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Abstract: Toric Duality arises as an ambiguity in computing the quiver gauge theory
living on a D3-brane which probes a toric singularity. It is reviewed how, in simple cases
Toric Duality is Seiberg Duality. The set of all Seiberg Dualities on a single node in the
quiver forms a group which is contained in a larger group given by a set of Picard-Lefschetz
transformations. This leads to elements in the group (sometimes called fractional Seiberg
Duals) which are not Seiberg Duality on a single node, thus providing a new set of gauge
theories which flow to the same universality class in the Infra Red.

1 Introduction

In [3], it was realized that the gauge theory living on the world volume of a D3-brane
probing a toric singularity is sometimes non-uniquely determined. Thus, by considering
D3-branes probing non-compact, toric, singular Calabi-Yau manifolds we are lead to more
than one gauge theory with the same toric geometry as its moduli space. This phenomenon
is the essence of Toric Duality. It is a full equivalence between distinct N = 1, d = 4
gauge theories in the IR limit. Microscopic theories with different matter content and
interactions become indistinguishable when we consider the long distance physics they
describe. This short note is a summary of recent talks given by the authors which describes
the main features of this phenomenon as well as describing a formalism to conveniently
compute various features of gauge theories of branes on a class of singular manifolds 1.

The organization of this note is as follows. In Section 2, we present some examples of
toric dual theories. Section 3 gives a brief introduction to (p, q) webs, which are useful
in defining 5d fixed points as well as studying dynamics of 5d gauge theories but also in
describing toric varieties and their associated 4d gauge theories. In Section 4, we explain
how local mirror symmetry enables the computation of the gauge theory on the world
volume of a D3-brane probing a toric singularity using the geometric information encoded
in a (p, q) web. We also exemplify how the (p, q) web machinery can be used to derive toric
duals. Based on the mirror Type IIA picture, we show in Section 5 how Picard-Lefschetz
monodromy transformations point toward generalizations of Seiberg duality. Section 6

1Similar ideas have been used recently in the construction of phenomenological models by wrapping D6-branes on
compact, intersecting 3-cycles of Calabi-Yau manifolds [13, 14].
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describes the construction of invariants for the singularities under study that generate
Diophantine equations encoding the whole set of dual theories.

2 Toric duality

The determination of the gauge theory on a D3-brane probing a toric singularity was
systematized in [3, 4], by the development of the Inverse Algorithm. This procedure is
based on the realization of toric varieties as partial resolutions of Abelian orbifolds. Using
this technique, the cases of cones over the Zeroth Hirzebruch and toric del Pezzo surfaces
have been extensively studied. These are toric singularities with a shrinking compact
4-cycle.

In various cases, the resulting gauge theory is non-unique. Let us consider the example
of the Zeroth Hirzebruch surface (F0) for which the corresponding theories are displayed
in Figure 1.

21

43

21

34

Model I Model II

Figure 1: Quivers for the two phases of F0. Nodes represent U(N) gauge theories, with N the number
of D3 branes. Each arrow represents a bi-fundamental field transforming under the two gauge groups
associated to the nodes it connects.

Accompanying the different matter contents summarized in their quivers, these models
also display very distinct interactions. These are given by the following superpotentials,
which correspond to a sum over a subset of all closed polygons in the quiver

WI = ǫijǫmnX i
12X

m
23X

jn
31 − ǫijǫmnX i

41X
m
23X

jn
31 (2.1)

WII = ǫijǫmnX i
12X

m
23X

j
34X

n
41

Finding the right subset is a difficult task in general and presents a technical challenge.
An overall re-scaling of the gauge group ranks by a common factor N , as well as tracing
over gauge indices is understood in the previous quivers and superpotentials.

3 (p, q) webs

Five dimensional gauge theories can be engineered by 5-brane webs in type IIB string
theory [1, 2]. In these constructions, the 5d gauge theories live on the 4 + 1 common
dimensions of the branes. The non-trivial intersections of the branes take place on a
2-dimensional transverse plane. The 5d theories are fully determined by the structure of
the webs on this (x, y) plane.

Every brane has an associated (p, q) charge that dictates its tension

Tp,q = |p + τq|TD5
(3.2)
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and its slope on the (x, y) plane

∆x : ∆y = p : q (3.3)

where TD5 is the D5-brane tension and τ is the complex scalar of type IIB (which we have
set to be equal to i in 3.3). Condition 3.3 determines that 8 supercharges are preserved,
leading to N = 1 in five dimensions. Furthermore, (p, q) charge has to be conserved at
each brane intersection

∑

i

pi =
∑

i

qi = 0 (3.4)

The reader is referred to [1, 2] for a detailed discussion of (p, q) webs, their use in
engineering five dimensional theories and explicit examples. Gauge couplings, masses
of gauge bosons and quarks, BPS spectrum and monopole tension can be computed
straightforwardly from the geometry of the (p, q) web [1, 2].

Alternatively, (p, q) webs can be viewed as toric skeletons defining toric varieties [9]
(see also [10] for applications of this idea along the lines that will be discussed in this
note). In this interpretation, 5-branes correspond to the loci of points at which some
1-cycles of the T 2 fibrations of the toric varieties shrink to zero radius.

4 4d theories via local mirror symmetry

Each factor in the product gauge group of the theory on the D-brane world-volume is
given by a fractional brane. These are bound states of D3, D5 and D7-branes, sharing
four non-compact dimensions. D3-branes are located at points (i.e. 0-cycles) on the
Calabi-Yau, while D5 and D7-branes wrap compact 2 and 4 cycles respectively.

The corresponding quiver can be obtained by looking at the mirror Type IIA geometry,
in which D3-branes transverse to the original non-compact Calabi-Yau map to D6-branes
wrapping a T 3 [8]. From the homology class of the T 3

[T 3] =
n
∑

i=1

niSi ni ∈ ZZ (4.5)

we can compute the gauge group and matter content of the N = 1, d = 4 gauge theory
produced by a wrapped D6-brane

G =
n
∏

i=1

U(ni) Iij =# (Si.Sj) (4.6)

Each 3-cycle Si wraps a 1-cycle Ci of a smooth elliptic fiber that degenerates at a point
zi. The intersection numbers between the Si’s are thus equal to the ones of the Ci’s which
can be easily computed from their (pi, qi) charges

#(Si.Sj) = #(Ci.Cj) = det

(

pi qi

pj qj

)

(4.7)

Let us study how these concepts come together in the explicit example of dP0. The
corresponding (p, q) web is presented in Figure 2.a, from where we read the following (p, q)
charges

(p1, q1) = (−1, 2) (p2, q2) = (2,−1) (p3, q3) = (−1,−1) (4.8)
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Using 4.7, we compute the following intersection numbers

#(C1.C2) = −3 #(C2.C3) = −3 #(C3.C1) = −3 (4.9)

which can be conveniently summarized in the quiver diagram presented in Figure 2.b.
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Figure 2: (a) (p.q) web and (b) quiver diagram for dP0.

It is interesting to note that in this case, the SU(3) isometry of IP2 appears as a
flavor symmetry in the gauge theory, the Xij chiral fields transforming in the fundamen-
tal representation for each pair of indices (i, j). Invariance under this SU(3) fixes the
superpotential uniquely

W = ǫαβγX
(α)
12 X

(β)
23 X

(γ)
31 (4.10)

which is the singlet in X12X23X31 = 3⊗3⊗3 = 1⊕8⊕8⊕10. This superpotential is also
invariant under the ZZ3 cyclic permutations of the nodes (123). Let us demonstrate how one
can compute the moduli space of vacua for this model and reproduce the right manifold
we started with. The set of gauge invariant operators is given by 27 invariants, aαβγ =

X
(α)
12 X

(β)
23 X

(γ)
31 . Using the F-term equations we find that any antisymmetric combination

of the indices vanishes. Therefore aαβγ is in the completely symmetric 10 dimensional
representation of SU(3). Furthermore, due to this symmetry we find the set of equations

(aαβγ)3 = aαααaβββaγγγ , (4.11)

which is a set of 7 equations for 10 variables. A quick inspection verifies that this is the
set of equations for the orbifold C3/Z3, the manifold we started with.

In fact, (p, q) webs are powerful computational tools in deriving toric dual theories
[10]. Del Pezzo surfaces are constructed by blowing-up up to eight generic points on IP2.
A blow-up corresponds to the replacement of a point by a 2-sphere. Since the toric ((p, q)
web) representation of a 2-sphere is a segment, the blow-up of a vertex of a given (p, q)
web corresponds to its replacement by a segment. At the same time the external leg that
was originally attached to the blown-up vertex is replaced by a pair of legs, whose (p, q)
charges are dictated by (p, q) charge conservation at the new vertices. Using the SL(3,C)
symmetry of IP2, the positions of up to three generic points can be mapped to vertices of
the web. In this way, we see that, starting from the (p, q) web for dP0 given in Figure 2, we
can construct all the toric duals for del Pezzo surfaces up to dP3, by blowing-up vertices
of the webs in every possible way. We apply this technique to dP1 in Figure 3 to obtain
the two toric phases of dP2. It has been shown in [5, 6] that for the Zeroth Hirzebruch
and del Pezzo surfaces, Toric dual theories are indeed Seiberg duals.
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Figure 3: Possible blowups of dP1. They correspond to two inequivalent phases of dP2.

The discussion in this section, in addition to the one in Section 3, allows the translation
of four dimensional quantities and processes into five dimensional ones. This approach
was pursued in [10] to link the relocation of blown-up points associated to Toric Duality
to the crossing of curves of marginal stability in related five dimensional theories.

5 Picard-Lefschetz transformations

We have seen in Section 4 how to exploit local mirror symmetry to compute four dimen-
sional quiver theories from the intersections of 3-cycles in the type IIA mirror picture.
This geometric realization of the theories suggests how to generalize Seiberg duality by
using Picard-Lefschetz (PL) monodromy transformations.

PL monodromy corresponds to the reordering of vanishing cycles. When moving a
vanishing cycle Sj around another one Si, Sj gets a contribution proportional to Si,
weighted by the mutual intersection number

Sj → Sj + (Sj.Si)Si (5.12)

while Si remains invariant. The 3-cycles Si can be represented by [pi, qi] 7-branes with
wrapping numbers ni and we can recast (5.12) in terms of [p, q] charges (Figure 4). PL
monodromies corresponds in this language to the motion of a 7-brane across the branch
cut of another one

The set of Seiberg dual theories associated to a given singularity can be obtained by
starting from a configuration of [p, q] 7-branes for the geometry, acting on them with PL
monodromy transformations according to the rules in (5.12) and computing the resulting
quiver as explained in Section 4. In fact, the group of PL transformations is larger than
the one of Seiberg dualities, and there are gauge theories attainable with monodromies
that cannot be reached by performing any chain of Seiberg dualities on nodes of the quiver
[11]. Since further action with PL transformations results in Seiberg duals, these theories
have been named Fractional Seiberg duals.

Figure 5 exhibits three theories related by PL transformations and Seiberg dualities
for the Zeroth Hirzebruch surface. In this case, Model 2 is a new fractional Seiberg dual
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[p2,q2]’ = [p2,q2] + (S2.S1) [p1q1]

[p4,q4][p3,q3][p1,q1][p4,q4][p3,q3][p2,q2][p1,q1] [p2,q2]’ 

Figure 4: Picard-Lefschetz monodromy as reordering of a configuration of 7-branes. We have indicated
in the figure the expression of (5.12) as a transformation of [p, q] charges.

theory that could not have been computed by means of traditional Seiberg duality.
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Figure 5: A sequence of Picard-Lefschetz transformations for F0. In this case, model 2 cannot be obtained
by any combination of Seiberg dualities.The ranks of the gauge groups (up to an overall rescaling) are
denoted in red.

6 Diophantine equations from invariant traces

In the previous section, we have described how dual theories can be generated by per-
forming Picard-Lefschetz transformations on the set of degenerate fibers. All along the
dualization process there is a set of quantities that remain invariant, thus providing us
with a powerful tool in characterizing dual theories. The existence of these invariants
was studied in detail in [12]. They are the number of the degenerate fibers, the greatest
common divisor of the intersection numbers and the trace of the total monodromy matrix,

K = Kz1
Kz2

...Kzn
(6.13)

For the configurations of degenerate fibers under study,

TrK = 2 (6.14)

This equality corresponds, for each geometry, to a Diophantine equation in the inter-
section numbers that completely encodes all the gauge theories that can be generated by
performing Picard-Lefschetz transformations. As an example, let us consider the case of
dP0. Using the (p, q) charges in Figure 2 we arrive at
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I2
12 + I2

23 + I2
32 − I12I23I32 = 0 (6.15)

Since for this specific example Ni = 3Ijk, with j, k 6= i, (6.15) can be turned into an
equation for the allowed ranks of the gauge groups

N2
1 + N2

2 + N2
3 − 3N1N2N3 = 0 (6.16)

Acknowledgement We would like to thank Bo Feng, Yang-Hui He, Amer Iqbal and
Angel Uranga for collaborations in the material presented in this note. A.H. Would also
like to thank the organizers of the ”35th International Symposium Ahrenshoop on the
Theory of Elementary Particles” for their hospitality. Research supported in part by
the CTP and the LNS of MIT and the U.S. Department of Energy under cooperative
agreement #DE-FC02-94ER40818. A.H. is also supported by the Reed Fund Award and
a DOE OJI ward.

References

[1] Ofer Aharony , Amihay Hanany , “Branes, superpotentials and superconformal fixed
points”, Nucl. Phys. B 504, 239 (1997), hep-th/9704170.

[2] Ofer Aharony , Amihay Hanany , Barak Kol, “Webs of (p,q) five-branes,
five-dimensional field theories and grid diagrams”, JHEP 9801, 002 (1998),
hep-th/9710116.

[3] Bo Feng, Amihay Hanany and Yang-Hui He, “D-Brane Gauge Theories from Toric
Singularities and Toric Duality” Nucl. Phys. B 595, 165 (2001), hep-th/0003085.

[4] Bo Feng, Amihay Hanany and Yang-Hui He, “Phase Structure of D-brane Gauge
Theories and Toric Duality”, JHEP 0108 (2001) 040, hep-th/0104259.

[5] Bo Feng, Amihay Hanany, Yang-Hui He and Angel M. Uranga, “Toric Duality as
Seiberg Duality and Brane Diamonds”, JHEP 0112, 035 (2001), hep-th/0109063.

[6] C. E. Beasley and M. R. Plesser, “Toric Duality Is Seiberg Duality”, JHEP 0112,
001 (2001), hep-th/0109053.

[7] Bo Feng, Sebastian Franco, Amihay Hanany and Yang-Hui He, “Symmetries of toric
duality”, hep-th/0205144.

[8] Amihay Hanany, Amer Iqbal, “Quiver Theories from D6-branes via Mirror Symme-
try”, JHEP 0204, 009 (2002), hep-th/0108137.

[9] N.C. Leung and C. Vafa, “Branes and Toric Geometry”, Adv. Theor. Math. Phys. 2,
91 (1998), hep-th/9711013.

[10] Sebastian Franco and Amihay Hanany and Yang-Hui He, “Geometric Dualities in 4d
Field Theories and their 5-d Interpretation”, hep-th/0207006.

[11] Bo Feng, Amihay Hanany, Yang-Hui He and Amer Iqbal, “Quiver Theories, Soliton
Spectra and Picard-Lefschetz Transformations”, hep-th/0206152.

[12] O.DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, “Uncovering infinite symmetries on
(p,q) 7-branes: Kac-Moody algebras and beyond”, Adv. Theor. Math. Phys. 3, 1835
(1999), hep-th/9812209.

7

http://arXiv.org/abs/hep-th/9704170
http://arXiv.org/abs/hep-th/9710116
http://arXiv.org/abs/hep-th/0003085
http://arXiv.org/abs/hep-th/0104259
http://arXiv.org/abs/hep-th/0109063
http://arXiv.org/abs/hep-th/0109053
http://arXiv.org/abs/hep-th/0205144
http://arXiv.org/abs/hep-th/0108137
http://arXiv.org/abs/hep-th/9711013
http://arXiv.org/abs/hep-th/0207006
http://arXiv.org/abs/hep-th/0206152
http://arXiv.org/abs/hep-th/9812209


[13] A. M. Uranga, “Local models for intersecting brane worlds”, JHEP 0212, 058 (2002),
hep-th/0208014.

[14] R. Blumenhagen, V. Braun, B. Kors and D. Lust, “Orientifolds of K3 and Calabi-Yau
manifolds with intersecting D-branes”, JHEP 0207, 026 (2002), hep-th/0206038.

8

http://arXiv.org/abs/hep-th/0208014
http://arXiv.org/abs/hep-th/0206038

	Introduction
	Toric duality
	(p,q) webs
	4d theories via local mirror symmetry
	Picard-Lefschetz transformations
	Diophantine equations from invariant traces

