide size (area and depth), which is 44 

fundamental to both hazard [Hungr et al., 2008], and geomorphic change [Dietrich et al., 2008].  Field 45 

mapped inventories of shallow landslides (Figure 1; Rice et al. [1969]; Montgomery [1991]; Morgan et al. 46 

[1997]; Gabet and Dunne [2002]; Paudel et al. [2003]; Warburton et al. [2008]; Larsen et al. [2010]) show 47 

that their scar size varies across several orders of magnitude in volume (10
0
-10
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 m

3
) and area (10

1
-10

4
 m

2
). 48 

All six inventories have clear modes (Figure 1a) and 70% of the scar areas are between 30 and 300 m
2
. The 49 

landslides are generally longer than they are wide (Figure 1b; L>W for 70-100% of landslides), and wider 50 



than they are deep (W>D for 99% of landslides). Since the landslides are generally restricted to the soil 51 

mantle they rarely extend beyond a few meters deep, and the majority are between 0.1 and 1 m deep (Figure 52 

1c). Landslide depth appears to scale as a power function of surface area both for some individual 53 

inventories (Figure 1d) and for global compilations of soil and bedrock landslides, albeit with almost two 54 

orders of magnitude of scatter in the global compilation [Guzzetti et al., 2009; Larsen et al., 2010]. 55 

Why do shallow landslide depth and area distributions have these characteristics, and why does 56 

landslide depth scale with area? Why are landslides longer than they are wide and wider than they are deep?  57 

An absolute upper limit to size is defined by hillslope length and width, which limit the area of the 58 

soil mantle that can fail as a single body [Frattini and Crosta, 2013]. In practice the upper limit is 59 

considerably smaller and is likely to relate to the spatial extent of low-strength areas [Pelletier et al., 1997; 60 

Frattini and Crosta, 2013; Alvioli et al., 2014]. Soil thickness sets an upper limit on shallow landslide depth, 61 

and most shallow landslides fail at the base of the colluvial soil where typically the permeability decreases 62 

and strength increases [Larsen et al. 2010]. There is a theoretical lower limit to both landslide depth and area 63 

in cohesive material because a landslide must be large enough for its driving force to overcome the constant 64 

stress-independent cohesion on its failure surface. This has been demonstrated for a range of depth-varying 65 

cohesion fields representative of soil and rock [Frattini and Crosta, 2013]; as well as root cohesion, which 66 

dominates in many colluvial soils [Reneau and Dietrich, 1987; Casadei et al., 2003b; Gabet and Dunne, 67 

2002; Dietrich et al., 2008].  68 

Between these limits to landslide depth, Dietrich et al. [2008] and Frattini and Crosta [2013] have 69 

shown that frictional resistance and cohesion on the margins of a landslide interact to create a least stable 70 

depth that can be within rather than at the base of the soil profile. Distributions of scar area have been 71 

explained by: the dynamics of rupture propagation [Piegari et al., 2006; Stark and Guzzetti, 2009; Lehman 72 

and Or, 2012] or the distribution of low strength patches [Pelletier et al., 1997; Katz and Aharonov, 2006; 73 

Frattini and Crosta, 2013; Alvioli et al., 2014 The presence of cohesion is essential to almost all these 74 

explanations; in its absence, the controls on the lower limit to landslide depth and area have not been 75 

identified.  76 

Klar et al. [2011] used a two-dimensional analytical model to give the first mechanistic explanation for 77 

the observed scaling relationship between landslide depth and area (Figure 1d). Applying the model to 78 



slopes of varying length they found that depth scaled as approximately the square root of landslide length, 79 

where landslide length is defined by slope length and depth is the free parameter. This can be used to 80 

reproduce the square root dependence of landslide depth on area under the following assumptions: 1) that 81 

landslide width is a linear function of length; and 2) that either landslide length is always constrained and 82 

depth the free parameter or the modelled length-depth relationship can be inverted to predict length when 83 

depth is constrained and length the free parameter [Klar et al., 2011].  84 

Observed landslide length and width almost always exceed depth, with depths generally less than 2 m 85 

and areas greater than 4 m
2
 [Larsen et al., 2010]. It is commonly acknowledged that length exceeds width 86 

[e.g., Gabet and Dunne, 2002; Rickli, et al., 2008; Marchesini et al., 2008]. However, very few studies have 87 

attempted to explain this behavior. Lehman and Or [2012] were able to reproduce, but not explain, the 88 

general behavior of length and width using a fiber bundle model to represent progressive failure, but 89 

suggested that their results were strongly dependent on model choices as well as local heterogeneities. 90 

We aim: 1) to examine whether resistances on the margins of a landslide influence its length and 91 

width; 2) to extend the existing theory on lower limits to landslide depth and area from cohesive soils into 92 

cohesionless soils; and 3) to develop an alternative physically-based explanation for the observed landslide 93 

depth-area scaling. To do this we need a slope stability model that can test the stability of potential 94 

landslides of varying three-dimensional geometries with different material properties and that is suitable for 95 

application to natural slopes. Since none of the currently available stability models fully satisfy these 96 

requirements (see review in Section 2), we derive a new model that retains the low data requirements of 97 

existing models but is more faithful to the key processes that control the stability of natural slopes (Section 98 

3). We demonstrate the implications of the new analysis in Section 4 then test it for an observed landslide 99 

where the parameters are well constrained by field measurement (Section 5). Finally, we apply the model to 100 

identify the physical mechanisms that explain the observations above. 101 

2. Existing slope stability models  102 

Most slope stability models perform a limit-equilibrium analysis for a defined failure surface, 103 

assuming that stresses are uniformly mobilized over the whole failure surface, and that the soil mass behaves 104 

as one or more rigid blocks. Shallow landslide models almost exclusively use the simplest form of this 105 



analysis: the one-dimensional infinite slope equation [Haefeli, 1948; Taylor, 1948; Skempton and de Lory, 106 

1957] coupled with a hydrological model to estimate the local pore pressure field [e.g. Montgomery & 107 

Dietrich 1994; Iverson 2000; Casadei et al., 2003a; Tarolli and Tarboton, 2006; Baum et al., 2008; Lanni et 108 

al. 2012]. However, understanding landslide size and shape requires a three-dimensional model where the 109 

dimensions of the landslide can be examined explicitly and where the resistance on the margins of a 110 

potential landslide can be represented. 111 

The simplest three-dimensional approaches consider the forces acting on a single block in limiting 112 

equilibrium and treat either lateral root reinforcement [Burroughs, 1985; Reneau and Dietrich, 1987; 113 

Montgomery et al., 2000; Gabet and Dunne, 2002; Casadei et al., 2003b] and/or boundary pressure on the 114 

margins of the block [Chen, 1981; Burroughs, 1985]. When included, root reinforcement is generally treated 115 

as an effective cohesion. Boundary pressures are modeled using earth pressure theory and assuming an 116 

active wedge upslope of the block (driving failure), a passive wedge downslope (resisting failure), and 117 

pressure on the cross-slope sides generating shear resistance due to friction. With the exception of 118 

Burroughs [1985], the upslope and downslope wedges were assumed to be horizontal (i.e. earth pressure 119 

coefficients depended only on soil friction angle). Furthermore, cohesion is either ignored or represented as 120 

an additive term on the upslope and downslope boundaries, rather than acting on the wedges themselves. 121 

This is particularly problematic in the downslope case where the soil is failing under compression.  122 

An alternative approach is to extend the two-dimensional method of slices [e.g. Morgernstern and 123 

Price, 1967; Spencer, 1967] into the third dimension, discretizing the landscape into columns [e.g. Hovland, 124 

1977; Lam and Fredlund, 1993]. However, these methods do not consider shear resistance (due to friction or 125 

cohesion) on the cross-slope boundary between stable and unstable columns and so underestimate shear 126 

resistance on that boundary [Stark and Eid, 1998; Chugh, 2003].  127 

Dietrich et al. [2008] applied a framework similar to Hovland’s [1977] method, but parameterized the 128 

forces on the margins of the landslide using methods similar to Burroughs [1985]. Dietrich et al. [2008] 129 

assumed horizontal upslope and downslope wedges to enable an analytical solution but inclined the resultant 130 

forces by the soil friction angle to represent friction on the margin between the blocks. As in Burroughs 131 

[1985] they assumed that the upslope and downslope wedges are cohesionless, and then added cohesion to 132 

each of the block’s vertical boundaries. 133 



In a limit equilibrium analysis, all forces are assumed to occur at the same instant. However, some 134 

slides may develop incrementally with a small area failing first and its load then being transferred to 135 

neighboring areas, causing them to fail. This style of progressive failure is normally modeled using a Finite 136 

Element Model [Duncan, 1996; Griffiths and Marquez, 2007], but Lehmann and Or [2012] attempted to 137 

approximate progressive failure in a limit equilibrium framework by treating deformation implicitly using 138 

rigid columns, but removing and re-distributing the load of each column once it had failed by basal shear. 139 

They represented the driving and resisting forces acting on the basal, upslope, downslope, and cross-slope 140 

margins of each column, focusing on cohesive effects. They did not represent friction on the cross-slope 141 

margin and an upslope cell only exerts a driving force on its downslope neighbors once it has failed at its 142 

base. They represented the critical downslope stress required to cause failure using a water-dependent 143 

compression strength threshold [Mullins and Panayiotopoulos, 1984] that does not account for the self-144 

weight of the soil, which is appropriate for unconfined samples but not for natural slopes. 145 

These models have enabled analysis of discrete landslides within a limit equilibrium framework and 146 

are capable of representing the lateral forces acting on a potential landslide, which is essential for a three-147 

dimensional treatment. However, they are generally limited by their treatment of upslope and downslope 148 

margins, either assuming that the ground surface is horizontal above and below the landslide, incorrectly 149 

accounting for cohesion on these margins or neglecting the self-weight of the soil. This is a problem because 150 

the forces acting on these margins can strongly affect both the stability of the slope and the geometry of the 151 

landslide. To address this problem, we extend the method presented by Dietrich et al. [2008]; relaxing the 152 

assumption that the upslope and downslope wedges have a horizontal surface, and include the effect of 153 

cohesion on their failure surface (i.e. earth pressure coefficients depend on friction angle, slope, and 154 

cohesion). This approach retains the simplicity and analytical tractability of standard limit equilibrium 155 

approaches but is a more faithful representation of natural slope conditions.  156 

3. The multi-dimensional shallow landslide model (MD-STAB)  157 

The MD-STAB model satisfies horizontal and vertical force equilibrium while ignoring moment 158 

equilibrium. A shallow landslide is represented by three connected three-dimensional hillslope segments: an 159 

active (upslope) wedge, a central block and a passive (downslope) wedge. A force balance is calculated on 160 



the central block. Figure 2 shows the geometry of the three segments and force polygons which illustrate the 161 

magnitude and orientation of the forces acting on the central block. The central block is assumed to be rigid 162 

and to fail by shear on a plane parallel to the ground surface at a prescribed depth. Typically this plane is the 163 

soil-bedrock interface, which is often the location of the largest contrast in material strength in hillslope 164 

soils. We also explore the influence of failure plane depth on the stability and size of a potential landslide. 165 

We assume that failure occurs in drained conditions and that groundwater flow is steady and parallel to the 166 

slope surface, although other groundwater assumptions could also be used to predict a pore water pressure 167 

field. We also ignore any infiltration, suction or capillary rise effects in an unsaturated zone, and simply 168 

partition the landslide block into saturated and unsaturated zones. This allows definition of a saturation ratio 169 

(m=h/z) where h is the height of the water table and z is the depth to the failure surface. Driving forces 170 

include the downslope component of the central block mass plus the force on the central block from the 171 

upslope wedge where active earth pressure conditions are assumed. Resisting forces are considered on all 172 

boundaries of the central block, and include the passive earth pressure from the downslope wedge and soil 173 

friction and root cohesion on the base, cross-slope, upslope and downslope sides. Cohesion is not directly 174 

added at the upslope and downslope vertical boundaries of the central block. Instead, resistance due to 175 

cohesion is incorporated in the passive and active wedges themselves and affects the corresponding earth 176 

pressures that those wedges impose on their boundaries with the central slide block. The following sections 177 

describe in detail the conceptualization of the driving and resisting forces internal and external to the central 178 

slide block, and how the forces are combined to evaluate the factor of safety of a potential landslide. 179 

3.1. Central block driving force (Fdc) 180 

This model component represents the driving force caused by the mass of the slide block itself. We 181 

follow closely the standard formulation used in other plane strain landslide analyses, such as a method of 182 

slices or the infinite slope method, but eventually calculate a driving force, rather than stress, for a finite 183 

three-dimensional slide (Figure 2a). The total vertical geostatic stress σz at depth z caused by the soil above 184 

it is: 185 

zsz γσ =  (1) 



where γs is the unit weight of the soil (γs = g ρs), ρs is the constant bulk density of soil and g is gravitational 186 

acceleration. Note that in common with many other studies [e.g. Montgomery and Dietrich, 1994; Iverson, 187 

2000; Gabet and Dunne, 2002; Baum et al., 2008; Lanni et al., 2012] we assume a single soil density 188 

independent of soil moisture content since it ultimately has very little impact on the computed factor of 189 

safety. The driving component of this stress τ acts downslope along the failure surface and is: 190 

θθγθθστ cossincossin zsz ==  (2) 

where � is the slope inclination(Figure. 2). The corresponding driving force Fdc acting downslope along 191 

the failure surface is the driving stress integrated over the planimetric length and width of the slide (polygon 192 

P1 in Figure 2c): 193 

θθγ cossinwlzF sdc =  (3) 

where: l is the slide length and w is its width (Figure 2).  194 

3.2. Block cross-slope boundaries (Frl) 195 

Shear resistance on the two parallel and vertical cross-slope sides of the slide block Frl results from 196 

friction and cohesion. These sides are the surfaces ABB’A’ and DCC’D’ in Figure 2a, and the forces acting 197 

on them are shown by polygons P5 and P6 in Figure 2d. Following Stark and Eid [1998], we represent 198 

friction by assuming that external horizontal and vertical forces act at the centers of the two sides and that 199 

these forces can be predicted from standard earth pressure theory. For a homogeneous soil with isotropic 200 

frictional properties, the shear resistance due to lateral earth pressure on the cross-slope sides is the product 201 

of the horizontal stress at a point and the soil friction angle (polygons P5 and P6 in Figure 2d). We assume 202 

that in the cross-slope direction, earth pressure in the soil layer is in an intermediate or “at-rest” condition 203 

(i.e. it does not experience active or passive yield during failure). The at-rest lateral earth pressure σ’x at any 204 

point is conventionally calculated from the vertical effective pressure σ’z as:  205 

σ x

' =Ko σ z

'
 (4) 

where K0 is the coefficient of at-rest earth pressure. Since σ’z increases linearly with depth, σ’x has the 206 

triangular stress distribution shown in Figure 2b. The at-rest earth pressure coefficient is poorly constrained 207 

for soils with cohesion. In particular, when roots contribute to this cohesion they may support some of the 208 



vertical geostatic stress reducing the value of K0, but this effect is difficult to quantify. As a result, most 209 

applications use Jaky’s [1944] empirical formula for cohesionless, normally consolidated soils, commonly 210 

found on natural slopes [Das, 2009]. Under these assumptions the at-rest earth pressure coefficient is: 211 

'sin1 φ−=oK
 

(5) 

where φ’ is the effective friction angle of the soil. The cross-slope resisting stress sc on the vertical sides of 212 

the slide block is: 213 

'tan' φσ zoc Ks =
  

(6) 

To calculate the resisting force Frc on a cross-slope boundary, we integrate Equation 6 over the cross-214 

slope area of the slide block, (l z cos�) and add the depth averaged cohesion C’rl acting over the same area 215 

(polygons P5 and P6 in Figure 2d): 216 

Frl =
1

2
Ko (γ s −γwm

2
)lz

2
cos

2 θ tanϕ '+Crl

'
l zcosθ  (7) 

where γw is the unit weight of water, m is the saturation ratio (m=h/z), and h is the height of the water table 217 

above the failure surface. 218 

3.3. Block upslope (Fdu) and downslope (Frd) boundaries  219 

For a landslide to occur, i.e. for shear to develop on the base of the central block, the downslope 220 

wedge must fail and mobilize under passive or compressive earth pressure conditions. At the same time, the 221 

failing central block will move away from the soil upslope of it, creating active or tensile conditions in the 222 

upslope wedge. We model the interfaces between these wedges and the central block as vertical boundaries 223 

(see the surfaces BCC’B’ and ADD’A’ in Figure 2a). The effects of these two soil wedges on the central 224 

block are calculated from the active Fa and passive Fp forces that they impose on these upslope and 225 

downslope vertical boundaries (polygons P2 and P3, in Figure 2c). The active and passive forces are defined 226 

using standard earth pressure theory (e.g. used to analyze retaining wall stability), but including cohesion in 227 

the up/downslope wedges and an inclined soil layer appropriate for natural slopes.  228 

Classical soil mechanics theory includes three primary methods of active and passive earth pressure 229 

prediction, the Rankine, Coulomb and log-spiral methods, which are described in standard soil mechanics 230 

textbooks [e.g., Das, 2009]. All three methods assume a homogeneous and isotropic soil. The Rankine 231 



[1857] method is a lower-bound plasticity solution based on statically admissible stress fields, while the 232 

Coulomb [1776] and log-spiral methods [Caquot and Kerisel, 1948; Chen, 1975] are upper-bound solutions 233 

based on kinematically admissible velocity fields [Das, 2009]. The three methods have also been modified 234 

to allow for a sloping soil layer and cohesive soil [Chugh and Smart, 1981; Mazindrani and Ganjali, 1997; 235 

Gnanapragasam, 2000; Soubra and Macuh, 2002]. 236 

These earth pressure theories primarily differ in how they treat stress conditions on their boundaries 237 

with the central block and how they model the failure surface beneath the wedges. During failure the 238 

upslope block will tend to move vertically downward along the interface with the central block as they both 239 

translate downslope. This introduces a downward shear along the upslope boundary of the central block that 240 

reorients the resultant active force by some angle δ from horizontal (polygon P2 in Figure 2c). On the 241 

downslope passive interface, shear develops in the opposite sense and again the passive force is reoriented 242 

from horizontal (polygon P3 in Figure 2c). The Rankine method assumes that the force reorientations are 243 

equal to the slope angle (i.e. δ = �), while δ can take any value from 0 to φ’ in the Coulomb and log-spiral 244 

methods [Duncan and Mokwa, 2001]. The Rankine and Coulomb methods assume that the failure surfaces 245 

beneath the active and passive wedges are planar, but theory and observation demonstrate that they are 246 

curved [Terzaghi, 1943]. In the active case the curvature is small and a planar assumption causes little error 247 

[Craig, 2004]. But in the passive case, a planar failure surface results in passive pressure predictions that are 248 

much too large, particularly if δ > 0.4 φ’ [Duncan and Mokwa, 2001]. Terzaghi [1943] described a failure 249 

surface that took the form of the arc of a logarithmic spiral and passive earth pressure predictions using this 250 

wedge geometry were found to be more accurate over any value of δ [Soubra, 2000; Zhu and Quian, 2000]. 251 

However, this requires optimizing the two parameters that describe the failure surface for each combination 252 

of slope, friction angle, cohesion, and soil thickness.  253 

Because of the uncertainty in analytical predictions of the active and passive forces on the central 254 

block, we calculate lower and upper bounds. To obtain a lower-bound estimate, we use the Rankine method 255 

at both margins. To obtain an upper-bound estimate, we use the log-spiral method, which can allow for 256 

curvature on the failure surface, at the downslope margin and the simpler Coulomb method at the upslope 257 

margin, which is typically planar. Following Mazindrani and Ganjali [1997], the Rankine solution for 258 

cohesive soils on a hillslope gives the lower-bound active, Ka and passive, Kp earth pressure coefficients: 259 
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(8) 

where φ’ is the soil friction angle; � is the slope angle; C’rl is the depth averaged cohesion; γs is the soil unit 260 

weight; z is the depth of the failure plane of the central block; and the negative and positive signs are for the 261 

active and passive cases, respectively. Following Chugh and Smart [1981], the Coulomb active earth 262 

pressure coefficient Ka for sloping cohesive soils is defined as: 263 

( )

( ) ( )θβφδβ

φθ
γ

φβθβ

−−−
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(9) 

where β is the inclination from horizontal of a planar failure surface from the base of the central block to the 264 

ground surface upslope. We solve Equation 9 numerically to find the most critical failure plane (for �-1° < β 265 

< 89°) which maximizes the active earth pressure coefficient [Chugh and Smart, 1981]. 266 

We use the version of the log-spiral method derived by Soubra and Macuh [2002] to provide an upper-267 

bound solution for the passive resistance of sloping cohesive soils downslope of a potential slide mass. 268 

Soubra and Macuh [2002] employed a rotational logarithmic spiral failure surface on the basis that under 269 

these conditions an energy balance is equivalent to moment equilibrium about the center of the logarithmic 270 

spiral. The solution requires identification of the most critical log-spiral failure plane (i.e. minimizing 271 

passive pressure), and yields: 272 

K p = K pγ + 2K pc

C 'rl

γ sz









 (10) 

where Kpγγ and Kpc are the friction and cohesion components of the passive earth pressure coefficient 273 

respectively. The passive earth pressure coefficient is thus a function of slope, friction angle, cohesion, soil 274 

unit weight, soil depth and two geometry parameters α0 and α1, which define the geometry of the 275 

logarithmic-spiral failure surface (full equations provided in Appendix 1). Following Soubra and Macuh 276 

[2002], we solve Equation 10 numerically using a generalized reduced gradient algorithm [Lasdon et al., 277 

1978] to find the log-spiral failure surface that minimizes the passive earth pressure coefficient. 278 

By treating the upslope and downslope margins as analogous to the wall in an earth pressure retaining 279 

wall problem the active σa and passive σp stresses on the upslope or downslope margin of the central block 280 



can be calculated as the product of the vertical effective pressure (σ’z) and the active or passive earth 281 

pressure coefficients from Equation 8, 9, or 10. For the passive downslope margin:  282 

( )mzK wspp γγσ −=  (11) 

To calculate the total passive force on the downslope margin (ADD’A’ in Figure 2a) we integrate 283 

Equation 11 over the downslope boundary of the block (wz) perpendicular to the direction of sliding. This 284 

passive force Fp, is the resultant of both the normal and shear forces (due to friction) on the boundary 285 

between the central block and the wedge and is inclined at the boundary friction angle δ. We assume that 286 

δ=θ, in the lower-bound case and δ=ϕ’ in the upper-bound case. As a result, the passive force needs to be 287 

decomposed into its slope-parallel component, which acts as a resisting force Frd: 288 

( ) ( ) ( )θδγγθδ −−=−= cos
2

1
cos 22

wmzKFF wspprd  (12) 

and a slope normal component Fnd, which modifies the normal force on the base of the central block 289 

(polygon P3 in Figure 2c):  290 

( ) ( )θδγγ −−= sin
2

1 22
wmzKF wspnd  (13) 

The active stress σa on the upslope margin follows the same form as the passive stress and can be 291 

calculated from Equation 11 by replacing the passive coefficient with an active earth pressure coefficient Ka 292 

for sloping soils. The net driving force on the upslope margin Fdu can then be calculated from Equation 12 293 

making the same substitution (Figure 2c). For soils with a strong cohesive component the active earth 294 

pressure coefficient, and therefore the net driving force on the upslope margin, is negative since the resisting 295 

forces due to cohesion exceed the driving force of the upslope wedge. In this case the negative Fdu 296 

represents a net resisting force on the upslope margin of the central block. Note that cohesion on the wedge 297 

failure surface is included within the active and passive earth pressure coefficients and does not need to be 298 

applied to the vertical upslope or downslope boundaries (Equations 12-13). The slope normal component of 299 

the active force Fnu, which modifies the normal force on the base of the central block, can be calculated from 300 

Equation 13 by replacing the passive with the active earth pressure coefficient (P2 in Figure 2c). 301 

Standard earth pressure methods use a hydrostatic analysis to calculate earth pressure on the upslope 302 

and downslope boundaries of the unstable block [Das, 2009]. In reality slope parallel seepage will exert a 303 



force on these boundaries increasing the driving force on the upslope boundary and reducing passive 304 

resistance on the downslope boundary. However, to our knowledge, there is currently no suitable earth 305 

pressure method that can account for seepage forces in the upslope active wedge and downslope passive 306 

wedge. We discuss the impact of this simplification on our findings in Section 6.4. 307 

 308 

3.4. Basal resistance force (Frb) 309 

Resistance along the base of the slide block Frb develops by a combination of cohesion C’rb and 310 

friction, the product of normal force on the failure surface and the tangent of the friction angle. The normal 311 

force Fnt is the effective normal stress on the failure surface integrated over its area (thus accounting for pore 312 

pressure). It includes the normal force due to the self-weight of the central block (Fnc, polygon P1 in Figure 313 

2c), and the components of the upslope Fnu and downslope Fnd forces that act normal to the failure surface 314 

(polygon P4 in Figure 2c): 315 
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2
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Fnd acts to decrease the normal force on the base of the central block when δ > �, and to increase it 316 

when δ<�. The opposite is true of Fnu, however Fnu can also change sign in response to a negative active 317 

force at the upslope margin. Given this definition of the normal force on its base, the basal resistance force 318 

on the central block is then: 319 
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3.5. Complete formulation 320 

The Factor of Safety FS for the block can then be calculated as the ratio of driving to resisting forces 321 

by combining each of these components from Equations 3, 7, 13, and 15: 322 
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Substituting Equations 3, 7, 13 and 15 into 16 and rearranging, the general form of the equation is: 323 
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In the upper-bound case we assume that δ = φ’ and Equation 17 becomes: 324 
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In the lower-bound case we assume that δ = � and Equation 17 becomes: 325 
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While these equations allow us to calculate the stability of a soil block, they do not include the 326 

variability in soil properties, slope geometry and pore water pressure that occurs within an unstable 327 

hillslope, which is an important control on slope stability in natural landscapes. In the following section we 328 

apply the same equations within a grid-based framework, which allows us to represent spatial variability in 329 

the model parameters. 330 

3.6.  Grid-based application 331 

Following Hovland [1977] the normal and shear forces acting on the base of each column are derived 332 

as components of their weight and FS is calculated from the ratio of total available resistance to the total 333 

mobilized stress along the failure surface. As in Hovland [1977], we assume that there are no inter-column 334 

shear forces within the group of columns that make up an unstable block. No progressive failure with strain 335 

softening, pore water pressure dynamics, or other unequal stress-strain behavior is considered. The resistive 336 

forces are applied to the outer boundary of the group of columns (i.e. the base and sides). Total resistance is 337 

the sum of these basal and lateral components (Equations 7, 13 and 15). The total driving force is the vector 338 

sum of the driving force vectors of each column within the potential landslide (Equation 3) and Figure 2). 339 

Since the grid is not oriented slope-parallel most columns will have more than one force component 340 

(upslope, downslope, cross-slope) acting on them. We decompose the lateral resistance on each column 341 

margin into its components by assigning a fraction of the edge length to each resistance component. For 342 

example, the upslope boundary of a grid cell that is oriented 30° from slope-parallel will be assigned 63% 343 

upslope and 37% cross-slope resistance. 344 



3.7.    Parameterization of cohesion 345 

Cohesion acts on the base and lateral sides of a potential landslide and our model requires an 346 

assumption about the form of its variation with soil depth. Here we focus on colluvial slopes where the net 347 

soil cohesion is dominated by root strength [Schroeder and Alto, 1983; Schmidt, 1999]. Other forms of 348 

cohesion (e.g. due to cementation or suction) could easily be added given an expression for their variation 349 

with depth. Generally, root cohesion is not uniform with depth, as it is a function of root density, which 350 

typically declines exponentially with depth [e.g. Roering, 2008]. Following Dunne [1991] and Benda and 351 

Dunne [1997], we represent root cohesion as an exponential function of depth so that root cohesion on the 352 

basal failure plane C’rb is defined as: 353 
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where z is failure plane depth, C’r0 is a coefficient representing the maximum root cohesion value at the 354 

surface, and j is an e-folding length scale. Root cohesion can be integrated over the block depth z (in the 355 

vertical co-ordinate zc) to obtain the average lateral root cohesion C’rl per unit perimeter area: 356 
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Equation 21 is applied to the cross-slope vertical boundaries and to the failure surfaces of the upslope 357 

and downslope wedges. When the downslope wedge failure surface is very curved this may result in a slight 358 

under-estimation of cohesion on this boundary. This is a necessary approximation because the iterative 359 

method developed by Soubra and Macuh [2002] requires profile-averaged cohesion. 360 

4. Significance of model assumptions 361 

Estimated earth pressure coefficients can vary widely depending on which formulation is used to 362 

calculate them. In section 4.1 we compare our earth pressure coefficients with those that have previously 363 

been used in other stability models discussed in section 2. In section 4.2 we assess the relative contribution 364 

of friction and cohesion to lateral resistance on an example slope and examine the sensitivity of the resistive 365 

terms to slope geometry and material properties. 366 



4.1. Effect of different earth pressure coefficients 367 

Figure 3a shows the earth pressure coefficients in a cohesionless soil as a function of slope angle using 368 

different methods of prediction. The simplest formulation estimates earth pressure by assuming that the 369 

ground surface is horizontal in the upslope (active) and downslope (passive) wedges and that there is no 370 

friction on the boundaries between the wedges and the central block. In this classic soil mechanics approach 371 

[Chen, 1981; Dietrich et al., 2008], earth pressure is only dependent on the friction angle. Using both upper- 372 

and lower-bound methods, the active Kah and passive Kph coefficients of earth pressure are the familiar: 373 
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and these pressures act perpendicular to the respective boundaries [Das, 2009].  374 

Earth pressures predicted by the lower-bound (Rankine) and upper-bound (log-spiral and Coulomb) 375 

methods modified for sloping cohesionless soils illustrate the effects of slope angle (Figure 3a). The active 376 

pressure increases slightly at slopes between 38° and 40°, while the passive pressure declines sharply at 377 

steeper slopes until it equals the active pressure when the slope reaches the friction angle (here assumed to 378 

be 40°). The horizontal active earth pressure coefficient (Kah) agrees well with the modified upper- and 379 

lower-bound coefficients, although it results in a slight underestimation of the active earth pressure when the 380 

slope is >38°. The passive coefficient assuming a horizontal ground surface (Kph) falls between the upper- 381 

and lower-bound solutions for slopes gentler than 25° but results in a considerable overestimation of the 382 

passive earth pressure for slopes steeper than 25°, on which landslides are most likely. 383 

On cohesionless slopes greater than the friction angle, earth pressure predictions become 384 

indeterminate for all the methods that account for sloping ground: the Rankine coefficients become complex 385 

because the square-root term in Equation 8 becomes negative; the Coulomb active coefficient goes to 386 

infinity because the failure surface that maximizes Equation 9 becomes parallel with the slope and the active 387 

wedge becomes infinitely long; and the log-spiral slip surface degenerates to a planar surface with radii 388 

approaching infinity, violating the optimization constraints [Soubra and Macuh, 2002].  389 



In practice, cohesionless soil is rarely found on slopes steeper than the friction angle, as some cohesion 390 

(provided by clay minerals, cementing agents, or more commonly vegetation roots) is usually necessary to 391 

maintain soil mass stability on steep slopes [Das, 2009]. Figures 3b and c show the earth pressure 392 

coefficients accounting for cohesion for two different scenarios: one where the cohesion is relatively low, 393 

representing weak roots (Figure 3b) such as have been measured in grasslands [Buchanan and Savigny, 394 

1990]; and another where the cohesion is larger, but still modest, representing a more dense root network or 395 

stronger roots (Figure 3c) such as might be found in a forest [Schmidt et al., 2001]. Figure 3 shows that even 396 

a modest amount of additional cohesion considerably extends the range of slopes over which the earth 397 

pressure coefficients can be predicted. Figure 3 also shows that when cohesion is included in the earth 398 

pressure coefficient, the upper and lower bounds can cross at very high slopes suggesting that the treatment 399 

of earth pressure is approximate for slopes steeper than the friction angle. However, the bounds do not 400 

significantly diverge on high slopes, suggesting that the approximation is reasonable. In practice, shallow 401 

landslides are not common on these extreme slopes where a soil mantle is unlikely to persist in the absence 402 

of high cohesion. 403 

4.2. Lateral strength contribution of friction 404 

While lateral root cohesion has been included in a few stability models for natural slopes [Reneau and 405 

Dietrich, 1987; Montgomery et al., 2000, Gabet and Dunne, 2002; Casadei et al., 2003a] lateral friction has 406 

generally been ignored. Figure 4 compares the lateral resistance due to cohesion and friction on a cross-407 

slope margin and the net downslope resistance (i.e. resistance from the soil downslope of a block minus the 408 

driving stress from the soil upslope). The example shown in Figure 4 is for a block with a failure plane depth 409 

of 1 m, a friction angle of 40° and a saturation ratio of 0.5.  410 

Friction on the cross-slope boundary provides ~2 kPa of resistance, independent of the block’s 411 

inclination (Figure 4). This suggests that cross-slope friction can be important in weakly rooted soils, as it is 412 

nearly half of the resistance provided by roots (Figure 4). Cross-slope friction is highly sensitive to failure 413 

plane depth (with a z
2
 dependence) but insensitive to friction angle (Equation 7). This is because as the 414 

friction angle increases, the earth pressure coefficient that controls the conversion from vertical to lateral 415 



stress decreases as 1-sinφ’, while shear strength varies as normal stress multiplied by tanφ’. The product of 416 

these (tanφ’ (1-sinφ’)) ranges from 0.26-0.30 for friction angles from 25°-55° with its maximum at 38°.  417 

Net downslope resistance is considerably larger than cross-slope resistance (Figure 4). It is most 418 

strongly dependent on cohesion but provides more strength than would be expected from cohesion alone, 419 

increasing cohesion by 5 kPa in Figure 4 increases net resistance by between 8-15 kPa. This amplified 420 

increase in resistance reflects the geometry of the upslope and downslope wedges. Since their failure surface 421 

is always longer than the failure depth the additional strength is more than just the additional cohesion. Net 422 

downslope resistance also has a strong (z
2
) dependence on failure plane depth, a strong dependence on 423 

slope, a weak dependence on saturation ratio, and negligible dependence on unit weight for both upper- and 424 

lower-bound solutions with resistance increasing with depth and unit weight but decreasing with slope angle 425 

and saturation ratio (Equation 12). Net resistance has a dependence on friction angle (not shown) that differs 426 

between the two formulations, increasing with friction angle in the lower-bound case, and decreasing in the 427 

upper-bound case. This reflects the influence of boundary friction (δ), which is assumed equal to soil 428 

friction angle (φ’) in the upper-bound case, in reducing net resistance. The influence of boundary friction is 429 

absent from the lower-bound case (i.e. δ=�) so that net resistance increases with soil friction, reflecting the 430 

additional strength of the soil. 431 

5. A test of the model 432 

To test the model, we applied it to the highly instrumented Coos Bay (CB-1) slope that failed as a 433 

large debris flow in November 1996 [Anderson et al., 1997; Montgomery et al., 1997; Torres et al., 1998; 434 

Montgomery et al., 2009]. We chose this site because, whereas there remains some uncertainty over the 435 

geotechnical and hydrologic conditions appropriate for the site, the instrumentation at CB-1 provides one of 436 

the most comprehensive data sets in existence for a natural shallow landslide. At CB-1 we tested the 437 

model’s ability to predict failure under the conditions measured during the 1996 storm, and whether the 438 

predicted failure was of a similar size to that which was observed. 439 



5.1. Test site description 440 

The CB-1 site, which was clear-cut in 1987, is located along Mettman Ridge approximately 15 km 441 

north of Coos Bay in the Oregon Coast Range. The hydrological behavior of the CB-1 experimental site was 442 

studied in detail over a period of 10 years [Anderson et al., 1997; Montgomery et al., 1997; Torres et al., 443 

1998]. CB-1 is a 51 m long (860 m
2
) unchanneled valley with an average slope of 43°. The instrumentation 444 

at CB-1 included a grid of piezometers and tensiometers with continuous total head measurements from 445 

1990 to the time of failure (in 1996). Piezometer records show that subsurface storm flow in the shallow, 446 

fractured-rock zone exerts the most significant control on pore-pressure development in the CB-1 colluvium 447 

[Montgomery et al., 1997]. We use the piezometric surface at the time of slope failure estimated by 448 

Montgomery et al. [2009] from piezometers recording at the time of failure, but without any adjustment of 449 

the original pore pressure data. 450 

The soil is well-mixed, non-plastic gravelly sand derived from weathered turbidite sandstone [Schmidt 451 

et al., 2001]. Low confining stress triaxial tests for samples from the site gave internal friction angles of 452 

39.5° and 40° with effective soil cohesion of 0 to 1.8 kPa [Montgomery et al. 2009]. The soil bulk density 453 

(ρs) ranges from 1200 to 1600 kg m
-3

 [Schmidt et al., 2001]. The soil thickness is well defined from soil 454 

borings [Schmidt, 1999]. Montgomery et al. [2009] measured basal and lateral root cohesions using the 455 

methods described by Schmidt et al. [2001]. They report a non-linear decline in root cohesion with depth 456 

resulting in a spatially-weighted average lateral root cohesion of 4.6 kPa and a basal cohesion of 0.1 kPa. 457 

5.2. Method 458 

On the basis of these observations, we back calculate the stability of the observed landslide under a set 459 

of 500 feasible site conditions sampled from distributions to account for uncertainty in observed conditions 460 

at the site. For each prediction, we provide a lower-bound on the stability estimate using the Rankine 461 

method and an upper-bound using the Coulomb (upslope) and log-spiral (downslope) methods. We assume a 462 

spatially uniform soil density and sample from a uniform distribution with range 1200-1600 kg m
-3

 (unit 463 

weight = 15.7 kN m
-3

). We sample the friction angle from a normal distribution with mean 40° and standard 464 

deviation 2°; and the effective soil cohesion from a uniform distribution with the range 0-1.8 kPa. We use 465 

measured surface topography, soil depth and pore water pressure data interpolated to a 1 m grid (Figure 5a 466 



and b). Topography and soil depth are very well constrained, we account for error in the pore water pressure 467 

data by uniformly introducing normally distributed error with a standard deviation of 10%. To represent the 468 

depth-varying lateral root cohesion we fit an exponential curve to the root cohesion with depth observations 469 

of Montgomery et al. [2009] from the CB-1 site, with the additional constraint that the average lateral root 470 

cohesion should be within ± 0.1 kPa of the spatially weighted mean lateral root cohesion observed at the 471 

site. The best fit parameters within these constraints are C’r0 = 22 kPa and j = 4.96 m
-1

 (Equation 20); we 472 

sample these parameters from normal distributions using these mean values and standard errors of: 0.5 kPa 473 

and 0.73 m
-1

 respectively (ignoring covariance). 474 

Montgomery et al. [2009] mapped the entire evacuated area at CB-1 and identified a smaller upper 475 

section of the failure, which they suggest was the initiation area on the basis of their onsite observations. 476 

Using the grid based formulation of MD-STAB, we test the stability of this initiation area by using its 477 

geometry to define the group of potentially unstable columns in the stability model. To explore whether 478 

smaller or larger shapes would result in different outcomes, we shrink and expand the original shape by a 479 

constant distance around its perimeter and test their stability (Figure 5a).  480 

5.3. Results 481 

Figure 5c shows the factor of safety calculated from MD-STAB for the observed landslide geometry 482 

and a series of smaller and larger conformal shapes. Instability is confined within a range of sizes for these 483 

tested shapes. Shrinking the observed shape radially by 2 meters or expanding it by more than 5 meters 484 

results in stability in more than 95% of cases (defined by the different parameter sets). This sets limits on the 485 

possible size of the unstable area.  486 

However, while most cases result in at least one stable shape many also predict at least one shape with 487 

FS <1 (88% for lower-bound and 51% for upper-bound). This is not possible in reality since a landslide 488 

would already have initiated as soon as driving force exceeded resistance. In the CB-1 case a model run that 489 

predicts FS <1 for any shape is likely associated with an unrealistically weak parameter set and a run that 490 

predicts FS>1 for all shapes with an unrealistically strong set. Failure, with FS=1, for the observed shape 491 

and no other is associated with an intermediate parameter set for the upper-bound model and a high strength 492 

parameter set for the lower-bound model (Figure 5c).  493 



Of all the tested shapes, the observed landslide geometry is the least stable in 96% of cases. When size 494 

decreases the area-perimeter ratio also decreases, reducing both driving and basal resisting forces relative to 495 

the lateral resisting forces. When size increases under spatially variable conditions, the likelihood of 496 

including areas of increased strength also increases. We suggest that the interaction of these two effects 497 

defines an optimum, least stable, landslide geometry for a specific set of conditions. The CB-1 test shows 498 

that without any calibration MD-STAB produces stability predictions for this slope that are consistent with 499 

the observed landslide both in terms of its size and the conditions required for failure.   500 

6. Discussion 501 

6.1. Critical depth and area 502 

Smaller patches with low-strength conditions are more likely than larger ones in a natural 503 

(heterogeneous) landscape, and thus in the absence of any other control the frequency of landslides should 504 

continuously increase with decreasing size [Pellettier et al., 1997; Frattini and Crosta, 2013; Alvioli et al., 505 

2014]. Instead, many investigators have observed that there is a peak, or ‘rollover’, to the size frequency 506 

distribution with fewer numbers of very small slides [e.g. Hovius et al., 1997; Stark and Hovius, 2001; 507 

Malamud et al., 2004; Frattini and Crosta, 2013]. We suggest that the minimum area that can fail under a 508 

given set of conditions (hereafter called the critical area) provides a mechanistic explanation of the 509 

infrequency of small landslides while the right tail is controlled by the size distribution of low-strength areas 510 

[Pelletier et al., 1997; Katz and Aharonov, 2006; Frattini and Crosta, 2013; Alvioli et al., 2014]. By setting 511 

FS equal to 1.0, Equation 17 can be solved for the critical basal area Ac at failure: 512 
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To explore how critical area changes with failure depth on a homogeneous slope, we examine a block 513 

with the material properties measured at CB-1 (friction angle = 40°, soil unit weight = 15.7 kN m
-3

, and 514 

exponential cohesion profile with C0=22 kPa and j=4.96) and a slope angle of 36°, the average slope for the 515 



wider Coos Bay study area in which the landslide inventory shown in Figure 1 was collected [Montgomery 516 

et al., 2000]. 517 

When soil strength is provided entirely by friction, Ac increases with depth from a minimum at the 518 

surface (Figure 6), whereas when it is provided entirely by cohesion Ac decreases with depth from a 519 

maximum at the surface (note log scale on vertical axis). This is because the stability of a soil block is 520 

controlled by the relationship between its mass dependent driving force and the resistance on its perimeter 521 

both of which vary with failure depth. Driving force increases linearly with depth but friction resistance 522 

increases as the square of depth (z
2
 terms on top half of Equation 24), while root cohesion decreases 523 

exponentially with depth (Equations 20 and 21). When soil strength is provided by both friction and 524 

cohesion (“Full” lines in Figure 6), the interplay between the two components results in a range of depths 525 

with similar Ac, and a critical depth that minimizes Ac (indicated by filled circles in Figure 6). Although 526 

there is a range of depths that are close to critical, failure planes that are both shallower and deeper than this 527 

point are more stable and therefore require a larger Ac for failure (Figure 6). This is true for both upper- and 528 

lower-bound solutions, which envelop the true value. These findings support those of Dietrich et al. [2008] 529 

and Frattini and Crosta [2013] that suggest a least stable depth, and imply that this least stable depth 530 

minimizes the critical area.  531 

A critical depth in the range 0.5-3 m is consistent with observed shallow landslide depths (Figure 1c). 532 

A parameter exploration (not shown) suggests that increasing cohesion (by increasing C0 or by decreasing j) 533 

or friction (by decreasing � or increasing φ’) results in a larger minimum critical area. However, increasing 534 

cohesion increases the depth at which the minimum critical area occurs, while increasing friction decreases 535 

it. Similar experiments (not shown) using uniform rather than depth-varying cohesion result in the same 536 

behavior but with an increase in the depth at which the minimum critical area occurs. This is because, when 537 

root cohesion is uniform, its contribution to basal resistance does not depend on depth, so its relative 538 

contribution to total resistance is very large at shallow depths and decreases rapidly with depth. Decreasing 539 

cohesion with depth simply enhances this effect. Figure 6 also shows that the difference between the upper- 540 

and lower-bound earth pressure solutions is large when cohesion is included and negligible when only 541 

friction is considered. 542 



The critical area and the corresponding failure depth for this parameter set are in the range observed 543 

for shallow landslides (Figure 1a and c), and closely correspond to the modal landslide depth and area for 544 

landslides from the Coos Bay site on which the parameters have been based (Figure 6; Montgomery [1991]; 545 

Larsen et al. [2010]). However, where soils are shallower than the critical depth, landslides will be very 546 

likely to fail at the soil-bedrock interface rather than within the harder bedrock. This is generally the case at 547 

Coos Bay, where most landslides failed at the soil bedrock interface [Montgomery et al., 2000], which may 548 

explain the portion of observed Coos Bay failures with depths less than our prediction.  549 

As noted above, the predicted critical depth and area can be close to zero in the case of a saturated 550 

cohesionless soil (Figure 6). This motivates the question: are there any constraints on critical depth and area 551 

for cohesionless soils? To address this we examine the behavior of a cohesionless block of soil 5 m long, 5 552 

m wide, and 2 m deep, with a friction angle of 40° and a soil unit weight of 15.7 kN m
-3

. The slope angle is 553 

reduced from the average slope of the Coos Bay site to 30° to reflect the characteristics of cohesionless 554 

slopes. We test the stability of this block using Equation 17 for slope-parallel failure planes at depths from 555 

0.02 m to 10 m in increments of 0.01 m, beginning with an unsaturated block and increasing the water table 556 

height until failure occurs within the block. 557 

Under dry conditions, the block is stable for all failure plane depths and FS increases linearly with 558 

depth (red curve in Figure 7a). This is because both the driving force and basal resistance increase linearly 559 

with depth, and lateral resistance increases as the square of depth (Equation 17). With a water table of 0.2 m 560 

below the ground surface or lower, the block remains stable at any depth (i.e. FS>1) but there is a minimum 561 

FS within the profile (blue curves in Figure 7). When the failure plane is above the water table FS is the 562 

same as in the unsaturated case. Once the failure plane is below the water table the saturated fraction of the 563 

soil column above the failure plane increases with failure plane depth causing FS to decrease. FS reaches a 564 

minimum at 1.2 m then begins to increase (blue curves in Figure 7a) because the lateral resistance increases 565 

at a higher rate compared to the reduction of shear resistance resulting from the increase of the saturated soil 566 

fraction (Equation 24). If the water table continues to rise, the block will fail at ~0.8 m depth once the water 567 

table reaches 0.09 m depth (black curves in Figure 7a). As the water table approaches the surface, FS 568 

continues to decrease (cyan curve in Figure 7a). 569 



Figure 7b shows that as the water table rises both the critical area and critical depth decrease.  As the 570 

water table approaches the ground surface, the critical depth approaches zero and the critical area declines 571 

rapidly. When the water table reaches the ground surface the saturated fraction of the soil column no longer 572 

varies with depth, and the minimum FS is at the surface (green curve in Figure 7a) due to the more rapid 573 

increase of resisting force relative to driving force with depth (Equation 24). This explains why the critical 574 

failure plane depth and critical landslide size are both zero for cohesionless saturated soils (green curve in 575 

Figure 7b). Note that there is a critical area when Zw = 0.2 (Ac = 75 m
2
), indicating that failure is possible at 576 

this water table depth but requires a much larger size than the 5 by 5 m block used in Figure 7a. The dry 577 

case is stable at any area since the slope is shallower than the friction angle and thus it has no critical area 578 

and does not appear in the bottom panel of Figure 7. 579 

For a specific set of conditions, in a cohesive or cohesionless soil the water table height determines 580 

both the critical size and critical failure depth. Instability can occur when the area having that water table 581 

height expands to the critical size, or when a local increase of the water table sufficiently reduces the critical 582 

size. This suggests that the dynamics of the water table are an important control on landslide size and that 583 

topography exerts a strong control on landslide size not only through on local slope but also through its 584 

influence on soil depth and water table height. These results also suggest that while cohesion leads to a 585 

minimum landslide size [Reneau and Dietrich, 1987, Dietrich et al., 2008; Frattini and Crosta, 2013], slide 586 

size is limited even in cohesionless landscapes. This provides a physical basis for a rollover in the landslide 587 

size distribution, albeit at a considerably smaller size than commonly reported [e.g. Hovius 1997; Stark and 588 

Hovius, 2001; Malamud et al. 2004; Stark and Guzzetti 2009]. 589 

6.2.         Critical shape 590 

While it is commonly observed that landslide length exceeds width [Gabet and Dunne, 2002; Rickli, et 591 

al., 2008; Marchesini et al., 2008], this behavior has not been fully explained. In a second set of experiments 592 

using the saturated cohesive scenario (�=36°, φ’=40°, γs=15.7 kN m
-3

, C0=22 kPa, j=4.96), we explore the 593 

impact of shape (in terms of the length-width ratio) on FS and critical area of a potential landslide. We 594 

calculate FS and critical area of blocks of depth 0.5, 1, 2 and 5 m, varying the length-width ratio from 0.01 595 

to 100 to find the ratio that minimizes FS and critical area (Figure 8). Here we show only results using the 596 



lower-bound earth pressure formulation (i.e. Rankine’s method), which is conservative in terms of its 597 

predicted FS, critical area and depth because it predicts shallower failures with a smaller minimum area. 598 

Results (not shown) using the upper-bound earth pressure formulation generally exhibit similar behavior, 599 

but differ slightly in their absolute values, due to the increased resistance on the upslope and downslope 600 

margins. 601 

The least stable shape is that which minimizes resisting force relative to driving force. When lateral 602 

strength is provided by cohesion alone (dashed lines in Figure 8) the least stable shape is equi-dimensional 603 

(i.e. l/w=1 minimizes FS and Ac) independent of block depth, because this minimizes perimeter length for a 604 

given area. Once a friction component is introduced, resistance on the upslope and downslope margins 605 

dominates (Figure 4), and scales with the cross-sectional area of these margins. On natural slopes failure 606 

depth is limited by soil depth (typically to a maximum of a few meters). Width is thus the main control on 607 

the cross-sectional area of the upslope and downslope margins, leading to wider shapes having a higher FS 608 

for a given area (Figure 8a) or a larger critical area (Figure 8b). FS and critical area increase again when l/w 609 

ratio is greater than 3 as the perimeter to area ratio is then large enough to overcome the effect of the 610 

strength difference between the margins. 611 

The least stable shapes (marked with solid dots in Figure 8) are consistently longer than they are wide. 612 

The least stable l/w ratio increases with increasing block depth from 1.5 to 5, due to the increased strength 613 

on the downslope margin. This is because, as depth increases, a greater fraction of the resistance is provided 614 

by friction, and the strength on the downslope boundary becomes more important. A parameter exploration 615 

(not shown) suggests that length exceeds width for all parameter combinations except when the slope 616 

exceeds the friction angle. 617 

These results imply that for similar size low-strength patches, the patch that is oriented with its long 618 

axis downslope should be less stable. This is consistent both with the general observation that shallow 619 

landslide scars are longer than they are wide (Figure 1b) and with the l/w ratios of landslides observed in the 620 

Coos Bay catchment, which was used to parameterize the model (Figure 8b; Montgomery [1991]). 621 

However, it is unlikely that the strength difference between the downslope and cross-slope margins is the 622 

sole reason for this pattern. The shape of an unstable patch is controlled by the spatial pattern of the driving 623 



parameters (particularly pore water pressure and soil depth), which is not random, but rather is strongly 624 

controlled by topography and often oriented with greater values in the downslope direction. 625 

6.3.         Depth–area scaling 626 

Finally, we explore the relationship between critical area and the depth that minimizes that area. We 627 

perform a set of numerical experiments where soil unit weight and friction angle are held constant at the 628 

values measured at CB-1. We test a range of slopes with different combinations of slope angle (� = 20°, 30° 629 

and 40°), root cohesion (C0= 0, 1 22 and 52 kPa; j = 4.96 m
-1

) and water table depth (0-10 m in 0.02 m 630 

increments). These conditions represent typical ranges for landscapes in which shallow landslides occur. For 631 

each combination, failure planes are tested (in 0.02 m increments) from the surface to the base of the soil 632 

column to find the minimum critical area and record its corresponding depth. For simplicity, only the lower-633 

bound solutions (i.e. from Rankine’s method) are shown in Figure 9. The upper-bound solutions (using 634 

Coulomb and log-spiral methods) result in slightly larger critical areas. 635 

The curves in Figure 9 show critical area and depth for slopes with the same material properties but 636 

varying saturation, for different cohesion scenarios. They are compared to a global compilation of 637 

observations from Larsen et al. [2010]. In the cohesionless case there is an approximately square-root 638 

relationship between critical area and depth (Figure 9a). All but one of the observations have scar areas that 639 

exceed those defined by the 40° curve. When cohesion is introduced, critical area and depth both decrease 640 

with increasing saturation following a similar square-root relationship to a lower limit at fully saturated 641 

conditions (filled circles in Figure 9b-d). However, on natural slopes soil depth is often less than a few 642 

meters and many landslides have their failure plane at the base of the soil [e.g. Montgomery et al., 2000]. 643 

When landslide depth is limited by soil depth (as suggested by Larsen et al. [2010]), the failure surface is 644 

forced to the base of the soil column and critical area increases as soil depth decreases (dashed colored lines 645 

in Figure 9b-d). This is because the resistance due to root cohesion becomes increasingly dominant relative 646 

to the driving force. The dashed colored lines in Figure 9 represent the minimum critical area occurring 647 

under fully-saturated conditions. Reducing saturation results in an increase of critical area at a given depth 648 

(not shown).  649 



Varying the slope angle has a strong impact on the coefficient but a weak impact on the exponent of 650 

the depth-area relationship, suggesting similar scaling behavior independent of the material properties. The 651 

three cohesion scenarios shown in Figure 9b-d encompass conditions from weak grassland to strong natural 652 

forest root networks. When cohesion is low (Figure 9b), the depth-area curve provides a lower bound to the 653 

observations. Increasing cohesion results in curves that encompass progressively fewer observations (Figure 654 

9c-d). Our results show that increasing cohesion increases both the minimum landslide depth and critical 655 

area, suggesting that in landscapes with stronger cohesion landslides should be both larger and deeper 656 

consistent with observations [e.g. Selby, 1976; Gabet and Dunne, 2002]. 657 

The roughly square-root dependence of depth on area is consistent with the observations; the best fit 658 

for observed soil landslides yields an exponent of 0.4 [Larsen et al., 2010]. In cohesionless soils, the 659 

predicted exponent is always 0.5 and Equation 16 can be rearranged to solve for depth in terms of critical 660 

area: 661 
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When cohesion is introduced the lateral resistance becomes a more complex function of depth and 663 

thus the exact relationship becomes dependent on the specific conditions, how cohesion is parameterized, 664 

and the relative importance of friction and cohesion. 665 

The modelled depth-area curves represent the critical failure plane depth and the minimum landslide 666 

area for a given set of conditions. Our findings differ from those of Klar et al. [2011] in that we suggest that 667 

depth only imposes a lower bound on size, whereas they suggested that area defines depth. As a result our 668 

model only explicitly explains the trend in observed minimum landslide area with depth, which is well 669 

captured by the � = 40° curve in Figure 9b. However, since smaller low-strength patches are likely to be 670 

more common in a natural (heterogeneous) landscape [Pelletier, 1997; Frattini and Crosta, 2013], we might 671 

expect landslide areas to cluster near their lower size limit, explaining the similar trend in maximum 672 

landslide area for a given depth with the majority of the data plotting between the modelled 20° and 30° 673 



curves (Figure 9). We suggest that our model is an alternative explanation of the observed landslide depth-674 

area scaling to that of Klar et al. [2011], both based on limit equilibrium slope stability models. Since Klar 675 

et al. find the depth area scaling from experiments in which length is constrained their approach might 676 

suggest that landslide area is set first (e.g. by slope length or the area of a low strength patch) and that 677 

landslide depth is then dependent on this area. Since we find the critical (or minimum) landslide area for a 678 

given landslide depth our approach might suggest that depth is set first (e.g. by pore pressure or soil depth) 679 

and that landslide area is then dependent on depth. Both situations are conceivable on natural slopes and it is 680 

interesting that both approaches result in approximately square root relationships between landslide depth 681 

and area. 682 

6.4. Model assumptions and requirements          683 

MD-STAB is a shallow landslide slope stability model and as such is limited in its application to 684 

failures within or at the base of the soil. In common with most other shallow landslide models, our model 685 

assumes that failure occurs under drained conditions. This is appropriate for the colluvial soils found on 686 

many natural slopes but not for clay-rich materials.  687 

Our model also assumes hydrostatic conditions in the calculation of active and passive pressures on 688 

the upslope and downslope margins of the central block. In reality slope parallel seepage will alter these 689 

pressures but we currently lack methods that account for them. A reduction in net downslope resistance due 690 

to seepage forces would slightly reduce critical area, increase optimum depth, and make the least stable 691 

shape slightly rounder. However, this does not alter our general findings that: 1) there is a critical area and 692 

minimum depth for both cohesive and cohesionless soils; 2) blocks that are longer than they are wide are 693 

least stable; and 3) critical area scales as the square of optimum depth under most conditions found in 694 

natural landscapes.  695 

Jaky’s [1944] empirical formula, which assumes cohesionless soil, may overestimate the cross-slope 696 

earth pressure coefficient. However, resistance due to at-rest earth pressure on the cross slope boundary is 697 

small relative to other components (Figure 4), so small changes to the value of K0 will have little impact on 698 

the net resistance. To assess the potential impact of this assumption we tested the extreme case of neglecting 699 

the cross-slope earth pressure term (i.e. K0=0) and found that our results show very little sensitivity to the 700 



value of this coefficient. Moreover, changes in K0 do not alter the linear dependence of at-rest earth pressure 701 

on depth, which drives our findings on optimum depth and depth-area scaling. 702 

In our model the landslide is assumed to have a parallelepipedal shape, with vertical sides. The 703 

assumption that cross-slope margins are vertical rather than inclined or curved will minimize their surface 704 

area and resulting resistance [Stark and Eid, 1998]. This is consistent with field observations, which suggest 705 

that the head scarps of shallow landslides are generally near-vertical and that their cross-slope margins are 706 

also steep. Failure geometry at the downslope boundary is poorly constrained by observations, because of 707 

subsequent erosion following failure. Nevertheless, where observation has been possible, a low angle failure 708 

surface generally connects the ground surface with the basal failure plane [Milledge, 2008], consistent with 709 

the wedge representation used here. The assumption that the failure plane is parallel to the ground surface is 710 

reasonable for shallow translational landslides where the radius of curvature of the failure surface is 711 

typically very low, and enables us to limit the search space for critical failure depth to one dimension.  712 

In MD-STAB the potential failure mass is treated a rigid block although in reality a failure may occur 713 

progressively if small-scale cracks coalesce into a continuous failure plane [Petley, et al., 2005] or locally 714 

high strain induces liquefaction [Iverson et al., 2000]. At present representing such progressive failure is 715 

generally limited to computationally-intensive continuum methods, although Lehmann and Or [2012] have 716 

developed an innovative approach to represent this progressive failure implicitly. We have applied our 717 

boundary force equations within a limit-equilibrium framework to examine their implications for landslide 718 

size and shape. However, we note that our equations could easily be applied within a framework similar to 719 

that of Lehman and Or [2012], which would account for the forces acting on the margins due to the self-720 

weight of the soil, and would result in a more appropriate method for natural slopes.  721 

The parameters required to run MD-STAB are the same as those required to evaluate the infinite slope 722 

equation: surface slope and friction angle, soil cohesion and unit weight, failure plane depth, and water table 723 

height. Several of these parameters are either derived from or strongly influenced by topography; for 724 

example, local slope, soil depth and pore water pressure could be modelled in a similar way to Dietrich et al. 725 

[1995, 2008]. Other parameters are likely to vary in space, but the magnitude and correlation length of their 726 

variability are unknown in most landscapes so that they are generally assumed spatially uniform as we have 727 

done here. Cohesion due to roots is likely to vary with depth below the surface. There is reasonable 728 



observational support for an exponential relationship between root cohesion and depth in many landscapes 729 

[Hales et al., 2009] enabling root cohesion to be simply represented with the addition of only one parameter. 730 

However, MD-STAB is not bound to this particular representation, requiring only a root strength field.  731 

Similarly, we have chosen a very simple representation of pore water pressure (assuming steady slope-732 

parallel flow), but more complex alternatives that provide a pore pressure field could be utilized. The only 733 

additional data requirement for MD-STAB is the identification of cells that are within the shape whose 734 

stability is to be tested. However, this is a key barrier to the model’s application to a discretized landscape. 735 

While stability can be calculated analytically for each potential landslide, testing all possible combinations 736 

of cells would be exponentially complex; the number of tests goes as 2
(nrows*ncols)

 or 10,000 combinations for 737 

a 10 by 10 cell grid. In a forthcoming paper this model is coupled with a novel search algorithm to predict 738 

landslides across a landscape [D. Bellugi, D.G. Milledge, W.E. Dietrich, J. McKean, J.T. Perron, E. 739 

Sudderth and B. Kazian, A spectral clustering search algorithm for predicting shallow landslide size and 740 

location, submitted to JGR-Earth Surface 2013; D. Bellugi, D.G. Milledge, W.E. Dietrich, J. McKean, and 741 

J.T. Perron, Predicting shallow landslide size and location across a natural landscape: Application of a 742 

spectral clustering search algorithm, submitted to JGR-Earth Surface 2013]. 743 

7. Conclusion 744 

In this paper we derive MD-STAB, a new multi-dimensional shallow slope stability model that 745 

predicts the observed shallow landslide depth-area scaling in both cohesive and cohesionless soils arises 746 

from depth-varying friction on the margins of a potential landslide. MD-STAB accounts for the forces 747 

acting on all boundaries of a potential landslide and is statically determinate. It represents lateral root 748 

cohesion and earth pressure on inclined slopes, making it suitable for natural landscapes. This model is 749 

easily applied to spatially gridded data, requires only a modest parameterization (i.e. the same as the infinite 750 

slope), and is therefore suitable for landscape-scale application. 751 

MD-STAB successfully predicts the failure of a well-documented shallow landslide in which 752 

measured parameters, including pore pressure and root strength, are used. The model also predicts that 753 

larger or smaller shapes conformal to that observed are indeed more stable. For smaller shapes stability is 754 



due to the increased influence of resistance on the margins, whereas for larger shapes stability is due to the 755 

inclusion of areas of increased strength. 756 

We explore the influence of lateral friction and cohesion on slope stability and landslide scale (depth 757 

and area) using an inclined block of soil with fixed strength parameters but varying pore pressure and soil 758 

depth. Lateral friction on the boundaries of a potential landslide increases considerably the magnitude of 759 

lateral reinforcement. Friction and cohesion interact to create a critical depth at which shallower and deeper 760 

potential failure planes are more stable. This critical depth develops even in cohesionless soils when they are 761 

less than fully saturated. As a result, landslides should have a minimum area for failure in both cohesive and 762 

cohesionless soils. Friction and cohesion also impose a least stable shape that is longer than it is wide, even 763 

in homogeneous hillslope conditions. Minimum scar area is predicted to increase as approximately the 764 

square of failure plane depth, consistent with and bounding observed landslide depth-area data. 765 

These findings suggest that a peak, or rollover, in observed landslide size-frequency distributions 766 

should be expected, and that the observed depth-area scaling is related to the depth-varying lateral frictional 767 

resistance. We hypothesize that the right tail of observed landslide size-frequency distributions is controlled 768 

by the heterogeneity of local conditions. Exploring this hypothesis will require applying this model to real 769 

landscapes to determine size and location of landslides under a variety of conditions. 770 

Appendix 1 771 

Below are the equations for the log-spiral earth pressure representation for sloping soils that include 772 

both friction and cohesion strength following Soubra and Macuh [2002]. 773 
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Notation 783 

Variable  Units Description 

Ac m
2
 critical basal area of the central block required for failure 

C’r0 Pa coefficient representing the maximum root cohesion value at the surface 

f 3 = ±
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C’rb Pa root cohesion on the basal failure surface 

C’rl Pa depth averaged lateral root cohesion 

Fdc N central block driving force 

Fdu N slope-parallel component of the active force 

Fnc N normal force central block weight force acting on the failure surface 

Fnd N slope normal component of the passive force 

Fnt N total normal force acting on the basal failure surface of the central block 

Fnu N 
slope normal component of the active force (negative for a net resisting force) on the 

upslope margin of the central block 

Fp N passive force 

Frc N resisting force on each cross-slope side of the slide block 

Frd N slope-parallel component of the passive force 

FS - factor of safety 

Fw N central block weight force 

g m s
-2

 gravitational acceleration 

h  m  water table height above failure surface 

j  m
 -1

 e-folding length scale for root cohesion with depth in the soil profile 

K0 - coefficient of at-rest earth pressure 

Ka - active earth pressure coefficient 

Kah - horizontal active earth pressure coefficient 

Kp - passive earth pressure coefficient 

Kph - horizontal passive earth pressure coefficient 

Kpc - cohesion component of Soubra and Macuh’s [2002] passive earth pressure coefficient 

Kpγ - friction component of Soubra and Macuh’s [2002] passive earth pressure coefficient 

l m true downslope length of the slide block 

m - saturation ratio 

sc Pa resisting stress on the cross-slope sides of the slide block 

w m cross-slope width of the slide block 

xc m cross-slope planimetric coordinate 

yc m down-slope planimetric coordinate 

zc m vertical coordinate 

z  m failure surface depth below the ground surface 

zw m water table depth below the ground surface 

α0, α1 ° geometry parameters for the logarithmic-spiral failure surface 

β  ° 
inclination from horizontal of failure plane from base of central block to ground surface 

upslope 

δ ° boundary friction angle 

γs N m
-3

 unit weight of the soil 

γw N m
-3

 unit weight of water 

φ’ ° soil friction angle 

ρs kg m
-3

 bulk density of soil 

σ’x Pa at-rest lateral earth pressure 

σ’z Pa vertical effective pressure 



σa Pa active stress on the upslope margin of the central block 

σp Pa passive stress on the downslope margin of the central block 

σz Pa total vertical geostatic stress 

� ° slope inclination 

τ Pa driving stress 
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Figures 970 

 971 

Figure 1: Observed landslide properties from six published inventories showing empirical PDFs of: (a) 972 

landslide scar area; (b) scar depth; (c) scar length (L) to width (W) ratio and (d) a scatter plot showing 973 

the power relationship between scar depth and area. The inventories are from: (1) the Appalachian 974 

mountains [Morgan et al., 1997]; (2) Hakoishi, Japan [Paudel et al., 2003]; (3) San Gabriel Mountains, 975 

California [Rice et al., 1969]; (4) Santa Barbara County, California [Gabet and Dunne, 2002]; (5) 976 

Cumbria, England [Warburton et al., 2008]; and (6) Oregon Coast Range [Montgomery, 1991; Larsen et 977 

al., 2010]. Grey diamonds in (d) are the scar dimensions for soil landslides from a global compilation by 978 

Larsen et al. [2010]. PDFs are generated using kernel density functions after Epanechnikov [1969], with 979 

optimized half widths given in brackets in each legend. 980 

 981 
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Figure 2: Schematic showing forces and lengths for the three-dimensional slope stability problem 983 

in: (a) 3D, (b) cross-section, (c) profile and (d) plan. MD-STAB computes the stability of a potential 984 

landslide by calculating the forces on each of the planes shown here. The red arrows in (a), (c), and (d) 985 

show the forces acting on each margin of the block. The red arrows in (b) show the stress distribution on 986 

the cross-slope sides of the block. Red force polygons P1-6 in (c) and (d) illustrate the magnitude and 987 

orientation of forces acting on the block and their combination (i.e. vector sum) to give resultant forces: 988 

(P1) normal and driving forces on the central block; (P2) active force on the upslope margin; (P3) 989 

passive force on the downslope margin; (P4) normal and resisting forces on the base central block; (P5) 990 

and (P6) normal and resisting forces on the cross-slope sides. 991 
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Figure 3: Earth pressure coefficients calculated using different methods. Parameter values used 994 

are: z=1; ����=0-60°; m=1; φ’=40°; γs=15.7 kN m
-3

; and (a) C’rl=0 kPa, (b) 1kPa, and (c) 5kPa. Shaded 995 

areas are defined by the upper- and lower-bound solutions. All lower-bound solutions are derived using 996 

the Rankine method. Upper-bound solutions for the active case at the head of a landslide are by the 997 

Coulomb method and for the passive case at the slide toe the solutions are by the log-spiral method. The 998 

horizontal coefficient results in an overestimate of passive resistance on steep slopes. The coefficients that 999 

account for sloping soils become indeterminate on cohesionless slopes greater than the friction angle. 1000 

This problem is reduced by representing cohesion in the earth pressure coefficient (panels b and c). Note 1001 

that in this case the upper-bound coefficient can fall below the lower-bound coefficient at very high 1002 

slopes suggesting that the treatment of earth pressure is approximate for slopes steeper than the friction 1003 

angle. 1004 
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Figure 4: Lateral and net downslope resistances from different strength components at different 1007 

slope angles for a block of soil with γs=15.7 kN m
-3

, φ’=40°, z=1 m, and m=0.5, for a weak roots case 1008 

(C’rl=5 kPa) and a stronger roots case (C’rl=10 kPa). Shaded areas are defined by the upper- and lower-1009 

bound earth pressure solutions. Cohesion and cross-slope friction are invariant with slope. The net 1010 

resistance on the downslope margin (i.e. downslope resistance - upslope drive) is always more than twice 1011 

as large as the root cohesion, and becomes more important on shallower slopes. 1012 
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Figure 5: Model application to the CB-1 hillslope (Oregon, USA). (a) Map of the site showing the 1015 

observed landslide scar (red), and the larger and smaller conformal shapes (blue) tested for stability. 1016 

White contours show elevation (m), greyscale contours show soil depth (m). (b) Map showing elevation 1017 

contours in black and piezometric surface contours in blue (m), soil unit weight (γs=15.7 kN m
-3

), friction 1018 

angle (~40°) and root cohesion (~4 kPa) are also well constrained at the site. (c) The predicted factor of 1019 

safety for the observed landslide (size growth = 0) and smaller and larger shapes generated by expanding 1020 

and contracting the observed landslide geometry by a radial distance indicated on the x-axis. Upper (blue) 1021 

and lower (red) bounds are obtained using upper- and lower-bound earth pressure solutions. Pale lines 1022 

show each of the 500 model runs described in Section 5.2. thick dark lines show the mean FS from these 1023 

runs +/- 1 standard deviation. Panels: a) and b) are modified from Montgomery et al. [2009]. The model 1024 

predicts failure for the observed scar geometry and finds that larger or smaller conformal shapes are 1025 

more stable. 1026 

 1027 



Figure 6 critical area with depth for an equi-dimensional homogeneous block of soil at a slope of 36°, 1028 

friction angle of 40°, γs=15.7 kN m-3 with a water table at the ground surface (i.e. fully saturated soil), 1029 

assuming a l/w ratio of 1 (representative of the CB-1 scar). Note logarithmic y-axis. Red dots show the depths 1030 

at which the critical area is minimized (Ac=23 m2 at z=1.9 m in the lower-bound case and Ac=42 m2 at z=2.18 1031 

m in the upper-bound case). Shaded areas are defined by the upper- and lower-bound earth pressure 1032 

solutions in the friction-only case these nearly coincide and the cohesion-only case does not have upper 1033 

and lower bounds. The grey PDFs on the x and right axes show depths and area distributions respectively for 1034 

19 landslides in the Coos Bay catchment [Montgomery, 1991; Larsen et al., 2010].   1035 

 1036 

  1037 



Figure 7: the factor of safety (a) and critical area (b) with depth for a block of soil where ����=30°, 1038 

φ’=40°, γs=15.7 kN m
-3

, for a range of water table depths (Zw). In both panels there are two lines for each 1039 

water table depth, representing upper- and lower-bound solutions. The symbols above each plot indicate 1040 

water table locations within the profile. Panel (a) shows the factor of safety for a 5 x 5 m block while 1041 

panel (b) shows the critical block area Ac, which can vary. The dry case is stable at any area since 1042 

tanφ’>tan���� thus it has no critical area and does not appear in panel (b); the case of zw=0.2 is stable for 1043 

the 5 x 5 m block but appears in panel (b) because it becomes unstable for critical areas > 75 m
2
. Both 1044 

factor of safety and critical area are minimized within the profile for partially saturated conditions. 1045 
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Figure 8: the factor of safety (a) and critical area (b) as a function of length-width (l/w) ratio for a block 1048 

of soil with ����=36°, φ’=40°, and γs=15.7 kN m
-3

, with a water table at the ground surface (i.e. fully saturated 1049 

soil) and where resistance is provided by: cohesion only (dashed lines) and both friction and cohesion (solid 1050 

lines). Dots indicate l/w ratios that minimize FS (a) and critical area (b) for each depth. In (a) the block area 1051 

is held constant at 60 m2 (representative of the CB-1 scar) to calculate FS. In (b) the grey PDFs on the x and 1052 

right axes show l/w ratio and area distributions respectively for 19 landslides in the Coos Bay catchment 1053 

[Montgomery, 1991; Larsen et al., 2010]. The black rectangles between panels (a) and (b) are illustrative of 1054 

the l/w ratios corresponding to their x-axis location. Least stable shapes are equi-dimensional considering 1055 

only cohesion but longer than they are wide once friction is included.  1056 
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Figure 9: Black crosses show landslide scar depth and area for a global compilation of soil landslides 1058 

[Larsen et al., 2010]. Colored lines show the modelled relationship between failure plane depth and critical 1059 

area for slopes with ����= 20°, 30° and 40°, φ’=40°, and γs=15.7 kN m
-3

.  Different panels reflect different root 1060 

cohesion scenarios: (a) C’ r0 = 0, (b) C ’r0 = 1, (c) C’ r0 = 22 (the CB-1 value), and (d) C’r0 = 52 kPa 1061 

(representing old growth forest). In every case j=4.96 kPa-1. Solid lines indicate the relationship between 1062 

critical depth and area when neither are constrained, with filled circles indicating where these are 1063 

minimized. Dashed lines represent the relationship for a saturated soil where depth is limited by soil 1064 

depth. The model predicts a theoretical lower limit to landslide area given depth, and the ����=40° curve is a 1065 

lower bound on the observed scar areas. When landslide depth becomes limited by soil depth, critical area 1066 

increases as depth decreases, creating a theoretical lower limit on landslide depth for a given critical 1067 

area. 1068 

 1069 


