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Abstract

A boundary element method (BEM), based on non-uniform rational B-splines

(NURBS), is used to find solutions to three-dimensional wave scattering

problems governed by the Helmholtz equation. The method is extended

in a partition-of-unity sense, multiplying the NURBS functions by families

of plane waves; this method is called the eXtended Isogeometric Boundary

Element Method (XIBEM).

In this paper, the collocation XIBEM formulation is described and numer-

ical results given. The numerical results are compared against closed-form or

converged solutions. Comparisons are made against the conventional bound-

ary element method and the non-enriched isogeometric BEM (IGABEM).

When compared to non-enriched boundary element simulations, using

XIBEM significantly reduces the number of degrees of freedom required to

obtain a solution of a given error; thus, with a fixed computational resource,

problems of a shorter wavelength can be solved.
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1. Introduction

The boundary element method (BEM) is a popular technique for find-

ing solutions to exterior problems governed by the Helmholtz equation. The

reasons for this include the BEM’s inherent ability to model infinite do-

mains without the need for artificial boundary conditions or domain trunca-

tion. The method is also popular because scatterers need only to have their

boundary meshed, rather than the complete volume. This reduction of di-

mensionally makes mesh generation a simpler process than with alternative

techniques like the finite element method.

Early development of the BEM for acoustics can be traced back to the

1960s and the work of Banaugh and Goldsmith [1] and Copley [2]. This early

work uncovered a non-uniqueness problem that arises when solving exterior

problems at discrete eigenfrequencies associated with the corresponding in-

terior Dirichlet problem. Two common methods of overcoming this are the

CHIEF [3] and the Burton-Miller formulation [4].

Much of the recent research into the BEM has been focused on short-

wave problems. Bettess [5] describes such problems as those ‘in which the

wavelength is much smaller than any other parameters in the problem’. Nu-

merical analysis of wave phenomena requires a modelling technique capable

of reproducing oscillations. A commonly applied heuristic dictates that con-

ventional BEM approaches require 10 degrees of freedom per wavelength in

each coordinate direction in order to effectively capture wave oscillations and
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obtain an ‘engineering accuracy’ (∼ 1%). A result of this is that the compu-

tational efficiency of BEM analysis of wave problems is strongly dependent

on the wavelength, λ, of such waves: for a three dimensional problem, the

number of BEM degrees of freedom required is proportional to λ−2.

Consider a 10 GHz radar wave being scattered by an aircraft—the wave

has a wavelength of 0.03 metres (relatively large for radar). Say the aircraft

has a surface area of approximately 1,250 square metres or 1.4× 106 square

wavelengths. This equates to 140 × 106 nodal variables leading to a matrix

system with 19×1015 entries. Clearly, even for this medium-wave problem, it

is imperative to find a way to reduce the nodal spacing requirement of these

simulations: enriched methods may offer a solution.

The partition-of-unity method, introduced by Bubuška and Melenk [6],

is a general framework for enriching the approximation space by including,

in the basis, some functions that have better approximation properties (for

the PDE at hand) than piecewise polynomials. For Helmholtz problems,

this is commonly achieved by the use of plane waves. Initially developed for

finite elements, this approach has been applied to the Galerkin BEM [7] and

collocation BEM [8]; the latter work demonstrated a significant reduction in

the degrees of freedom required compared to a conventional BEM scheme.

The partition-of-unity method has also been used successfully for shortwave

problems in [9–11].

In general computational engineering research, there have been attempts

to integrate computer-aided design (CAD) by taking spline-based CAD ge-

ometries and using them directly in numerical analysis; this approach is

known as isogeometric analysis (IGA) [12]. The primary advantage of using
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boundary elements for IGA (a combination referred to as IGABEM) is that

the functions used in CAD describe only the boundary. It appears that BEM

and CAD could be fully integrated. Finite element meshes can be also formed

from CAD descriptions but it is a considerably more complex process.

While IGA may be a relatively new term, the concept of using splines in

BEM is not. In 1990, Cabral et al. [13, 14] presented a BEM formulation

using B-splines for problems governed by Laplace’s equation. An isopara-

metric formulation was used and it was concluded that these functions were

well-suited to solve BEM problems.

More recently, research under the name of isogeometric BEM is increas-

ing rapidly: Politis et al. [15] presented an isogeometric BEM for problems

of potential flow; Kang and Qian [16] have presented an isogeometric bound-

ary integral method for shape optimization; Simpson et al. [17, 18] applied

the approach to elastostatic analysis, coining the term IGABEM; Takahashi

and Matsumoto [19] applied the fast multipole method to IGABEM for the

Laplace equation; Scott et al. [20] employed T-splines for elastostatic prob-

lems; Belibassakisa et al. [21] presented an isogeometric BEM method for

the ship wave resistance problem; and Heltai et al. [22] solved Stokes flow

problems in 3D with IGABEM.

Some research has already been conducted in the field of isogeometric

boundary elements for acoustic problems by Simpson et al. [23]. The results

showed IGABEM to have superior accuracy compared to conventional BEM

schemes. However, the number of degrees of freedom required to solve a

specific problem to a given accuracy is still governed by the nodal spacing

heuristic used for piecewise polynomial approximation spaces. A combined
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approach benefits from simple meshing, exact geometry and enriched approx-

imation spaces. To this end, the eXtended Isogeometric Boundary Element

Method (XIBEM) was developed by the current authors for two-dimensional

acoustic scattering problems [24]. XIBEM simulations outperformed IGA-

BEM simulations by using fewer degrees of freedom and providing solutions

of a greater accuracy.

This paper focuses on developing a collocation XIBEM for three-dimensional

acoustic scattering problems. Section 2 gives a brief overview of the required

theory for the new approach; Section 3 shows some numerical results relating

to two problems (the unit sphere and torus); Section 4 discusses these results

and draws some conclusions.

2. Formulation of XIBEM for the Helmholtz equation

2.1. Boundary integral equation

An infinite acoustic domain Ω ⊂ R3 contains a smooth scatterer of bound-

ary Γ := ∂Ω. Acoustic waves within Ω are governed by the wave equation

which, assuming exp(−ιωt) time dependence where ω is angular velocity, is

reduced to the homogeneous Helmholtz equation:

∇2φ(p) + k2φ(p) = 0, p ∈ Ω, (1)

where ∇2 is the Laplacian operator, φ ∈ C is the wave potential, and k is

the wavenumber (λ = 2π/k is the wavelength). For scattering problems, an

exterior incident wave is defined; in this work, the scatterer is impinged by

a plane wave,

φinc(p) = Ainc exp(ιkdinc · p),
∣∣dinc

∣∣ = 1, (2)
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where Ainc ∈ C is the wave’s amplitude and dinc is its direction of propaga-

tion.

To obtain the boundary integral equation (BIE), many authors use Green’s

second identity and the Green’s function for (1), a technique documented in

[25] and a number of other texts. The process yields

c(p)φ(p) =

∫
Γ

[
G(p,q)

∂φ(q)

∂n(q)
− ∂G(p,q)

∂n(q)
φ(q)

]
dΓ(q)

+ φinc(p), p,q ∈ Γ, (3)

where n is a unit-normal pointing outward of Ω (i.e. into the scatterer) and,

assuming Γ is smooth, the jump term c(p) = 1/2. G(p,q) is the Green’s

function, representing the field effect experienced at q from a unit-source at

p; in three-dimensional space it is

G(p,q) =
eikr

4πr
, (4)

where r = |p− q|.

2.1.1. Boundary conditions

In the current work, a solution to (1) is sought, subject to the general

Robin boundary condition,

∂φ(q)

∂n(q)
= α(q)φ(q) + β(q), q ∈ Γ. (5)

β ∈ C is non-zero for active boundary conditions (radiation problems) and

zero otherwise; α ∈ C is an impedance property of the scatterer. The sub-
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stitution of (5) into (3) and a small rearrangement yields

c(p)φ(p) +

∫
Γ

[
∂G(p,q)

∂n(q)
− α(q)G(p,q)

]
φ(q)dΓ(q)

=

∫
Γ

β(q)G(p,q)dΓ(q) + φinc(p), p,q ∈ Γ. (6)

2.1.2. Regularisation

Before discretising this equation, one should first consider the different

types of Green’s functions within the integrals. Both of the integrals in (6)

are weakly-singular, requiring care when r is small. While coordinate trans-

formations exist, it is worth considering the use of a regularisation scheme.

Several regularisation schemes exist that remove the singularity of the

derivative Green’s function ∂G/∂n. The regularised BIE described below,

adapted from Liu [26], makes use of the derivative of the Green’s function,

Ḡ, for the Laplace equation:

∂Ḡ(p,q)

∂n
= − 1

4πr2

∂r

∂n
. (7)

Liu’s regularisation is derived from the ability to express the jump term c(p)

as

c(p) = 1−
∫

Γ

∂Ḡ(p,q)

∂n(q)
dΓ(q), ∀p ∈ Γ, (8)

The jump term (8) can be substituted into a rearranged (6) to obtain the

regularised BIE (RBIE):

φ(p) +

∫
Γ

∂Ḡ(p,q)

∂n(q)
[φ(q)− φ(p)] dΓ(q)

+

∫
Γ

[
∂G(p,q)

∂n(q)
− α(q)G(p,q)− ∂Ḡ(p,q)

∂n(q)

]
φ(q)dΓ(q)

=

∫
Γ

β(q)G(p,q)dΓ(q) + φinc(p), p,q ∈ Γ. (9)
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In the second integral of (9), one can see that the the Laplace derivative

Green’s function is subtracted from the Helmholtz derivative Green’s func-

tion. As G(p, q)→ Ḡ(p, q) as r → 0, the Laplace derivative Green’s function

is effectively removing that singularity from the integral. In the first integral,

while ∂Ḡ/∂n is singular, φ(q) − φ(p) → 0 as q → p (the point of singular-

ity). The derivative Green’s function for the Laplace equation is O(1/r) and

the regularising term is O(r); hence, the product of the two terms is O(1)

(regular).

The Green’s function for the Helmholtz equation, G(p,q), is still weakly

singular and requires treatment by way of a coordinate transformation such

as [27]; however, for problems of perfectly reflecting scatterers (α = β = 0),

the regularisation scheme above is more effective than a coordinate transfor-

mation.

2.2. IGABEM

Conventional BEM approaches use Lagrangian shape functions to approx-

imate both the geometry of Γ and the unknown functional variables. IGA-

BEM uses the functions that describe geometries in CAD for this purpose.

While there is an increasing amount of IGA research into T-splines [20, 28],

non-uniform rational B-splines (NURBS) are still ubiquitous in CAD soft-

ware. For this reason, NURBS functions are adopted in the current work for

the geometry and function representations. A comprehensive introduction

to the subject of NURBS is given in [29].

It is desirable to decompose the NURBS surface into its component Bézier

patches—a process known as Bézier decomposition. This allows the NURBS

surface to be considered as a set of piecewise elements (as in a conventional

8



BEM approach); Bézier patches are also more computationally efficient to

use compared to NURBS surfaces. The process of decomposition is somewhat

similar to Bézier extraction described in [30].

It should be noted that the motivation to use Bézier decomposition is

primarily as it provides a set of C0 patches that can be easily implemented

into existing BEM codes that use Lagrangian elements. However, it should be

noted that this process can involve the insertion of unnecessary control points

and basis functions that removes the smoothness of the original NURBS sur-

face; this is particularly true for high-order NURBS surfaces. A code written

specifically for isogeometric analysis would ideally not use Bézier decompo-

sition. However, it will be shown that the enrichment used in XIBEM has

a much more significant impact on accuracy than the mesh refinement or

smoothness.

2.2.1. Discretisation

To simplify the description of the method, it is assumed that the scatterer

boundary can be expressed as a single NURBS surface, Γ. This surface is

decomposed into E non-overlapping elements (rational Bézier patches) of

order p. The analytical geometry on each element Γe is given by

Γe = {Fe(ξ1, ξ2) : ξ1, ξ2 ∈ [0, 1)} , e = 1, . . . , E, (10)

where Fe : R2 → R3 is a mapping using the rational Bézier functions that

are used for the geometry representation. The variation of potential, φ, over

Γe is also mapped using Fe; this can be formally expressed as,

φe(qξ) =

p∑
i=0

p∑
j=0

Re
ij(ξ1, ξ2)φ̄eij, (11)
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where qξ ≡ q(ξ1, ξ2), the element consists of a (p+1)× (p+1) grid of control

potentials φ̄eij, and Re
ij are their associated rational Bézier functions. Re

ij are

the same as are used for the geometry representation. Elements which share

geometry control points also share control potentials. The discretisation of

Γ and substitution of (11) into (9) gives the 3D IGABEM boundary integral

equation,[
1−

E∑
e=1

Le

]
φ(p) +

E∑
e=1

p∑
i=0

p∑
j=0

He
ijφ̄

e
ij =

E∑
e=1

Ke + φinc(p), (12)

where

He
ij =

∫ 1

0

∫ 1

0

∂G(p,qξ)

∂n(qξ)
Re
ij(ξ1, ξ2)|JFe| dξ1dξ2

−
∫ 1

0

∫ 1

0

α(qξ)G(p,qξ)R
e
ij(ξ1, ξ2)|JFe| dξ1dξ2, (13)

Le =

∫ 1

0

∫ 1

0

∂Ḡ(p,qξ)

∂n(qξ)
φ(p)|JFe| dξ1dξ2, (14)

Ke =

∫ 1

0

∫ 1

0

β(qξ)G(p,qξ)|JFe|dξ1dξ2, (15)

where |JFe| is the Jacobian of the mapping in (10).

2.2.2. Collocation

To find the unknown potentials on Γ, (12) is collocated at a sufficient

number of points on the boundary to yield a system of linear equations that

can be solved in a conventional fashion. In the conventional BEM, colloca-

tion points are placed on element nodes. This is not possible in IGABEM

as geometry control points can, and often do, lie off the boundary. Other

researchers use the Greville abscissae to collocate on NURBS; however, work-

ing with the rational Bézier patches, a (p+ 1)× (p+ 1) grid of points equally

spaced in the local (ξ1, ξ2) coordinate can be used.
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2.3. XIBEM

To form the extended isogeometric BEM, a linear partition-of-unity ex-

pansion of plane waves is introduced to express φ̄eij on each basis function

such that (11) is reformulated,

φ(qξ) =

p∑
i=0

p∑
j=0

Re
i,j(ξ1, ξ2)

M∑
m=1

Aeijm exp
(
ιkdeijm · qξ

)
,

∣∣deijm∣∣ = 1, (16)

where there are M plane waves in each expansion with prescribed directions

of propagation, deijm ∈ R3, and unknown amplitudes, Aeijm ∈ C.

Substitution of (16) into (12) yields[
1−

E∑
e=1

Le

]
φ(p) +

E∑
e=1

p∑
i=0

p∑
j=0

M∑
m=1

He
ijmA

e
ijm

=
E∑
e=1

Ke + φinc(p), (17)

where Le and Ke, respectively, are the same as in (14) and (15), and

He
ijm =

∫ 1

0

∫ 1

0

∂G(p,qξ)

∂n
Re
ij(ξ1, ξ2) exp

(
ιkdeijm · qξ

)
|JFe| dξ1dξ2

−
∫ 1

0

∫ 1

0

∂Ḡ(p,qξ)

∂n
Re
ij(ξ1, ξ2) exp

(
ιkdeijm · qξ

)
|JFe| dξ1dξ2, (18)

This is the discretised form of the RBIE for 3D XIBEM which can be collo-

cated in order to solve (1). Note that φ(p) is expressed in a similar fashion

to (16):

φ(pξ) =

p∑
i=0

p∑
j=0

R
e(p)
i,j (ξ1, ξ2)

M∑
m=1

A
e(p)
ijm e

ιkd
e(p)
ijm ·pξ , (19)

where pξ ≡ p(ξ1, ξ2) and e(p) is the element on which the collocation point

p lies.
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2.3.1. Choice of M

The authors use a parameter, τ , as a measure of computational efficiency.

τ is defined as the number of degrees of freedom, Ndof , divided by the area

of the scatterer, Γ, described in term of wavelengths. This can be expressed

as

τ =

√
Ndof

AΓ/λ2
=

2π

k

√
Ndof

AΓ

, (20)

where AΓ is the surface area of the scatterer.

The reader is reminded here of the heuristic requirement for τ ≥ 10. It

has been shown in two-dimensional XIBEM simulations that this requirement

is significantly reduced [24]; this paper will show that this is true for three-

dimensional problems also.

In conventional BEM simulations, Ndof is typically increased through h-

or p-refinement. In IGABEM simulations, corresponding refinements can

be made; h-refinements are made through knot refinement of the NURBS

surface before decomposition into Bézier patches. XIBEM simulations can

use the same refinement techniques as IGABEM but Ndof can also be con-

trolled by varying the number of plane waves, M , in the basis enrichment;

in this paper, this is referred to as m-refinement. A significant advantage

of m-refinement is that the original mesh can be left unchanged, using large

elements but many plane waves in the enrichment; thus, XIBEM offers a

process that has the potential to entirely circumvent the meshing process by

using an identical representation for CAD model and numerical simulation.

Other IGA methods require the mesh to be modified (usually refined) as the

complexity of the problem increases.

M can be set globally or locally, though the requirement on τ must be
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satisfied locally for all Γe. It has been found that keeping elements similar

in size and using a global value of M provides better system conditioning

than a varying local M . Despite this, accurate solutions can be obtained

using either approach. As the elements in this work are relatively uniform

in size, a global value of M is defined. Bériot et al. [31] presented methods

of distributing plane waves for geometries that do not have uniformly sized

elements.

In two-dimensional simulations, the plane wave directions, deijm, are equally

distributed points about the unit-circle. The case in three-dimensions is not

as straightforward. The authors adopt the Coulomb Force Method described

in [32] to produce an quasi-uniform distribution of wave directions about the

unit-sphere. Care is taken so that one of the wave directions is the same as

the incident wave propagation direction dinc [8]. For problems with multiple

incident waves, each direction could be included in the enriched basis; how-

ever, poor conditioning of the system matrices may arise if these directions

are very similar.

2.3.2. Collocation

The use of a plane wave expansion to multiply each rational Bézier func-

tion means that the number of degrees of freedom on each element is greater

than the number of control points; thus, a (p + 1) × (p + 1) grid of colloca-

tion points is no longer sufficient. Instead, a Z×Z grid of collocation points

equally spaced in the local (ξ1, ξ2) coordinate system is used on each element,

such that the number of collocation points is equal to or greater than the

number of degrees of freedom on that element; i.e Z2 ≥ (p + 1)(p + 1)M

(assuming a global M). The scheme can lead to an overdetermined system
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matrix; however, this scheme provides an equal spacing of points in the lo-

cal coordinate and is simple to implement. Also, Peake et al. [33] have

shown equally spaced points in the local coordinate to be the most effective

collocation scheme.

2.4. Integration and solution

For conventional BEM and IGABEM simulations in the numerical exam-

ples to follow, a 10× 10 Gauss quadrature is used on each element. In order

to capture the oscillating function on the large elements used in XIBEM,

each of which may span many wavelengths, each element is subdivided into

a set of integration cells. If it assumed that each element is square in shape,

the number of integration cells is chosen so that the sides of those integration

cells are no longer than λ/4 in length; thus, the number of integration cells,

Ncells, on an element is expressed as:

Ncells =

⌈(
2k
√
Ae

π

)⌉2

, (21)

where d·e denotes the ceiling function1 and Ae is the area of the element.

To find the potential on Γ, (12) or (17) is evaluated at a set of collocation

points. This yields a system of linear equations,[
[I − L]C + H

]{
φ
}

=
{
K + φinc

}
, (22)

where I is the identity matrix; L is a diagonal matrix containing the integrals

from (14); the matrix C results from interpolations of φ(p); the matrix H

is fully populated with integrals from (13) or (18); the vector K contains

1dxe = min{n ∈ Z |n ≥ x}
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the integrals from (15); the vector φinc contains the incident wave potentials

at the collocation points; finally, the unknown vector φ corresponds to the

unknown control potentials φ̄eij or amplitudes Aeijm, depending on whether

the simulation is computed using IGABEM or XIBEM.

In order to overcome the non-uniqueness problem, the authors choose

to use the technique employed in [3] commonly referred to as the CHIEF

method.

Diwan et al. [34] have recently suggested that CHIEF is a suitable solu-

tion to the non-uniqueness problem and is simpler to implement than dealing

with the hyper-singular integrals of the Burton-Miller formulation [4]. In ad-

dition to the complex integrals of the Burton-Miller formulation, there is

another problem that must be addressed: some NURBS meshes have loca-

tions at which control points are coincident (e.g. the poles of a sphere mesh).

At these locations, the normal n cannot be calculated, even though it phys-

ically exists. These points would typically be used for collocation, which is

possible using the conventional BIE or RBIE and CHIEF; conversely, the

Burton-Miller formulation requires the normals at collocation points for the

hyper-singular equation. If using the Burton-Miller formulation, these collo-

cation points have to be adjusted as in [23].

The introduction of the partition-of-unity enrichment leads to ill-conditioned

matrices. Therefore, the system in (22) is solved using singular value decom-

position (SVD). Though this is not necessary in all cases—the conditioning

of some matrices is suitable for a QR decomposition—SVD provides a highly

accurate solution from the BEM equations.
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3. Numerical results

In this paper, three types of BEM simulation are referred to: conventional

BEM implies a piecewise, polynomial BEM using continuous, isoparametric,

quadratic elements; IGABEM implies an isogeometric BEM using the ratio-

nal Bézier functions of a decomposed NURBS surface to describe the geome-

try and potential function over the scatterer; XIBEM refers to the extended

isogeometric BEM.

Unless stated otherwise, all the errors E are evaluated in a relative L2-

norm sense,

E =

∥∥φ− φref
∥∥
L2(Γ)

‖φref‖L2(Γ)

(23)

where φ represents the total potential (scattered plus incident) on the sur-

face of the scatterer, evaluated by numerical simulation; φref is a reference

solution calculated using an analytical solution or approximated from a con-

verged reference solution. Both sets of potentials are calculated at equally

spaced points (at least 1000) over Γ so that the norms can be calculated in

a trapezoidal rule sense.

3.1. Unit sphere

The first problem considered is a plane wave impinging a perfectly re-

flecting sphere, i.e. the boundary condition α(q) = β(q) = 0. The sphere

has radius a = 1; the incident wave is of unit amplitude and propagates in

the direction dinc = (1, 0, 0). The scattered acoustic potential φscat can be

found at any point x(r, θ) with an analytical solution [35]. θ is the azimuthal;

the polar coordinate is not required as it is an axisymmetric problem. The
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analytical solution defined:

φscat(r, θ) =
∞∑
n=0

−ι
n(2n+ 1)j′n(ka)

h′n(ka)
Pn(cos θ)hn(kr) (24)

where jn is the spherical Bessel function of the first kind, a prime denotes

its derivative, hn is the spherical Hankel function of the first kind, and Pn is

the Legendre function of the first kind. The total wave potential at x(r, θ) is

the sum of the incident and scattered potential: φ = φinc + φscat.

For the conventional BEM mesh, the cube-to-sphere mapping described

in [32] is used. The sphere is discretised initially into six elements. These six

elements are the faces of a cube with coordinates x̄, ȳ, z̄ ∈ [−1, 1]3, mapped

on the surface of the sphere. The points on the sphere (x, y, z) are found

with the mapping

x = x̄

√
1− ȳ2

2
− z̄2

2
+
ȳ2z̄2

3
,

y = ȳ

√
1− x̄2

2
− z̄2

2
+
x̄2z̄2

3
,

z = z̄

√
1− x̄2

2
− ȳ2

2
+
x̄2ȳ2

3
.

(25)

A sphere meshed using this mapping can be seen in Figure 1. To refine

this mesh, each element is simply split into a square number (4, 9, 16, . . .) of

smaller elements; a refined meshed is seen in Figure 2.

The initial IGABEM and XIBEM meshes are created by rotating a semi-

circular arc about a central axis—in this case, the z-axis is used. The initial

mesh can be seen in Figure 3, with control points that lie off the surface

of the sphere clearly visible. Figure 3 is the final mesh for XIBEM; the

rational Bézier functions of each geometry element can simply be enriched.
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Figure 1: Conventional BEM sphere mesh: initial cube-to-sphere mesh with six elements.

Figure 2: Conventional BEM sphere mesh: h-refined mesh; each face has been split into

sixteen elements.
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Figure 3: Representation of NURBS-based mesh: initial mesh for IGABEM and XIBEM.

For IGABEM, refinements can be made through knot insertion; this is similar

to how the elements are split for the conventional BEM. The refined mesh

can be seen in Figure 4. From visual examination, the refined IGABEM mesh

is not as regular as the mesh in Figure 2. Despite this, it will be shown that

the exact geometry used for integration and the rational Bézier functions

used to approximate the potential over the surface of the scatterer provide a

similarly accurate solution.

Another immediate difference that is apparent between the conventional

BEM meshes and this isogeometric mesh is the shape of the elements: the

mesh in Figure 3 has seemingly triangular elements. These elements are,

in fact, collapsed quadrilaterals; the three points along one edge are simply

coincident. In this case, these points are the north and south pole of the

sphere. For the purposes of functional approximation, the degrees of freedom

at these coincident control points are considered a single degree of freedom.

At the poles, the normal n cannot be calculated because the Jacobian is

undefined. This is not a problem for the formulation used in this work as no
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Figure 4: Representation of NURBS-based mesh: refined mesh for IGABEM; note the

pole at the top and bottom.

integration points are placed there; however, assuming collocation points are

placed there, the Burton-Miller formulation would require derivatives at this

point and so manual adjustments are required for analysis [23]. Although the

analytical value of n at the poles could be included in the current code, the

scope of the current work is to create a generic method. This makes the use

of CHIEF points rather than the Burton-Miller formulation more desirable

when using isogeometric meshes for acoustic scattering analysis.

Using the Z × Z collocation grid, described in the formulation, will give

multiple collocation points at the poles. As only one of these equations

can be used—the rest providing no additional information—there will be an

insufficient number of collocation points. Therefore, a (Z + 1) × (Z + 1)

grid is used (to ensure an adequate number of equations) with the coincident

collocation points replaced by a single collocation point.
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Figure 5: Comparison of L2 errors E of XIBEM simulations of the unit sphere problem

with M = 50.

3.1.1. CHIEF

A demonstration of the efficacy of CHIEF to overcome the nonuniqueness

problem is now given. For a sphere of radius a, the eigenfrequencies at which

nonuniqueness occurs are those corresponding to ka = nπ where n ∈ Z+.

To demonstrate the effect of CHIEF points, two sets of XIBEM simulations

were run over a range of wavenumbers using 50 plane waves in the basis

enrichment; one set of simulations used only collocation points on the surface

of the scatterer while the other set the other set considered an additional five

CHIEF collocation points (an arbitrary but small number). The error of

each simulation was evaluated using (23) and (24). The results can be seen

in Figure 5. The results verify that the XIBEM formulation with CHIEF

is stable at the irregular frequencies while simulations without CHIEF are

clearly unstable at those frequencies.
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3.1.2. Determining τ required

The number of degrees of freedom Ndof used in a BEM simulation has

a direct and significant impact on the runtime of that simulation. It is,

therefore, desirable to use as few degrees of freedom as possible whilst not

compromising on solution accuracy. The reader is reminded that, in this

work, the measure of computational efficiency is τ , defined as the number of

degrees of freedom per wavelength in each coordinate direction. For the unit

sphere, this can be explicitly expressed as

τ =
1

k

√
πNdof . (26)

It is desirable to use a method that requires only a low τ to provide results

of the required accuracy.

Simulations of the unit-sphere problem are run over a spectrum. Start-

ing with the coarsest mesh and adding more degrees of freedom through

h-refinement (for conventional BEM or IGABEM) or adding plane waves

into the enriched basis (XIBEM), simulations are stopped when the error of

that simulation is ≤ 1%. Figure 6 shows the Ndof required for a solution of

accuracy E ≤ 1%. Figure 7 shows the values of τ calculated using (26) and

the data from Figure 6.

It is prudent to note that the simulations are confined to the meshes

defined at the start of this section and shown in Figures 1–4. Due to the way

the refinements are being made, there are significant jumps in Ndof at each

refinement level. Table 1 notes the first few of these refinement levels for the

meshes used. The XIBEM mesh consists of the 26 rational Bézier functions

of the first IGABEM mesh multiplied by the plane wave enrichments; the

Ndof of the XIBEM mesh is simply then 26M .
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Figure 6: Number of degrees of freedom required to obtain 1% error with conventional

BEM, IGABEM and XIBEM simulations over a range of wavenumbers.

Conventional BEM

IGABEM

XIBEM

1 102 3 4 5 6 7 8 9 20 30
ka

2

4

6

8

10

12

14

16

18

20

τ

Conventional BEM
IGABEM
XIBEM

Figure 7: τ required to obtain 1% error with conventional BEM, IGABEM and XIBEM

simulations over a range of wavenumbers.

Table 1: Conventional BEM and IGABEM mesh data for the scattering sphere problem

Conventional BEM IGABEM XIBEM

Refinement level 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

E 6 24 54 96 150 8 32 72 128 200 8 8 8 8 8

Ndof 26 98 21 386 602 26 114 266 482 762 26 52 78 104 130
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Taking the above into consideration, the results for low ka in Figures 6

and 7 do not show the minimum Ndof and τ required for any conventional

BEM/IGABEM/XIBEM simulation of this problem, but rather those of sim-

ulations using the meshes defined in this section. This explains the plateaus

seen in the plots of Figure 6 and helps to understand the seemingly high

values of τ seen for low ka in Figure 7. The step changes in τ seen in the

latter figure correspond to the step changes in Ndof .

Despite the above, there is a clear trend seen in Figure 7: XIBEM sim-

ulations require fewer degrees of freedom than both conventional BEM and

IGABEM simulations. As ka increases, conventional BEM and IGABEM

simulations appear to need τ ≈ 10 for a 1% error while XIBEM simulations

require τ ≈ 3.

Finally for this set of simulations, the condition numbers of the sys-

tem matrices can be seen in Figure 8. In previous two-dimensional work

[24, 33, 36], it was observed that the approximation basis enrichment had a

strong detrimental effect on the conditioning of the system matrices: condi-

tion numbers > 1016 were recorded. Despite these high condition numbers,

solving these systems with SVD still provided very accurate solutions. In

Figure 8, higher condition numbers are observed for XIBEM again; however,

the conditioning in this three-dimensional problem is far better than seen

in the equivalent two-dimensional problem. This is possibly due to the en-

richment functions—the plane waves—being more sparsely oriented in three

dimensions instead of two.

As the condition numbers are lower, more efficient solvers could poten-

tially be used. However, the runtimes of simulations are dominated by the
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Figure 8: Conditioning of system matrices of simulations in Figure 6.

integration and building of the system matrices. This took at least 97% of

the total runtime of all XIBEM simulations (it took 99% on average).

3.1.3. Medium wavelength problems

While the previous results show the comparative performance of XIBEM

against conventional BEM and IGABEM schemes, the main interest of the

work lies in solving problems of shorter wavelengths. By reducing the Ndof

required to solve a certain problem to a given accuracy, this extends the

spectrum for which accurate results can be obtained with a fixed computa-

tional resource. The conventional BEM and IGABEM problems in Figures

6–8 were the largest that could be solved on the conventional desktop PC

used for this work, with the largest system matrix being 10, 686 × 10, 586

(approximately 1.8 GB of memory with complex double precision).

XIBEM simulations are run over the spectrum ka ∈ [20, 60], adjusting

M such that τ ≈ 3. The errors of these simulations can be seen in Figure 9

and the condition numbers in Figure 10. For ka = 60, the number of plane

waves was M = 396 and the system matrix was 10, 396×10, 296 in size. The
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Figure 9: L2 errors, E , of XIBEM simulations of medium wavelength simulations of unit-

sphere problem.

conditioning of the system matrices is degrading at higher k; this is caused

by the higher M required to maintainτ ≈ 3. Despite this, SVD is obtaining

a good solution as it does in the two-dimensional case.

3.1.4. Off-surface wave potential

The results displayed so far relate to the total potential on the surface

of the scatterer. However, engineers are equally, if not more, interested in

the wave potential off the scatterer. It is found that the errors in BEM

approximations of potential off the surface of a scatterer are lower than those

found on the surface. This is due to the smoothing effect of the integration in

the BIE; on the surface of a scatterer, the potential is simply found through

interpolation of the basis on each element. Table 2 displays some errors of

IGABEM and XIBEM simulations on and off the surface of the unit sphere.

The off-surface errors were calculated by evaluating the potential at points on

the surface of an imaginary sphere of radius a = 5. The increase in accuracy

when evaluating potentials off-surface is clear.
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Figure 10: Condition numbers, κ, of XIBEM simulations of medium wavelength simula-

tions of unit-sphere problem.

Table 2: Difference between L2 errors evaluated on the surface of the spherical scatterer

and in the far field.

IGABEM XIBEM

Ndof L2 surface L2 off-surface Ndof L2 surface L2 off-surface

ka = 3 482 7.0× 10−3 1.4× 10−4 78 6.9× 10−3 1.7× 10−4

ka = 7.75 1986 1.1× 10−2 3.7× 10−4 260 1.5× 10−2 1.3× 10−3

ka = 20 13946 9.2× 10−3 9.5× 10−4 1170 5.0× 10−3 7.8× 10−4
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Figure 11: Total scattered wave in the unit-sphere problem; x = 2 plane; ka=60.

Figure 11 is a plot of absolute total potential, off the surface of the sphere,

obtained using an XIBEM simulation.

3.2. Torus

The next problem to be examined is that of a scattering torus. Simula-

tions are run for the cases of an impinging wave propagating in the direction

dinc =
(

3
5
, 0,−4

5

)
. The torus specified here is a ring torus with major radius

R = 1 and minor radius r = 0.5. The geometry of the torus is shown in

Figure 12.

The reason for including this example is that it is a problem that cannot

be solved using conventional BEM or IGABEM on a desktop PC due to the

number of degrees of freedom required to obtain an accurate solution.

The isogeometric representation of the torus mesh is shown in Figure

13 and 14. It consists of 32 elements and 128 control points. Unlike the

sphere, the isogeometric representation of a torus does not have any polar
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Figure 12: Slice of torus geometry at y = 0. The torus appears to be slender in the middle

due to the perspective used.

Figure 13: Torus mesh: isometric view.

singularities. The surface area of a torus is 4π2Rr, so this torus has a surface

area of 2π2; the parameter τ for this geometry is therefore defined as

τ =
2π

k

√
Ndof

AΓ

=
1

k

√
2Ndof . (27)

Two cases are considered: the first is ka = 30; the second is ka = 45.

Note that a = R + r = 1.5. There is no analytical solution for this problem

and so a converged Method of Fundamental Solutions (MFS) [37] solution is

used to evaluate the errors in the approximation. Using a conventional BEM

(with τ = 10), these simulations would require 20, 000 and 45, 000 degrees

29



Figure 14: Torus mesh: view along the z-axis.

of freedom respectively; the latter of these two would then require a 32 GB

matrix to be stored and inverted. For this reason, only XIBEM and PU-BEM

simulations of this problem are run. The PU-BEM solution is possible due

to the torus geometry having the analytical parametric representation:

x = (R + r cos θ2) cos θ1, (28)

y = (R + r cos θ2) sin θ1, (29)

z = r sin θ2, (30)

where θ1, θ2 ∈ [0, 2π). The PU-BEM mesh has the same element shapes as

the XIBEM mesh so that the results are comparable.

Initial tabulated results of XIBEM and PU-BEM simulations can be

found in Table 3. The L2-errors were evaluated by comparing the poten-

tial at 2,592 points, equally spaced over the local coordinate of each element

on the torus. The table shows that XIBEM and PU-BEM accuracies are

comparable, with neither method providing consistently more accurate ap-
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Table 3: Initial tabulated results of simulations of torus problem with ka = 30.

XIBEM PU-BEM

M Ndof τ κ L2(Γ) error κ L2(Γ) error

13 1,664 2.88 3.7× 103 6.35% 2.8× 103 9.42%

16 2,048 3.20 6.3× 103 2.36% 5.5× 103 1.53%

19 2,432 3.49 3.2× 104 1.01% 3.1× 104 1.46%

22 2,816 3.75 4.0× 105 1.86% 3.8× 105 1.69%

25 3,200 4.00 2.1× 105 0.18% 2.6× 105 0.22%

proximations. However, it should be noted again that the PU-BEM sim-

ulations are only possible because of the available parametric equations in

(28)–(30); without this analytical representation, PU-BEM would not pro-

vide the saving in degrees of freedom that the XIBEM does.

It is interesting to see that the errors in Table 3 do not decrease uniformly:

in particular, there is a significant reduction in errors between the first two

rows and the last two rows. The reason for these reductions is the large

increase in the number of collocation points being used. For the M = 13

simulations, 2,048 collocation points are used; for the M = 16, 19, 22, simu-

lations, 3,200 collocation points are used; for the M = 25 simulations, 4,608

collocation points are used. Clearly, the number of collocation points has an

impact on the solution accuracy. This was not an observation made for the

sphere problem as there was already an excess of collocation points from the

(Z + 1)× (Z + 1) grid.

Table 4 shows some errors and condition numbers of XIBEM simulations
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Table 4: Comparison of errors and system condition number of XIBEM simulations of

torus problem (ka = 30) with varying numbers of collocation points.

M = 19 M = 22

Ncoll
Ncoll

Ndof

κ L2 error Ncoll
Ncoll

Ndof

κ L2 error

2,592 1.07 2.5× 105 3.33% 3,200 1.14 3.8× 105 1.33%

3,200 1.32 3.4× 104 1.09% 3,872 1.38 8.0× 104 0.49%

3,872 1.59 1.8× 104 0.66% 4,608 1.64 5.2× 104 0.32%

4,608 1.89 1.4× 104 0.43% 5,408 1.92 4.4× 104 0.18%

5,408 2.22 1.4× 104 0.47% 6,272 2.23 4.1× 104 0.16%

of the torus problem using different numbers of collocation points, Ncoll.

These are displayed along with the fraction of collocation points to degrees

of freedom. As the number of collocation points used increases, the error

decreases. This effect is significant for Ncoll/Ndof < 1.5; it appears less signif-

icant for greater values. The effect can also be noted in the condition numbers

of the system that fall as the system becomes increasingly over-determined.

As the collocation scheme used in this 3D work is fixed to a square grid

of points, it is not possible to determine with any certainty what fraction

of Ncoll/Ndof is ideal. Indeed, it could be the case that this fraction is not

constant. It is also possible that a rectangular grid could be more suitable

given that the elements along the major radius of the torus of the outermost

of the torus appear rectangular; this type of grid would also give more control

of the number of collocation points used.

XIBEM and PU-BEM simulations were also run of the torus problem
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Table 5: Initial tabulated results of XIBEM simulations of torus problem with ka = 45.

XIBEM PU-BEM

M Ndof Ncoll
Ncoll

Ndof

τ κ L2 error κ L2 error

28 3,584 5,408 1.51 2.82 1.0× 104 3.66% 8.2× 103 3.15%

34 4,352 6,272 1.44 3.11 5.0× 104 1.13% 4.9× 104 1.51%

41 5,248 8,192 1.56 3.41 2.4× 105 0.28% 2.6× 105 0.39%

49 6,272 9,248 1.47 3.73 2.3× 106 0.15% 2.7× 106 0.27%

57 7,296 11,552 1.58 4.03 1.4× 107 0.06% 1.5× 107 0.09%

with a shorter wavelength: ka = 45. The results of the simulations can be

seen in Table 5. Care was taken so that at least 1.4 times as many collocation

points were used as degrees of freedom. By doing this, the errors continue to

decrease as τ is increased; this is more like the behaviour expected of both

the PU-BEM and XIBEM and observed in earlier works [24, 32, 33].

Four of the five simulations in Table 5 show XIBEM to give a more

accurate approximation than PU-BEM. However, the values are similar and

four simulations is not enough to claim a statistical significance. The system

condition numbers of both approaches are similar too, showing that the plane

wave enrichment is the main cause of ill conditioning. None of the condition

numbers is significantly large; however, they are greater than those found for

ka = 30.

The performance of XIBEM and PU-BEM are, as expected, comparable.

It should be reiterated, however, that this is a special case for which PU-

BEM is easily implemented due to the analytical parametric representation
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of a torus. While it may be possible to provide an analytical geometry to

PU-BEM for more complex problems, this task becomes increasingly more

difficult with increasingly complex geometries. Conversely, the analytical

geometry is a property inherent in the use of XIBEM as the geometry func-

tions can be imported directly from a CAD model. So while, XIBEM and

PU-BEM perform similarly for problems that may be compared, there may

be some more complex problems for which PU-BEM cannot be used as easily.

Using more collocation points reduces the benefits that the PU-BEM and

XIBEM have over conventional BEM simulations in that the total number

of matrix entries increases. However, the benefit of the reduction in Ndof

is still significant. Consider the case of ka = 45 using a conventional BEM

simulation. For a 1% error, this would require τ ≈ 10 or 45,000 degrees of

freedom; this gives a matrix system with over 2 billion complex coefficients.

Conversely, considering the case of τ = 3.41 in Table 5, the matrix system has

approximately 43 million entries. This is almost a 98% reduction in matrix

entries, a significant saving.

Figure 15 is a plot of potential on the torus surface. Figures 16 and 17

are plot of scattering off the torus surface; Figure 16, in particular, shows

the internal reflections created within the torus. The figures show the short

wavelength of the problem being solved.

4. Conclusions

Decomposed NURBS meshes have been used to represent the geometries

of three-dimensional scatterers. The functions that describe these geome-

tries, multiplied by families of plane waves, have been used to approximate
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Figure 15: Isometric view of absolute total field on the torus; ka=45.

x y

z

0.0 0.3 0.6 0.9 1.3 1.6 1.9 2.2

|φ|

Figure 16: x = 0 plane of absolute value of total field of the torus problem; ka=45.
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Figure 17: Absolute value of total acoustic field of the torus problem shown at z = −3;

ka=45.
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the potential over the surface of the scatterers. Using this discretisation

in a direct collocation BEM approach, the so-called extended isogeometric

boundary element method, has given accurate approximations.

Compared to the PU-BEM, the XIBEM performs similarly with neither

method appearing significantly more accurate. However, the XIBEM has an

analytical geometry provided by the same functions used in approximation

of the field variable. The problems explored in this paper were both special

cases for which there is an easy analytical geometry representation for PU-

BEM.

In the example of a scattering sphere used in this paper, IGABEM has

not been shown to be more accurate than the conventional BEM when using

the same number of degrees of freedom. Meshing may be easier with an

isogeometric mesh but the basis functions take longer to evaluate and so it

is undesirable to use unless there is an accuracy benefit also.

The previous comment is not conclusive. The results shown in this paper

are for one problem. That problem is solved used a decomposed NURBS

mesh. The decomposed mesh consists of C0 patches while the original mesh

has a higher continuity. It is expected that this has a negative impact on

IGABEM simulation. In previous work by the authors (and by other au-

thors) IGABEM simulations using the original NURBS mesh have consis-

tently demonstrated better performance compared to BEM simulations using

Lagrangian polynomials; therefore, it could be argued that the comparison

made here is not fair. Further investigations into the effect on IGABEM of

using Bézier decomposition are required; this should be done for multiple

geometries. Again, the authors note that the choice of using Bézier decom-
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position was for ease of implementation in existing code.

Conversely, in this same example, the XIBEM requires far fewer degrees

of freedom to achieve engineering accuracy for the same problem. Although

the XIBEM requires a surplus of collocation points to obtain the greatest

accuracy, the overall reduction in matrix size is significant, approaching 98%.

XIBEM still requires a more efficient integration scheme to compete with

the acceleration methods that can be applied to conventional BEM and IGA-

BEM. The nature of the optimal collocation scheme is still be understood

also. Despite this, XIBEM is clearly a method that has significant potential

and is deserving of more research.
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