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Abstract

This paper presents a discussion of the development of wind energy generation in the United Kingdom and the chal-

lenges faced by the wind industry including reliability, performance and condition monitoring, particularly in the offshore

environment. The worldwide installed capacity of offshore wind has now risen to over 7 GW, with an ever increasing

deployment rate of new assets. About 90% of the global currently installed capacity is in Northern Europe, with the

United Kingdom having the world’s largest share at 4 GW. Capacity factor data from UK offshore wind farms is pre-

sented, providing an insight into the current performance of large Round 2 offshore wind farms compared to the earlier

Round 1 farms and to onshore farms. The data reveal that the United Kingdom’s Round 2 offshore farms are achieving an

average monthly capacity factor of 38.3% with a peak value of 75.8%. The older Round 1 farms have a lower average

capacity factor of 33.6% while large onshore farms with capacities above 100 MW have achieved 25.6%. Offshore wind

turbine performance has improved over time, and the industry is applying the learning from early experiences to achieve

better performances at the more recently installed farms. Despite these improvements in turbine availability, the cost of

energy from wind, particularly offshore, remains too high for it to be a commercially viable form of generation without

subsidies. Reducing the cost of energy from wind to economically sustainable levels is the most important challenge

facing the industry today. Operation and maintenance costs constitute up to 30 % of the total cost of energy from wind in

large farms. The industry must overcome the challenges associated with improving component reliability and the devel-

opment and adoption by operators of appropriate condition monitoring systems and maintenance strategies, in order to

reduce costs to sustainable levels. Research and development work carried out with these goals in mind is also reviewed

in the paper.
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Introduction

The challenges of climate change, energy security and
cost of energy are becoming ever more present for gov-
ernments across the world. As a result, governments
are changing their approaches to electricity generation
and countries are seeing significant diversification in
their energy generation mixes, moving towards renew-
able sources, nuclear and clean conventional plant.

The exploitation of renewable energy resources is
central to European Union (EU) environmental and
energy policy goals. The EU has committed to a leg-
ally binding target of meeting 20% of its total energy
demand (heating, transport and electricity) from
renewable sources by 2020. If this target is to be rea-
lised it means that 34% of electricity generated1 will
need to come from renewable sources by this date. In
a communication entitled ‘A policy framework for
climate and energy in the period from 2020 to 2030,’
the EU proposes increasing the share of renewable
energy to at least 27% of EU energy consumption

by 2030 with the aim of decarbonising the economy
by between 80% and 95% by 2050.2

Wind energy has become the strongest and fastest
growing renewable energy technology worldwide
over the last 30 years, thanks largely to recent techno-
logical advances and commercial growth. It now plays
a central role in the immediate and longer-term energy
strategies of many countries.

By the end of 2013, the global installed capacity of
wind turbines (WT) stood at 318.1GW, of which
117.3GW was installed in the EU.3 Projections by
the European Wind Energy Association (EWEA) in
2011 suggest that 230GW of wind capacity will be
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installed in the EU by 2020, rising to 400GW by 2030
and 735GW by 2050.4 In 2007, the European
Commission reported5 a lower target installed capacity
of 146GW by 2030 of which 129GWwould be onshore
and 17GW offshore. The EWEA 2014 European
Statistics report6 shows 128.8GW of installed capacity
in the EU with approximately 120GW onshore and
8GW offshore. These current figures suggest that the
EU is on course to pass the European Commission
expectation for 2030; however, there is a long way to
go before the EWEA projections are realised.

A significant proportion of this forecast installed
capacity is expected to be offshore, with many new
large-scale sites already identified for development in
Europe due to the favourable wind resources and sub-
sea conditions.

Offshore wind has advantages over onshore both
technically and in terms of public perception. Offshore
average wind speeds are higher and turbulence is
generally lower than in the onshore environment,
which results in greater energy capture for a given
wind farm size. Politically and in terms of public per-
ception, offshore wind has the advantage that visual
impact and noise concerns are largely mitigated by
distance, although challenges remain with respect to
marine life. There is also significant potential for very
large-scale offshore sites to be developed. Onshore
farms are generally much more limited in capacity
due to space constraints; however, large-scale sites
have been developed in the USA where the large
plains can deliver favourable wind conditions.

The worldwide installed capacity of offshore wind
current stands at approximately 7GW3 and is increasing
on a daily basis. Around 90%of this capacity is in north-
ern Europe. The United Kingdom is the world leader in
offshore wind with an installed capacity of over 4GW.
Industry projections suggest that there will be 8GW of
UK offshore capacity by 2016 rising to around 18GW
by 2020, supplying 18–20% of UK electricity demand.7

The performance of offshore wind farms is
explored in this paper by making use of extensive cap-
acity factor data from large UK onshore and offshore
wind farms. This data also allows the improvement in
wind farm performance as operators gain experience
to be assessed.

The cost of energy from wind farms is one of the
main barriers that is currently restricting wider adop-
tion of this form of renewable energy generation.
Operating and maintenance (O&M) costs are signifi-
cant, particularly for offshore wind. The technical
challenges that must be overcome in order to reduce
O&M costs are also discussed in the paper.

Performance of UK wind farms

Initially, concerns existed over the feasibility of off-
shore wind in the United Kingdom, with reliability
and potential reduced availability due to access diffi-
culties, being cited as core issues. However, the launch

in 2001 of the ‘Offshore Wind Capital Grants Scheme’
by the UK Department of Trade and Industry led to
investment in five farms of 60–90MW scale (North
Hoyle, Scroby Sands, Kentish Flats, Barrow and
Burbo Bank). All of these have now been fully oper-
ational for at least 7 years. The sites offered the poten-
tial for the United Kingdom to gain vital experience of
offshore technology and operations. Under the Capital
Grants Scheme, a number of reports on the operating
history of the wind farms were made publicly available.
The data, analysed in Feng et al.,8 found that the
farms were achieving an overall average availability
of 80.2% with an average capacity factor over 3
years of 29.5%.9 However, the capacity factor
remained below the estimate for EU offshore wind
farms of 35%, based on Danish experience. This was
partly due to the low availability of 80.2%.

In the United Kingdom, The Crown Estate has
now held three rounds of bidding for the award of
wind farm site development rights in UK waters,
resulting in the United Kingdom now having 22 oper-
ational offshore wind farms with capacities ranging
from 60MW to 630MW. The UK offshore portfolio
is summarised in Table 1. London Array and Greater
Gabbard are, respectively, the world’s largest and
second largest offshore wind farms by capacity.

In addition to the farms listed in Table 1, the
United Kingdom has two test sites, each with two
turbines. The two 2MW Vestas turbines at Blyth,
Northumberland, were the United Kingdom’s first
offshore turbines. These have been operating intermit-
tently since the year 2000. The Beatrice wind farm, in
the Moray Firth, features two 5MW REpower tur-
bines. These were constructed in order to assess the
feasibility of installation and operation in deeper
waters than the United Kingdom had previously
experienced. No continuous data is available from
these test sites. The map numbers in Table 1 corres-
pond to the map of offshore wind farms in Figure 1.

The performance of the full-scale offshore wind
farms can be investigated by examining available cap-
acity factor or production data. Capacity factor is
defined as the delivered annual energy yield (MWh)
divided by the theoretical maximum energy produc-
tion of a farm or turbine over a 1-year period i.e. rated
power (MW) multiplied by the 8760 h in a year.11

CapacityFactor¼
AnnualEnergyProduction

RatedPower�8760
�100%

Capacity factor data is also calculated on a
monthly basis using a similar definition to that given
above, but for a 1 month rather than 1-year time
period.

Monthly capacity factor data has been reported by
each of the wind farms in Table 1 through a number
of different schemes:

. Renewable Obligation subsidy certificates (ROCs)
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. Renewable Energy Guarantees of Origins
(REGOs)

. Climate Change Levy Exemption Certificates
(LECs)

Data from these three sources have been compiled by
theRenewable EnergyFoundation and is publicly avail-
able via their online database.10 The 2010 study of the
UK Round 1 sites8 included data from North Hoyle,
Scroby Sands, Kentish Flats and Barrow wind farms,
with a total of 270 turbine years summarised within the
capacity factor data. The offshore wind farm capacity
factor data used in this study10 is much more extensive
than this, including approximately 4000 turbine years.

Capacity factor data are also available for onshore
wind farms from the Renewable Energy
Foundation.10 To allow a reasonable comparison
between onshore and offshore wind farms, 12 onshore
wind farms with capacities greater than 100MW are
considered. The available data, covering approxi-
mately 3000 wind turbine years, is summarised in
Table 2. The map numbers in Table 2 correspond to
the map in Figure 2.

Table 3 summarises the data presented in this
report against the previous study of UK capacity
factor by Feng et al.8

For the majority of the wind farms in Tables 1 and 2,
the turbines were commissioned as they were
constructed. This resulted in initially very low farm-
level capacity factors being reported during periods
when only a small number of turbines were generating
and many more were still under construction. Previous
studies, including12 removed the early data based on a
threshold capacity factor in order to ensure that the data
usedwas representative of normal operation of the farm.

Here, the dates of full commissioning were collated
from various public sources13,14 and all data before
these dates was discarded. Any subsequent low capacity
factor values are retained and assumed to be part of
normal operation. Any lower value months might, for
example, be caused by periods of scheduled or unsched-
uled downtime for a significant number of turbines,
which must be taken into account in any meaningful
analysis. The resulting dataset is summarised in Table
4 which shows the number of points included in the
original and cleaned datasets. Approximately 82% of
the original data was retained. No wind farms included
in this study were re-powered during the reporting
period and any fluctuations in capacity should be con-
sidered to be part of normal farm operation.

Figure 3 shows the number of reporting wind farms
with farm age from date of commissioning split into

Table 1. UK offshore wind farms. Data collated by the Renewable Energy Foundation (REF),10 covering the 10-year period from July

2004 to June 2014.

Map Wind farm

Turbine

manufacturer

Turbine

capacity (MW)

Number of

turbines

Farm capacity

(MW)

Award

round

Capacity

factor (%)

Reported

months

1 Barrow Vestas 3.0 30 90.0 1 34.3 100

2 Burbo Bank Siemens 3.6 25 90.0 1 33.6 84

3 Gunfleet Sands I Siemens 3.6 30 108.0 1 32.9 56

4 Lynn Siemens 3.6 27 97.2 1 33.3 69

5 Inner Dowsing Siemens 3.6 27 97.2 1 34.2 70

6 Kentish Flats Vestas 3.0 30 90.0 1 31.2 106

7 North Hoyle Vestas 2.0 30 60.0 1 33.4 127

8 Ormonde REpower 5.0 30 150.0 1 38.8 32

9 Rhyl Flats Siemens 3.6 25 90.0 1 33.4 56

10 Robin Rigg (East) Vestas 3.0 30 90.0 1 33.5 50

11 Robin Rigg (West) Vestas 3.0 30 90.0 1 34.7 57

12 Scroby Sands Vestas 2.0 30 60.0 1 29.9 118

13 Teesside Siemens 2.3 27 62.1 1 24.6 12

14 London Array Siemens 3.6 175 630.0 2 37.3 19

15 Greater Gabbard Siemens 3.6 140 504.0 2 32.9 34

16 Thanet Vestas 3.0 100 300.0 2 32.4 48

17 Sheringham Shoal Siemens 3.6 88 316.8 2 35.5 26

18 Walney 2 Siemens 3.6 51 183.6 2 41.9 32

19 Walney 1 Siemens 3.6 51 183.6 2 38.7 40

20 Lincs Siemens 3.6 75 270.0 2 38.2 15

21 Gunfleet Sands II Siemens 3.6 18 64.8 2 34.9 59

22 West of Duddon Sands Siemens 3.6 108 388.8 2 11.8 3

Total 1177 4016.1
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Figure 1. Map of UK offshore wind farms. Map data: Google, SIO, NOAA, US Navy, NGA, GEBCO, Image Landsat.

Table 2. UK onshore wind farms with capacity greater than 100 MW. Data collated by the Renewable Energy Foundation (REF),10

covering the 9-year period from October 2005 to June 2014.

Map Wind farm

Turbine

manufacturer

Turbine

capacity (MW)

Number of

turbines

Farm capacity

(MW)

Capacity

factor

Reported

months

1 Whitelee Siemens 2.3 140 322.0 24.0 69

2 Whitelee Extension Alstom 2.9 75 217.0 19.9 20

3 Griffin Siemens 2.3 68 156.4 18.7 33

4 Fallago Rig Vestas 3 48 144.0 29.8 17

5 Harestanes Vestas 2 68 136.0 13.4 5

6 Crystal Rig II Siemens 2.3 60 138.0 29.3 52

7 Clyde (South) Siemens 2.3 56 128.8 29.0 35

8 Black Law Siemens 2.3 54 124.2 21.9 110

9 Arecleoch Gamesa 2 60 120.0 26.8 42

10 Hadyard Hill Bonus 2.3 52 119.6 24.0 102

11 Clyde (Central) Siemens 2.3 49 112.7 28.2 29

12 Clyde (North) Siemens 2.3 47 108.1 33.8 25

Total 777 1826.8
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offshore Round 1, Round 2 and Onshore> 100MW
categories. The most comprehensive historical data is
available for Round 1 offshore wind farms, with some
farms now having completed 10 full years of oper-
ation. Figure 4 summarises the performance of tur-
bines for each of the three wind farm categories, over
their lives to date. The distributions are clear and sug-
gest that few extremes of operation are being encoun-
tered. It should be noted that the data in Figure 4(c) is
relatively sparse and therefore not as statistically sig-
nificant as the other categories; however, the

distribution obtained from the data is similar to the
other datasets shown.

Table 5 summarises the average monthly capacity
factors across the United Kingdom’s different wind
farm categories as shown in Figure 4. As might be
expected, the Round 2 offshore farms achieve the
highest average monthly capacity factor across
farms of 38.3% with a peak of 75.8%. Round 1
farms provide the second highest capacity factor
while large onshore farms achieve a modest but
respectable 25.6%. A previous analysis15 suggested a
capacity factor distribution with mean of 26.3 % for
all UK onshore wind farms installed since 1990. This
is consistent with the new data shown here. The stand-
ard errors on the means (SEM) given in Table 5 sug-
gest that the calculated means are acceptably precise
for all categories of site, in all cases being 1% or
below. Greatest precision is seen for the Round 1
dataset, which also dominates the SEM for all off-
shore farms, as a result of the larger number of
reported months available for Round 1 sites (859
points) compared to Round 2 (187 points).

The distributions of capacity factor can be broken
down to illustrate performance over time. Figures 5
and 6 show histograms of capacity factor with turbine
age for, respectively, onshore> 100MW and Round 1
offshore sites. For Round 2 sites, not enough data is
available to form a meaningful histogram beyond year
three. There is a noticeable different between Figure 5
and Figure 6 in that the average capacity factor with
time increases offshore but decreases onshore. It can
also be seen that the distributions become less stable
over time, with greater noise present, particularly
beyond year six because of the fewer observations
for older farms. The causes of this change in capacity
factor distribution cannot be directly inferred from
the data as capacity factors depend on a number of
variables including wind speed, turbine availability
and curtailment, for example. However, the data
can be compared with findings from Hughes12 and
Staffell and Green15 which state that turbine perform-
ance is decreasing over time as machines age. The data
in Figure 6 (Round 1 offshore) suggests improving
performance over time, with average monthly cap-
acity factors over 3-year periods by year of operation
increasing from 33.1% to 35%. Two possible explan-
ations for this improvement are that average monthly
wind speeds may have increased continuously over the
9-year period of operation, leading to higher energy
yield, or that operation and maintenance regimes have
matured to reduce downtime, leading to increased
availability for energy production. Further study is
required to fully understand why the capacity factor
of Round 1 offshore wind farms has increased with
time despite ageing assets.

The data for large onshore farms (>100MW) show
a decrease in capacity factor with age, when the dis-
tributions are plotted by farm age (Figure 5). This
could result from a number of factors which cannot

Figure 2. Map of UK large (> 100 MW) onshore wind farms.

Map data: Google, SIO, NOAA, US Navy, NGA, GEBCO, Image

Landsat.

Table 3. Capacity factor data population for this and previous

studies.

Wind farm Turbines

Capacity

(MW)

Turbine

years

Feng, Tavner, Long8 120 300 270

This paper (offshore) 1177 4016 4026

This paper (onshore

> 100 MW)

777 1827 3000

Table 4. Summary of original and cleaned data.

Wind farm

Raw

turbine

years

Filtered

turbine

years

Percentage

turbine years

retained

Offshore 4026 3116 77.4

Onshore> 100 MW 3000 2597 86.6

Crabtree et al. 731

 at UNIV OF DURHAM LIBRARY on November 3, 2015pia.sagepub.comDownloaded from 

http://pia.sagepub.com/


be understood directly from the available data.
Figure 7 goes some way to illustrating the challenge
of interpreting capacity factor data and explaining the
downward trend. It is generally expected that newer
wind farms will include more modern turbines and
will be subject to the more developed maintenance
strategies. This is likely to skew results in some
manner. The effect is most noticeable in Figure 7(a),
showing the 12-month moving average of monthly
capacity factor for each large onshore wind farm

(individual grey lines) and the average (thick black
line). The moving average smooths the variation in
performance of the different farms and reveals a
downwards trend in capacity factor with increased
variation beyond 36 months. However, it can be
seen that those wind farms operating for more than
60 months have been consistently operating at lower
capacity factors throughout their lives. The overall
downward trend results from the addition of new,
higher performing wind farms which raise the average
capacity factor in early years. With the constant add-
ition of new technologies to the UK wind generation
portfolio, it is difficult to produce statistically reliable
results from such a dynamic dataset.

Conversely, Figure 7(b) shows the same data but
for Round 1 offshore farms. In this case the capacity
factor remains essentially constant with time. This is
caused by the higher performing newer assets com-
pensating for the low early performance of the older
assets (as shown in Figure 6). For Round 2 offshore
farms, little data is available at present for 12-month
averaging. It is interesting to note from the data
shown in Figure 7(c) that early indications are that
Round 2 wind farms are achieving higher capacity

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

0% 20% 40% 60% 80% 100%

Pe
rc

en
ta

ge
 o

f O
cc

ur
an

ce
s

Monthly Capacity Factor

Offshore Round 1: All Months

Mean: 33.6%

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

0% 20% 40% 60% 80% 100%

Pe
rc

en
ta

ge
 o

f O
cc

ur
an

ce
s

Monthly Capacity Factor

Onshore > 100MW: All Months

Mean: 25.6%

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

0% 20% 40% 60% 80% 100%

Pe
rc

en
ta

ge
 o

f O
cc

ur
an

ce
s

Monthly Capacity Factor

Offshore Round 2: All Months

Mean: 38.3%

(a) (b) (c)

Figure 4. Histogram of capacity factors normalised to the total number of reported months for: (a) large onshore, (b) offshore

Round 1 and (c) offshore Round 2 wind farms.
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Figure 3. Number of reporting wind farms with farm age from commissioning for: (a) large onshore, (b) offshore Round 1 and (c)

offshore Round 2 wind farms.

Table 5. Summary of capacity factors for UK large onshore

and offshore wind farm fleets.

Category

Average

monthly

capacity

factor

Standard

error on

the mean

(SEM)

Peak monthly

capacity factor

Onshore> 100 MW 25.6% 0.6% 64.1%

Round 1 offshore 33.6% 0.4% 75.7%

Round 2 offshore 38.3% 1.0% 75.8%

All offshore 34.5% 0.4% 75.8%
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factors on average than the Round 1 sites. In sum-
mary, the limited data available for fully-commis-
sioned farms indicates that the older farms are
either maintaining or improving their capacity factors
whilst newer developments are coming online with
higher capacity factors.

Figure 8 shows the distribution of annual capacity
factors, calculated from the monthly capacity factors,
for all farms and for different subsets of the farms.
For all farms there is virtually no change in capacity
factor with age. Figure 8(b) shows that the greatest
decline in capacity factor with age occurs for large
onshore farms, with increased variation in the early
years due to the emergence of newer, better perform-
ing farms within the data. The changes in absolute
capacity factor are given in Table 6. The change in
onshore capacity factor, plotted in Figure 8(b), illus-
trates a decrease of 0.75% per annum from an initial
value of 28%. This data for large onshore wind farms
indicates a greater rate of degradation than that found
in Staffell and Green15 which, using the same
approach, deduced a degradation rate of 0.44% per
annum from an initial value of 29.2% from the data
used in this study for UK onshore farms. The com-
parison between these results from different studies

gives an indication of the likely scatter in results due
to the statistical significance of the datasets that are
currently available. Results in Staffell and Green15 are
derived from data covering all UK onshore wind
farms, including those with capacities below
100MW. The lower degradation rate in Staffell and
Green15 might imply that the performance of high-
capacity farms declines at greater rate than that of
lower capacity farms, as argued in Hughes.12 It
should be noted that the magnitude of the decline
described in Hughes12 does not seem to agree with
findings in this paper or Staffell and Green.15 This
possible difference between the performances of
farms of different capacities is an interesting and
important area for further study if the performance
of modern wind farms is to be understood and
optimised.

As noted earlier, Round 1 offshore wind farms
demonstrate a slight increase in absolute capacity
factor over time, with an increase of 0.19% per year
from a higher initial value of 32.8%. The Round 2
offshore farm data has also been included in Table 5
for completeness, although the value for annual
change for these farms is subject to much greater
uncertainty than the other values in the table, due to
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Figure 6. Capacity factor distribution with age for Round 1 offshore wind farms.
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Figure 5. Capacity factor distribution with age for onshore wind farms >100 MW.
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the relatively small numbers of years of operating
data that is currently available for the Round 2 sites.

It is also useful to examine the monthly average
capacity factors with date rather than year of oper-
ation. This is shown in Figure 9. The effect of newer
wind farms is visible from the data with increasing
monthly capacity factors for Round 1 (Figure 9(b))
and Round 2 (Figure 9(c)) farms. The large onshore
farms in Figure 9(a) also show an upward trend with
no marked deterioration in capacity factor and the
newer farms tending to operate at increasing capacity
factor levels.

Wind energy challenges

There are many technical, commercial and political
challenges facing the growth of the offshore wind
industry. Challenges associated with operations and
maintenance is of particular interest to the majority

of developers. Some of these challenges are discussed
in this section.

Cost of offshore wind

Whilst progress is being made, the deployment of off-
shore wind farms is not growing as quickly as was
envisaged a decade ago, despite significant techno-
logical advances being made during this period. The
primary reason for slower than expected growth, is
that offshore wind is still more expensive than con-
ventional plant. Compared to onshore, offshore farms
present greater risk to return on capital invested due
to higher and more uncertain installation and O&M
costs. Whilst going offshore results in improved cap-
acity factors and higher yields, capital costs and oper-
ating costs both increase substantially, compared to
onshore locations. However, this situation is changing
with the recent technological improvements in the size
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Figure 7. Twelve-month moving average monthly capacity factors with overall average by month of operation for: (a) large onshore

> 100MW, (b) offshore Round 1 and (c) offshore Round 2 wind farms.
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and design of turbine technology, the increasing num-
bers of offshore assets being deployed and the increase
in experience gained by the operators. Evidence of this
progress can be seen in the wind farm performance
data described earlier. The UK offshore wind indus-
try’s plans are ambitious and so cost reduction is a
subject of considerable interest.

Certain wind farms are now generating at a
cost close to that of conventional plant, primarily
onshore coastal sites.16 The estimated cost of offshore
energy varies depending on the site location and pro-
ject scale; however, it is clear that offshore projects
remain significantly more expensive than those that
are onshore.

Contrary to expectations, the costs of offshore
wind energy in the United Kingdom has increased
significantly since the first commercial scale wind
farms came online in the mid-2000s, with capital
costs for offshore of currently around �3m/MW
installed,17,18 compared to around half that value
5 years ago.16,19 The rise in offshore costs has been
driven by both increased material prices (particularly
for steel) and by more specific factors such as supply
chain bottlenecks, sub-optimal reliability and the
move to deeper waters.

Some of the United Kingdom’s offshore projects
have now achieved a stable levelised cost of energy
(LCOE) of around �140/MWh.20–23 Failing to signifi-
cantly lowering this value to allow offshore wind to
compete with conventional forms of power generation
without the need for subsidies, is the most critical risk
to the long-term economic sustainability of offshore
wind power. The UK Renewable Energy Roadmap24

states that the LCOE for offshore wind will need to
reduce to around �100/MWh by 2020, if it is to gain a
significant market share and achieve parity with other
forms of power generation. Recent evidence from the
Crown Estate20 and the Offshore Wind Cost
Reduction Task Force25 suggests routes for achieving
this goal, as the technology is scaled up, despite the
move further offshore and into deeper waters.
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Figure 8. Annual capacity factors (averaged from monthly capacity factors) for: (a) all farms, (b) large onshore > 100 MW, (c) all

offshore, (d) offshore Round 1 and (e) offshore Round 2.

Table 6. Changes in annual capacity factors.

Category

Capacity factor

Initial Annual change

All farms 31.6% �0.0007%

Onshore> 100 MW 28.0% �0.75%

All offshore 34.5% �0.02%

Offshore Round 1 32.8% 0.19%

Offshore Round 2 39.5% �0.59%
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The �100/MWh target should be realisable by
2020, but requires investment from manufacturers,
developers and operators to optimise both capital
expenditure (CAPEX) and operational expenditure
(OPEX). Figure 10 shows the comparison of the
breakdown of CAPEX and OPEX for a typical off-
shore wind farm, according to six recent published
studies, including journal publications27 and technical
reports by wind industry specialists26,28 and UK gov-
ernment experts.20,22,29

The CAPEX is taken to include all one-time
expenditure associated with wind farm development,
deployment and commissioning, such as30:

. the turbine costs including the transformer, trans-
portation to the site and installation;

. the electrical connection infrastructure cost, includ-
ing cables, sub-station, connection and power
evacuation systems;

. the civil work cost, including the foundations, road
construction and buildings;

. other capital costs, including development and
engineering costs, licensing procedures, consenting
and permits, SCADA (Supervisory, Control
and Data Acquisition) and monitoring systems,30

etc.

OPEX includes all ongoing expenditure, whether
one-time or recurring, to operate and maintain the
farm, measured on an annual basis. The most import-
ant OPEX costs of a wind energy project are30:

. the costs of the running of the site, including land
and sub-station rental, insurance and taxes, man-
agement and administration;

. scheduled O&M activity costs, including provisions
for repair and spare parts and maintenance of the
electric installation;
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Figure 9. Twelve-month moving average monthly capacity factors with overall average by date for: (a) large onshore> 100 MW, (b)

offshore Round 1 and (c) offshore Round 2 wind farms.
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. allowances for unplanned maintenance to repair
unforeseen failures.

Although the CAPEX and OPEX component clas-
sification varies according to the reference source con-
sidered, including different levels of details, Figure 10
shows that upfront CAPEX costs recovered over the
life of the wind farm account for typically 70%. Thus
wind farms are capital-intensive compared to conven-
tional fossil fuel fired technologies such as a natural
gas power plant, for which principally fuel charges
increase OPEX costs to typically between 40% and
70% of the LCOE.16

The work by Coultate22 shows an overall OPEX
for offshore wind of around 24%, which is consistent
with the other cost sources cited in Figure 10.
Heptonstall et al.27 break the total capital cost
down into the major components and separate the
O&M costs into costs related to physical maintenance
and costs related to non-physical services such as
insurance. The contribution of the physical O&M is
around 20%, representing a significant part of the
total LCOE.

Most offshore projects have a design lifetime of at
least 20 years. The O&M strategy employed will influ-
ence not only the annual OPEX, but also the lifetime
of the farm. A balance must be struck between high
levels of maintenance to ensure longevity and lower
levels to reduce running costs. To date, most O&M

activities have been contracted to WT manufacturers
to run in parallel with key equipment warranties, typ-
ically for the first 5 years of operation. Following the
warranty period, the bigger operators might take full
control of the farm assets; however, many less experi-
enced or smaller scale operators may prefer to con-
tinue to contract for O&M to the turbine
manufacturer. O&M costs are generally considered
to scale with the number of turbines, as this number
determines the number of personnel transfers per year
and the number of replacement parts. GL Garrad
Hassan examined the expected O&M costs for a
500MW wind farm comprising 6MW WTs, situated
55 km from shore and using an O&M strategy based
around work boats with helicopter support.28 The
total OPEX was estimated to be around �430,000
per turbine per year, with an annual spend per turbine
on O&M of around �290,000, averaged over a farm
design life of 20 years.

The figures above demonstrate the importance of
having a well-defined and well-managed approach to
O&M activities, as a reduction in costs could dramat-
ically affect the economic viability of large offshore
wind farms and the degree to which offshore wind
becomes competitive in the electricity market.

Reducing the cost of the energy produced by off-
shore wind projects is a major focus for the offshore
wind industry20 and for the UK Government.25

Finding ways to reduce the cost of O&M services

Figure 10. Offshore wind LCOE breakdown by CAPEX and OPEX, based on Arwas et al.,20 Ernst and Young,22 Coultate,26

Heptonstall et al.,27 GL Garrad Hassan28 and DECC.29 (a) Array cables; (b) Decommissioning; (c) Seabed rent; (d) Pre-development

and (e) Variable O&M.

Crabtree et al. 737

 at UNIV OF DURHAM LIBRARY on November 3, 2015pia.sagepub.comDownloaded from 

http://pia.sagepub.com/


and optimising asset performance have crucial roles in
reducing the LCOE from offshore wind moving
forward.

It is worth noting that the costs of operation are
considerably lower than the costs of maintenance.
Operating costs include costs associated with high-
level asset management, including remote system
monitoring, environmental monitoring, electricity
sales, marketing and administration.

Maintenance optimisation

Maintenance actions account for the majority of
O&M costs incurred in large wind farms, the purpose
being to achieve a desired level of performance from a
component or system.

Corrective maintenance is the current O&M strat-
egy used for existing onshore and offshore wind
farms.31,32 In case of a failure, a maintenance action
is launched at the first opportunity to carry out the
repair, resulting in an additional visit to the WT over
any planned maintenance visits. Corrective mainten-
ance practice is successfully employed onshore, with
minimal interference from environmental conditions,
but it is largely impractical offshore. Faults require a
range of different responses from a simple inspection
and restart of a WT, which might take a couple of
hours, through to the replacement of an offshore sub-
station transformer, which could take weeks or even
months to implement. Difficult-to-access locations
and the high cost of the specialist personnel and
access equipment needed, means that offshore O&M
costs have been quantified as three to five times
greater than those for onshore.33,34 The cost difference
could potentially increase even further for next gener-
ation wind farm developments, which will be situated
further offshore in higher average wind speeds and
with more challenging sea conditions. Unscheduled
maintenance at day-rate costs of up to 1000 per opera-
tive35 has been shown to account for approximately
70% of the O&M costs.36 These high figures empha-
sise the need for optimising the O&M strategy for
unmanned offshore wind farms to reduce unexpected
turbine downtime, avoid lost revenue and improve the
availability, so that competitive prices for the pro-
duced electricity can be achieved.37

A Condition Based Maintenance (CBM) prevent-
ive practice can contribute significantly to minimising
the offshore O&M costs, by lowering the number of
inspection visits and corrective maintenance actions
needed.38–42 This maintenance approach involves
repair or replacement of components based on their
state of health and on the operating history of the
particular machine in question. Advanced and reliable
monitoring and analysis techniques are needed to plan
CBM using data from the SCADA systems and
Condition Monitoring Systems (CMS) that are
already fitted to WTs.

Reliability

WT reliability plays a key role in the economic success
of a wind farm projects. Poor reliability directly
affects the project’s revenue stream through both
increased O&M costs and reduced availability to gen-
erate power due to turbine downtime.

Detailed measurements of offshore WT failure
rates are not available in the public domain in statis-
tically significant numbers. For this reason the avail-
able literature on reliability focuses principally on
publicly available onshore data. However, operators
and manufacturers are usually extremely reluctant to
disclose data about reliability because the WT indus-
try is extremely competitive and failure data concern-
ing a manufacturer’s technology has strong
commercial relevance for both the procurement and
operation of assets. As a result, the sources of this
type of information are restricted to a few publicly
available databases.43–49 An increasingly strong argu-
ment exists for the WT industry to find ways of ending
this restrictive practice, in favour of the collective
benefit that will arise from sharing of data on improv-
ing the overall economic performance of WT assets
compared to other available generating technologies.
At present, the available reliability studies use data
from different WT populations, types and sizes; how-
ever, the failure statistics show a considerable
agreement.

Figure 11 summarises the analysis of reliability
data taken from three of the most comprehensive
failure statistics datasets for onshore WTs that are
currently available. These are data from the German
Wissenschaftliches Mess-und Evaluierungsprogramm
(WMEP),46 the German Landwirtschaftskammer
(LWK)47 and the Ekofisk Swedish45 surveys. Failure
and downtime data have been categorised by WT sub-
assembly. The analysis of the datasets reveals
common trends and provide valuable insights into
the reliability of the various onshore WT drive train
components.

Figure 11 highlights that for onshore wind assets
the highest failure rate sub-assemblies do not
necessarily cause the most downtime. Whilst electrical
sub-assemblies appear to have higher failure rates and
shorter downtimes, mechanical sub-assemblies,
including blades, gearbox and generator components,
tend to have relatively low failure rates but very long
downtimes. Similar results have been obtained by
Pinar Perez et al.51 where data were compared from
a selection of major reliability studies from the litera-
ture, giving confidence in the validity of the informa-
tion shown in Figure 11.

The WMEP, LWK and Swedish datasets have
some important limitations. The data was collected
during 1993–200646,47 and 1997–200545 and the
majority of the turbines surveyed are much lower
power than current-day turbines and use some
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technologies that have now been superseded. The
more recent ReliaWind study49 addressed these limi-
tations by considering only turbines that met the fol-
lowing requirements: power rating greater or equal to
850 kW, variable speed, pitch regulated, operating for
a minimum of 2 years and from a wind farm that

consists of at least 15 turbines. Figures 12 and 13
show the results of the ReliaWind study, which
broke the turbine into a detailed taxonomy of sub-
systems and sub-assemblies to identify critical areas
of interest from >4000 onshore wind turbine years
of data. It should be noted that, unlike the data

Figure 12. Distribution of normalised failure rate by sub-system and sub-assembly for WTs of multiple manufacturers from the

ReliaWind survey.49

00.20.40.60.8

Drive Train

Generator

Gearbox

Rotor Blades

Mechanical Brake

Rotor Hub

Yaw System

Hydraulic System

Other

Electrical Control

Electrical System

Annual failure frequency
0 2 4 6 8 10 12 14 16

Drive Train

Generator

Gearbox

Rotor Blades

Mechanical Brake

Rotor Hub

Yaw System

Hydraulic System

Other

Electrical Control

Electrical System

Downtime per failure (days)

Electrical System 

Electrical Control

Other

Hydraulic System

Yaw System

Rotor Hub

Mechanical Brake

Rotor Blades

Gearbox

Generator

Drive Train

Annual failure frequency Downtime per failure (days)

WMEP, approx 15400 Turbine Years,     
1993-2006

LWK, approx 5800 Turbine Years, 
1993-2006

Swedish Survey, 3122 Turbine Years, 
1997-2005

Figure 11. Failure rate and downtime data for onshore WTs from three large public domain reliability surveys.45,50

Crabtree et al. 739

 at UNIV OF DURHAM LIBRARY on November 3, 2015pia.sagepub.comDownloaded from 

http://pia.sagepub.com/


shown in Figure 11, for reasons of confidentiality the
published ReliaWind results do not show the actual
failure rate and downtime, only the percentage distri-
bution. In spite of the diverse technologies and power
ratings, the ReliaWind findings are broadly compar-
able with the WMEP, LWK and the Swedish surveys
and the same failure rate trend emerges. However, the
downtime trend shows much greater emphasis on the
rotor and power modules, because it is believed these
newer variable speed WTs have not yet experienced
major gearbox, generator or blade failures to date in
service.52

Faulstich et al.53 showed that 75% of onshore WT
failures are responsible for only about 5% of the
downtime, whereas the remaining 25% of failures
cause 95% of downtime. Downtime onshore is domi-
nated by a small number of large fault types, mainly
associated with gearboxes, generators and blades.
These require complex and costly repair procedures.
The 75% of faults causing 5% of the downtime are
mostly associated with electrical faults, which, in the
majority of cases, are relatively quick and easy to cor-
rected via remote or local resets. It is worth noting
that as WTs move offshore, limited accessibility,
longer delays for favourable weather windows,
travel and maintenance execution times will all be
adversely impacted. Local resets will be associated
with high costs due to difficult of accessing the tur-
bines, which will be likely to significantly increase the
downtime contribution from these sub-assemblies.

According to McMillan and Ault,33 compared to
onshore, the offshore downtime increase is due to
two main factors: the lead time for a suitable jack-
up crane vessel, cranes and other associated equip-
ment (needed for generator, gearbox and blade),
assumed to be 10 days, and the logistics time from
the upload point to the wind farm, considered to be
one day. For the major WT component outages, typ-
ical offshore downtime values have then been quanti-
fied as 41 days for the gearbox, 32 days for the
generator, 41 days for the blade and 2 days for the
electronic sub-systems replacements. The authors also
emphasised that excessive wind speed conditions may
further delay the maintenance actions, over and above
these levels.

Crabtree54 carried out a reliability analysis of
3 years of available data from the Egmond aan Zee
offshore wind farm in the Netherlands. This wind
farm features 36 Vestas V90-3MW WTs that are situ-
ated 10–18 km offshore and in 17–23m water depth in
the North Sea. Operational reports gave the number
of stops resulting from 13 sub-assemblies. The results
are summarised in Figure 14.

A direct comparison between the onshore data in
Figure 11 and offshore data in Figure 14 cannot be
made as stops and failures are different concepts.
However, it can be seen that the overall distribution
is similar, with the sub-assemblies that suffer from the
higher stop and failure rates not necessarily resulting
in the longest periods of downtime. Analysis of the

Figure 13. Distribution of normalised downtime by sub-system and sub-assembly for WTs of multiple manufacturers from the

ReliaWind survey.49
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data shown in Figure 14 reveals that the control
system dominates and causes 36% of the stops in
the offshore environment, but it results in only 9.5%
of the total downtime. Conversely, the gearbox and
generator respectively contribute only 6.7% and 2.8%
to the total stops, but account for 55% and 15%
respectively of the downtime.

The adoption of appropriate design and oper-
ational strategies, choice of the most effective turbine
architectures, installation of effective CMSs and the
adoption of optimised O&M strategies, are all essential
elements of the development work needed to reduce
the cost of energy from offshore wind farms to com-
petitive levels. Emphasis should be placed on avoiding
large (expected as well as unexpected) maintenance
events that require the deployment of expensive and
specialized equipment. Improving the intrinsic reliabil-
ity of WT assets will make a major contribution
towards achieving the cost reduction targets. This
will be only possible through the development of
standard methodologies for reliability data collection
and analysis, and through close collaboration between
manufacturers, operators and research organisations.

Condition monitoring

The need to successfully detect incipient faults before
catastrophic failures occur in order to increase WT
availability and reduce the cost of energy, has resulted
in the development of a large number of CMSs by a
range of suppliers. Modern WTs are equipped with
SCADA-based and CMS-based systems for the
online active remote monitoring and control of their
components. This information can be used to predict,
detect and diagnose faults as they emerge.

The online monitoring and fault detection are rela-
tively new concepts in the wind industry. In recent
years, efforts have been made to develop efficient
and cost-effective condition monitoring techniques
and signal processing methods for WTs. Several
reviews have been published in the literature, includ-
ing,42,55–62 discussing the main condition monitoring
techniques, the signal processing methods proposed
for fault detection and diagnosis and their applica-
tions in wind power. The studies also provide a com-
prehensive explanation of the new emerging
techniques currently being researched. Condition
monitoring technologies from other applications
that can be adapted for use in WTs have been identi-
fied as vibration analysis, oil analysis, temperature
measurements, strain measurements, thermography,
acoustic emissions, and electrical signals. Amongst
these, vibration, temperature and oil monitoring tech-
niques are currently the most widely used in WT
applications, due to their established successes in
other applications.

Some of the more recently emerging condition
monitoring techniques described in the research litera-
ture42,62 include ultrasonic testing which is potentially
value adding for detecting early blade or tower
defects, shaft torque and torsional vibration measure-
ments for main shaft and gearbox condition monitor-
ing, and shock pulse methods as an online approach
to detecting bearing faults. To date, little work has
been done in the area of prognosis models. Much of
the research in this area is generic and being con-
ducted by the aerospace community for civil and mili-
tary aviation. Some specific research will be required
to apply the principles of prognosis to the wind power
industry.55

Figure 14. Stop rate and downtime data from Egmond aan Zee wind farm over 3 years.54
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The goal of this section is to give an overview of the
current state of the art, the main benefits, current
challenges and limitations of commercial available
WT SCADA-based and CMS-based systems.

SCADA systems record low frequency (typically
10-min interval) data logging of the signals from a
range of instrumentation (anemometers, thermo-
couples, vibration transducers, oil debris detectors,
etc.), which the system uses to monitor the health
and supervise the operation of the WT. It is a valuable
low-cost monitoring system, integrating cheap, high-
volume instrumentation, information and communi-
cation technology. Chen et al.63 surveyed the
SCADA systems currently available in the wind
industry. The survey contains information gathered
over several years (from 2011 to 2014) through inter-
action with SCADA monitoring system and turbine
manufacturers and includes information obtained
from various product brochures, technical documents
and personal interaction with sales and technical per-
sonnel. It shows that most of the commercially avail-
able SCADA systems are able to analyse real-time
data with WT performance analysis techniques vary-
ing from tailored statistical methods to the use of arti-
ficial intelligence. One of the principal benefits of
SCADA systems is that they provide an operating
history of individual WTs and entire wind farms.
The data recorded includes, alarms, detailed fault
logs and environmental and operating conditions
leading up to fault occurrences. SCADA systems are
not effective in detecting incipient turbine faults and
providing operators with sufficient warning for pre-
ventative action to be undertaken. The main chal-
lenges are the considerable amount of analysis that
is required for the online interpretation of the large
volume of data generated, and the low data rate which
does not permit the in-depth analysis that is generally
needed for accurate diagnosis using existing condition
monitoring methodologies. Potentially, SCADA
alarms can help a turbine operator to understand
the health of a WT and its key components, but for
large wind farms these alarms are too frequent for any
meaningful online analysis to be undertaken using
existing techniques.

As more and larger wind farms are being devel-
oped, the amount data collected by SCADA systems
is also increasing exponentially and is becoming diffi-
cult to manage with conventional data processing
methods. Therefore, the development of advanced
data fusion/mining techniques and reliable physics
of failure based theoretical modelling is required, in
order to improve the ability of SCADA systems to
detect the onset of WT failures early and accurately.
Making better use of SCADA data is currently an
active area of research. Several workers have recently
suggested and demonstrated new approaches for
rigorous analysis of the information collected by
SCADA systems, to provide long-term fault
detection, diagnosis and prognosis for the main WT

sub-assemblies. These include the gearbox, the con-
verter and the pitch control system. Examples are
early fault identification techniques based on artificial
neural network,64 calculation of damage accumula-
tion and risk of failure using physics of failure
approach65 and fault prognosis procedure using a
priori knowledge-based adaptive neuro-fuzzy infer-
ence system.66 New signal algorithms have been devel-
oped to analyse SCADA alarms and to detect WT
component faults for the pitch and converter sys-
tems67 and for the gearboxes,68,69 although these tech-
niques still require some further testing and tuning. In
order to overcome the difficulties associated with the
handling of extremely large and complex SCADA
datasets using traditional relational databases,
Viharos et al.70 proposed a Business Intelligence
reporting prototype system for wind farm analytics
which exploits the advantages of the emerging ‘Big
Data’ tools. The paper shows how detailed operation
data from a large number of wind farms can be col-
lected and stored for future use. Validation and imple-
mentation of this type of techniques will provide
operators with sufficient time to make more informed
decisions concerning maintenance interventions on
their machines.

In the late 1990s, the installation of WT CMSs
started to be requested by some insurance companies
in Europe,71 following a large number of claims
resulting from catastrophic gearbox failures. The
drive train is one of the highest cost and most trouble
prone WT sub-systems. German insurers introduced
this requirement as a cost deterrent, in order to
encourage an improvement in its operating life.

Today, a number of certified CMSs are available to
the wind industry. The survey of commercially avail-
able WT CMSs conducted by Durham University and
the UK SUPERGEN Wind Energy Technologies
Consortium,72 provides an up to date review of the
current state of the art of available systems. The docu-
ment contains information gathered over several years
(between 2008 and 2014) through interaction with
monitoring system and turbine manufacturers and
includes information obtained from various product
brochures, technical documents and personal inter-
action with sales and technical personnel. According
to the survey, the majority of CMSs are based on
high-frequency vibration monitoring of the drive
train, with special focus on main bearing, gears and
bearings, although some are used in combination with
oil particle counters and fibre-optic strain gauges to
enhance their monitoring capabilities. No commercial
CMS is offered for the electrical and power electronic
components and the yaw and pitch systems, beyond
what is monitored by the SCADA system. This is a
gap that needs to be addressed as the reliability of WT
electrical systems is being increasingly recognised as a
growing concern,49 as the mechanical systems become
more reliable. This is particularly the case for offshore
installations, where deterioration in electrical
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components may be accelerated in the harsh environ-
ment due to enhanced rates of corrosion and erosion.

Practical experience with CMSs in wind farms to
date shows that it is problematic to achieve reliable
and cost effective applications.33 The use of condition
monitoring techniques has been an integral part of
asset management in other industries for decades.
In recent years, the technology has been increasingly
adopted by the wind sector. Generic techniques are
well understood, but it is their adaptation for appli-
cation on unmanned and remote WT power plants
that is proving challenging.73 There is still insufficient
recognition amongst WT maintenance staff of the
benefits that CMSs are able to provide.62 The princi-
pal differences that distinguish WT operation from
operation of other types of equipment are variable
operating speed and the stochastic characteristics of
the aerodynamic loads on the structure.61 The non-
stationary signals make it difficult to apply traditional
frequency domain signal processing techniques in the
development of effective algorithms for early fault
detection and diagnosis.59,62 The majority of commer-
cially available WT CMSs rely on the experience of
operators to successfully detect faults, by noting
changes in spectra at different specific speeds and
loads.74

The complexity and volume of information
produced by CMSs also presents a challenge for oper-
ators for daily maintenance purposes. It is now
common place for modern large onshore and offshore
WTs (>1.5MW) to be equipped with some form of
CMS.62 However, frequent false alarms and the costly
specialist knowledge required for manual interpret-
ation of the complex monitoring signals have discour-
aged WT operators from widespread adoption of
these systems. Moreover, with the growth in numbers
of WTs installed, especially offshore, the manual
examination and comparison of the condition moni-
toring data will become increasingly impractical,
unless simplified monitoring techniques can be devel-
oped and implemented. These will also potentially
benefit from incorporating advanced data fusion and
mining techniques, already successfully used in vari-
ous sectors, such as manufacturing,75 management76

and health care.77

The principal aspects of condition monitoring tech-
nology that need to be improved to encourage
increased engagement by wind farm operators are
the accuracy and reliability of diagnostic decisions,
including level of severity evaluation, and the devel-
opment of reliable and accurate prognostic tools. In
order to work effectively in the challenging offshore
environment, it is evident that an increased degree of
automation to deliver actionable maintenance recom-
mendations is mandatory for cost effective and fit-for-
purpose CMSs. The challenge is to achieve earlier
detection, diagnosis and prognosis of faults with the
necessary levels of accuracy and automation needed
to reduce manpower and access costs on large-scale

offshore wind farm developments. Recent experimen-
tal research, such as Wiggelinkhuizen et al.,58

Hameed et al.,60 Crabtree,74 Djurović et al.,78

Zappalá et al.,79 Zaggout et al.80 and Vilchis-
Rodriguez et al.,81 has been focused on the develop-
ment of advanced new techniques for incorporation
into existing WT CMSs, to move towards this goal.
The work by Zhang et al.82 is an example of a data
mining approach to establish models for predicting
vibration excitement which has been validated by
data from a damaged gearbox tested by the US
Department of Energy National Renewable Energy
Laboratory (NREL).

Finally, the majority of CMSs currently operate
independently from the SCADA systems and there-
fore at present these CMS systems do not have direct
and immediate access to the valuable information on
operational parameters monitored and stored on the
SCADA system. It is expected that ultimately, inte-
grated autonomous CMSs and SCADA systems
incorporated into WT controllers will be developed,
for optimised cost and condition monitoring
effectiveness.52

Conclusions

An analysis of large UK offshore and onshore wind
farm capacity factor data has been reported in this
paper. The United Kingdom is the global leader in
installed offshore wind farm capacity. The data used
in the study covers more than 7000 turbine years of
operation. It shows that:

. Offshore annual and monthly capacity factors for
the whole UK portfolio are higher than onshore
capacity factors. This is thought to be due to the
favourable characteristics of offshore wind
resource.

. The second generation UK Round 2 wind farms
have benefitted from operating experience gained
at the earlier Round 1 sites, allowing higher cap-
acity factors to be achieved at the more recently
installed farms.

. Overall, UK offshore farms have achieved an aver-
age monthly capacity factor of 34.5% compared to
25.6% onshore, during full operation. In isolation,
Round 2 farms achieved a higher average monthly
capacity factor of 38.3%.

. Peak monthly offshore capacity factors have risen
to as high as 75.8% for Round 2 farms compared
to 64.1% for UK large onshore farms.

. This paper shows that onshore wind farms see
a decrease (by year of operation) in average
annual capacity factor of 0.75% per year; however,
there is clear indication that a part of this decrease
is the result of the changing portfolio of wind
farms. The newer farms generally demonstrate a
higher capacity factor and this skews the earlier
data.
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A breakdown of the cost of energy generation
from wind farms has highlighted the importance
of reducing O&M costs from current levels. The
challenges that must be overcome and the research
that is currently underway to help to achieve this
have been reviewed. Improved data handling and
analysis techniques, integration of condition moni-
toring and SCADA systems and improved cost/
benefit analysis from adopting condition based
maintenance strategies are all identified as being
important steps towards achieving this goal and
have been discussed in the paper. Finally, the need
for more open sharing of operating data across the
wind industry and research community to accelerate
the development process has been highlighted.
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