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Abstract

The elastic contact problem, as implemented in some commercial software
such as ANSYS, depends on the user choice of some parameters such as normal
contact stiffness, penetration limit and contact algorithms. This work inves-
tigates the artificial neural networks (ANN) potential to predict the value of
some parameters, avoiding the trial-and-error procedure to determine these val-
ues. Contact problems based on simple problems are used to train the neural
network, so it can predict the normal contact stiffness for more complex prob-
lems. Some contact examples are evaluated, including the small end connecting

rod contact problem, of great importance in automobile industry.
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1. Introduction

Systems with several parts interacting together are subject to mechanical
contact. The contact problem is nonlinear since the contact region is not known
beforehand, and the boundary conditions may change during the analysis. A
limited number of contact problems is sufficiently well behaved to have an an-
alytical solution, such as the Hertz contact [10]. For this reason, contact prob-
lems are solved with numerical techniques in general. The most used tech-

nique to treat structural nonlinearities is the Finite Element Method (FEM)
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[1, 4, 13, 14, 16, 19, 23, 25] while the Boundary Element Method (BEM) has
been recently employed in contact problems [3, 7, 17, 18], just to cite a few of
the recent works.

There are several methods adapted to study the contact problem. In the case
of FEM, the use of constrained minimization methods such as the Augmented
Lagrangian Method is widely used to model the contact problem. In this case,
the constraints of the minimization problem have physical equivalence, as non-
penetration conditions (inequalities) or adherence (equality) [20, 22].

The definition of the contact parameters (normal contact stiffness, pene-
tration limit, etc) and the contact algorithms in commercial software are very
conditioned to the user experience with contact problems, where experimenta-
tion is the usual form to choose the contact parameters. An alternative used
in this work to avoid experimentation is to employ artificial neural networks
(ANN), where some results of the contact solution are used to estimate the
contact parameters. Some parameters that can be used in the ANN are the
penetration level with the normal contact stiffness. The ANN are an important
analysis tool, since they can interpolate a complex input/output data set [8, 9].

There is limited application of ANN in contact problems: in [2], an ANN
is used to interpolate the contact parameters associated to a friction factor in
multistage forging processes. In this type of process, the tools have restrictions
in the allowed maximum stresses, hence the friction factor is an important design
factor. The training set is composed by the calculated friction factor and its
dependencies in the contact interface for each contact node in a finite element
simulation. ANN are used to recover contact parameters of the applied force
(both tangential and normal) and indenter width from tactile sensors in [5].
The training data are obtained from contact models constructed and solved
with FEM. In [26], an ANN is used to map an imperfect tip shape for spherical
indentation to the perfect spherical indenter, based on force-depth curves. In
[28], a radial basis ANN is employed to obtain a model between some contact
parameters such as contact pressure and sliding velocity and the corresponding
wear coefficient. The ANN was trained from wear tests using the pin-on-disc
technique.

One of the motivations of this work is the study of an automobile connecting
rod small end contact problem. This is an essential component in intern com-
bustion engines due to the role in the transformation of the combustion energy
in rotative movement, through the piston-crankshaft connection. The connect-
ing rod is subjected to elevated cyclic loads, with high compressive stress due to
the gas expansion, and high lateral tensile due to the inertia. Thus, the dura-



bility of this component is of utmost importance in engines [21]. Results of the
contact region behavior may not be consolidated even for well known systems,
as in combustion engines components. In [24], the results of the contact pressure
in the connecting rod small end are not conclusive due to the discrepancy in the
solutions calculated from different authors. Reference [15] has further improved
the work in [24], where the stress concentration at the small end depends on
a proper combination of the initial clearance between the small end and the
gudgeon pin, the applied load and the material properties.

The objective of this paper is to present a methodology to the estimation
of contact stiffness, one of the main parameters of a contact problem in the
commercial software ANSYS [1]. An ANN is employed to obtain the estimation
of the contact stiffness based on the contact pressure and maximum penetration
between elements. Several examples were analyzed to illustrate the benefits of
the proposed approach.

The remaining of this paper is organized as follows. In Section 2 we present
an introduction to the frictionless contact problem, and some considerations
about the main contact parameters (normal contact stiffness, penetration limit,
the Augmented Lagrangian Method contact algorithms). Section 3 contains the
mathematical definition of the back-propagation ANN. Section 4 explains the
methodology of the estimation of the normal contact stiffness. The results of
the estimation of contact parameters using ANN are in Section 5. The benefits
of the proposed approach are further detailed in Section 6. The concluding

remarks are contained in Section 7.

2. Contact problem

We present in this section the main aspects of the contact formulation using
the Augmented Lagrangian Method and how this method is implemented in the
ANSYS software. This section is restricted to the essential ideas to allow the
reader to understand the role of the main contact parameters that the ANN

should estimate in a contact analysis using this software.

2.1. Introduction to the static contact problem
The contact problem can be formulated as a constrained minimization prob-
lem, where the objective function to be minimized is the total potential energy

II(u) of the bodies in contact, and the constraints are given by non-penetration



conditions between the bodies. Thus, the problem can be stated as:

min  II(u)

subject to  g;(u) <0, j=1,---,n (1)

where u is the optimization variable (displacement vector) and g;(u) represents
one of the n non-penetration constraints that can be defined as:

e g;(u) < 0: the bodies are separated,;
e g;(u) = 0: the bodies are in contact;
e g;(u) > 0: there is penetration between the bodies.

The total potential energy II(u) for the contact problem between two elastic
bodies subjected to small deformations and small displacements (static prob-
lems) can be described as:

e =3 2 Y e 0 ) () L
(2)

where K; is stiffness matrix, u; is the displacement field, f; is the external force,
i represents an elastic body (i = A or i = B) and t denotes matrix transposition.
For convenience, these variables are simplified to K, u e f from now. Thus, the

total potential energy is given by:
1
II(u) = §utKu — ffu (3)

Several constrained minimization algorithms can be used to solve the prob-
lem of Eq. (1) such as the Penalty Method, the Lagrange Multipliers Method
and the Augmented Lagrangian Method. The results presented in this paper
are based on the Augmented Lagrangian Method according to the ANSYS im-
plementation. This leads to the requirement of setting some contact parameters
that are described in the next subsections together with a brief description of

the Augmented Lagrangian formulation.

2.2. Augmented Lagrangian contact algorithm

The Augmented Lagrangian Method is considered as a hybrid method of La-
grange Multipliers method and Penalty method. For more details about these
algorithms, refer to [12] for instance. The contact constraints are considered in
this formulation using penalizing coefficients and Lagrange multipliers, penaliz-
ing the non-penetration restrictions violations in the same form of the Penalty



method, and solving the constrained minimization problem through the solu-
tion of sequential unconstrained minimization problems with the updating of
Lagrange multipliers in the solution process.

The Augmented Lagrangian function is given by:

Lo = TI(1) + Alg(u) + %r[g(u)]i @)

where [z]4 represents max(0,x), r is the penalizing coefficient and g(u) =
[g1(u), g2(u), ..., gn(u)] is the constraint vector and A is the Lagrange mul-
tipliers vector. It is easy to verify that the Augmented Lagrangian function
incorporates a penalization term and a Lagrange multiplier term.

The gradient of the Augmented Lagrangian function is given by:
VLaum = VII(w) + X'Vg(u) + r[g(w)]4 Vg (u) (5)

which allows to verify that at the optimum point u*, the penetration restriction
fulfills g(u*) = 0. In this case we have:

V Laum = VII(u*) + X'Vg(u*) = 0,Vr (6)

which satisfies the Karush-Kuhn-Tucker conditions [12]. Hence, the penalizing
coefficient is not required to reach excessive magnitude, since r has no influence
in the optimality condition V Ly, = 0. This is a recognized advantage of the
Augmented Lagrangian Method over the classical Penalty Method.

The solution of the contact problem formulated as the minimization problem
of Eq. (1) using the Augmented Lagrangian involves the minimization of the
Augmented Lagrangian function of Eq. (4). In this case, the penalty coefficients
and the Lagrange multipliers are updated in order to achieve the solution. The
penalty term leads to a stiffness term, affecting the stiffness matrix, and the
Lagrange multiplier term affects the load vector. This can be verified through
the second derivative of the Eq. (5). In this case, the penalty coefficient can
be interpreted as the normal contact stiffness, named in ANSYS by the normal
contact stiffness K,,. The contact penetration constraints can also be related
to a specific parameter called TOLN. These two parameters are described in
further subsections.

The contact problem solution using these concepts involves successive min-
imization of the Augmented Lagrangian function. This reflects in a new equi-
librium equation based on the null gradient condition and in penalty coefficient
and Lagrange Multipliers updating in each iteration.



In ANSYS [1], the contact pressure P in the Augmented Lagrangian Method

is defined by:
0 ) 0
p= | s @
Kng+ Xit1, if g>0
and the multiplier \;y; is stated by:
{ \i+ Kng, if gl >TOLN
Ait1 =

) (8)
Ais if |g|<TOLN

where ¢ denotes the specific iteration. If the penetration g is not superior to the
penetration limit, the Lagrange multipliers will not be updated.

Equations (7) and (8) reflects the ANSYS penalty coefficient and Lagrange
Multipliers strategies of updates, featuring the specific software implementa-
tion. The contact problem can be incorporated in the potential function, by
adding the contact terms in the main diagonal of the global stiffness matrix in
the case of the Augmented Lagrangian Method. These terms are adjusted by
the penetration level of each iteration in the finite element analysis. Other con-
tact algorithms, as the Lagrangian multiplier method, reorganizes the stiffness

matrix in order to incorporate the Lagrange multipliers.

2.3. Normal contact stiffness (K,)

The normal contact stiffness is one of the most important parameters in
the contact problem, since it is responsible for the allowed penetration level of
the bodies in contact. In ANSYS, the normal contact stiffness is selected by
the user in two possibilities: 1) as a stiffness factor k,, which acts as a scale
parameter of the contact stiffness K, or 2) by specifying the magnitude of the
contact stiffness K, directly. Usually, the determination of the correct value of
this parameter for each contact problem is not evident, and it is more intuitive
to use the scale factor k,, in order to regulate the level of K,,. ANSYS calculates
the value of K, through some parameters as the Young modulus, the contact
area, and the scale factor k.

For high values of the normal contact stiffness, there will be a small pene-
tration. However, values too large can cause numerical ill-conditioning of the
stiffness matrix. It is desirable to find an appropriated normal contact stiff-
ness so the final penetration is small and does not influence the analysis result

negatively.

2.4. Penetration limit (TOLN)
Ideally, there should be no penetration between the contact bodies, because
it characterizes a violation of the physics restrictions. Nevertheless, the most



usual numerical techniques in the contact problem solution, such as penalty
based methods, must imply in small penetration levels. The penetration limit
is employed to quantify the acceptable penetration level of the contact bodies
conjointly to the normal contact stiffness.

The TOLN parameter is associated to the surface normal direction, and it
depends on the depth of the finite element adjacent to the contact element. The
depth is defined by h and is exemplified in Figure 1. The allowable penetration
TOLN is the product of the penetration limit factor FTOLN (defined by the
user) by the average depth h of the adjacent finite element. If penetration
is higher than the established limit, the solution is considered inappropriate.

Alternatively, the desirable TOLN value can be specified directly by the user.

Finite element

dept / Contact element
\4 hI

Figure 1: Definition of the element depth h.

The use of the FTTOLN factor can be more advantageous than specifying
a maximum level of penetration. For coarse meshes with larger finite element
size, the calculated penetration with FTOLN will be proportionally larger.
For refined meshes, with reduced finite element size, FTOLN will generate a
reduced level of penetration.

3. The back-propagation ANN

The study of the ANN is inspired in the functioning of the human brain,
which is very efficient to process information. Amongst some characteristics,
high-complexity, non-linearity and parallel processing are brain features. A
neuron is capable of realizing complex operations like pattern and images recog-
nition and is capable of learning from its environment [9].

An ANN is a system made by numerous simple structure units called neu-
rons, arranged in a layered structure. Particular properties of the ANN are
processing information in parallel and learning by experience feature, which al-
lows the ANN to re-utilize the acquired experience. The ANN can be trained



to play a specific function through the adjustment between the neurons con-
nections. The neurons receives the information from several sources, then they
combine and propagate the information forward in the network.

The back-propagation ANN is one of the main used algorithms in multilayer
networks. Back-propagation ANN can use nonlinear activation function in the
neurons, allowing a better model to be obtained with less neurons per layer.
Also, a number of hidden layers is present, permitting the network to execute
more complicated tasks. The higher number of interconnections between the
neurons, the higher the complexity of the network, which may provide a better
interpolated model. Nevertheless, it becomes more difficult to describe the net-
work behavior mathematically. Figure 2 represents a typical back-propagation
ANN. The usual notation to the locations of neurons (or layers) of the ANN
considers the neuron ¢ is left to neuron j, which is left to neuron k.

o @(vi1)

Kl Vins®
eSO

) layer p(vk2) output
input layer
layer

Figure 2: Scheme of the a back-propagation ANN.

The variables in Figure 2 are:

e ¢; =[q1, g2,-.., q: neuron input vector. It can be the network input or
another neuron output;

wj; = [W1, Wa,..., Wy]: neurons synaptic matrix (weight matrix). The

notation wj; associates the output of neuron 7 with the input of neuron j;
e v;: summation of all weights multiplied by the input;
o ©(v;): activation function;
e y;: neuron output.

The training rule is based on the minimization of the network error [9]. It
is desirable to minimize the mean square error (MSE) of the network and the
expected output of the training set in function of the optimization variables
(ANN weights wj;). The error is calculated only for the most external layer,
therefore a rule that update all the weights for all layers must be implemented.



The back-propagation learning rule consists of two steps: a forward step, where

the ANN weights are fixed and the input goes through the entire ANN. Then,

a backward step is executed, using a learn rule to update the ANN weights.
The error ej(n) of the output neuron j in iteration n is given by:

ej(n) =t;(n) —y;(n) (9)

The MSE is defined by the sum of all the quadratic errors § j( n) for all the
M neurons of the output layer, for every N input of the training set. The MSE
is defined as:

N M
e(n) = 2;, Z: S e2n) (10)

From [9], applying the chain rule, we obtain the following relation for the
output layer:

% = —€;j(n)¢@} (vj(n)yi(n) = d;(n)yi(n). (11)

where ¢ (vj(n)) is the derivative of the activation function with respect to v;(n)
and J;(n) is the local gradient of neuron j in iteration n [9].

To the hidden layers neurons, it is clear that there is no expected output. In
this case, the hidden layer neuron error is calculated recursively in function of
the local gradient of the external layers. This is the main characteristic of the
back-propagation ANN. The local gradient ¢;(n) for a hidden neuron is defined
as [9]:

§j(n) = @ (vi(n Z S (n)wy; (n (12)

The weight update Awj;(n) can be expressed as:

de(n)

Auwyi(n) = ydwi(n = 1) + (L= )ngo-

(13)

with 0 < v < 1. v is called as moment term, and 7 is the learning rate, that
is updated in each iteration by an empiric rule defined in [6]. The use of the
learning rate and moment term can boost the ANN training convergence [9].

The moment term has two roles: it tends to accelerate the error decreasing
when the descent direction is stagnated, when Aw;; assumes the same signal
(plus or minus) in successive iterations. This term has also a stabilization effect,
when Awj; oscillates between positive and negative values [9, 11, 27].



4. Contact parameters estimation methodology

The normal contact stiffness factor is the most important parameter in a
contact analysis, since its value influences the penetration level between the
contact bodies. Higher K, will result in lower penetration, but numerical ill-
conditioning may arise. Higher values of the normal contact stiffness will also
lead to an increase in the contact pressure, but only until the contact pressure
reaches a K. From this point, the contact stiffness no longer affects the contact
pressure.

Adjusting K, requires some trial-and-error estimate, which can require com-
putational and analyst time. The dimensions of the problem (2D or 3D) may
increase the difficulties to determine the normal contact stiffness. It is clear that
the choice of the contact stiffness is highly related to the analyst experience in
solving different contact problems.

A model that provides K, (or k,) given an acceptable estimate of the pen-
etration between the bodies is highly desirable.

4.1. 2D simplified models to predict 3D contact stiffness

In this work, the estimation of the contact stiffness can be performed by sim-
plified models that captures the general aspects of the contact problem. The
general dimensions of a 3D problem can be given by two views of the compo-
nent: the frontal and the lateral view. The frontal view can be discretized in a
2D mesh, representing the main aspects of the original contact problem. This
2D contact problem is then solved and the maximum penetration (gmq.) and
the maximum contact pressure variation (AP,,,.) are obtained. The contact

pressure variation is determined according to:

Py — P

AP, =
P

(14)
where i is a specific configuration where the contact pressure was taken as shown
in Figure 3.

It is evident that the calculated values of gmar and AP, from the 2D
contact problem do not represent accurately the 3D problem results. Thus, in
order to improve the estimation, the lateral view is used to calculate a correction
factor f to put these parameters closer to the expected values of the original
3D problem.

The correction factor f is obtained from the maximum penetration gp found
in the lateral view divided by the maximum penetration g4 of the frontal view,

10



o) 4

Figure 3: Contact pressure behaviour.

assuming the same values of k,, in both models, i.e.,

9B
== 15
ga (15)

Using the simplified models, a data set of contact results is assembled. The
maximum penetration and the maximum contact pressure variation are used to
train an ANN. Both inputs are multiplied by the correction factor f before any
action is performed, as illustrated in Figure 4. Hence, the estimate of k,, for the

original 3D contact problem is the output of the network.

g/QD, i g3D
max ) max a ng
AP2D f AP3D ANN —>
max ) max ’

Figure 4: Representation of the ANN with the correction factor.

With this formulation it is not necessary to solve the original 3D contact
problem to find an estimation of the normal contact stiffness factor. The so-
lution of both 2D contact problems represents a significant reduction in the
computational time to find the normal contact stiffness factor.

Let us remark that the ANN can be used to estimate the normal contact stiff-
ness using the maximum penetration and the maximum contact pressure varia-
tion directly from the 3D contact problem. Nevertheless, to build a training set
from the original contact problem can demand huge amounts of computational
time.

11



5. Results

The potential of the ANN to determine the normal contact stiffness factor is
evaluated in this section. Some 3D examples were approximated by 2D contact
problems in order to generate data for training the ANN.

The examples consider an isotropic material with Young modulus £ = 210
GPa and Poisson ratio v = 0.3 and the plane stress hypothesis.

The maximum penetration and maximum contact pressure variation are used
as inputs for the back-propagation ANN, providing the normal contact stiffness
factor at the ANN output. The chosen training algorithm is the gradient method
with momentum [9]. The ANN architecture consists in three layers, using a

R
e
and a linear function (¢(v) = v) in the last layer. The moment term used was

sigmoide tangential activation function (p(v) = ) for the two first layers,
0.6. A validation set is used to verify the identification capabilities of the trained
ANN. The inputs of the validation set were not used during the ANN training.
It was assumed that the considered space of k,, values (0.1 < k,, < 100)
contains the representative contact solutions. The used training sets from all
examples can be found in Appendix A.
The relative error is defined as:

error — kn(network) - kn(empected) (]_6)

kn(empected)

where K, (network) 15 the normal contact stiffness factor predicted by the ANN,
and Ky (czpected) 18 the real value of the parameter.

5.1. T-structure

Figure 5 represents a block over a T-structure. There is a uniform distributed
surface load on the block of 92.69 MPa (total of 10000 N). The structure was
modeled with 13926 nodes and 2760 finite elements (20-nodes each). Only one
quarter of the structure was modeled due to the symmetry of the problem.

5.1.1. Contact stiffness estimation

Two simplified 2D models were used: 1) the frontal view to generate the
training data, and 2) the lateral view to calculate the correction factor f. Figure
6 is composed of the frontal view (left) and the lateral view (right). The applied
load is 92.69 MPa.

The surface load of lateral view model is also 92.69 MPa. Since the meshes
of the two problems are uniform (same finite element size), the normal contact
stiffness can be considered equivalent. However, the penetration results are dis-
tinct for each model. The location of the maximum penetration is also indicated

12



Figure 5: Finite element mesh - T-structure
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Figure 6: T-structure contact problem. Left: frontal view. Right: Lateral view.

in Figure 6 (points A and B). In this example, the correction factor obtained is
f=39.

13



5.1.2. Parameter identification using ANN

Table A.8 shows the training set of the ANN without the factor f. The
ANN of this example has 200 neurons in the first layer, 200 neurons in the
second layer and 1 neuron in the third layer. The ANN was trained with 10000
iterations. Figures 7(a) and 7(b) illustrates the ANN training for each input.
One can observe that for k,, < 0.5, the ANN does not associate the penetration
and contact pressure variation with its normal contact stiffness factor.
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(a) Penetration (b) Contact pressure variation

Figure 7: ANN 1 training results.

Table 1 illustrates the ANN pattern classification capability for the validation
set, where a good correlation between identified and used k,, is attained.

Table 1: ANN 1 parameter estimation - Validation set.

9maz APmaa En(network)  Kn(expected) error(%)
6.4527 x 106 1.5734 x 103 3.57 3.5 1.93
2.6675 x 10~%  3.9802 x 10~° 8.53 8.5 0.40
1.7463 x 1076 1.8929 x 10> 13.30 13 2.28
6.8904 x 10~7  3.3383 x 10~ 30.95 33 —6.21
4.1361 x 10~7  1.2487 x 106 56.42 55 2.58
3.3957 x 10~7  8.4687 x 107 69.97 67 4.43

Table 2 shows the identification potential of the ANN to predict the normal

contact stiffness factor of the 3-dimensional contact problem. It is important
to remark that the ANN was trained from data of the 2-dimensional problems.

The largest error is given for k,, = 3, close to the limit range of the training set.

14



Table 2: Extrapolation to the 3D problem - ANN 1.

9maz APmaa kn(network)  Kn(ezpected) error(%)
7.5015 x 107°  7.6508 x 1072 1.04 1 3.98
2.6671 x 107°  1.4517 x 10~2 3.56 3 18.62
1.6314 x 10~°  6.4407 x 10~3 5.78 5 15.66
8.3043 x 10~%  2.0133 x 10—3 11.40 10 14.04
4.1835 x 1076 3.8881 x 10—° 20.50 20 2.52
2.1007 x 106 1.2341 x 102 41.02 40 2.56
1.4031 x 10=6  7.0955 x 10~6 65.74 60 9.56
1.0536 x 10=6  5.1661 x 10~6 85.48 80 6.85
8.4363 x 10~7  4.2177 x 10~6 99.10 100 —0.90

5.2. Elastic sphere in contact with rigid surface
Figure 8 represents a 3-dimensional contact problem of an elastic sphere in
contact with a rigid surface where an analytical solution is known [10].

Figure 8: Finite element mesh - Elastic sphere in contact with rigid surface.

The analytical maximum contact pressure is given by:

3F

2ma? (17)

Pmaz =

where P, is the maximum contact pressure, F' is the applied load and a is the
contact area and is given by:

3/3Fd 1 — v?
'8 E
The sphere has a diameter d = 20 mm and it was discretized with 135400
nodes and 32000 20-node finite elements. Due to the symmetry, only one-eighth
of the problem was modeled. The applied load is F' = 4000 N.

a =

(18)

15



5.2.1. Contact stiffness estimation
The simplified 2-dimensional problem is a “slice” of the sphere. The best
representation of this “slice” is a cylinder of infinitesimal length, and is illustrated
in Figure 9. Due to the problem symmetry, only one quarter of the cylinder is
modelled.
F

4

Figure 9: Elastic sphere contact problem - frontal view.

This problem has an analytical solution, where the maximum contact pres-

sure is given by:
2Fyp

Pmaz = "7
where L is the length of the cylinder and the contact area b is

o 2F2Dd1—l/2
b=/ I 5 (20)

Due to the plane stress hypothesis, the discretized cylinder has a unitary

(19)

thickness (L = 1 mm). Assuming that the contact pressure in the 2D model
is the same from the 3D problem, and from Eqs. (19) and (17), we obtain
Fyp = 7540.2 N. The applied force has the property to impose the same level
of contact pressure and penetration for both bidimensional and tridimensional
models.

5.2.2. Parameter identification using ANN

Table A.9 contains the data used to train the ANN. The correction factor
for this problem is f = 1.0, since it was assumed the same level of penetration
for both simplified and original contact problems.

This ANN has 600 neurons in the first layer, 200 neurons in the second
layer and 1 neuron in the third layer. The ANN was trained with 15000 itera-

16



tions. Figures 10(a) and 10(b) illustrate the ANN training process, where both

penetration and contact pressure variation are properly identified.
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Figure 10: ANN 2 training results.

Table 3 shows the ANN results of the validation set. Good agreement is
achieved between the prediction of the ANN and the expected normal contact

stiffness factor.

Table 3: ANN 2 parameter estimation - Validation set.

9max APmax kn(network) kn(ezpected) error(%)
1.2621 x 10~*  8.1723 x 10~° 3.31 3.5 —5.38
5.2058 x 1075  1.4425 x 10~° 9.03 8.5 6.24
3.4052 x 107°  6.2296 x 10~6 13.28 13 2.13
1.3421 x 1075 9.7783 x 10~7 31.58 33 —4.31
8.0538 x 1076 3.5319 x 10~7 59.98 55 9.06
6.6115 x 1076 2.3749 x 10~7 72.15 67 7.69

The identification of the normal contact stiffness factor from the original
3-dimensional problem is given in Table 4. Reasonable agreement between the
used and the identified k,, is obtained. The higher error is 14.50% for k,, = 60,
which can be considered an acceptable error for a high normal contact stiffness

factor.

5.8. Connecting-rod small end contact problem

Figure 11 illustrates the mesh of the connecting rod small end in contact
with the piston pin. The model is discretized with 86199 nodes, 7199 20-node

17



Table 4: Extrapolation to the 3D problem - ANN 2.

9maz APmaa kn(network)  Kn(ezpected) error(%)
4.2445 x 10~%  3.2344 x 10~* 0.98 1 —1.54
1.408 x 10~*  1.3296 x 10~* 3.06 3 1.95
8.4334 x 10~°  5.7434 x 10~° 5.12 5 2.36
5.6167 x 107°  2.7843 x 10~° 8.35 7.5 11.34
4.2102 x 107°  1.6343 x 10~° 11.22 10 12.18
2.8053 x 10~°  7.5752 x 10~6 15.27 15 1.77
2.1033 x 107> 4.3506 x 10—6 19.02 20 —4.91
1.0512 x 10~°  1.1218 x 10~ 43.85 40 9.62
7.007 x 1076 5.0396 x 10~7 68.70 60 14.50
5.2549 x 106 2.8538 x 107 84.95 80 6.19
4.2037 x 1076 1.8357 x 10~7 95.24 100 —4.76

finite elements and 32226 10-node finite elements. Again, only one quarter of the
problem is discretized. The pin of this model is subject to a vertical distributed
force F' = 40000 N. To simplify this problem, the lower part of the connecting
rod was not discretized.

Figure 11: Finite element mesh - connecting rod small end in contact with the piston pin.

5.8.1. Contact stiffness estimation
Figure 12 is a sketch of the 3-dimensional problem, which includes some the
dimensions of the connecting rod and the distribution of the applied force over

the pin.
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Figure 12: Connecting rod contact problem. Left: frontal view. Right: Lateral view.

The pin has a hole of diameter d = 19 mm. It is not possible to model
a hole in a pin in a 2-dimensional, and a full pin does not represent the pin
behavior correctly. Hence, a simple rule was used to add the behavior of the
original pin to the 2D model, connecting the upper pin nodes to the lower nodes
in the simplified model, as shown in Figure 13. The dashed lines illustrate the
coupling between the upper and lower pin nodes.

The coupling rule is given by:
UL = (0.0029628z,;, + 0.70231)U; (21)

where U and U are the vertical displacement of the lower and upper part of
the pin, respectively. The rule was obtained by interpolating the displacement
of the upper and lower nodes of the hole from the original pin according to the
position x,;, along the pin.

For the frontal view, the applied load used is F' = %f&)% = 2482.8 N
and for the lateral view F = 20099 — 15936 N. The correction factor f was

25.1
calculated using the contact solution at positions A and B in Figure 12. In this

problem, this value is f = 3.17.
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Figure 13: Coupling of the displacement in y direction

5.8.2. Parameter identification using ANN

The ANN data of maximum penetration and maximum contact pressure
variation are shown in Table A.10. This ANN has 100 neurons in the first layer,
100 neurons in the second layer and one neuron in the third layer. The ANN was
trained with 10000 iterations. Figures 14(a) and 14(b) illustrates the simulated
results of the ANN.

x10* <10°
8 25 T T
o Training o Training
+ Simulation + Simulation
7t i
\ ok
1N
\
\
\
o 1 8sf
8 . §
ab Y -
IR p ?
(= X 4 1 v
3t \ g \
N \
N \
2 ! 7 \
& o5 \
. \
\
1 AN o 1 o
T~ ®o- _
. %o - oma - Y Py
10" 10° 10' 10° 10" 10° 10' 10°
kn kn
(a) Penetration (b) Contact pressure variation

Figure 14: ANN 2 training results.

Table 5 shows the classification of the ANN for the validation set. The ANN

is able to identify different types of penetration and contact pressure variation
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correctly.

Table 5: ANN 3 parameter estimation - Validation set.

9maz APmaa kn(network)  Kn(ezpected) error(%)
2.0144 x 1075 1.049 x 10—5 3.56 3.5 1.70
8.2962 x 1076 1.7661 x 106 8.37 8.5 —1.53
5.4247 x 106 7.4666 x 10~7 13.17 13 1.29
2.1371 x 1076 1.1665 x 107 31.01 33 —6.02
1.2823 x 1076 3.9735 x 10~8 56.62 55 2.95
1.0526 x 10-6  2.8929 x 10~8 70.28 67 4.90

The identified k,, from the 3-dimensional problem is given in Table 6. The
ANN was able to recognize contact stiffness factors correctly for k, > 5. For
kn, <5, the difference of the simulation and the expected value of k,, is too large.
The possible reason for this behavior is that the values of g,ne. and AP, are
not, well represented in the 2D contact solution.

Table 6: Extrapolation to the 3-dimensional problem - ANN 3.

9Imax APpaz kn(network:) kn(ea:pected) error(%)
2.2387 x 1073 1.7658 x 103 1.48 1 47.75
7.7728 x 107°  1.866 x 10~2 102.72 3 3324.10
4.717 x 1075 8.4348 x 10~° 8.02 5 60.39
3.1482 x 1075 2.1417 x 10~° 7.82 7.5 4.24
2.3606 x 105  6.4776 x 106 9.59 10 —4.07
1.5732 x 10~°  7.3811 x 10~ 15.64 15 4.26
1.1795 x 10~°  5.8523 x 10~ 20.49 20 2.43
5.8903 x 1076 4.0818 x 106 43.79 40 9.47
3.9245 x 1076 2.1972 x 10~6 67.83 60 13.05
2.9424 x 1076 1.2525 x 106 85.31 80 6.64
2.3535 x 1076 8.4786 x 107 97.67 100 —2.33

6. Discussion

Figure 15 shows the solution time for several contact stiffness factors of
the connecting rod small-end contact problem. It is expected higher solution
times for higher k,, values. The analyst must find an appropriate value of

k, that implies in a small penetration and does not influence the numerical
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conditioning of the system stiffness matrix, which is traditionally done by trial-
and-error approaches. Each computer job executed to find the correct value of

k,, results in wasted computational time.

4

x10

Computational time

Figure 15: Computational time and contact stiffness factor behavior.

The use of a trained ANN allows to make a reasonable estimation of &} to
a given maximum penetration, without the inconvenient of the trial-and-error
estimation. This estimated k,, will be in some sub-optimum region, near k7,

shown in Figure 16.

A Time

LT kn(network)
t"—

"""""""" Sub-optimum region

kn kn
Figure 16: Definition of sub-optimum region.

The last consideration about the use of the ANN in the identification of
contact parameters is the training time. Since the complexity between ¢4z,
AP,q. and k,, varies for each contact problem, some training sets require more
time than others to be learned by the ANN. Also, the architecture of the ANN
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(number of layers, number of neurons per layer) is important to the computing
time. Table 7 shows the used time to train each ANN. It was used a quad CORE
i7 2.67 GHz with 8 Gb RAM.

Table 7: ANN training time.

Network — Time(s)

ANN 1 113
ANN 2 266
ANN 3 154

For the analyzed contact problems, the training time can be considered ir-
relevant compared to the time to solve a 3-dimensional contact problem, for

example.

7. Conclusions

The normal contact stiffness is one of the most important parameters of
the contact problem when modeled by finite elements. This value normally
depends on the experience of the analyst with contact problems, and this choice
is crucial to the relevance of the contact solution. A small value may lead to
a higher penetration and to a non-representative contact pressure variation. A
high normal contact stiffness will can lead to a lower penetration and to a better
contact pressure, but numerical ill-conditioning may occur.

The use of multilayer ANN to estimate the normal contact stiffness factor of
3D contact problems was discussed in this work. Some of the contact responses
such as the maximum penetration and maximum contact pressure variation were
used as input to an ANN. These data was obtained from 2D simplified models
which capture the main features of the original problem. Other types of models
could be employed as well in order to assemble a training set for the ANN,
for instance, different 3D analysis with similar geometry and loading may give
important information about the maximum penetration and maximum contact
pressure in the area of interest.

This work shows that the trained ANN were able to estimate the contact
stiffness for the original contact problem avoiding the trial-and-error method,

saving significant time in order to adjust the contact stiffness value.
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Appendix A. ANN training sets

The used training sets of the examples are listed in this section.
A.8 corresponds to the T-structure example. Table A.9 presents the training
set of the elastic sphere contact example. Finally, Table A.10 represents the

connecting-rod contact problem.

Table A.8: ANN 1 training set.

Imaz APmag kn,
1 22809 x 1073 2.3298 x 10~1 0.1
2 11264 x 1073 6.972x 1072 0.2
3 74783 x107° 25396 x 1072 0.3
4 5.6001 x 107°  9.0656 x 1073 0.4
5 44779 x 107°  1.9308 x 1073 0.5
6  3.7316 x 107°  1.4823 x 102 0.6
7 31993 x 107°  3.1793 x 1072 0.7
8  2.8004 x 107° 4.0138 x 1072 0.8
9 24903 x 107°  4.389 x 1073 0.9
10 2.2423 x 107°  4.5107 x 10~3 1
11 7.5216 x 10-%  1.9268 x 10~3 3
12 4.5252x107% 94131 x 1075 5
13 3.2369 x 10-%  5.5057 x 10~ 7
14 2.2686 x 10~ 3.01 x 1075 10
15 1.8915x 1076 21839 x 107> 12
16 1.514x 1076 14614 x107° 15
17 1.3362x 1076 1.1622 x 107> 17
18  1.1361 x107%  8.602 x 10~6 20
19 5.6857 x 107 2.3064 x 10=6 40
20  3.7916 x 1077 1.0498 x 1076 60
21 2.8442 x 1077 59728 x 10~7 80
22 22756 x 1077 3.944 x 10~7 100
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Table A.9: ANN 2 training set.

Imazx APpmaz kn
1 4.0654 x 1073 7.0726 x 1072 0.1
2 1.0788 x 1073 7.9896 x 1073 0.4
3 6.2471 x 10~*  1.6032 x 10~2 0.7
4 48713 x10~* 1.0324 x 1073 0.9
5  4.3883 x 10~*  8.5539 x 10~4 1
6 14718 x 10~* 1.1 x 107% 3
7 8.8423 x 107°  4.0868 x 10~ 5
8  5.5307 x 107°  1.6256 x 1075 8
9 44257 x107° 1.0468 x 105 10
10 3.6888 x 107> 7.2996 x 10-6 12
11 29515 x 107>  4.6915 x 10°¢ 15
12 2.6045 x 107> 3.6598 x 10-6 17
13 2214 x 1075 2.65 x 1076 20
14 11073 x 1075  6.6651 x 10~7 40
15 7.3827 x 1076 29717 x 10=7 60
16 5.5373 x 1076  1.672 x 10~7 80
17 4.43 x 106 1.0728 x 10=7 100

Table A.10: ANN 3 training set.

Imazx APpmaz kn
1 6.7188 x 1073 2.0058 x 1072 0.1
2 17573 x 1072  1.1837 x 1072 0.4
3 1.0057 x 1073 2.7316 x 1072 0.7
4 7.8252x107° 1.6358 x 1073 0.9
5  7.0437 x 107°  1.3204 x 10~3 1
6 2.3499 x 107°  1.4308 x 10~° 3
7 1.4102 x 107°  5.1195 x 10~6 5
8  8.8146 x 1076  1.9926 x 10~6 8
9 7.0519 x 1076 1.2727 x107% 10
10 5.8767 x 1076  8.8358 x 10~7 12
11 4.7015 x 1076 5.6448 x 10=7 15
12 4.1484 x 1076 4.3949 x 10-7 17
13 35262 x 1076 3.1901 x 10~7 20
14 1.7631 x 106  8.0458 x 10~8 40
15 1.1754 x 106 3.0841 x 10~8 60
16 8.8159 x 10~7  2.0281 x 10~% 80
17 7.0527 x 10~7  2.2477 x 10~8 100
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