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ABSTRACT
We study the substructure population of Milky Way (MW)-mass haloes in the � cold dark
matter (�CDM) cosmology using a novel procedure to extrapolate subhalo number statistics
beyond the resolution limit of N-body simulations. The technique recovers the mean and the
variance of the subhalo abundance, but not its spatial distribution. It extends the dynamic
range over which precise statistical predictions can be made by the equivalent of performing
a simulation with 50 times higher resolution, at no additional computational cost. We apply
this technique to MW-mass haloes, but it can easily be applied to haloes of any mass. We
find up to 20 per cent more substructures in MW-mass haloes than found in previous studies.
Our analysis lowers the mass of the MW halo required to accommodate the observation that
the MW has only three satellites with a maximum circular velocity Vmax ≥ 30 km s−1 in the
�CDM cosmology. The probability of having a subhalo population similar to that in the MW
is 20 per cent for a virial mass, M200 = 1 × 1012 M� and practically zero for haloes more
massive than M200 = 2 × 1012 M�.
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1 IN T RO D U C T I O N

The standard ‘� cold dark matter’ (�CDM) cosmological model
has been found to give a good description of structure formation
and evolution on scales �10 Mpc. This has been confirmed by
multiple observational probes: the cosmic microwave background
temperature anisotropies (eg. Komatsu et al. 2011; Planck Collabo-
ration 2013), large-scale galaxy clustering (eg. Cole et al. 2005) and
the expansion history of the Universe (e.g. Clocchiatti et al. 2006;
Guy et al. 2010). On smaller scales, the �CDM predictions are more
difficult to extract and test due both to the non-linear evolution of
the matter distribution and the complex hydrodynamical processes
that drive galaxy formation and evolution. Nonetheless, it is this
regime that is especially interesting and important for cosmology
as it can potentially constrain the nature of the dark matter (DM)
and the baryonic processes involved in galaxy formation. Our own
Milky Way (MW) galaxy and its satellites play a crucial role in this
due to their proximity which enables in-depth studies.

Several of the apparent points of tension between observations
and �CDM predictions are seen in the properties of the MW and
its satellites. The phrase ‘missing satellites problem’ is often incor-
rectly used to refer to the apparent discrepancy between the large
number of DM subhaloes in N-body simulations, first highlighted

� E-mail: marius.cautun@gmail.com

by Moore et al. (1998), and the handful of satellites detected around
the MW. In fact, this ‘problem’ simply reflects the well-known fact
that most of the DM subhaloes never manage to acquire a visible
galaxy because of inevitable physical processes, such as reioniza-
tion and the injection of supernova energy, that are an intrinsic part
of galaxy formation (Bullock, Kravtsov & Weinberg 2000; Benson
et al. 2002b; Somerville 2002).

A more significant ‘satellite problem’, recognized as such al-
ready by Klypin et al. (1999) and Moore et al. (1999), is the
apparent discrepancy between the distribution of the maximum
circular velocities of the most massive subhaloes in �CDM sim-
ulations and the inferred values for the MW’s satellites. Various
arguments based on the kinematics of the nine bright ‘classical’
dwarf spheroidal satellites of the MW suggest that their subhaloes
have maximum circular velocities Vmax � 30 km s−1 (Peñarrubia,
McConnachie & Navarro 2008; Strigari et al. 2008; Łokas 2009;
Walker et al. 2009; Strigari, Frenk & White 2010; Wolf et al. 2010;
Boylan-Kolchin, Bullock & Kaplinghat 2011, 2012). These are
lower than the values for the most massive subhaloes in simula-
tions of galactic haloes such as the high-resolution simulations of
the Aquarius project (Springel et al. 2008). Specifically, Boylan-
Kolchin et al. (2011, 2012) brought attention to the observation that
these simulations typically produce around eight subhaloes with
Vmax > 30 km s−1, whereas in the MW only the two Magellanic
Clouds and the Sagittarius dwarf are thought to reside in subhaloes
with such high circular velocities. This raises the possibility that
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there could be several massive substructures in the MW without
a luminous galaxy in them. The high mass (HM) of these sub-
haloes, however, makes this rather unlikely given that less massive
subhaloes do have satellite galaxies associated with them.

A possible solution to this so-called ‘too-big-to-fail’ problem was
proposed by (Wang et al. 2012, hereafter Wang12) who showed
that the presence of only three massive satellites in our galaxy is
consistent with �CDM predictions provided the mass of the MW
dark halo is ∼1 × 1012 M�, around half the average mass of the
haloes in the Aquarius simulations analysed by Boylan-Kolchin
et al. (2011, 2012, see also Purcell & Zentner 2012; Vera-Ciro
et al. 2013). Wang12 used the invariance of the scaled subhalo ve-
locity function (e.g. Moore et al. 1999; Kravtsov et al. 2004; Zheng
et al. 2005; Springel et al. 2008; Weinberg et al. 2008) to extend
the subhalo number statistics derived from N-body simulations of
large cosmological volumes to galactic haloes. This allowed them
to compute, as a function of halo mass, the probability of having a
satellite population similar to that of the MW. The outcome of this
calculation favours an MW halo mass at the lower end of the range
spanned by recent estimates (Wilkinson & Evans 1999; Sakamoto,
Chiba & Beers 2003; Battaglia et al. 2005; Dehnen, McLaughlin &
Sachania 2006; Smith et al. 2007; Li & White 2008; Xue et al. 2008;
Gnedin et al. 2010; Guo et al. 2010; Watkins, Evans & An 2010;
Busha et al. 2011a; Piffl et al. 2014).

Characterizing how typical the MW satellites are in �CDM re-
quires large samples of simulated MW-mass haloes. Simulations of
large cosmological volumes provide these but, so far, only at rel-
atively low resolution, probing only the most massive subhaloes
(�10 substructures per MW halo; Boylan-Kolchin et al. 2009;
Klypin, Trujillo-Gomez & Primack 2011). By contrast, high-
resolution ‘zoom’ simulations of individual MW-like haloes resolve
substructures down to much lower masses, but because of their large
computational cost, only a few examples have been simulated so
far and these are not guaranteed to be characteristic of an MW-
like halo population (Diemand et al. 2008; Springel et al. 2008;
Stadel et al. 2009). Some of the alleged points of tension between
observations and models rely on such high-resolution, but limited-
sample studies, and one cannot exclude the possibility that these
discrepancies reflect the inherent cosmic variance of small-volume
studies.

In this work, we introduce a new method for extending sub-
halo statistics beyond the resolution limit available to cosmological
simulations. This allows us to investigate the statistical properties
of the subhalo population of a representative sample of MW-mass
haloes down to substructures with Vmax � 15 km s−1, which rep-
resents a threefold increase in the Vmax range compared to related
previous studies (e.g. Boylan-Kolchin et al. 2010, hereafter BK10;
Wang12). Making use of our extrapolation method, we can check
previous subhalo count results, such as those of Wang12, over a
larger dynamical range in subhalo mass. In particular, we analyse
the dependence of the mean subhalo count on halo mass and revisit
the probability of finding a satellite population similar to that in the
MW.

Our extrapolation method should not be confused with semi-
analytical models for DM substructure (e.g. Benson et al. 2002a,
and the later refinements of Zentner et al. 2005; Jiang & van den
Bosch 2014). Our method statistically generates the correct subhalo
abundance from the partial information available in a simulation of
limited resolution. In contrast, semi-analytical models are based on
halo merger trees and on the treatment of the various physical pro-
cesses that affect the evolution of subhaloes. While such models
are significantly faster than numerical simulations, they are limited

Table 1. The cosmological and numerical parameters of the
three N-body simulations used in this study.

Parameter MS MS-II WMAP7

Box size (h−1 Mpc) 500 100 70.4
Particle number 21603 21603 16203

Particle mass (106 h−1 M�) 860 6.89 6.2
�m 0.25 0.25 0.272
�� 0.75 0.75 0.728
σ 8 0.9 0.9 0.81
h 0.73 0.73 0.704
ns 1 1 0.968
Force softening (h−1 kpc) 5 1 1

because of their approximate treatment of relevant physical pro-
cesses.

In Section 2, we describe the simulations we use and the
halo/subhalo identification algorithm. In Section 3, we introduce
the scaling method for extending the subhalo statistics to masses
that are unresolved in the simulations. In Sections 4 and 5, we
investigate the subhalo population of MW-like haloes. Given that
we find significantly more subhaloes than previous studies, in Sec-
tion 6 we revisit the constraints on the MW halo mass required to
avoid the too-big-to-fail problem. In Section 7, we study how typi-
cal the Aquarius haloes are compared to a representative sample of
MW-like hosts. We end with a brief summary in Section 8.

2 DATA A NA LY SIS

In this study, we analyse the two high-resolution Millennium
simulations1 (MS; Springel et al. 2005 and MS-II; Boylan-Kolchin
et al. 2009). Both are DM-only simulations and make use of 21603

particles to resolve structure formation in the Wilkinson Microwave
Anisotropy Probe (WMAP)-1 cosmogony (Spergel et al. 2003).
The MS models cosmic evolution in a periodic volume of length
500 h−1 Mpc with a mass per particle of mp = 8.6 × 108 h−1 M�.
The large volume of the simulation makes it ideal for the study
of substructures in cluster and group sized objects, but it is
of limited use for MW-sized haloes which are resolved with
only ∼103 particles. The MS-II resolves structure formation in a
much smaller box of 100 h−1 Mpc on a side with a particle mass of
mp = 6.89 × 106 h−1 M�. The lower mass per DM particle makes it
suitable for studying MW-like haloes that are resolved with around
105 particles, but its smaller volume precludes a systematic study
of higher mass objects. The parameters used in the two simulations
are given in Table 1.

The difference in the resolution of the two simulations, with equal
mass haloes being resolved with 125 times more particles in MS-II
than in MS, makes it possible to carry out convergence tests and
other tests of the numerical effects on the subhalo population.

We also analyse a 16203 particle N-body simulation of a
volume 70.4 h−1 Mpc on a side in the WMAP-7 cosmology
(Komatsu et al. 2011). This has a similar particle mass to the MS-II,
mp = 6.2 × 106 h−1 M�, but only a third of the MS-II volume.
We refer to this additional simulation as WMAP7 and use it to in-
vestigate the differences between the predictions of WMAP-1 and
WMAP-7 �CDM universes.

1 Data from the Millennium/Millennium-II simulation is available on a re-
lational data base accessible from http://galaxy-catalogue.dur.ac.uk:8080/
Millennium.
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For comparative purposes, we also make use of the Aquar-
ius Project data (Springel et al. 2008), a set of MW-mass DM
haloes simulated at very high resolution in the WMAP-1 cosmol-
ogy. The six haloes, denoted Aq.-A through Aq.-F, were selected
from the MS-II and resimulated at increasingly higher resolution.
Here, we make use of the ‘level-2’ haloes that have a particle mass
of ∼104 h−1 M� and gravitational softening of 48 h−1pc.

2.1 Halo finder

We identify haloes and subhaloes using the ROCKSTAR (Robust Over-
density Calculation using K-Space Topologically Adaptive Refine-
ment) phase-space halo finder (Behroozi, Wechsler & Wu 2013).
ROCKSTAR starts by selecting potential haloes as Friends-of-Friends
(FOF; Davis et al. 1985) groups in position space using a large
linking length (b = 0.28 the mean interparticle separation). This
first step is restricted to position space to optimize the use of com-
putational resources, while subsequent steps employ the full 6D
phase space. Each FOF group from the first step is used to create a
hierarchy of FOF phase-space subgroups by progressively reducing
the linking length. The phase-space subgroups are selected using
an adaptive phase-space linking length such that each successive
subgroup has 70 per cent of the parent’s particles. ROCKSTAR uses the
resulting subgroups to identify potential halo and subhalo centres
and assigns particles to them based on their phase-space proximity.
Once all particles are assigned to haloes and subhaloes, an un-
binding procedure is applied to retain only gravitationally bound
particles. The final halo centres are computed from a small region
around the phase-space density maximum of each object.

The outer boundary of the haloes is defined as the distance at
which the enclosed overdensity decreases below � = 200 times the
critical density, ρc. Therefore, the halo mass, M200, and radius, R200,
correspond to a spherical overdensity of 200ρc. Using this definition
for the main halo boundary, we identify all subhaloes within distance
R200 from the host halo centre as the satellite population. A typical
MW-mass halo with M200 = 1012 M� has R200 ≈ 200 kpc which
is smaller than the maximum distance commonly used to identify
dwarf galaxies in the MW; for example Leo I is considered an MW
satellite but it is located ∼250 kpc from our galaxy (Karachentsev
et al. 2004). We therefore apply a second criterion and identify
as subhaloes all the objects within R100 from the host centre. The
distance R100 is the radius within which the enclosed overdensity
decreases to 100ρc and is typically ∼1.3 times larger than R200. We
denote this second group of subhaloes as R100 substructures.

3 EXTRAPOLATING SUBHALO STATISTICS
B E YO N D T H E R E S O L U T I O N L I M I T

There are two challenges when studying the satellite population in
numerical simulations: identifying the subhaloes and correctly de-
termining their internal structure and orbits. Identifying an object
made of a few tens to hundreds of particles against the background
of a much bigger halo is not trivial and most configuration-space
halo finders have difficulties finding subhaloes of fewer than 50
particles as well as larger subhaloes located close to the centre
of the host. While phase-space finders (which includes ROCKSTAR)
perform somewhat better, they still have problems recovering the
correct properties of substructures containing tens of particles (for
additional details see Knebe et al. 2011). Even when a halo finder
identifies substructures, their properties can be affected by numeri-
cal resolution. Before accretion, the main effect of resolution is on
the inner structure of the subhalo. After accretion, poor resolution

can affect the orbit and tidal stripping of the subhalo. While these
effects are subdominant for subhaloes resolved with a large number
of particles, they are very important for subhaloes resolved with
around 100 particles or less.

Resolution effects play an important role in establishing the ex-
tent to which a given simulation can correctly probe the subhalo
population. In what follows, we introduce a scaling method that
allows us to extrapolate the subhalo statistics beyond the resolu-
tion limit of a simulation. Applying this algorithm to an N-body
simulation involves two main steps.

(I) Determining the range over which numerical effects influence
the subhalo count. In general, a simulation correctly follows all
substructures above a certain particle number, but resolves only a
fraction of smaller subhaloes. This results in missing substructures
and a systematic underestimate of the subhalo number count.

(II) Adding the missing subhaloes in the range where only a
partial subhalo population is found. This procedure recovers the
mean and scatter of the subhalo abundance down to much lower
subhalo masses than are resolved in the simulation.

In the remainder of this section, we describe our method in more
detail and demonstrate how to use it to infer the true subhalo abun-
dance in the two MS.

3.1 Step I: quantifying the resolution effects

Since the CDM linear power spectrum of fluctuations has power on
all scales down to an Earth mass, ∼10−6 h−1 M�, increasing the
resolution of a simulation results not only in a better determination
of the internal structure of HM satellites, but also in the genera-
tion of new, and previously not resolved, lower mass subhaloes. To
study finite resolution effects, we consider the abundance of sub-
haloes as a function of the substructure to host size ratio. The mass
of a subhalo is not a well-defined quantity because it depends on
the definition of the subhalo’s boundary and on the gravitational
unbinding procedure. A more robust way to characterize subhalo
size is through the maximum circular velocity, Vmax. This is deter-
mined by the inner structure of the object and is therefore relatively
insensitive to the identification algorithm or the definition of bound-
ary (for details see Onions et al. 2012). Furthermore, using Vmax to
characterize the size of satellites lends itself to a closer comparison
with observations that typically probe only the inner part of a halo
where the galaxy resides. Thus, rather than the mass ratio, we will
consider the ratio of Vmax to the host virial velocity, V200, defined
as

V200 =
√

GM200

R200
, (1)

with G the gravitational constant.
We parametrize the substructure to host halo velocity ratio as

ν = Vmax

V200
, (2)

where Vmax refers to the subhalo and V200 to the host halo. We define
N (>ν) as the average number of subhaloes per host with velocity
ratio exceeding ν. Given a sample of haloes within a chosen mass
or V200 range, the mean subhalo count is given by

N (>ν) = 1

nhosts

nhosts∑
i=1

Ni(>ν) , (3)
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where nhosts denotes the numbers of haloes in the sample and Ni(>ν)
gives the number of subhaloes with velocity ratio exceeding ν in
halo i. The derivative of this quantity,

N(ν) = dN (>ν)

dν
, (4)

gives the mean number of subhaloes per host with velocity ratio in
the range ν to ν + dν per dν interval.

Lack of numerical resolution will result in fewer than expected
substructures in an N-body simulation. For example, subhaloes
traced by �100 particles tend to have artificially low maximum
circular velocities because of the gravitational softening (Springel
et al. 2008). The resulting lower concentration makes them vulner-
able to premature tidal disruption after they fall into the host halo.
We quantify the effects resolution on the subhalo number counts by
expressing

N(ν) = Ñ (ν)f (ν), (5)

where Ñ (ν) is the true subhalo count at ν in the absence of resolution
effects. The function f(ν) is the completeness function that describes
the artificial loss of subhaloes due to limited numerical resolution.
A value of f(ν) = 1 means that the simulation has resolved all the
substructures at ν while values of f(ν) < 1 mean that only a partial
population of subhaloes has been detected. Thus, quantifying this
kind of resolution effect reduces to measuring the completeness
function, f(ν), for a given simulation.

There is a wide range of factors that can influence the complete-
ness function of cosmological simulations: gravitational softening
length, integration timestep and other numerical parameters, to the
halo finder and the code used to run the simulation. Exploring such
a large parameter space to provide a general formula for f(ν) would
be unfeasible, so instead we will show how to compute the function
f(ν) for any given N-body simulation. Within the same simulation,
the completeness function will likely depend on the mass of the host
halo. We parametrize this dependence via the number of particles,
N , with which the host halo is resolved. Note that we use N to
denote the mean subhalo count and N to denote the number of DM
particles in the host halo.

To estimate the completeness function, we compare the sub-
structure count between haloes in simulations with two different
resolutions. The result is illustrated in Fig. 1 where we contrast
the mean subhalo count of (0.6–1.2) × 1013 h−1 M� mass haloes
that were resolved at low resolution in MS and at high resolu-
tion in the MS-II. To emphasize the difference we plot the ratio,
NMS(ν)/NMS-II(ν), between the subhalo count in the two sim-
ulations. Since ∼1013 h−1 M� mass haloes in the MS-II have
over 106 particles, we expect NMS-II(ν) to be unaffected by nu-
merical effects for ν � 0.15 (for a detailed justification of this
point see Appendix A1). This implies that for ν � 0.15, we
have NMS-II(ν) ≈ Ñ (ν) and so, according to equation (5), the ratio
NMS(ν)/NMS-II(ν) gives the completeness function of MS haloes.

Fig. 1 shows that the completeness function is flat and equal
to 1 at values of ν > 0.4, indicating that in that range the MS
recovers the full population of substructures. At lower values of ν,
the completeness function decreases from 1 to 0 reflecting the fact
that only a partial population of subhaloes is found in that range
in the MS. This is in agreement with the qualitative expectation
discussed above. The transition in the MS completeness function
from 1 to 0 is well approximated by a linear function of log ν, as

Figure 1. Comparison of the mean subhalo number, N (ν), between equal
mass haloes resolved at two different resolutions. The circles show haloes
in the mass range (0.6–1.2) × 1013 h−1 M� that were resolved with (0.7–
1.4) × 104 particles in the MS and with 125 times more particles in the
MS-II. The squares compare N (ν) of the Aquarius haloes resolved
with ∼107 particles at ‘level-4’ and with ∼20 times more particles at ‘level-
2’. The dashed curve shows that the transition from 1 to 0 is well approxi-
mated by a linear function in ln ν. The error bars represent the 1σ uncertainty
in the determination of the ratio between the two subhalo numbers.

shown by the dashed line in the figure. Therefore, we can write the
completeness function as

f (ν) =

⎧⎪⎪⎨⎪⎪⎩
1 ν ≥ ν0

1 + α ln
(

ν
ν0

)
ν∗ < ν < ν0

0 ν < ν∗,

(6)

where α and ν0 are two free parameters (and ln denotes the natural
logarithm). The α parameter gives the slope of the transition from 1
to 0, while ν0 gives the smallest value of ν for which the simulation
identifies all the substructures. The symbol, ν∗ = ν0e−1/α , denotes
the point below which no more subhaloes are detected. This expres-
sion gives a very good match to the completeness function as long
as f(ν) � 0.2, as can be seen in the figure.

In Appendix A2, we show that the two parameter fit in equation
(6) gives a very good description of the completeness function not
only for the MS and Aquarius haloes, but also for the MS-II and
WMAP7 simulations. Furthermore, we have checked that the same
holds true when using different halo finders.

Thus, computing the completeness function of any given sim-
ulation reduces to finding the ν0 and α parameters introduced in
equation (6). We propose two different methods to calculate these
parameters. These procedures are described in detail in Appendix A
and can be summarized as follows.

(a) Method A is the standard procedure of comparing haloes
of equal mass in simulations of different resolution. We used
this method to compute f(ν) for the MS by comparing with the
higher resolution MS-II data. While this method is simple to imple-
ment, it has the drawback that it requires an additional simulation
with ∼100 times higher mass resolution than the simulation of in-
terest. Therefore, we can use method A for MS, but not for the
MS-II and WMAP7 since we do not have access to even higher
resolution simulations. We introduce method A merely to show that
our second technique, method B, gives reliable results.

(b) Method B compares the subhalo population in LM and HM
haloes in the same simulation. The procedure is based on the
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Figure 2. The dependence of the completeness function fit parameters, ν0

(top panel), and α (lower panel), on the number of particles, N , in the host
halo. The fit parameters were determined using the two different methods,
A and B, described in Appendix A. The solid grey line shows a power-law
fit to the results of method A. The power-law fits to each of the simulations
are given in Table 2.

assumption that the mean subhalo count is self-similar amongst
host haloes of different masses (see Wang et al. 2012, and refer-
ences therein). As we shall see in Section 5, this assumption is
satisfied to a good approximation for DM substructures but the
addition of baryons and feedback processes would break the self-
similar behaviour so it is unclear if this procedure can be modified
to work in realistic hydrodynamical simulations of galaxy forma-
tion. Compared to method A, method B does not require a higher
resolution simulation. This represents a great advantage and allows
us to compute the completeness function for the MS-II and WMAP7
simulations.

Using the two methods above, we estimate the completeness
function for host haloes of different mass. We find that the two
fitting parameters for f(ν) in equation (6) depend most strongly on
the number of particles, N , used to resolve the host halo. This
relationship is illustrated in Fig. 2. The α and ν0 parameters show a
power-law dependence on N :

ν0(N ) = ν0
0

( N
104

)nν0

and α(N ) = α0

( N
104

)nα

. (7)

The quantities, ν0
0 , nν0 , α0 and nα , are constants that depend on

the numerical parameters of the simulation, but not on N . The two
expressions in equation (7) give a very good description of ν0(N )
and α(N ). This is clearly shown in the figure by the grey line which
gives a power-law fit to the results of method A applied to the MS
(solid red line with circular symbols).2 The power-law fits to α and

2 The power-law fits to α and ν0 shown in Fig. 2 work best for N ≥ 2000.
For haloes resolved with fewer particles, the estimates of α and ν0 are less

Table 2. The values of the variables ν0
0 , nν0 , α0 and nα

given in equation (7). These quantities give the dependence
of the fitting parameters of the completeness function, ν0

and α, on the number of particles, N , in the host halo. We
give values for subhaloes within distance, R200, and, R100,
from the host halo centre. The 1σ error in the fit for ν0

0
and α0 is 0.02, while that for nν0 and nα is 0.01.

Method – simulation ν0
0 nν0 α0 nα

R200 substructures

Method A – MS 0.57 −0.30 0.65 −0.01
Method B – MS 0.57 −0.31 0.65 −0.01
Method B – MS-II 0.67 −0.29 0.67 −0.02
Method B – WMAP7 0.57 −0.29 0.72 −0.03

R100 substructures

Method A – MS 0.55 −0.30 0.65 −0.02
Method B – MS 0.55 −0.31 0.65 −0.01
Method B – MS-II 0.67 −0.29 0.65 −0.03
Method B – WMAP7 0.56 −0.28 0.72 −0.04

ν0 for the three simulations shown in Fig. 2 are given in Table 2.
All the simulations show the same qualitative behaviour, though
the exact values differ slightly. The quantity ν0 varies as N−0.3,
which is close to, but shallower than the N−1/3 dependence that
a naive kinematic analysis would suggest. The parameter α varies
only slightly, as N−0.02.

Fig. 2 shows that the two methods, A and B, for estimating the
completeness function give the same results. This is clearly seen
when comparing the values of ν0 and α for the MS simulation ob-
tained using method A (solid red line) and method B (blue square
symbols). Thus, f(ν) can be computed only using the information
available in the simulation under study without the use of a higher
resolution simulation, by following the method B procedure out-
lined in Appendix A2.

In addition, Fig. 2 shows that there are small differences between
the completeness function of the three simulations studied here (see
also Table 2). Therefore, when precise results are needed, it is nec-
essary to estimate f(ν) separately for each simulation. Computing
the completeness function of a given simulation can be done with
minimal computational resources using method B.

The results presented up to now are for substructures within
distance, R200, of the host halo centre. We find that the fitting formula
of equation (6) with very similar parameter values also describes
well the completeness function for subhaloes within R100 of the host
halo centre (see Table 2).

3.2 Step II: adding the missing subhaloes

As we have seen, the completeness function can be used to estimate
the mean abundance of poorly resolved or unresolved subhaloes as
a function of Vmax. However, in practice, it is necessary to know not
only the mean value of N (>ν), but also its dispersion σ (>ν) across
the halo population, which characterizes the halo-to-halo variation.

Given a completeness function, f(ν), lack of resolution implies
that a sample of nhosts haloes are missing a fraction, 1 − f(ν), of their

accurate due to the small number of points available for the fit. There is a
degeneracy in the fit parameters α and ν0, since values with constant αν0

give similarly good fits. This introduces a large scatter in the two parameters
around their mean trend with N .
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substructures. In total, the sample of haloes is missing a number of
subhaloes with velocity ratio, ν, given by

nhosts (1 − f (ν)) Ñ (ν) = nhosts
1 − f (ν)

f (ν)
N (ν), (8)

where Ñ (ν) and N (ν) are the true and measured mean subhalo
count (equation 5). To recover the true substructure count per halo,
Ñ(ν), we add the missing subhaloes to the halo sample by randomly
assigning each new subhalo to a host. We take the probability that
a new subhalo is assigned to host halo, i, to be proportional to
1 − f (ν,Ni), with Ni the number of particles in host halo i. The
special case when the sample contains haloes of similar mass cor-
responds to each halo having equal weight, and so we distribute the
missing substructures among the hosts with equal probability.

We apply the procedure above to samples of haloes within a nar-
row mass range and repeat the process independently for samples
of haloes of different mass. This assumes that halo mass is the only
factor that determines the subhalo count and ignores the effects of
assembly bias. Previous studies have shown that the mean subhalo
count depends on halo properties other than mass, like concentra-
tion and formation redshift (Gao et al. 2004; Zentner et al. 2005;
Shaw et al. 2006; Gao et al. 2011), as well as on the large-scale
environment of the host (Busha et al. 2011b; Cautun et al. 2014).
Assembly bias can be taken into account by further restricting the
halo samples to hosts with a given concentration or in a given en-
vironment. Neglecting assembly bias does not affect the ability of
the method to recover the true mean subhalo count, but can result
in a smaller value for the scatter in the count. We do not expect
this effect to be significant since Gao et al. (2011) found that the
dependence of the substructure number count on halo properties is
not the main driver of the observed halo-to-halo scatter.

3.3 Evaluation of the extrapolation procedure

Fig. 3 shows how successful the extrapolation method is in recover-
ing the mean, N(>ν), and standard deviation, σ (>ν), of the subhalo
population. The top panel gives the ratio, NLR(>ν)/NHR(>ν), be-
tween the mean subhalo count found at low and high resolution as
a function of the velocity ratio, ν. The middle panel gives the ratio,
σLR(>ν)/σHR(>ν), between the scatter in the subhalo counts found
at low and high resolution. In both cases, a value of one corresponds
to a successful recovery of the true mean and scatter in the number
of subhaloes. We illustrate the result of the extrapolation method
for host haloes resolved with ∼104 (red circles) and ∼105 (blue tri-
angles) particles in the MS simulation. The two data sets show the
comparison for haloes in the mass range (0.69–1.1) × 1013 h−1 M�
and (0.35–1.2) × 1014 h−1 M�, respectively, which were resolved
at relatively low resolution in the MS and at higher resolution in the
MS-II.

The bottom panel of Fig. 3 shows the completeness function, f(ν),
of MS haloes resolved with ∼104 and ∼105 particles. For f(ν) = 1,
there is no correction since the number of new subhaloes that need
to be added is proportional to (1 − f(ν))/f(ν) (see equation 8).
The correction becomes important only when f(ν) is significantly
smaller than unity. The top panel of the figure shows that we obtain
NLR(>ν)/NHR(>ν) ≈ 1 down to values of ν equal to 0.14 and 0.09
for haloes resolved with ∼104 and ∼105 particles, respectively.
These values of ν correspond to the range where f(ν) � 0.15 as
may be seen by comparing to the bottom panel of the figure. Thus,
our extrapolation method is successful at recovering the true mean
subhalo number count as long as f(ν) � 0.15.

Figure 3. The effectiveness of our extrapolation method for subhalo statis-
tics below the resolution limit of a simulation. The plots compare the mean,
N (>ν) (top), and scatter, σ (>ν) (middle) of the subhalo abundance in low-
and high-resolution simulations. A value of one corresponds to a successful
recovery of the mean and scatter. The low-resolution data are MS haloes
resolved with (0.8 − 1.2) × 104 (red circles) and (0.4 − 1.2) × 105 (blue
triangles) particles. The high-resolution data are MS-II haloes of corre-
sponding mass. The error bars show the 1σ uncertainty in the determination
of N (>ν) and σ (>ν). The bottom panel shows the completeness function,
f(ν), corresponding to the low-resolution halo samples: red for N ∼ 104 and
dashed blue for N ∼ 105. The extrapolation procedure is applied only in the
region f(ν) < 1; for f(ν) = 1 there are no additional subhaloes added.

For the scatter in the subhalo number count, we find from the
centre panel of Fig. 3 that σLR(>ν)/σHR(>ν) ≈ 1 down to values of
ν of 0.16 and 0.11 for haloes resolved with ∼104 and ∼105 particles,
respectively. Therefore, our extrapolation technique recovers the
correct subhalo scatter in the region where f(ν) � 0.3. In the case
of the second data set, we observe variations from unity of the
order of 10 per cent. These are due to the small sample of only
70 MS-II haloes found in that mass range, which does not allow
for a precise enough estimate of the scatter in the subhalo number
count using bootstrap techniques. More importantly, we do not find
any obvious systematic effects in the estimate of σ (>ν), except, at
most, a 5 per cent lower than expected value for f(ν) � 0.5. This
implies that we can neglect subhalo assembly bias and still recover,
to a good approximation, the true subhalo scatter. We also checked
the effectiveness of the extrapolation procedure for the MS-II and
WMAP7 simulations and found similar behaviour to the MS case
presented here.
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As a further test, we can compare the galactic mass haloes in
the Aquarius simulations with their counterparts in the MS-II that
have ∼1000 times fewer particles. With only six examples, it is not
possible to carry out a statistical comparison but since the Aquarius
haloes are resimulations of MS-II haloes we can perform an object-
to-object comparison. This is shown in Fig. 4. We find that the ratio,
NLR(>ν)/NHR(>ν), between the low- and high-resolution results
oscillates around one, without any obvious systematic trend. This
shows that the extrapolation method faithfully recovers the statistics
of the population over a large dynamical range in ν.

In Fig. 5, we show the values of ν above which we recover the
true subhalo population with our extrapolation method. The solid
curve gives the ν limit in the absence of extrapolation, given by the
value of ν0 for MS-II from Table 2. The dashed and dotted curves

Figure 4. An object-to-object comparison of the subhalo count for the six
Aquarius haloes, NHR(>ν), and the corrected subhalo count of their MS-II
counterparts, NLR(>ν). The solid black line compares the mean substruc-
ture number in the two samples. The results reiterate that the extrapolation
method gives the correct subhalo statistics although the scatter is appreciable
for individual objects.

Figure 5. The lowest value of ν for which we recover the mean, N (>ν), and
the dispersion, σ (>ν), of the subhalo abundance. These limits are a function
of the number of particles, N , in the host halo. The solid curve gives the
lower limits in the absence of extrapolation. The dashed and dotted curves
represent the values of N (>ν) and σ (>ν), respectively, when extrapolating
below the resolution limit. While the results shown here are for MS-II, the
other two simulations show a very similar behaviour, as may be seen in
Fig. 2.

give the ν limits for the mean and dispersion in the subhalo number
count when applying our extrapolation method. They were obtained
by solving the f(ν) = 0.2 and f(ν) = 0.3 equations and correspond to
conservative lower limits for recovering N (>ν) and σ (>ν) as found
in Fig. 3. By using our scaling method, we can estimate N (>ν) and
σ (>ν) to much lower ν values, corresponding to simulations with
at least 50 times higher mass resolution.

4 TH E A BU N DA N C E O F S U B H A L O E S
I N MW-MASS H ALOES

4.1 Mean subhalo number

In this section, we investigate the subhalo distribution within haloes
in the mass range (0.6–2.2) × 1012 h−1 M� to which we refer as
MW-like or MW-mass host haloes. This mass range is consistent
with estimates of the MW halo mass obtained through a variety of
methods (Wilkinson & Evans 1999; Sakamoto et al. 2003; Battaglia
et al. 2005; Dehnen et al. 2006; Smith et al. 2007; Li & White 2008;
Xue et al. 2008; Gnedin et al. 2010; Guo et al. 2010; Watkins
et al. 2010; Busha et al. 2011a; Piffl et al. 2014).

Using the extrapolation technique described in the previous sec-
tion, we can recover the mean subhalo number, N (>ν), for ν ≥
0.08 (compared to ν ≥ 0.3 in MS-II and WMAP7 in the absence
of these corrections). We illustrate this in Fig. 6 where we show
the corrected N (>ν) for MW-like hosts in the MS-II and WMAP7
simulations. The mean subhalo velocity function has a power-law
dependence at small ν and an exponential cutoff at large ν. As BK10
did, we find that the function

N (>ν) =
(

ν

ν1

)a

exp

(
−

(
ν

νcut

)b
)

(9)

gives a good match to the cumulative mean number of substructures
as a function of ν for MW mass haloes. Following the prescrip-
tion given by BK10, we fit the mean subhalo abundance for both
MS-II and WMAP7. The resulting best-fitting parameters for the
two simulations are given in Table 3. The best-fitting function fits
the data very well, as may be seen in the middle panel of Fig. 6.

The MS-II and WMAP7 haloes have the same number of massive
substructures, but there are important differences between the two
simulations for low values of ν. The subhalo population in MS-II
haloes has a slightly steeper slope and thus a higher abundance at
low ν than in WMAP7 haloes. From the bottom panel of Fig. 6, it can
be seen that for WMAP-7 cosmological parameters, MW-like haloes
have only 93 and 86 per cent of the MS-II subhaloes at ν = 0.2 and
ν = 0.1, respectively.

When comparing with results in the literature, we find that other
studies have systematically underestimated the substructure abun-
dance at low ν as a result of not taking finite resolution effects
properly into account. Thus, while BK10 found similar values for
the νcut and b fit parameters for MS-II subhaloes, they underesti-
mated the slope of the velocity function at low ν: they find a =−2.98
whereas for substructures within R100 we find a = −(3.22 ± 0.09).
The discrepancy in slope is due to BK10 fitting the subhalo count
down to ν = 0.2, while we find that without proper correction, the
MS-II simulation gives the correct subhalo abundance only for ν ≥
0.3. In contrast, Wang12 found a slope of a = −3.11 within R200,
which agrees within the errors with our value of a = −(3.17 ± 0.09),
but nevertheless they find 20 per cent fewer subhaloes within R200

at all values of ν.
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Figure 6. Top: the corrected mean subhalo count as a function of the
velocity ratio, ν, in MW-mass haloes in the MS-II and WMAP7 simula-
tions. The two lines show the best-fitting function given by equation (9) for
MS-II (solid red) and WMAP7 (dashed blue). The dotted curve shows N (>ν)
for the six Aquarius haloes. Middle: the ratio between the actual number
of subhaloes in the simulations and the number given by the best-fitting
function to the data in the top panel. The errors bars give the 1σ error in
the estimate of N(>ν) due to finite sample effects (which dominate for
ν > 0.3) and due to uncertainties in the estimate of the completeness func-
tion (which dominate for ν < 0.2). Bottom: ratio of the best-fitting function
to the subhalo abundance in the MS-II and WMAP7 simulations.

Table 3. The best-fitting parameters of equation (9) for the
mean subhalo number count in MW-like haloes in the MS-II
and WMAP7 simulations, within both R200 and R100 from the
host halo centre. The 1σ errors in the fit are at most, �a = 0.02,
�ν1 = 0.003, �b = 1 and �νcut = 0.02. The value of the param-
eter a is sensitive to errors in the estimate of the completeness
function (see Table 2), which introduces an additional systematic
error of �a = 0.07.

Simulation Subhaloes within a ν1 b νcut

MS-II R200 −3.17 0.338 7 0.80
WMAP7 −3.05 0.336 7 0.79
MS-II R100 −3.22 0.366 7 0.80
WMAP7 −3.12 0.364 7 0.79

The main difference between Wang12 and BK10 is that, just
as we have done, Wang12 used the invariance of N (>ν) with host
halo mass to estimate the average subhalo abundance. This approach
appears to give the correct value for the slope, a. However, as BK10
did, Wang12 overestimated the value of ν at which resolution effects

become important and their fits to N(>ν) included host haloes for
which only ∼75 per cent of substructures are detected. Another
difference with these studies is that we use a phase-space halo
finder while both BK10 and Wang12 use a configuration-space halo
finder. However, we expect that this choice accounts for at most a
few per cent of the difference, as we show in Appendix B.

4.2 Scatter in the substructure population

The dispersion of the subhalo number distribution characterizes
halo-to-halo variations and is important not only for quantifying
how typical the MW and its satellites are, but also for the interpreta-
tion of conclusions derived from very high resolution simulations of
a few MW-sized haloes (Diemand et al. 2008; Springel et al. 2008;
Stadel et al. 2009). The scatter in the subhalo abundance is also
an important parameter when applying halo occupation distribution
(HOD) models to populate DM haloes with galaxies (e.g. Benson
et al. 2000; Ma & Fry 2000; Peacock & Smith 2000; Seljak 2000;
Scoccimarro et al. 2001; Berlind & Weinberg 2002).

We find that, at large ν, the scatter in the substructure abundance
matches the dispersion of a Poisson distribution with the same
mean. At lower velocity ratios, as the average number of subhaloes
increases, we find a much larger scatter than expected for a Poisson
distribution. This is illustrated in Fig. 7 that shows the ratio of the

measured subhalo scatter to the dispersion, N
1/2

(>ν), of a Poisson
distribution with mean N (>ν). We find that the standard deviation,
σ (>ν), in both the MS-II and WMAP7 subhalo distributions has the
same dependence on ν that can be parametrized as

σ (>ν) = N
1/2

(>ν)

{
1 ν ≥ νσ

1 + β ln2(ν/νσ ) ν < νσ .
(10)

Fitting this equation to the data, we find νσ = 0.50 and β = 0.11.
This fit is a very good match to the subhalo abundance scatter, as
may be seen in Fig. 7. The scatter for substructures within R100

from the host halo centre shows a similar functional form, but with
best-fitting parameters νσ = 0.55 and β = 0.14.

Our result that the scatter in the number of small substructures
differs significantly from the Poissonian expectation is in good

Figure 7. The dependence of the scatter in the subhalo abundance,
σ (>ν), on the velocity ratio, ν, for MW-like hosts. For clarity, we show

σ (>ν)/N
1/2

(>ν), the ratio between the observed scatter and the Poisson

value, N
1/2

(>ν). The dashed black curve gives the fit to the data for both
the MS-II and WMAP7 simulations, with the best-fitting parameters quoted
in the legend. The error bars represent the 1σ error in σ (>ν).
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agreement with previous results: Benson et al. (2000) showed that
the occupation of haloes by galaxies is not a Poisson process and
BK10 showed that the dispersion in the number of subhaloes above
a certain mass is a combination of Poisson scatter at the HM end
and larger than Poisson scatter at the low-mass (LM) end.

4.3 Subhalo occupation distribution

Since the scatter in the subhalo population is significantly non-
Poissonian, we follow BK10 and Busha et al. (2011b), and model
the probability distribution function (PDF) of the number of sub-
structures with a given value of ν using the negative binomial dis-
tribution (NBD),

P (N |r, s) = �(N + r)

�(r)�(N + 1)
sr (1 − s)N, (11)

where N is the number of subhaloes per halo, �(x) = (x − 1)!
is the Gamma function, which, for integer values of x, reduces to
the factorial function, and r and s are two parameters. The mean
and dispersion of this distribution can be computed analytically in
terms of r and s. The inverse holds too, with the two distribution
parameters given by

r = μ2

σ 2 − μ
, s = μ

σ 2
, (12)

where μ and σ denote the mean and dispersion of the NBD. Thus, μ
and σ completely specify the distribution. The NBD has also been
used to describe the number of satellite galaxies in HOD models
(e.g. Berlind & Weinberg 2002).

BK10 found that the NBD gives a better fit to the substructure
population than a Poisson distribution when counting all subhaloes
containing more than a certain fraction of the host mass. We find that
the NBD also matches well the substructure PDF when counting
all subhaloes with velocity ratios larger than ν. This is illustrated in
Fig. 8 where we plot the subhalo occupation distribution for MW-
mass hosts in both the MS-II and WMAP7 simulations. The solid and
dashed lines NBDs. These are not fits to the data points, but are ob-
tained from equation (12) using the mean subhalo number, N (>ν),
from equation (9) and the dispersion, σ (>ν), from equation (10).
It is clear in the figure that the NBD reproduces very well the sub-
halo distribution at all values of ν. Therefore, knowing the mean
and scatter of the subhalo number counts is enough to infer the full
PDF.

The grey line in the lower panel of Fig. 8 shows a Poisson dis-
tribution with the same mean as the MS-II subhalo abundance. It
is clear that the Poisson distribution severely underestimates the
tails of the PDF. Thus, even a modest increase in the dispersion
compared to the Poisson case (25 per cent at ν = 0.1) leads to large
deviations from a Poisson distribution.

5 D E P E N D E N C E O F S U B H A L O N U M B E R
O N H O S T M A S S

In Fig. 9, we investigate how the mean number of substructures as
a function of normalized velocity, ν, varies for hosts of different
mass. To emphasize the differences, we normalize the mean sub-
halo number count in each mass bin by the mean, NMW−mass(>ν),
for MW-mass hosts. We find that for ν ≤ 0.3 there is very little
dependence on host halo mass, with at most a 5 per cent difference
between MW-like and cluster sized haloes. In contrast, for larger
subhaloes we find a complex variation with host mass that can be
split in the two regimes. Substructures with ν � 0.8 tend to be much

Figure 8. The PDF of the number of substructures in MW-like host haloes
with ν ≥ 0.3 (top), ν ≥ 0.2 (middle) and ν ≥ 0.1 (bottom). The solid and
dashed curves show the NBD with the mean and standard deviation found
in Figs 6 and 7. The solid grey curve in the bottom panel shows a Poisson
distribution with the same mean as the MS-II haloes.

more common in lower mass haloes than in HM ones. Thus, it is
much more likely to find a halo–subhalo pair of similar mass in MW-
like and lower mass hosts than in cluster sized objects. In the 0.3 �
ν � 0.7 range this trend is reversed, with more subhaloes present in
massive hosts than in less massive ones. In this case, the increase
of N (>ν) with the mass of the host is small, with ∼15 per cent
variation in the number of substructures per decade of host halo
mass.
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Figure 9. The dependence of the abundance of substructures as a function
of ν, N(>ν), on the host halo mass. To emphasize the differences, we divide
by the mean subhalo number, NMW−mass(>ν), for MS-II MW-like hosts.
The two vertical arrows indicate the ν value where we switch from MS
to MS-II data for hosts of mass (0.5–5) × 1014 h−1 M� (red arrow) and
(0.5–5) × 1013 h−1 M� (blue arrow). The other two mass bins show only
MS-II haloes. The width of each curve shows the 1σ error in the determi-
nation of N(>ν).

The results in Fig. 9 support the assumption we made in Section 3
that the mean subhalo count as a function of ν varies only slowly or
not at all with host halo mass. This explains why method B works
is valid for estimating the completeness function. This also means
that our results for the subhalo population of MW-like haloes are
insensitive to the exact mass range used to define MW-mass haloes.
The invariance of the mean substructure count on host mass makes
it possible to use host haloes of all masses to compute N (>ν), but
only for ν ≤ 0.3. This property was already exploited by Wang12,
who used haloes in a large mass range to investigate the subhalo
population of MW-like haloes and derive constraints on the MW
halo mass.

The number of subhaloes is independent of host halo mass only
when expressed in terms of the ratio ν = V subhalo

max /V host
200 . Previous

studies have shown that there is a variation with host halo mass when
considering N (>M subhalo/Mhost) (Gao et al. 2004, 2011; Zentner
et al. 2005) or N (>V subhalo

max /V host
max ) (Busha et al. 2011b; Klypin

et al. 2011).

6 THE MW MASSIVE SATELLITES

As we discussed in Section 1, the conclusion that the MW has at
most three satellites residing in substructures with Vmax ≥ 30 km s−1

– the two Magellanic Clouds and the Sagittarius dwarf – seems
at odds with the number of such substructures, eight on aver-
age, found in the Aquarius simulations of haloes of mass M200 ∼
2 × 1012 h−1 M� (Boylan-Kolchin et al. 2011). The probability of
finding such a population of substructures within �CDM was in-
vestigated by Wang12 who found that this ‘too-big-to-fail-problem’
is only present if the MW halo has a mass similar to the Aquarius
haloes, but the problem is avoided altogether if the halo mass is a
factor of 2 smaller. They were therefore able to set an upper limit
to the MW halo mass under the assumption that �CDM is the cor-
rect model. Since we find a higher number of substructures than

Wang12 did, we now re-examine how their constraints on the MW
mass change when using the subhalo statistics derived in Section 4.

Given a halo of virial velocity, V200, the probability that it hosts
at most X substructures with Vmax ≥ V0 is given by

p(≤X, V0) =
X∑

k=0

P (k|r(>ν), s(>ν)) with ν = V0

V200
, (13)

where P(k|r(>ν), s(>ν)) is the NBD that gives the probability
that a halo has k subhaloes with velocity ratio larger than ν (see
equation 11). The distribution parameters, r(>ν) and s(>ν), are
uniquely determined by the mean and scatter of the subhalo popu-
lation through equation (12).

The probability, p(≤3, 30 km s−1), is shown in Fig. 10 as a func-
tion of halo virial velocity (lower tick marks) or, equivalently,
halo mass (upper tick marks). The results shown are for subhaloes
identified within R100, which is close to the maximum distance at
which dwarf galaxies are identified as being MW satellites. The
solid blue curve shows p(≤3, 30 km s−1) from the MS-II simula-
tion. The probability is a steep function of host halo mass, de-
creasing from ∼70 per cent at 0.5 × 1012 M� to ∼15 per cent at
1 × 1012 M�, and becomes negligible for haloes more massive than
2 × 1012 M�. For convenience, we give values of p( ≤ 3, 30 km s−1)
in Table 4 for some suggestive halo masses. Therefore, assuming
that the �CDM cosmology is the correct model, given that the MW
has only three satellites with Vmax ≥ 30 km s−1 it is unlikely that
our galaxy’s halo is more massive than ∼1.5 × 1012 M�.

The dashed orange curve in Fig. 10 shows results for a �CDM
model with WMAP-7 parameters. Since this model has fewer sub-
structures at low ν than a model with WMAP-1 parameters, then,
at fixed halo mass, it has a higher p( ≤ 3, 30 km s−1) resulting in
a weaker upper limit on the MW halo mass. Nevertheless, because
of the steep decline of the probability with halo mass, the upper

Figure 10. The probability, p( ≤ 3, 30 km s−1), that a halo has at most three
substructures with Vmax ≥ 30 km s−1 within a distance R100 from its centre.
The probability is given as a function of halo virial velocity, V200 (lower
tick marks), and halo mass, M200 (upper tick marks). We show results for
both the WMAP-1 cosmology used in MS-II (solid line) as well as for the
more recent WMAP-7 parameters (dashed line). The dash–dotted line shows
the results of Wang12. The width of the MS-II curve gives the 1σ error due
to uncertainties in the subhalo abundance of galactic haloes. The WMAP7
results have the same error associated with them (not shown). Note that the
y-axis is linear above 0.1 and logarithmic for lower values.
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Table 4. The probability, p( ≤ 3, 30 km s−1), of finding
three or fewer substructures with Vmax ≥ 30 km s−1 for
suggestive halo masses. Predictions are given for two
choices of cosmological parameters derived from the
WMAP-1 and WMAP-7 data, and they are compared
to the previous results by Wang12 that are based on
WMAP-1 parameters.

Halo mass ( × 1012 M�) 0.5 0.7 1 2

WMAP-1 (%) 67 38 13 0.2
WMAP-7 (%) 72 44 20 0.6
Wang12 (%) 76 48 22 0.3

limit on the MW halo mass is only slightly increased in this model
compared to the one with WMAP-1 parameters.

We expect that our results are robust to changes in cosmological
parameters, especially concerning the recent Planck Collaboration
(2013) measurement. The subhalo abundance could potentially be
affected by the change in the concentration of haloes and subhaloes,
but Dutton & Macciò (2014) showed that the increase in �m be-
tween the WMAP-1 and Planck measurements is balanced by the
decrease in the values of σ 8, ns and h, such that haloes of the
same mass have the same concentration in both cosmologies. In
addition, increasing �m leads to a larger number of haloes at fixed
mass and potentially to more subhaloes, but, despite all this, the
scaled subhalo velocity function is insensitive to variations in �m

(Garrison-Kimmel et al. 2014).
Compared to the previous results of Wang12, we find stricter

upper limits for the mass of the MW halo. This is seen in Fig. 10 by
comparing the solid and dash–dotted curves, with both correspond-
ing to WMAP-1 parameters. The main cause of the discrepancy is
that Wang12 found up to 20 per cent fewer substructures than we
find (see 4.1) and thus overestimated the probability at fixed halo
mass. A second source of disagreement is the PDF used to model
the subhalo population. Wang12 used a Poisson distribution that
underestimates the true tails of the subhalo number distribution (see
Fig. 8 for an example). This effect becomes important when dealing
with low p( ≤ 3, 30 km s−1) values and leads to an underestimate
of the true probability. This is the reason why the Wang12 prob-
ability for M200 � 1012 M� is lower than our value for WMAP-7
parameters, even though we find a larger subhalo count in the latter
case.

7 H OW T Y P I C A L A R E T H E AQUA R I U S
H A L O E S ?

In view of the prominence that the Aquarius halo simulations have
had, particularly in the work of Springel et al. (2008) and Boylan-
Kolchin et al. (2011, 2012), it is interesting to ask how typical
these haloes are of the global population of haloes of similar mass.
BK10 addressed this question in some detail using the MS-II and
found that the six Aquarius haloes are representative in so far as
the properties that they considered (such as assembly history and
internal structure) is concerned. However, they did not consider the
distribution of ν that is of most interest here.

In Fig. 11, we compare the cumulative ν distribution, N(>ν), of
each of the six level-2 Aquarius haloes with that of the population
of MS-II haloes in the mass range (0.6–2.2) × 1012 h−1 M�. To
show the differences more clearly, we normalize the distributions
to the mean, NMW−mass(>ν), of the MS-II. The thick dashed line
shows the median for the MS-II population, which is always smaller

Figure 11. The cumulative distribution, N(>ν), of normalized velocities
in each of the six level-2 Aquarius haloes compared with that of the global
population of haloes in the mass range (0.6–2.2) × 1012 h−1 M� in the

MS-II. The Aquarius data are normalized to the mean, NMW−mass(>ν), in
the MS-II. The top and bottom panels show results for substructures within
distance R200 and R100 from the host halo centre, respectively. The thick
dashed curve shows the median of the MS-II population while the light
shaded region delimits the 16 and 84 percentiles of the distribution and the
dark shaded region the 5 and 95 percentiles. We restrict our analysis to ν ≤
0.4, since only Aq.-F has subhaloes with higher ν.

than the mean count due to the long tail in the subhalo number
PDF (see Fig. 8). The light and dark shaded regions show the 68
and 90 per cent scatter around the median obtained by modelling
the subhalo distribution function as an NBD with the mean and
dispersion values given in Section 4.

Our comparison of the Aquarius and MS-II subpopulations is
restricted to ν ≥ 0.1, the resolution limit for MS-II subhaloes. For
completeness, we present the substructure function of the Aquarius
haloes down to their resolution limit, ν ≥ 0.04, but we do not use
the additional range in the comparison with the MS-II.

Fig. 11 shows that the six Aquarius haloes have a subhalo nor-
malized velocity function that is in good agreement with the much
larger sample of MS-II haloes of similar mass, both when consid-
ering subhaloes within R200 (top panel) and within R100 (bottom
panel). The mean of the Aquarius velocity function lies well within
the 68 per cent scatter and it is in very good agreement with the
mean in the MS-II. Individually, we find that Aq.-C has the small-
est number of subhaloes compared to the other Aquarius haloes,
especially for ν ≤ 0.25, but it is still within the MS-II distribution.
The remaining five Aquarius haloes have a substructure velocity
function similar or larger than the median for the MS-II haloes.
This result agrees with Wang12 who found that five of the Aquar-
ius haloes have more substructures with Vmax ≥ 30 km s−1 than the
mean.
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To summarize, for ν � 0.25, five out of the six Aquarius haloes
have a subhalo normalized velocity function that is similar or larger
than the median for a representative sample of MW-mass haloes.
This needs to be born in mind when comparing the small number
of massive satellites present in the MW with the Aquarius haloes,
especially if, as seems to be the case according to determinations
of the satellite luminosity function in the SDSS (Guo et al. 2012;
Wang & White 2012), our galaxy has significantly fewer satellites
than average.

8 SU M M A RY

We have introduced an extrapolation method to infer subhalo num-
ber statistics below the resolution limit of a cosmological simula-
tion. This method statistically generates the correct subhalo abun-
dance from the partial information available in a simulation of lim-
ited resolution. We have tested this technique by comparing results
of simulations of different resolution – including the high-resolution
Aquarius simulations – and conclude that it extends the subhalo
number counts correctly down to what would be found in a simula-
tion of 50 times or more better mass resolution. The technique repro-
duces only the statistics of the subhalo population, not the position
or structure of subhaloes. We characterized the subhalo abundance
in terms of the scaled subhalo velocity function, N (>ν), which gives
the number of substructures above ν = Vmax/V200, where Vmax is the
subhalo maximum circular velocity and V200 the virial velocity of
the host. We give a fitting formula for the completeness function
as a function of ν that can be used to extrapolate the results of a
simulation.

As noted by BK10 and Busha et al. (2011b), the PDF of the
number of substructures with a given value of ν is well described
by a NBD. Thus, the substructure occupation distribution can be
obtained given only the mean and dispersion of the subhalo number
count. The scatter in the number counts becomes distinctly non-
Poissonian for ν ≤ 0.3, so simply assuming a Poisson distribution
will greatly underestimate the tails of the ν subhalo distribution.

We applied our technique to the Millennium and Millennium-II
(MS-II) simulations and to a simulation of similar volume, but
lower resolution, with WMAP-7 cosmological parameters (rather
than the WMAP-1 values of the MS-II). We focused on haloes of
mass similar to the MW but our results are insensitive to the exact
halo mass range assumed for the MW since the scaled subhalo
velocity function is insensitive to mass for ν ≤ 0.3; for larger values
of ν, it shows a weak trend with host halo mass. This confirms, and
extends to a much larger dynamic range, the results of Wang12 (see
also Moore et al. 1999; Kravtsov et al. 2004; Zheng et al. 2005;
Springel et al. 2008; Weinberg et al. 2008).

As BK10, we found that the mean cumulative subhalo number
count, N (>ν), in haloes of mass similar to the MW in the MS-
II is well described by a power law with an exponential cutoff.
The number of small mass substructures depends slightly on the
cosmological parameters: it is lower for WMAP-7 than for WMAP-
1 parameters,

We showed that the substructure population in haloes of mass
similar to the MW in the MS-II is complete only to ν ∼ 0.3,
which corresponds to satellites with Vmax ∼ 45 km s−1. By contrast,
our extrapolation method gives accurate results for the mean and
scatter of substructures in these MS-II haloes for ν ≥ 0.1, which
corresponds to Vmax ∼ 15 km s−1. Previous studies optimistically
estimated that this subhalo population is complete down to ν ∼
0.2. BK10 found ∼15 per cent fewer subhaloes than us for ν ≤ 0.2.
Exploiting the approximate scale-invariance of N (>ν), Wang12

estimated the number of subhaloes in MW-mass haloes over a large
range of ν. However, they found 20 per cent fewer substructures at
all ν than we do because the ν function is dominated by the LM
subhaloes for which they recover only ∼75 per cent of the popula-
tion.

Wang12 used their inferred ν distribution of subhaloes in MW-
mass haloes and the fact that, as highligthed by Boylan-Kolchin
et al. (2011, 2012), the MW has only a very small number of
massive satellites to set an upper limit on the MW mass under the
assumption that �CDM is the correct cosmological model. Since
we find fewer substructures in these haloes than Wang12 did, we
revisited their argument and calculated the probability for a halo to
have a similar population of massive substructure as the MW, i.e.
three or fewer substructures with Vmax ≥ 30 km s−1, as a function of
the halo’s mass. We were then able to set a stricter upper bound on
the MW mass than found by Wang12: the probability of having the
observed number of large subhaloes is 20 per cent for 1 × 1012 M�
mass haloes and practically zero for haloes more massive than
2 × 1012 M�.

Finally, we investigated how typical the subhalo population of
the Aquarius haloes (Springel et al. 2008) is compared to those of
the global population of haloes of similar mass in the MS-II. We
find that the Aquarius haloes fall within the scatter of the MS-II
population but only one of the six Aquarius examples has fewer
subhaloes than the median of the MW-mass haloes in the MS-II.
This needs to be born in mind when using the Aquarius subhaloes
to draw general conclusions about our halo.
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A P P E N D I X A : M E A S U R I N G T H E
C O M P L E T E N E S S FU N C T I O N

We have employed two methods to investigate how the mean sub-
halo count is affected by the finite resolution of an N-body simu-
lation. In the following, we give a more detailed description of the
two methods, focusing on the advantages and limitations of each.

A1 Method A: comparing low- and high-resolution
simulations

The simplest way to investigate numerical effects is to compare the
subhalo population of haloes of a given mass simulated at two dif-
ferent resolutions. For this, we use the two MS that resolve haloes
of similar mass with 125 times better resolution in MS-II than in
MS. Same mass haloes have, on average, NMS(ν) and NMS-II(ν) sub-
structures in MS and MS-II, respectively. According to equation (5),
the ratio of the two subhalo numbers is given by

NMS(ν)

NMS-II(ν)
= fMS(ν)

fMS-II(ν)
, (A1)

where fMS(ν) and fMS-II(ν) are the completeness functions for the
two MS. Because of the higher resolution of MS-II, we can recover
the full subhalo population down to lower ν values than in MS.
Thus, this expression can be rewritten as

fMS(ν) = NMS(ν)

NMS-II(ν)
, as long as fMS-II(ν) ∼= 1. (A2)

This holds down to the lowest value of ν for which MS-II resolves
all substructures.

Fig. A1 shows the ratio between the subhalo number counts in the
MS and MS-II simulations, for two samples of haloes in the mass
range (0.69–1.1) × 1013 h−1 M� and (0.6–1.2) × 1014 h−1 M�. The
lower mass haloes are resolved in MS with ∼104 particles while the
higher mass ones are resolved with ∼105 particles. We can see that
resolution effects become important at ν ≈ 0.6 and ν ≈ 0.3 for haloes
resolved with 104 and 105 particles. By increasing the number of
particles by a factor of 10, we would resolve the subhaloes down
to approximately two times lower values of ν. Since MS-II has
125 times higher resolution than MS, it recovers all the subhaloes
down to ∼4 times lower ν than MS, which, according to the figure,
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Figure A1. Method A for computing the completeness function. This
method compares the subhalo number count, N (ν), in haloes of a given
mass resolved at two different resolutions in MS and MS-II. The two data
sets consist of host haloes in the mass range (0.69–1.1) × 1013 h−1 M� (red
filled circles) and (0.6–1.2) × 1014 h−1 M� (blue filled triangles). These
are resolved in MS with (0.8–1.2) × 104 and (0.7–1.3) × 105 particles,
respectively. The same haloes are resolved in MS-II with 125 times more
particles. The two solid lines represent the completeness function fit given by
equation (6). The error bars represent the 1σ uncertainty in the determination
of the NMS(ν)/NMS-II(ν) ratio.

corresponds to NMS(ν)/NMS-II(ν) ∼ 0.1. This means that we can
use equation (A2) to compute fMS(ν) as long as fMS(ν) � 0.1.

We find that the completeness function given by equation (6)
gives a very good fit to the NMS(ν)/NMS-II(ν) ratio. This is illus-
trated by the solid lines in Fig. A1 for haloes resolved with 104 and
105 particles. The fit is a good match to the completeness function
for ν values for which f(ν) ≥ 0.2. At lower ν values, the complete-
ness function has a more complex behaviour that is not captured by
the two parameter expression that we use. Therefore, we limit our
analysis and fits to regions with f(ν) ≥ 0.2.

Method A for estimating the completeness function is very simple
and straightforward but its simplicity hides a major obvious disad-
vantage: it requires a second simulation with ∼100 times higher
mass resolution than the original. To overcome this limitation, we
introduce a different method for computing the completeness func-
tion which relies on a single simulation. We use method A to show
that this method B gives the same results.

A2 Method B: comparing LM and HM haloes
in the same simulation

In a cosmological simulation, subhaloes are resolved to lower values
of ν in larger haloes. Thus, if we assume that the true number of
subhaloes as function of ν, Ñ (ν) (see equation 5), is self-similar
amongst host haloes of different mass (see Fig. 9 and Wang12),
then we can derive the completeness function by comparing the
substructure ν function in LM versus HM haloes.

To illustrate this method, we consider two halo samples: an LM
and a HM sample. Furthermore, we choose the HM haloes to be
� times more massive than their LM counterparts. In the limit
when Ñ(ν) is independent of host halo mass,3 the ratio between the

3 In reality, Ñ (ν) varies slowly with host mass. To mitigate this effect, we
only compare halo samples that differ in mass only by a factor, � ∼ a few.

number of substructure in the LM and HM samples is given by

NLM(ν)

NHM(ν)
= fLM(ν)

fHM(ν)
, (A3)

where fLM(ν) and fHM(ν) are the completeness functions of the
two halo samples. Using the f(ν) expression from equation (6), the
above relation becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 νLM
0 ≤ ν

1 + αLM ln
(

ν

νLM
0

)
νHM

0 ≤ ν < νLM
0

1+αLM ln

(
ν

νLM
0

)

1+αHM ln

(
ν

νHM
0

) νLM
0 e−1/αLM ≤ ν < νHM

0

0 ν < νLM
0 e−1/αLM

,

(A4)

where (νLM
0 , αLM) and (νHM

0 , αHM) are the completeness function
fit parameters corresponding to the LM and HM halo samples,
respectively. This expression can be simplified further given that
haloes in the two samples are resolved with N LM and N HM =
�N LM particles. This, combined with the dependence of the fit
parameters, ν0 ∝ N nν and α ∝ N nα , found in Section 3.1, results
in

νHM
0 = νLM

0 �nν and αHM = αLM�nα . (A5)

Using these expressions reduces equation (A4) to 4 parameters:
νLM

0 , αLM, nν and nα . These fit parameters can be found using the
following algorithm.

(i) Select a value for the mass ratio, � ∼ a few.4

(ii) Make an initial guess for the parameters nν and nα .
(iii) Select as the LM sample all haloes in a chosen mass range.

The HM sample then contains all haloes � times more massive
than this. Using these two samples find the best-fitting values of the
parameters νLM

0 and αLM.
(iv) Repeat the previous step for different host halo masses in

order to obtain the parameters νLM
0 and αLM for a wide range of

halo masses.
(v) Use the dependence on mass, and therefore on host particle

number, N , of νLM
0 and αLM found in the previous step to find new

values for nν and nα .
(vi) Check if nν and nα have converged to the values used as the

input for step (iii). If the values have converged, stop the iterative
procedure. Otherwise, repeat steps (iii) through (vi) using the latest
values for nν and nα .

In Fig. A2, we illustrate the use of method B to compute the
completeness function for the three N-body simulations used in this
study. The figure shows the ratio, NLM(ν)/NHM(ν), of the mean
number of subhaloes in the LM and HM halo samples. We plot this
ratio for LM haloes resolved with ∼104, ∼105 and ∼106 particles,
with masses given in Table A1. To minimize the variation of the
subhalo number counts with mass, we take the HM sample to be
� = 3 times more massive than the LM one. The fit given by
equation (A4) is shown as a solid curve for each of the data sets.
We can see that it gives a very good fit for NLM(ν)/NHM(ν) ≥ 0.4,

4 We have checked that the mass ratio, �, of the LM and HM samples does
not affect the fit parameters. While we recommend using � = 3, we have
checked that similar fit parameters are obtained for 2 ≤ � ≤ 10. Using larger
values of � introduces artefacts because of the mass dependence of N (ν),
while using smaller values results in very noisy fit parameters.
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Figure A2. Method B for computing the completeness function for the MS
(top panel), MS-II (centre panel) and WMAP7 (bottom panel) simulations.
The method uses the ratio of the subhalo abundance, N(ν), between LM and
HM halo samples. The red, blue and green lines and symbols correspond
to LM haloes resolved with (0.8–1.2) × 104, (0.8–1.2) × 105 and (0.8–
1.2) × 106 particles in each of the three simulations. The halo mass ranges
used for each data set are given in Table A1. The solid curves represent
the fit given by equation (A4) to each data set. The dashed lines show the
inferred completeness function, fLM(ν), for the LM sample. The error bars
represent the 1σ uncertainty in the determination of the NLM(ν)/NHM(ν)
ratio.

Table A1. The mass range of haloes resolved with N = (0.8–1.2) ×
104, N = (0.8–1.2) × 105 and N = (0.8–1.2) × 106 particles in the
MS, MS-II and WMAP7 simulations. These halo samples were used to
obtain the results presented in Fig. A2. We only give the mass range
for the LM halo sample, since haloes in the HM sample are always
� = 3 times more massive than these.

Simulation N ∼ 104 N ∼ 105 N ∼ 106

MS (0.68–1.03) (0.68–1.03) –
× 1013 h−1 M� × 1014 h−1 M�

MS-II (5.5–8.3) (5.5–8.3) (5.5–8.3)
× 1010 h−1 M� × 1011 h−1 M� × 1012 h−1 M�

WMAP7 (5.0–7.5) (5.0–7.5) (5.0–7.5)
× 1010 h−1 M� × 1011 h−1 M� × 1012 h−1 M�

which corresponds to values fLM(ν) ≥ 0.2, the same limit for which
Method A is also accurate.

Fig. A2 shows another important result. The completeness func-
tion has the same parametric form, given by equation (6), for all
the three simulations used in this study. This is a reflection of the
fact that equation (A4) gives a very good fit to the NLM(ν)/NHM(ν)
ratio for the three simulations: MS, MS-II and WMAP7.

Computing the completeness function using method B has the ad-
vantage of not requiring a simulation with a higher mass resolution
as in method A. This opens up the possibility of quantifying how
numerical effects in any given simulation alter the mean subhalo
abundance. We illustrated this for MS-II and WMAP7 for which
we do not have a higher resolution version and so we cannot apply
method A. The main limitation of method B stems from the assump-
tion that the mean subhalo abundance is self-similar amongst host
haloes of different mass. As we found in Section 5, this condition
is satisfied for substructures in DM-only simulations, but it will not
be the case when adding in baryons. The complex feedback pro-
cesses involved in galaxy formation affect haloes of different mass
in different ways (e.g. Sawala et al. 2013, and references within).
This breaks the self-similar behaviour of the subhalo abundance.

A P P E N D I X B : C O M PA R I S O N O F RO CKSTAR

A N D SUBFIND S U B H A L O A BU N DA N C E S

Here, we investigate if the difference in the subhalo numbers be-
tween our analysis and previous studies can be explained by the
use of different halo finders. For this, we compare the galactic sub-
halo abundance as found by ROCKSTAR (Behroozi et al. 2013) and by
SUBFIND (Springel et al. 2001), with the latter used in the studies of
Wang12 and BK10.

We apply the same analysis steps to SUBFIND subhaloes as we did
in the case of ROCKSTAR: identify the number of missing substructures
due to resolution effects and estimate the true subhalo abundance,
following the procedure described in Section 3. The resulting sub-
halo abundance for MW-mass hosts is well described by equation
(9) with best-fitting parameters: a = −3.18, ν1 = 0.333, b = 6 and
νcut = 0.78 (for subhaloes found within a distance R200 from the
host). Fig. B1 compares the subhalo abundance found with ROCK-
STAR and SUBFIND, showing that for ν � 0.3 both halo finders get the

Figure B1. Comparison of the subhalo abundance of galactic mass haloes
identified with SUBFIND versus that found with ROCKSTAR. The points give the
NSUBFIND(>ν)/NROCKSTAR(>ν) ratio as measured in the MS-II. The solid
curve shows the ratio between the best-fitting function (see equation 9) to
the SUBFIND and ROCKSTAR subhalo abundance.
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same number of substructures, up to a few per cent difference. For
higher ν, SUBFIND identifies ∼10 per cent fewer substructures. Given
that such massive subhaloes are resolved with �103 particles, the
difference is likely due to substructures found close to the centre of
the host that are identified by ROCKSTAR, which is a phase-space halo
finder, and not by SUBFIND, which uses only real-space information.
Since Wang12 computed the subhalo abundance only in the interval
0.1 ≤ ν ≤ 0.5, the figure clearly shows that the use of ROCKSTAR in-

stead of SUBFIND cannot on its own explain the ∼20 per cent higher
subhalo abundance found in our study. Similarly, the significantly
lower value of the subhalo abundance slope, a, found by BK10 is
not due to the use of a different halo finder.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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