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We develop a model for the rheology of a three-
phase suspension of bubbles and particles in a
Newtonian liquid undergoing steady flow. We adopt
an ‘effective-medium” approach in which the bubbly
liquid is treated as a continuous medium which
suspends the particles. The resulting three-phase
model combines separate two-phase models for
bubble suspension rheology and particle suspension
rheology, which are taken from the literature. The
model is validated against new experimental data
for three-phase suspensions of bubbles and spherical
particles, collected in the low bubble capillary
number regime. Good agreement is found across
the experimental range of particle volume fraction
(0<¢p <0.5) and bubble volume fraction (0<¢p
0.3). Consistent with model predictions, experimental
results demonstrate that adding bubbles to a dilute
particle suspension at low capillarity increases its
viscosity, while adding bubbles to a concentrated
particle suspension decreases its viscosity. The model
accounts for particle anisometry and is easily
extended to account for variable capillarity, but has
not been experimentally validated for these cases.

1. Introduction

Multiphase suspensions of particles and/or bubbles

in a continuous liquid phase are common in nature
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and industry; examples include magma, oil, concrete,
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foodstuffs, cosmetics, pharmaceuticals, biological fluids and nanofluids. Characterizing,
modelling and controlling the flow of these suspensions requires a constitutive rheological model,
encapsulating the viscosity of the suspension as a function of the properties of the suspending
liquid, the volume fraction and properties of the suspended phase(s), and the flow conditions.

The rheology of two-phase suspensions (bubbles-in-liquid or particles-in-liquid, where the
liquid is Newtonian) has been the subject of extensive experimental and theoretical research
for more than a century. In recent years, significant advances have been made and two-phase
constitutive equations are now available which have been validated against experimental data
for a wide range of conditions (see [1] for a recent review). By contrast, considerably less research
has been directed at understanding the rheology of three-phase suspensions (where bubbles
and particles are suspended in a liquid) primarily owing to the complexity of the problem.
Phan-Thien & Pham [2] present a theoretical treatment—discussed later in §3—which has been
applied in studies of multiphase magma (e.g. [3,4]), but has not been experimentally validated.
Experimental investigation of the rheology of three-phase suspensions appears to be confined to
studies of bubble- and crystal-bearing magmas (e.g. [4,5]); these experiments and materials are
complex and the resulting data are not well-suited to the validation of three-phase rheological
models. Constraining three-phase rheology therefore remains an important, yet outstanding,
problem in multiphase fluids research.

Here, we build on published two-phase constitutive equations to generate a three-phase
model, by using an ‘effective-medium” method in which the bubble suspension is treated as a
continuous medium which suspends the particles; this carries the implicit assumption that the
bubbles are small compared with the particles. We validate the model against new experimental
data for three-phase suspensions of bubbles and spherical particles in the low-capillarity regime
(in which flow is steady and bubble deformation is small).

2. Rheology of two-phase suspensions

The rheology of a strictly Newtonian fluid is completely described by its viscosity jt. The viscosity
is the ratio of the deforming stress and associated strain-rate which, for rheometric flow, is given
by u=1t/y = const., where 7 is the shear stress and y is the shear strain-rate. When bubbles or
solid particles are added to a Newtonian liquid, the resulting suspension has non-Newtonian
rheology. In the simplest case, this means that the ratio of stress and strain-rate is a function of
strain-rate and is termed the apparent viscosity n = t/y =f(y). The viscosity of a suspension is
often reported as the relative viscosity 7., which is the apparent viscosity of the suspension at
some strain-rate, normalized by the viscosity of the liquid phase

me=1. e

In the following subsections, we briefly review the constitutive equations for two-phase
suspensions that provide the building blocks for the three-phase rheological model presented
later in §3. The subscript ‘b” refers to bubbles suspensions, the subscript ‘p” refers to particle
suspensions.

(a) Bubble suspension rheology

When a bubble suspension flows, viscous stresses cause the bubbles to deform. If the flow
is ‘steady’ the bubbles reach an equilibrium deformation, which is described by the bubble
capillary number

Ca=1ry, (2.2)

where A is the bubble relaxation time [6-8]. The relaxation time describes the characteristic
timescale over which the bubble adjusts towards a new equilibrium deformation in response to a
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Figure 1. Normalized bubble suspension viscosity 7,, as a function of capillary number Ca for ¢, = 0.3 (solid line). Short-
dashed lines show the asymptotic values of 17,, at low and high capillary number. Long-dashed line shows the capillary number
that we define as the upper limit of the low-capillarity region (Ca > 0.248 for ¢b, = 0.3); we discard experimental data collected
above this value, in the shaded region, as discussed in §4c.

change in the strain environment; it is given by

ot
r
where a is the bubble’s equivalent spherical radius and I is the liquid—gas surface tension. The
flow is steady if the condition A « y /7 has been satisfied for time ¢ >> A [7].
For steady flow, the relative viscosity 7y, of a bubble suspension is given by Rust & Manga [8]

and Mader et al. [1]

(2.3)

Nr,0 — Nr,00
1+ ((6/5)Ca)?’
where 1, is the apparent viscosity of the bubble suspension, and 7, and 7, are, respectively,
the relative viscosity of the bubble suspension at low and high Ca. For non-dilute suspensions ;o
and 7y, are given by Llewellin & Manga [9] and Mader et al. [1]

o= (1 — ¢p) " (2.5)

n
Ny, = b= Nr,00 + (2.4)
"

and
Moo = (1 — ¢p)°/3, (2.6)

where ¢y, is the bubble volume fraction. These expressions, which reduce in the dilute limit
(as ¢p — 0) to the well-known theoretical models of Taylor [10] (7.0 =1+ ¢1,) and Mackenzie
[11] (9r,00 =1 — 5¢1,/3), show that bubbles increase suspension viscosity at low Ca and decrease
suspension viscosity at high Ca. Equation (2.4) is plotted in figure 1, which demonstrates that
the transition between the asymptotic viscosity regions at low and high capillarity occurs over a
fairly narrow range of Ca, centred on Ca =~ 1. Consequently, equations (2.5) and (2.6) can be used
to calculate bubble suspension viscosity for all Ca, except over the narrow transitional region; we
define an approximate upper bound to the low Ca region later in §4c.

Equations (2.2)—(2.6) are relevant for monodisperse bubble suspensions at low and moderate
bubble volume fractions (¢, < 0.5) [7]. Most bubble suspensions are polydisperse to some extent,
resulting in a range of bubble relaxation times; hence also a range of capillarities for a given
strain-rate. In this work, we restrict our analysis to suspensions in the low-capillarity limit, where
equation (2.5) is sufficient to describe the viscosity of a bubble suspension regardless of its bubble
size distribution. For the more general case of intermediate capillarity, a more sophisticated
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approach is required, in which the contribution of each bubble size fraction to the viscosity of
the bulk suspension is linearly superposed; this approach is described in detail in Mader et al.
[1]. Bubble suspensions are visco-elastic even when dilute, and elastic behaviour becomes more
pronounced as bubble volume fraction increases; visco-elastic rheology is neglected in this work
because elastic behaviour is not manifest in steady flow [7].

(b) Particle suspension rheology

Particle suspensions commonly show non-Newtonian behaviour when non-dilute, including
shear-thinning (e.g. [12]), shear-thickening (e.g. [13,14]) and non-zero normal stress differences
(e.g. [15,16]). When shear-thinning behaviour is observed, the rheology of a particle suspension is
often described using the model of Herschel & Bulkley [17]

=10+ Ky", (2.7)
0 Y

where 19 is the yield stress, K is the consistency and # is the flow index (1 < 1 when the suspension
is shear-thinning). The yield stress is non-zero only for highly concentrated suspensions, hence it
is often neglected, reducing equation (2.7) to a power-law [18]

np =Ky" 1, (2.8)

where np, is the apparent viscosity of the suspension. Although in common usage (e.g. [4,19,20]),
this approach has the limitation that the consistency has fractional units of Pas” and is therefore
not amenable to non-dimensionalization when 7 # 1; this issue is discussed in detail in Mader
et al. [1] and Mueller et al. [20]. In this work, we address this limitation by introducing a
characteristic timescale t. of a shear-thinning suspension, against which the strain-rate can be
non-dimensionalized, giving

mp = nu(tey)" ™, (2.9)

where 17, is a ‘reference viscosity” of the suspension — i.e. the apparent viscosity at strain-rate
y =1/tc. No satisfactory microphysical explanation for shear-thinning has yet been proposed for
suspensions of the sort considered in this work, in which the particles are not subject to Brownian
motion (high Peclet number), are strongly coupled to the flow (low Stokes number) and in which
inertial effects can be neglected (low particle Reynolds number) [19]. Consequently, there is no
physical model from which t. can be computed a priori. However, Mueller et al. [19,20] find
empirically that the theoretical model of Maron & Pierce [21]

-2
S (1 _ %) (2.10)

accurately captures the rheology of diverse particle suspensions (with variable ¢, u and particle
aspect ratio) when the consistency is identified with the viscosity; i.e. under the assumption K = 7.
This is equivalent to finding that the characteristic timescale f. =1s, and making the identity
nx = 1 in equations (2.9) and (2.10). This allows us to link these two equations while maintaining
strict dimensional consistency, giving
)
Nrx = ( - ¢’7p> , (2.11)

$m

where we define 7« as the relative reference viscosity

=

Nex = (2.12)

We propose that this approach is a useful improvement over that adopted by Mueller et al.
[19,20], Vona et al. [4] and Mader ef al. [1], which included the pragmatic, but inexact, non-
dimensionalization K; = K/u. Numerically, the values of K; and 7, are identical when t.=1s
(as is indicated empirically) so the results of those earlier studies can be transferred directly into
this new framework.
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The maximum packing fraction in equations (2.10) and (2.11) is a function of particle shape
and roughness; Mader et al. [1] give the following equation for ¢m:

(log p)?
gzlgzp} ) 2.13)

¢m = ¢m1 eXp [_
where 7, is the particle aspect ratio. For smooth particles ¢m, = 0.66 and b =1.08, and for rough
particles ¢, = 0.55 and b =1.00; these values are empirically determined.

Mueller et al. [19] report that the flow index n for a particle suspension is a function of
the particle volume fraction ¢, and the particle aspect ratio. They present a purely empirical
relationship

4
n=1-02r, (z—p) , (2.14)

m

which is valid for ¢p/ém < 0.8.

3. Amodel for the rheology of three-phase suspensions

Equation (2.11) gives the relative viscosity 7. of a suspension of particles in a liquid with
viscosity u. If we suppose that the particles are instead suspended in a bubble suspension with
viscosity ny, (i.e. we treat the bubble suspension as an ‘effective medium’) we obtain

-2

Treating the bubble suspension as the continuous phase carries the implicit assumption that
the bubbles should be small compared with the particles. At low bubble capillarity, from
equations (2.4) and (2.5), we have np, = u(1 — o)~ L; hence

Sy %)\

me=-g (1-22) . 62)
#m

At high bubble capillarity, equation (2.6) would take the place of equation (2.5); while for

intermediate capillarity, equation (2.4) would take its place, and polydispersity would have to

be explicitly accounted for (see §2a).

This effective medium method has been used elsewhere in rheological models. Of most
relevance, Phan-Thien & Pham [2] use the approach to derive an equation for the viscosity of
three-phase suspensions of bubbles and particles that is similar to the model we derive above,
but contains a different expression for the particle suspension contribution: (1 — ¢p)~>/?, which
they derive using a differential method. Although they do consider a maximum packing fraction
in some variants of their model, their implicit solutions reduce to exact equations only under
restrictive conditions, e.g. ¢p ~ dm or $m = 1. Consequently, the treatment of the contribution of
the particles to the suspension rheology in our formulation is a significant improvement over that
of Phan-Thien & Pham [2].

(a) Defining volume fractions in three-phase suspensions

Particle volume fraction and gas volume fraction are unambiguously defined for two-phase
suspensions; however, care must be taken to define them appropriately for three-phase
suspensions. In our model formulation above, we treat the bubble suspension as the effective
medium, hence, the appropriate definitions are

Vp,

¢b:V1+Vb

(3.3)
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and
VP

TV Ve + Vp !

where V), Vi, and V), are the respective volumes of the liquid, bubble and particle phases.
For many three-phase applications, we are interested in characterizing how the rheology of

a suspension of particles changes as bubbles are added to it (or, equivalently, as bubbles grow

within it). For example, a magma that contains solid crystals may be bubble-free at depth, but

become increasingly bubble-rich during ascent. In this case, it is more intuitive to define a particle

volume fraction and bubble volume fraction as follows:

Vb

®p (3.4)

R — 3.5

% Vi+Vp+Vp (35)
and v
* P

= . 3.6

=y (36)

In this formulation, the particle volume fraction does not change from its initial value as bubbles
grow, and the bubble volume fraction reflects the value that would be measured by applying
Archimedes’ principle on the bulk sample. The different formulations for volume fractions are
simply related

b

=T =)

(3.7)

and
op =831 - 61), (38)

allowing the three-phase model (equation (3.2)) to be applied when it is ¢;; and ¢, that are known.
In the following sections, we work with both of these definitions, since equations (3.3) and (3.4)

underpin the model formulation, while equations (3.5) and (3.6) are more natural for some

applications of the model, and aid physical insight. A further volume fraction of interest is the

fraction of the total volume that is made up of suspended bubbles and/or particles—the total

suspended fraction:

Vb +Vp

¢s:V1+Vb+Vp'

(3.9)

4. Experiments

(a) Samples

Three-phase samples were prepared by adding spherical glass beads (Potters Ballotini; density
2448 kgm™3, size fraction 63-125um) to a sugar syrup (Tate & Lyle Golden Syrup; density
1438 kg m~3 and surface tension 0.08 Nm~! [7]) and aerating with a domestic electric whisk.
The rheology of the pure syrup was determined individually for each sample batch and found
to be strictly Newtonian; measured viscosities were in the range 55.68 < u < 61.69 Pas at 20°C
(presented later in data table 1). Particle volume fraction was controlled by adding a known
mass of beads to a known mass of syrup (typically equating to 100-150ml) to prepare sample
suites of similar initial (bubble-free) particle volume fraction ¢, =0.05, 0.1, 0.2, 0.3, 0.4 and
0.5. Bubble volume fraction was varied by adjusting the duration and speed of whisking, and
suspension temperature. Errors in particle volume fraction and bubble volume fraction are
£3% and £5%, respectively.

Of the resulting three-phase suspension, about 60 ml was used for rheometric analysis, and a
small amount was imaged with a Zeiss SteREO V.8 stereomicroscope. With the remaining sample
material, the bubble volume fraction ¢ was determined by measuring its weight and its volume
in a 100 ml measuring cylinder. The bubble size distribution of each sample was determined using
the image analysis software JMicroVision. A photomicrograph of a typical sample is presented in
figure 2, along with its bubble size distribution.
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Figure 2. Bubble size distribution for sample 3P-42 (¢, = 0.42 and ¢b, = 0.29). Histogram shows the fraction of the total
bubble volume in the sample represented in each volume bin. Solid line shows the cumulative fraction of the total bubble
volume. Dashed line is the volume-mean-radius (a) ~ 37 um (see §4c). Inset shows photomicrograph of sample, in which
dark-rimmed spheres are bubbles, and glass beads are light and translucent. Scale bar, 500 m. (Online version in colour.)

(b) Rheometry

Rheometric data were collected using a ThermoScientific Haake MARS II rheometer with Z40DIN
concentric cylinder sensor geometry (rotor diameter 40.0 mm, cup diameter 43.4 mm, gap width
1.7mm). A standard flow-curve determination consisted of a 20-step “up ramp’ of incrementally
increasing shear stress v up to a maximum value of 500 Pa (‘controlled-stress mode’), followed by
a 20-step ‘“down ramp’. At each stress step, the rheometer recorded the corresponding strain-rate
y once it had reached equilibrium flow conditions. To ensure equilibrium starting conditions for
each test, flow curve determinations were preceded by a 4 min, continuous 0-150-0 Pa stress ramp
as pre-shear treatment (following [19]). All experiments were performed at 20°C; the precision of
the stress and strain-rate measurements is estimated at £2%.

The densities of the particles and the suspending liquid are not well-matched in our
experiments so settling must be considered; similarly, the bubbles are prone to buoyant rise
(‘creaming’). The concentric cylinder sensor geometry was chosen because it is relatively
insensitive to effects of settling and creaming compared with, say, a parallel plate geometry,
because particles and bubbles move vertically past the sensor, rather than accumulating in a
layer against it. From Stokes’ law, we can compute that the time required for an isolated particle
or bubble in a dilute suspension to fall or rise the full length of the sensor is more than 120h
for the largest particle and around 1.5h for the largest bubble; for a concentrated suspension,
it is much longer because settling and creaming are hindered. Since total runtimes for our
rheometric experiments are much shorter for each sample (the mean experiment duration was
5min, maximum 12 min), the development of spatial gradients in the particle and bubble volume
fractions is considered negligible.

() Data analysis

Our rheometric experiments yield flow curves of applied shear stress r against resultant shear
strain-rate y; an example is shown in figure 3. For some samples, the highest experimental
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Figure3. Flow curve of shear stress T against shear strain-rate 7 for sample 3P-30 with ¢, = 0.30and ¢, = 0.04. Datapoints
are collected during both the up-ramp and down-ramp (84b). Datapoints are discarded (shaded region) for Ca’ (defined in
§4c) greater than the upper bound of the low-capillarity region, defined according to equation (4.2); for ¢, = 0.30, this is
(d’ > 0.248. Solid line is the best fit of equation (4.3) to the remaining datapoints, giving 7, . = 1.74 and n = 0.89; dashed
line is the fit extended into the discarded region. (Online version in colour.)

strain-rates are sufficient that the bubbles cannot be assumed to be in the low-capillarity regime.
We filter data to remove these datapoints by calculating an upper bound on the low-capillarity
region for each sample as follows. For three-phase suspensions, the effective strain-rate in the
bubbly effective medium y’ is higher than the bulk strain-rate y, because the solid particles
cannot accommodate strain through internal shearing. The effective strain-rate is approximately
given by y’' =y /(1 — ¢p/¢m); this is a conservative estimate because it does not account for the
accommodation of shear strain through solid-body rotation of the particles. A typical bubble
radius for each sample may be calculated as the volume-mean-radius (a) = Y a*/ Y a3 where
summation is over all measured bubbles in that sample (following [1]). We adopt the more
conservative criterion of calculating the capillary number using the radius of the largest bubble
measured amax. Putting these values into equations (2.2) and (2.3), we obtain an equation for the
effective capillary number: Ca’ = uamaxy’/I". We define the low-capillarity region on the basis of
the mismatch between the viscosity calculated from equation (2.5) (the low-capillarity asymptotic
viscosity), and from equation (2.4) (which is valid for all capillary numbers). We set the upper
bound of the low-capillarity region as the value of Ca’ for which the mismatch reaches 5%; i.e. for
low capillarity

IO M _ 59 1)
Nr,0
or equivalently, from equation (2.4)
a < > ) 4.2)
144(0.95 — (1 — ¢p,)873)

The 5% threshold is chosen to be in line with experimental error. After filtering, all flow
curves comprise at least 15 datapoints. Based on this conservative criterion, the discrepancy
(equation (4.1)) for a bubble with volume-mean-radius is never greater than 1%.
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Figure4. Relative viscosity 7,  against particle volume fraction ¢, for three-phase suspensions; circles are shaded according to
bubble volume fraction ¢y. Solid curve is the best fit of the Maron—Pierce equation (2.11) to data from bubble-free suspensions
(¢bp = 0, dark circles), giving ¢, = 0.593 £ 0.018. Shaded area shows the region where ¢ > ¢y,. Dashed curves show
the 95% confidence limits for ¢, based on the potential error in the data fitting technique, as presented in the electronic
supplementary material. Error bars (1) are shown when larger than the data points. (Online version in colour.)

We determine the yield stress 7, consistency K and flow index n for each sample by fitting
the Herschel-Bulkley model (equation (2.7)) to each filtered flow curve (figure 3) and determine
errors using the bootstrapping method presented in the electronic supplementary material. For
all samples, the yield stress is found to be either small and negative (which is unphysical) or
positive, but within 2o error of zero; hence, yield stress can be neglected and equation (2.7) can be
expressed as the simple power law relationship given in equation (2.9). This is consistent with the
experimental results of Mueller et al. [19], who found that yield stress is negligible for ¢, /¢m < 0.8.
This allows us to fit for 1, and 1 in log-space using the relationship

log T =logn« +nlogt.y, (4.3)

which avoids biasing the fit to large values of  and y. As discussed in §2b, we assume t. =1s,
based on previous experimental work [19,20]. The reference viscosity 7. that we determine
is normalized by the viscosity of the syrup pn to give the relative reference viscosity
(equation (2.12)), hereafter referred to as the relative viscosity.

5. Results

Experimental data are presented in table 1. Results for relative viscosity are presented in figure 4,
which plots 7;,+(¢p), with datapoints coloured according to ¢,. Similarly, experimental results
for the flow index are presented in figure 5, which plots n(¢p), with datapoints coloured
according to ¢y,.

It is useful at this stage to confirm that the data for the two-phase end members (bubble-
free particle suspension and particle-free bubble suspension) adhere to the relevant two-phase
constitutive equations. The solid curve in figure 4 represents the best fit of equation (2.11) (in
which the only free parameter is ¢m) to data for bubble-free particle suspensions (¢, =0). We
find an excellent fit for ¢m = 0.593, with R2 = 1.00; this value of the maximum packing fraction
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Figure 5. Flow index n against particle volume fraction ¢, for three-phase suspensions; circles are shaded according to bubble
volume fraction ¢y. Error bars (1) are shown when larger than the data points. (Online version in colour.)

is slightly lower than the value of ¢m =0.633 quoted by Mueller et al. [19,20] for suspensions
of monodisperse spheres, but we note that the 20 errors of the two estimates overlap. Both of
these values are lower than the value of ¢ = 0.66 calculated from equation (2.13) with rp = 1. We
propose that equation (2.13) overestimates ¢n, for nearly spherical particles because it is based
on a fit to data that assumes a Gaussian relationship between ¢, and rp. Studies of non-sheared
particle packs have reported that the maximum packing fraction is actually highest for slightly
non-spherical aspect ratios [22,23]; consequently, the ¢m(rp) curve dips around r, =1 leading to
the overestimate given by equation (2.13).

Figure 6 plots two-phase data for the relative viscosity of particle-free bubble suspensions,
i.e. nrx(¢p) with ¢p =0. The solid curve is equation (2.5), which gives a good fit to data, with
R2=0.87. Figures 4 and 6, therefore, demonstrate the validity of the two-phase constitutive
models (equations (2.5) and (2.11)) on which we build our three-phase model.

6. Discussion

(a) Reference viscosity

In figure 4, all suspensions that contain bubbles have a higher reference viscosity than a two-
phase particle suspension with the same particle volume fraction. Conceptually, this is equivalent
to saying that, for a given particle suspension, the viscosity increases if some of the suspending
liquid is replaced with bubbles. This is intuitive, because bubbles in the low-capillarity regime
increase suspension viscosity.

Recasting our data in terms of ¢ and ¢ yields figure 7. It is evident from this plot that the
effect of adding bubbles to a particle suspension (or growing bubbles in a particle suspension)
depends upon the initial particle volume fraction ¢;. For dilute particle suspensions (¢ < 0.25),
adding bubbles increases the suspension viscosity; whereas, for more concentrated particle
suspensions (¢ 2 0.25), adding bubbles decreases suspension viscosity.

These relationships are more clearly demonstrated by figure 8. The plot shows that the
rheology of a particle suspension becomes increasingly sensitive to the addition of a small volume
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Figure7. Three phase data from figure 4 recast in terms of ¢ and ;. Solid lines are the three-phase model (equation (3.2))
contoured in ¢;". Error bars (1) are shown when larger than the data points. (Online version in colour.)

fraction of bubbles as its particle volume fraction approaches the maximum packing fraction. The
physical explanation for this behaviour is straightforward and relies on two competing processes.
As discussed above, the addition of low-capillarity (i.e. spherical) bubbles to a fluid increases its
viscosity. For dilute particle suspensions, this is the dominant trend, hence our data show an
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Figure 8. Relative viscosity ;. against ¢;. Datapoints are shaded according to ¢ /m. Solid curves are the three-phase
model (equation (3.2)) for experimental values of ¢ /¢ appropriate for each suite of samples, contoured according to the
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increase in reference viscosity with increasing bubble content for d);; < 0.25. Opposing this is a
‘dilution” effect, in which the addition of bubbles to a suspension of particles moves the particles
further apart; this decreases the particle volume fraction ¢, reduces the impact that particle-
particle interactions have on suspension rheology and reduces suspension viscosity. This process
dominates for concentrated particle suspensions; indeed, because the Maron—Pierce relationship
is a power law, the higher the initial particle volume fraction, the greater the impact the same
dilution with bubbles will have.

It is also clear from these figures that the data agree well with the three-phase model that
we propose (equation (3.2)). The model predicts the relative viscosity to within £20% for all but
two of the samples, and within +10% for the majority (figure 9). Furthermore, there is no strong
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systematic trend relating the discrepancy to either ¢ or ¢;. We note that the close agreement
between model and data is found despite the fact that some samples violate the model assumption
that bubbles are small compared with particles (§3). In all samples, the majority (by number) of the
bubbles are smaller than the particles and so it makes sense to choose the bubble suspension as the
effective medium. However, the average bubble radius is between 0.20 and 0.97 times the average
particle radius and the bubble volume-mean-radius (§4c) is between 0.57 and 2.4 times the particle
volume-mean-radius indicating that the ‘typical”’ bubble in many samples is comparable in size
to the particles.

The largest discrepancy between our model and data occurs when both ¢7 and ¢ are large:
our model tends to underpredict the reference viscosity in such samples. This discrepancy is
probably caused by bubble—particle interactions, which are not captured in our simple approach
of combining two-phase equations. Further work is needed to formulate a model that captures
such interactions.

For a given bubble and particle volume fraction, it is useful to know whether the addition
of further bubbles (or the growth of existing bubbles) will result in an increase or decrease in
viscosity. An analysis of this scenario is presented in the electronic supplementary material.

(b) Flow index

Reference viscosity provides only a partial description of the rheology of a shear-thinning
suspension; for a practical rheological model, the flow index # is also required (equation (2.9)).
Figure 10 re-presents the flow index data shown in figure 5, plotting them against ¢;; and ¢ /¢m.

Figure 10a shows clearly that shear thinning is observed for all suspensions, even those
containing only bubbles. Our data indicate a linear relationship between n and ¢y, for particle-free
suspensions, in the low-capillarity regime, such that shear thinning becomes more pronounced
as bubble volume fraction increases:

n=1-0334¢pp. (6.1)

(Note that ¢, = ¢, when ¢p =0.) Bubble suspensions are known to be strongly shear thinning
in the range 0.1 < Ca <10 but, at lower and higher capillary number, current models predict
that shear thinning is negligible (see figure 1 and §2a), which makes this result surprising. One
potential explanation is that, despite our data filtering methodology (§4c), there are a small
number of very large bubbles in the samples, larger than those measured in our sample images,
which have a correspondingly long relaxation time and, as a consequence, have a capillary
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number in the transitional regime. An alternative explanation is that the current model for bubble
suspension rheology (equation (2.4)) is inadequate for non-dilute suspensions. That model can be
derived from the theoretical treatment of Frankel & Acrivos [24] and Llewellin et al. [25], which
is analytically exact in the limit of a dilute suspension (in which bubble-bubble interactions can
be neglected) and in the limit of small bubble deformations. It is possible that bubble-bubble
interactions in non-dilute samples act to introduce shear thinning—this would be consistent with
our finding that shear thinning becomes more pronounced as bubble volume fraction increases.
Further experimental work would be required to underpin a more detailed investigation of
this phenomenon.

Superimposed on the decrease in flow index due to increasing bubble volume fraction
is the effect of increasing particle volume fraction, shown most clearly in figure 10b. This
relationship is nonlinear and appears to follow the empirical model proposed by Mueller
et al. [19] (equation (2.14) with r, =1 for spherical particles). For bubble-free suspensions—
comparable to those investigated by Mueller—there is excellent agreement between data and
model for ¢p/édm < 0.8, which is consistent with the limits of applicability given by Mueller
et al. [19].

The combined effect of bubbles and particles on the flow index appears to be a simple
superposition of these two effects: the flow index of a pure fluid is 1 and is reduced by some
amount dependent on bubble volume fraction, and again by some amount dependent on particle
volume fraction. Consequently, we propose the following purely empirical model for flow index
for suspensions of spherical particles:

e

4
n=1-02 (d) ) — 0.334¢p. (6.2)

m

Curves of this model for various bubble volume fractions are shown in figure 10b and indicate
that the model is valid for all samples with a total suspended fraction ¢s < 0.5 (figure 11). The
model agrees with the data to within £5% for all samples below this cut-off. Note that this cut-off
is drawn empirically from our data and has no theoretical basis.

For suspensions of non-spherical particles, the aspect ratio may be included in equation (6.2)
in a manner analogous to equation (2.14). However, further experiments would be required to
validate this extension.
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7. Conclusion

Our results demonstrate that the proposed three-phase rheological model (equation (3.2)) based
on an effective medium approach is in close agreement with experimental data over the full range
0=¢; <03 and 0 <¢;/¢m < 0.85 investigated. Our preliminary experiments involve spherical
particles and steady flow in the low capillarity regime; hence, the model’s validity is only
demonstrated subject to these restrictions. The model’s applicability is, however, potentially much
broader (though extensions to the model require further experimental validation).

Mueller et al. [20] demonstrate that the Maron—Pierce relationship (equation (2.11)) is valid
for suspensions of non-spherical particles when ¢, is calculated as a function of particle shape
(equation (2.13)). Adopting this methodology for equation (3.2) broadens its applicability to
natural systems, in which particles are rarely spherical.

The low-capillarity assumption can also be relaxed. Substituting equation (2.6) for
equation (2.5) in the formulation of equation (3.2) yields a three-phase model suitable for high-
capillarity flows. This version of the model predicts that the addition of bubbles will always
reduce the reference viscosity of a three-phase suspension, even when particle concentration is
low. At high particle concentrations, the reduction in viscosity is much more dramatic than in the
low capillarity case.

Relaxing the assumption of steady flow is more challenging because, while the rheology of
bubble suspensions in unsteady flow is well known [7,9], there is no adequate model for particle
suspensions in unsteady flow.

The model developed in this study assumes that bubbles are small compared with particles,
although the experimental data demonstrate that the model remains valid when bubbles and
particles are comparable in size. Further experiments are required, however, to determine the
rheology of suspensions in which bubbles are large compared with particles.

The proposed model for the flow index of three-phase suspensions (equation (6.2)) also
provides good agreement with experimental data for which ¢s < 0.5. Since this model is purely
empirical, the relationship between the coefficients found here and the physical properties of the
material is not clear: without a physical explanation for the occurrence of shear thinning in bubble
and particle suspensions, more work is still needed.

Data accessibility. The full rheological data can be found online at the Earth Science Academic Archive,
doi:10.5285/€729d509-a616-4787-bb41-44c1169685b6.
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