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Motivated by recent results in mathematical virology, we present novel asymmetric
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H3 and H4 derived in a Kac-Moody-type formalism. In particular, we show that the

affine reflection planes which extend the Coxeter group H3 generate (twist) translations

along 2-, 3- and 5-fold axes of icosahedral symmetry, and we classify these translations

in terms of the Fibonacci recursion relation applied to different start values. We thus

provide an explanation of previous results concerning affine extensions of icosahedral

symmetry in a Coxeter group context, and extend this analysis to the case of the non-

crystallographic Coxeter groups H2 and H4. These results will enable new applications

of group theory in physics (quasicrystals), biology (viruses) and chemistry (fullerenes).
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1 Introduction

Coxeter groups are abstract groups describable in terms of mirror symmetries [2]. The fi-

nite Coxeter groups correspond to the finite Euclidean reflection groups and were classified

in Ref. [3]. They include the symmetry groups of the Platonic solids as well as the Weyl

groups of simple Lie algebras. A subset of these groups are non-crystallographic, i.e. they

describe symmetries that are not compatible with lattices in two, three and four dimen-

sions. The latter include the groups H2, H3 and H4, which are the only Coxeter groups

generating rotational symmetries of order 5. We are particularly interested in H3 because

it contains as a subgroup the rotational symmetries of the icosahedral group I, which is of

crucial importance for the modelling of viruses in biology [18, 1, 20, 6, 22], fullerenes in

chemistry [10, 9, 19, 11] and quasicrystals in physics [7, 16, 14, 12, 17]. Finite Coxeter

groups describe the properties of these structures, e.g. of a viral protein container or a

carbon onion, at a given radial level. In order to obtain information on how structural prop-

erties at different radial levels are collectively constrained by symmetry, affine extensions

of these groups need to be considered. Such affine extended, infinite Coxeter groups can be

constructed from the finite ones by introducing affine reflections, i.e. reflection planes not

passing through the origin. Examples of such affine extensions of finite Coxeter groups are

the Weyl groups of infinite-dimensional Kac-Moody algebras. While infinite counterparts

to the crystallographic finite Coxeter groups have been intensively studied [5], much less is

known for the non-crystallographic equivalents.

In Ref. [15] affine extensions of the non-crystallographic Coxeter groups H2, H3 and

H4 have been constructed based on an extension of their Cartan matrices following the

Kac-Moody approach in Lie Theory. Under the assumption that the extended matrix is

symmetric, a unique affine extension has been obtained in each case. In Ref. [8] it was

shown that this approach is not sufficient for applications in virology: The structures of

viruses follow several different extensions of I by translation operators. Motivated by these

results, we revisit here affine extensions of the non-crystallographic Coxeter groups H2, H3

and H4, and present a more general framework that accommodates the results of Ref. [8].

In particular, we relax the assumption that the extended Cartan matrix must be symmetric

and show that this leads to new affine extensions of H3. For those extensions that encode

affine reflections at planes parallel to those of H3, the affine reflections introduced in this

way generate translations of various lengths when combined with the reflections encoded
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by H3; in addition, there are other extensions that generate screw translations along the

three- and five-fold axes of icosahedral symmetry. These results open up a new view on

infinite-dimensional analogues to non-crystallographic Coxeter groups.

The paper is organised as follows: In Section 2, we review the procedure of affine exten-

sion of crystallographic and non-crystallographic Coxeter groups based on Cartan matrices.

In Section 3, we construct novel affine extensions of non-crystallographic Coxeter groups

by relaxing the symmetry condition on the Cartan matrix, and give a concrete example in

the context of the group H3 because of its practical relevance in the applied sciences. We

then extend our analysis to the H2 and H4 cases in Section 4, and conclude in Section 5

with a discussion of our formalism and the applications it opens up in quasicrystals, carbon

chemistry and virology.

2 Affine extensions of Coxeter groups via extensions of

their Cartan matrices

In this section, we recall the representation of finite Coxeter groups in terms of root systems

and show how affine Coxeter groups can be derived via an extension of their root systems

and Cartan matrices.

2.1 Finite Coxeter groups and root systems

The elements of finite Coxeter groups can be visualised as reflections at planes through the

origin in a Euclidean vector space E . In particular, if (·, ·) denotes the inner product in E ,

and v, α ∈ E , then

rα v = v− 2(α,v)
(α,α)

α (1)

corresponds to a Euclidean reflection at a plane perpendicular to α . The structure of a finite

Coxeter group can hence be encoded by a set of vectors ∆, called the root system, that

consists of all vectors normal to these reflection planes. Root systems fulfil the following

properties:

• If α ∈ ∆ and λα ∈ ∆, then λ =±1.

• ∆ is invariant under all reflections rα with α ∈ ∆.

3



5
A =

(
2 −τ

−τ 2

)

5
A =

 2 −1 0
−1 2 −τ

0 −τ 2


5

A =


2 −1 0 0
−1 2 −1 0
0 −1 2 −τ

0 0 −τ 2


Figure 1: Coxeter-Dynkin diagrams and Cartan matrices for, from top to bottom, H2, H3
and H4.

For a crystallographic Coxeter group, a subset of ∆, called simple roots, is sufficient to

express every element of ∆ via a Z-linear combination with coefficients of the same sign.

The set of vectors ∆ is therefore completely characterised by the simple roots, which in turn

completely characterise the Coxeter group. In the case of the non-crystallographic Coxeter

groups H2, H3 and H4, the same holds for the extended integer ring Z[τ] = {a+ τb|a,b ∈

Z}, where τ is the golden ratio τ = 1
2 (1+

√
5). Note that together with its Galois conjugate

τ ′ ≡ σ = 1
2 (1−

√
5), τ satisfies the quadratic equation x2 = x+1. The structure of the basis

of simple roots is encoded by the Cartan matrix, which contains the geometrically invariant

information of the root system as follows:

Ai j = 2(αi,α j)/(αi,αi). (2)

We also indicate the relations of the root vectors in terms of Coxeter-Dynkin diagrams,

where nodes correspond to simple roots and links labeled m encode an angle of π

m between

the root vectors, with m omitted if the angle is π

3 and no link shown if π

2 . Coxeter-Dynkin

diagrams and Cartan matrices for H2, H3 and H4 are given in Fig. 1.

2.2 Affine extensions of finite Coxeter groups

For a Coxeter group with a crystallographic root system ∆, an affine Coxeter group can

be introduced as follows [13]: For each α ∈ ∆ and i ∈ Z, one defines affine hyperplanes

Hα,i as solutions of the equations (x,α) = i . The unique nontrivial isometry of E that fixes

Hα,i pointwise is called an affine reflection rα,i. It corresponds to the reflections considered
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earlier if i = 0.

In the case of non-crystallographic Coxeter groups, this definition is not appropriate as

i ∈ Z is not possible because the crystallographic restriction [16] implies that the planes

cannot be stacked periodically; however, i ∈ Z[τ] is too general because Z[τ] is dense in R.

But they could occur with spacings corresponding to quasilattices.

Motivated by this relation with quasilattices, affinisations of the non-crystallographic

Coxeter groups H2, H3 and H4 have been studied in Ref. [15]. In this work, the parallels

with root systems in Lie algebras have been exploited and a formalism akin to the one used

in Kac-Moody Theory has been employed to extend the root system so as to include roots

that define affine reflections.

In particular, denoting by ω j the basis of fundamental weights that is dual to the basis

of simple roots αi, i.e. ω jαi = δi, j, the Cartan matrix Ai j corresponds to the coordinates of

the root vectors in the basis of fundamental weights:

α j = ∑
i

A jiωi . (3)

By extending the Cartan matrix by an additional row and column, we can thus de-

rive information on the root that defines the affine reflection. Following the Kac-Moody

approach, extensions have been considered that abide by the following Kac-Moody-type

extension rules:

1. The diagonal entries in Eq. (2) are normalised as Aii = 2.

2. Ai j ≤ 0 and Ai j = 0⇔ A ji = 0 for i 6= j.

3. Matrix entries are Z[τ]-valued.

4. The affine extended matrix fulfils the determinant constraint detA = 0.

It has been shown in Ref. [15] that there is a unique affine extension for H2, H3 and

H4 if the extended matrix is required to be symmetric. In each case, the affine root can be

expressed as α0 = −αH , where αH corresponds to the highest root in the root system; the

corresponding Coxeter-Dynkin diagrams and Cartan matrices are given in Fig. 2.

On the group level, these extensions correspond to the addition of the following affine

reflection to the group:

ra f f
α v = α + v− 2(α,v)

(α,α)
α, (4)
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5
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5
A =

2 τ ′ τ ′

τ ′ 2 −τ

τ ′ −τ 2



5

5
2

A =


2 0 τ ′ 0
0 2 −1 0
τ ′ −1 2 −τ

0 0 −τ 2
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5
2 5

A =


2 τ ′ 0 0 0
τ ′ 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −τ

0 0 0 −τ 2


Figure 2: Coxeter-Dynkin diagrams and Cartan matrices for Ha f f

2 , Ha f f
3 and Ha f f

4 , the
unique symmetric affine extensions in Ref. [15]. Note that angles of 2π/5 lead to labels 5

2
(or, τ ′ in the notation of Ref. [15]).

where α ≡ αH .

Together with the reflection rα ≡ rαH from Hi, it generates a translation T as follows:

ra f f
α rα v = ra f f

α

(
v− 2(α,v)

(α,α)
α

)
= α + v =: T v. (5)

In the context of Ref. [15], the affine reflection thus gives rise to one specific translation.

Note that from a geometric point of view, Eq. (4) and Eq. (5) are independent of whether

α is a root vector, because any translation of length 2l can be generated by two parallel

reflection planes separated by a distance l. Thus, substituting α by λα in Eq. (4) leads to a

translation of length λT along the direction of α . This relation of parallel reflection planes

with translations will be crucial later.

3 New affine extensions of non-crystallographic Coxeter

groups

We investigate here asymmetric extensions of non-crystallographic Coxeter groups. These

have not been considered before, while – as we will demonstrate in this paper – they lead
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to interesting applications, most notably in virology. As in Ref. [15], we consider Kac-

Moody-type extensions of H2, H3 and H4, but allow for asymmetric Cartan matrices with

entries in Z[τ]. Due to the interpretation of the Cartan matrix in terms of scalar prod-

ucts between root vectors, there are constraints on such extensions that we formulate in a

Lemma.

Lemma: In the case of a Coxeter group with a simply-laced Coxeter-Dynkin diagram,

a Cartan matrix extended according to the Kac-Moody-type extension rules fulfils

Ai0

A0i
=

Ak0

A0k
∀i,k with A0i,A0k 6= 0. (6)

Proof: Since the entries of the Cartan matrix of a root system are given in terms of the

lengths of the roots l2
j := (α j,α j) =

∣∣α j
∣∣2 and the angles θi j between roots αi and α j by

(no summation implied)

Ai j = 2
(αi,α j)

(αi,αi)
= 2

∣∣α j
∣∣

|αi|
cosθi j, (7)

it follows that

l2
j =

Ai j

A ji
l2
i (8)

and

cos2
θi j =

1
4

Ai jA ji. (9)

When i = k for some non-zero entry A0k in Eq. (8), the length of the new root α0 is

given by l2
0 = Ak0

A0k
l2
k . The possible non-zero inner products of the remaining roots αi with

the new root are therefore constrained by Ai0
A0i

= Ak0
A0k

l2
k

l2
i

. In the simply-laced case li = lk and

the claim follows.

This consistency condition on the additional root severely restricts the non-zero entries

in the Cartan matrices, particularly in the integer-valued setting of simple Lie algebras,

because one only needs to consider one pair and several multipliers e.g. Ai0 = βiAk0,A0i =

βiA0k. In particular, this implies the following

Corollary: If there are any entries A0k,Ak0 with A0k = Ak0 in the extended Cartan

matrix, then it must be totally symmetric.

Proof: A0k = Ak0 implies Ak0
A0k

= 1 in Eq. (6), hence Ai0 = A0i for any i.

The Corollary says that if one of the simple roots in a simply-laced system (before

7



α3

−α3

O

α1

−α1

α2

−α2

T5

T3
T2

Figure 3: Geometry of the opening cone.

extension) has the same length as the new root, then so do all others. For H2, H3 and H4 this

case is known, c.f. Ref. [15] in the non-crystallographic and Ref. [4] in the crystallographic

case. In contrast, we consider here the case of asymmetric affine extensions.

Note that in Lie Theory, which covers the (crystallographic) Weyl groups, Eq. (9)

severely restricts the possible (integer) combinations of entries that can occur in the Cartan

matrix, as 0≤ cos2 θ ≤ 1 leads to the constraint

Ai jA ji = 4cos2
θi j ≤ 4. (10)

However, this condition is not nearly as restrictive in the non-crystallographic setting, as

Z[τ] is dense in R.

Motivated by applications in virology [8], we determine here extended Cartan matrices

that encode affine reflections perpendicular to 2-, 3- or 5-fold axes of icosahedral symmetry.

We will use the following simple roots for H3:

α1 = (0,1,0), α2 =−
1
2
(−σ ,1,τ), α3 = (0,0,1). (11)

The unique 2-fold, 3-fold and 5-fold symmetry axes lying in the opening cone of −α1,

−α2 and −α3, i.e. having only negative-valued (or zero) scalar products with the basis of

simple roots, are then given by

T2 = (1,0,0), T3 = (τ,0,σ), T5 = (τ,−1,0). (12)
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This is important in the following as every other choice of axes would violate the negativ-

ity requirements of the Cartan matrices, although they would still satisfy the consistency

Lemma. This geometry is illustrated in Fig. 3.

3.1 Affine extensions of H3 by reflection planes perpendicular to two-

fold axes

Due to the geometry of the root system of H3, an affine root α0 parallel to T2 is orthogonal

to α1 and α3, and hence the only non-vanishing inner product is with α2. The length of

α0 is then given by the degree of asymmetry of the Cartan matrix. In particular, an α0 of

any length not equal to that of the simple roots requires the extended Cartan matrix to be

asymmetric.

Thus, for affine reflection planes perpendicular to T2 in Eq. (12), we get a family of

Cartan matrices of the form

A =



2 0 x 0

0 2 −1 0

y −1 2 −τ

0 0 −τ 2


, (13)

where we need to stipulate xy = σ2 = 2− τ in order to enforce that the determinant van-

ishes, i.e. for the extension to be affine. We note that we recover the results of Ref. [15],

i.e. for Ha f f
3 , if x = y = σ .

We now solve the equation

xy = 2− τ = σ
2, x,y ∈ Z[τ] (14)

by writing x = (a+ τb) and y = (c+ τd) with a,b,c,d ∈ Z. Using xy = Ai jA ji and Eq. (9)

we infer the angles of the affine root with the simple roots, confirming that matrices as in

Eq. (13) all correspond to affine roots along T2. Note that the constraint from Eq. (10) is

weaker than the determinant constraint and hence need not be considered.

The affine extension Ha f f
3 found in Ref. [15] corresponds to the simplest case (a,b;c,d)=

(1,−1;1,−1), i.e. to x = y = σ . As the (non-trivial) units in Z[τ] are τk, k ∈Z, we can gen-

erate a series of solutions to the determinant constraint by scaling x→ τ−kx and y→ τky,
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as this leaves the product xy invariant. Since these are the only units in Z[τ], these rescaled

versions are in fact the only additional solutions to the determinant constraint. In terms of

(a,b;c,d), this amounts to the substitutions

(a,b;c,d)→ (b,a+b;d− c,c) for multiplication by (τ,τ−1), and to

(a,b;c,d)→ (b−a,a;d,c+d) for multiplication by (τ−1,τ). (15)

The quadruplet (−2,1;−1,0) corresponding to the solution (x,y) = (−τ−2,−1) is the so-

lution with the smallest value of ∑ |ai|+ |bi|+ |ci|+ |di| and is in this sense the start of

the asymmetric series of solutions generated by the rescalings in Eq. (15). Note that the

transformations in Eq. (15) act on each pair (a,b) and (c,d) as

a′

b′

=

0 1

1 1


a

b

 , (16)

which is the substitution matrix generating the Fibonacci series. We therefore call this

family of solutions the Fibonacci family.

The length of the affine root is determined according to Eq. (8) by
√

x/y, where we have

used the fact that all roots of the unextended root system are considered to have length 1.

In particular, for the symmetric case x = y, the affine root has the same length as the roots

in ∆, as expected from Ref. [15].

Since x and y commute in Eq. (14), considering (c,d;a,b) instead of (a,b;c,d) trivially

generates another solution to the determinant constraint. However, the root length is deter-

mined by the quotient
√

x/y. Therefore, swapping x and y generates a solution of different

length. Thus, for generic determinant constraints, one can generate two Fibonacci families

of solutions by τ-multiplication and swapping factors. Here, the determinant constraint has

a symmetric solution given by the quadruplet (a,b;c,d) = (1,−1;1,−1), so that swapping

does not in fact yield anything new. Thus, in this case one only has one family indexed by

powers of τ . Later examples will have two independent solutions, however.

Correspondingly, for the Fibonacci family of solutions obtained via the scalings x→

τkx and y→ τ−ky, the affine roots have lengths τk. Via the argument presented in Sec-

tion 2.2, this affine root defines a new reflection plane at the group level that does not

go through the origin, but is parallel to one of the reflection planes in H3. As a conse-

10



quence of Eq. (5), one obtains a translation with a translation length determined by the

length of the affine root. The affine roots determined here therefore generate translations of

lengths τk, which contain the five translation lengths listed in Ref. [8] {τ ′2,−τ ′,1,τ,τ2}=

{τ−2,τ−1,1,τ,τ2}.

We hence obtain a countably infinite set (k ∈ Z) of affine extensions of H3 with affine

reflection planes at distances τk/2 from the origin. For any given k, there is an infinite stack

of parallel planes with separation τk/2.

3.2 Affine extensions of H3 by reflection planes perpendicular to three-

fold axes

We next consider affine roots parallel to T3 in Eq. (12). These are by construction orthog-

onal to the simple roots α1 and α2, so that only the inner product with α3 gives non-zero

entries in the Cartan matrix:

A =



2 0 0 x

0 2 −1 0

0 −1 2 −τ

y 0 −τ 2


. (17)

This time the determinant constraint xy = 4
3 σ2 = 4

3 (2− τ) is no longer Z[τ]-valued, and

hence solutions do not exist in Z[τ]. However, we can still entertain the idea of affine reflec-

tion planes perpendicular to 3-fold axes, which generate translations and twist translations

along T3 as we demonstrate in Fig. 4.

In particular, for a vector v as in the figure, reflection ra f f
α at the affine plane plus

subsequent rotation R (to v′′ in the figure) yields a twist translation

T twistv = Rra f f
α =−α0 +Rk

3v, (18)

where α0 is the affine root and Rk
3 denotes a rotation by πk

3 , 0 ≤ k ≤ 5,k ∈ Z around T3.

Moreover, using Rl
3 with k+ l = 6, we obtain a translation

T v = Rl
3Rra f f

α v = v−α0. (19)
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v

v′

L

L

O

T3

v′′
v′′′

α0

L

R

R3

α0/2 = λ

α0/2 = λ

ra f f
α

Figure 4: Translations and twist translations can be generated by affine reflection planes
perpendicular to 3- and 5-fold rotational symmetry axes of icosahedral symmetry. Assume
that there is an affine reflection plane at a distance λ = α0

2 from the origin (but no corre-
sponding parallel plane through the origin). Any vector v at a distance L below the affine
reflection plane can be reflected to a vector v′ at a position L above it. The rotational part of
the group (R3 and R5) then generates a triangle around the 3-fold axis (black points), or a
pentagon around a 5-fold axis, and the full group H3 generates a hexagon (additional white
points), or a decagon, respectively. By using a rotation R in the group, these can be rotated
into a parallel plane at a distance 2λ +L from the affine reflection plane and at a distance
λ +L from the origin (note that v′′ is part of this plane). As the generators R3 and R5 allow
to rotate any point in the hexagon and decagon into any other, one of these rotations can
be used to align the reflected and rotated v (the point v′′) with the initial v (yielding a point
v′′′) such that v and v′′′ differ by a translation of length 2λ = α0 along T3 (resp. T5). The
other 5 (9 respectively) rotations also generate twist translations.
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In order to find affine extensions of the type in Eq. (17), we introduce γ,δ ∈ Q as

normal fractions and write the entries of the Cartan matrix as a Z[τ]-integer multiplied by

γ,δ as x = γ(a+τb) and y = δ (c+τd). The solution is therefore now given by a Fibonacci

quadruplet (a,b;c,d) plus multipliers (γ,δ ), and the latter need to be such that they account

for the fraction in the determinant constraint, e.g. γδ = 4
3 in Eq. (17). Thus the root lengths

are
√

x/y =
√

γ/δτk = γ
√

1/γδτk =
√

3/2γτk. For instance x = 3
4 (1−τ) and y = (1−τ)

would be a solution of length 1
2

√
3.

As T3 is of length
√

3, this example corresponds to α0 =
1
2 T3, which induces a whole

family of roots αk
0 = 1

2 τkT3. However, x = (1− τ) and y = 3
4 (1− τ) would also be a

solution, with the length 2√
3
= 2

3

√
3, i.e. α0 = 2

3 T3, with a family αk
0 = 2

3 τkT3. For x =

1
4 (1− τ) and y = 3(1− τ) we get length 1

6

√
3, i.e. of roots αk

0 = 1
6 τkT3. On the group

level, there is a series of solutions for each choice of γ . In a vector space representation,

Refs [21, 8] have found sets of distinguished translations in the context of extending an

icosidodecahedron (the root system of H3) by translations or twist-translations along a 3-

fold axis. For this special setting, the three series above for the choices γ = 3
4 ,1,

1
4 and

by allowing for linear combinations among the resulting translations, give all the results

in Refs [21, 8]. In particular, in Ref. [8] only instances of the first family were found,

corresponding to lengths { 1
2 ,

1
2 τ, 1

2 τ2}, and {1,τ2} respectively. Note that the latter are also

implicitly contained in the former, corresponding to even multiples of these translations.

In the previous section, in the context of extensions along 2-fold axes, we were only

searching for integer solutions. However, the considerations in this section motivate al-

lowing for Q[τ]-valued entries in the Cartan matrix such that γδ = 1, where we define

Q[τ] = {a+ τb|a,b ∈ Q}. It is interesting to analyse the translation lengths for the 2-

fold axis in this more general setting, giving lengths
√

x
y =

√
γ

δ
τk = γτk. γ = 1 re-

covers the 5 solutions in Z[τ] corresponding to the translations {τ−2,τ−1,1,τ,τ2} from

Ref. [8] listed earlier in Section 3.1. γ = 1
2 and γ = 3

2 yield the 7 translations of length

1
2{τ

−3,τ−2,τ−1,1,τ,τ2,τ3} and the three translations of lengths 3
2{τ

−1,1,τ} that were

found in Ref. [21] for extensions of an icosidodecahedron along a 2-fold axis. In fact, by

allowing linear combinations amongst the translations in those three families, we can ac-

commodate all 26 translations listed in Ref. [21] in a Coxeter group framework. Thus, in

order to explain the results in the more general setting of Ref. [21], one in fact has to allow

for solutions in Q[τ] even for the 2-fold axes.
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3.3 Affine extensions of H3 by reflection planes perpendicular to five-

fold axes

Considering now affine roots parallel to T5, we get a similar family of matrices of the form

A =



2 x 0 0

y 2 −1 0

0 −1 2 −τ

0 0 −τ 2


, (20)

as again the 5-fold axis is perpendicular to two of the simple roots. This time, the de-

terminant constraint is xy = 4
5 (3− τ). We have dealt with the problem of the quotient in

the previous section. However, here another new phenomenon occurs in that (3− τ) no

longer has a symmetric solution in the integers. It has the obvious solutions (−3,1;−1,0)

and (−1,0;−3,1), which are now independent, and hence generate two different series

(in terms of Fibonacci and Lucas numbers) by τ-multiplication. Since the determinant

constraint implies a unique non-trivial angle for the new root with the simple roots (see

Eq. (9)), all members of the above family are indeed along T5.

In the context of concrete applications in virology and carbon chemistry, Refs [21, 8]

have found distinguished translation lengths for extending icosahedrally symmetric poly-

topes along a 5-fold axis. We now show how all their results can be easily accommo-

dated here. The lengths for an affine root corresponding to (−3,1;−1,0) are given by√
5
4 (3− τ)γτk. Via the argument in the preceding section, the affine root generates a trans-

lation or twist translation at the group level, c.f. the caption of Fig. 4. Since the length

of T5 is
√

τ +2, and (3− τ)τ2 = (2+ τ), the resulting lengths are
√

5
4 (2+ τ)γτk−1, or

αk
0 =

√
5
4 γτk−1T5.

Because of the identity (3−τ)(2+τ) = 5, the corresponding result
√

5
4(3−τ)γτk for the

second series generated by (−1,0;−3,1) simplifies to αk
0 = 1

2 γτkT5. Thus, for instance,

the choice γ = 1 in the second family generates lengths { 1
2 τ−1, 1

2 ,
1
2 τ, 1

2 τ2}, which induces

four of the results listed in Ref. [21]. Ref. [8] contains two further cases with translations of

length {1,τ}, which correspond to even multiples of the γ = 1 translations, or are contained

in the γ = 2 series.

Note that a translation of the same length of 1
2 could be generated in the first family by

setting γ = 1/
√

5. Making the same choice γ = 1/
√

5 for the second family yields length

14



1√
20

τkT5, which due to the identity 1√
20

τ = 1
10 (2+ τ) are equivalent to translation lengths

of the form 1
10 (τ + 2)τk−1. Together with 1

5 (τ + 2)τk−1 and 2
5 (τ + 2)τk−1, it corresponds

to most of the results in Ref. [21]: 1
10 (2+ τ){τ−3,τ−2,τ,τ2}, 1

5 (2+ τ){τ−1,1} and 2
5 (2+

τ){τ−1,1}. The last two remaining cases in Ref. [21] are 8−τ

10 and 1+8τ

10 , which are the

linear combinations 1
2 +

3−τ

10 and τ

2 +
1+3τ

10 , where the corresponding powers of τ + 2 are

given by 1+3τ = (τ +2)τ and 3− τ = (τ +2)τ−2.

In conclusion, we note that all results in Ref. [21] and Ref. [8] have been rationalised

here in a Coxeter group framework. For affine reflections perpendicular to 2-fold axes,

the corresponding translations are inferred in Z[τ]; by contrast, for affine reflections per-

pendicular to 3- and 5-fold axes, an extra degree of freedom, γ ∈ Q, occurs. However,

we have shown here that a ‘natural’ set of parameters occurs that, once specified, define a

whole family of solutions and correspond to cases that occur in the context of applications

in virology [8, 21].

3.4 Symmetrisability

In the context of Kac-Moody algebras, it is often of interest to know if an asymmetric (gen-

eralised) Cartan matrix A is symmetrisable. By this one means that there exist a diagonal

matrix D with positive integer entries and a symmetric matrix S such that A = DS. This is

of interest because in that case S defines a scalar product on the simple roots, and much of

the analysis carries through in the same way as for symmetric Cartan matrices.

In order to generalise this notion of symmetrisability to our setting, we first note that

the entries of the generalised Cartan matrices can be Z[τ]-integers (or even Q[τ]-rationals).

Thus, the diagonal matrix may also take on positive values in Z[τ] or Q[τ]. In the Kac-

Moody algebra context, the generalised Cartan matrix entries are integers, as they appear

as powers of the adjoint action in the Chevalley-Serre relations. However, since we are

working with a non-crystallographic root system for which no Kac-Moody algebras exist,

we relax this condition here.

Allowing for positive Q[τ]-valued diagonal matrices, the families in Eq. (13), Eq. (17)

and Eq. (20) considered earlier are indeed symmetrisable. The corresponding symmetric

matrices are positive semi-definite (as are the Cartan matrices for Kac-Moody algebras of

affine type) and fulfil the determinant condition, which was to be expected. For instance,

the diagonal matrices diag(τ2x2,1,1,1), diag( 3
4 τ2x2,1,1,1) and diag( 1

4 (τ + 2)x2,1,1,1)
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yield the following symmetrisations for Eq. (13), Eq. (17) and Eq. (20), respectively:



2τ2 x2 0 x 0

0 2 −1 0

x −1 2 −τ

0 0 −τ 2


,



3
2 τ2 x2 0 0 x

0 2 −1 0

0 −1 2 −τ

x 0 −τ 2


,



τ+2
2 x2 x 0 0

x 2 −1 0

0 −1 2 −τ

0 0 −τ 2


.

(21)

We note that in all three cases, there is only one choice for negative x that makes the

(1,1)-entry equal to 2, i.e. which is such that the matrix can be interpreted in a Coxeter

group setting as a Cartan matrix, and the (1,1)-entry as a Coxeter exponent corresponding

to a generator of a reflection. Note that this choice of x also turns the diagonal matrix into

the identity matrix, i.e. the original Cartan matrix is already symmetric. However, for this

choice of x the entries of the Cartan matrix are not necessarily Z[τ]-valued. In the first case,

we get x = σ , and recover Ha f f
3 . For the second and third case, we obtain x =

√
4
3 σ and

x =
√

4
5 (τ−3), respectively. Comparing with results in Ref. [8, 21], we see that requiring

symmetrisability in Z[τ] excludes biologically important cases, in particular the Fibonacci

series of affine extensions.

4 Affine extensions of related non-crystallographic Cox-

eter groups

We discuss here affine extensions of the non-crystallographic Coxeter groups H2 and H4,

which are related to H3 via the inclusion H2 ⊂ H3 ⊂ H4, and whose Cartan matrices are

therefore structurally related.

4.1 The case of H2

A possible set of simple roots for H2 is α1 = (1,0) and α2 =
1
2 (−τ,

√
3− τ). We consider

affine reflections perpendicular to the highest root, or the bisector between the highest and

an adjacent root. In the first case, the extended Cartan matrices are of the form:

A =


2 x x

y 2 −τ

y −τ 2

 , (22)
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which implies xy = 2− τ = σ2. The solutions are again given by a Fibonacci family,

which is the two-dimensional analogue to the family in Section 3.1. The group generators

of the affine extensions of H2 and H3 are different, but since the affine extensions satisfy

the same determinant constraint xy = σ2, the two Fibonacci families are indexed by the

same Fibonacci quadruplets. Thus, Ha f f
2 is the symmetric representative of this family,

x = y = σ , and a novel non-symmetric case is given, e.g. by (x,y) = (τ − 2,−1). As

before, we obtain an exhaustive list of solutions via rescalings with (τk,τ−k).

A second family is given by affine roots along the bisector between the highest root and

an adjacent root. Note that without loss of generality, we consider only one of these cases

here as the geometry of the root system does not distinguish between the two bisectors due

to the symmetry of the Cartan matrix in α1 and α2. Hence:

A =


2 x 0

y 2 −τ

0 −τ 2

 , (23)

also with a constraint on the product, xy = 3− τ , that we covered earlier in terms of the

Fibonacci series for H3. A solution is given by (x,y) = (τ−3,−1) and all others are again

given by rescalings with (τk,τ−k).

We note that in both cases the determinant constraints are integer-valued, and hence

the solutions are purely given in terms of the Fibonacci and Lucas integers. The identity

Eq. (9) determines the angle between the affine root α0 and each of the simple roots α1

and α2 if xy = 2− τ as 2π/5, as expected from Ref. [15], and as 3π/10 if xy = 3− τ , as

expected for the bisectors of the roots.

For the ‘symmetric’ series in Eq. (22), the lengths are τk, and for the ‘asymmetric’

series Eq. (23), the lengths are
√

3− ττk. We visualise these affine extended groups via

their action on a pentagonal configuration in Fig. 5. Fig. 5 (b) and (c) show two translations

from our classification of length
√

2+ τ and
√

3− τ , respectively, along a bisector, and Fig.

5 (d-f) show translations parallel to the highest root of length −σ , 1 and τ , respectively.

Note that in all cases, the cardinality of the point array is smaller than that for a random

translation, which corresponds to 30, rather than 25 as in (b-d) and (f) or 20 as in (e).
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(a) (b) (c)

(d) (e) (f)

Figure 5: Visualisation of the action of the affine extended groups on a pentagon (a): panels
(b) and (c) depict two translations along a bisector with translation lengths

√
2+ τ and√

3− τ , respectively. (d-f) shows translations along the highest root of length −σ , 1 and τ ,
respectively. The cardinality of the point sets is 25, except for (e), which has cardinality 20
and corresponds to Ha f f

2 .
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4.2 The case of H4

For completeness, we also briefly discuss extensions for H4. The already familiar case of

xy = σ2 = 2− τ occurs for extensions along the highest root αH

A1 =



2 x 0 0 0

y 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −τ

0 0 0 −τ 2


, (24)

where the index on A denotes the column of the non-zero entry x in the extended Cartan

matrix. The symmetric case x = y corresponds to Ha f f
4 , and all other solutions can be

derived from (x,y) = (τ−2,−1) via rescaling by (τk,τ−k).

Moreover, the families

A3 =



2 0 0 x 0

0 2 −1 0 0

0 −1 2 −1 0

y 0 −1 2 −τ

0 0 0 −τ 2


and A4 =



2 0 0 0 x

0 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −τ

y 0 0 −τ 2


(25)

have the determinant constraints xy = 1
3 (5− 3τ) and xy = 1

2 (5− 3τ), respectively. Since

5− 3τ = (2− τ)2 = σ4, there is a symmetric solution (−2,1;−2,1), from which we can

generate all solutions via (τk,τ−k) rescalings.

Finally,

A2 =



2 0 x 0 0

0 2 −1 0 0

y −1 2 −1 0

0 0 −1 2 −τ

0 0 0 −τ 2


(26)

has determinant constraint xy = 1
5 (7−4τ) = 1

5 (2−τ)(3−τ). In this case, all solutions can

be derived from (−1,0;−7,4) and (−7,4;−1,0) in terms of Fibonacci and Lucas numbers.
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5 Conclusions

We have extended the Kac-Moody formalism for affine extensions of root systems to the

case of asymmetric Z[τ]-valued affine Cartan matrices. A consistency condition on the

new root has been presented, and it has been shown how the affine reflection associated

with the additional root gives rise to translations and twist translations along the direction

of the affine root. The case of H3 has been discussed in detail, as it is the most relevant

for practical applications in biology and carbon chemistry. We have considered extensions

along the icosahedral symmetry axes, and classified the allowed translations in terms of

a Fibonacci recursion relation. Thus, we have rationalised results in Refs [8, 21] at the

Coxeter group level.

Finally, we have discussed similar affine extensions for H4, and for H2. For the lat-

ter, we have visualised the action of the extended groups geometrically in a vector space

representation in terms of point arrays. In this framework, one can consider linear combi-

nations of translations; in particular, we note that translations along 3-fold and 5-fold axes

of icosahedral symmetry can be obtained as linear combinations of translations along three

(respectively five) root vectors, and analogously, one could also contemplate more general

linear combinations of root vectors.

We conclude that a wide range of empirical observations in virology can be explained

by affine Coxeter groups. For example, 3D point arrays analogous to those discussed in

Section 4.1 predict the architecture of viruses and fullerenes. We have developed here

a group theoretical framework that allows for these structures to be modeled in terms of

(asymmetric) affine extensions of non-crystallographic Coxeter groups.
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