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Abstract 
 
Two important applications of electron vortex beams are in electron magnetic chiral 
dichroism (EMCD) measurements and nanoparticle manipulation. In both cases orbital 
angular momentum (<Lz>) transfer between the vortex beam and the specimen due to 
dynamic scattering is critical. In general the <Lz> pendellösung consists of short and long 
wavelength oscillations. The former is due to interference between the tightly bound 1s and 
more dispersive non-1s Bloch states, while the latter is due to interference between the non-
1s states. For EMCD experiments with ±ħ angular momentum beams, momentum transfer 
can be minimised by selecting the appropriate aperture size, so that the probe wavefunction 
approximately matches that of the 2p-type Bloch states. For manipulating nanoparticles with 
large angular momentum beams small apertures are required to excite the 1s state and thereby 
enhance the short wavelength oscillations in <Lz>. This enables efficient momentum transfer 
to the specimen, provided the nanoparticle dimension corresponds to a minimum in the <Lz> 
pendellösung. 
 
Keywords: electron vortex beams, angular momentum, electron magnetic chiral dichroism 
(EMCD), nanoparticle manipulation. 
 
1. Introduction 
 
Vortex beams produced in the electron microscope [1-5] have generated considerable interest 
due to their potential applications in manipulating nano-objects [6-7] and probing magnetic 
phenomena [8], including magnetic chiral dichroism [2,9-11]. The vortex beam is 
characterised by a phase singularity along the beam propagation direction and an orbital 
angular momentum of mħ, where m is the winding number of the phase. Electron energy loss 
spectroscopy (EELS) with m = ±1 vortex beams is used for electron magnetic chiral 
dichroism (EMCD) measurements, similar to the X-ray analogue (i.e. XMCD), but with far 
better spatial resolution. However, these EMCD experiments are intrinsically complicated by 
several artefacts. First it has been shown both theoretically [10-11] and experimentally [12] 
that in order to generate a dichroic EELS signal the electron probe must be localised at the 
ionised atom. This means producing an atomic-scale electron vortex beam, for example by 
using spiral or pitch fork hologram apertures with large convergence angle [4-5]. Secondly 
the atomic scale vortex beam must also channel along the atom column of interest, preserving 
its orbital angular momentum during propagation. Multislice simulations [11,13] however 
have shown that this is not necessarily the case, due to momentum exchange with the crystal. 
In contrast, for nanoparticle manipulation, momentum must be transferred from the beam to 
the specimen as efficiently as possible. 
 



This paper deals with dynamic scattering of electron vortex beams, in the context of EMCD 
measurements (m = ±1 beams) and nanoparticle manipulation. The latter is restricted to 
vortex beams with large angular momentum (e.g. m=5). This is because experiments [6] have 
shown that the nanoparticle rotation induced by m = ±1 beams is severely damped by 
frictional forces from the support substrate, and one way to overcome this is to use vortices 
with large angular momentum (note that vortex beams with angular momentum as large as 
100ħ have been created in the electron microscope [3]). Dynamic scattering of the electron 
vortex beam is analysed using Bloch waves. These are individual solutions to the Schrödinger 
equation and by linearly combining them the electron wavefunction at any given depth within 
the crystal can be simulated. Dynamic scattering arises as a result of interference between the 
excited Bloch states. The Bloch wave method is computationally more suitable for perfect 
crystals, although perturbation-type theories are available for deformed [14] and chemically 
doped [15-16] crystals. Nevertheless it has the unique advantage of being physically intuitive. 
Indeed scattering of a conventional (i.e. m=0) focussed probe has frequently been interpreted 
in terms of the 1s Bloch state [17-19], which has zero angular momentum and is similar to the 
1s orbital of an isolated atom column. On this basis it has been proposed [20] that the 2p 
Bloch states (angular momentum of ±ħ for the equivalent atom column orbital) could play a 
similarly important role for m = ±1 vortex beams. 
 
The Bloch wave theory of vortex beams is outlined in section 2. Results are presented for 
[100]-oriented, body centred cubic Fe and are divided into four sections. Following a brief 
summary of Bloch wave characteristics at 200 kV (section 3.1), section 3.2 discusses m =1 
vortex beam propagation between atom columns. The electron beam/specimen parameters are 
identical to the multislice simulations reported in reference [13]. This serves to verify the 
Bloch wave model, as well as provide a guide to vortex beam propagation in ‘free space’, 
which can then be compared to channeling along an atom column (section 3.3), the main 
topic of this paper. Vortex beams of different size are simulated and it is found that 
channeling is indeed enhanced when the probe wavefunction is similar to the 2p-type Bloch 
states. In section 3.4 the simulations are extended to vortex beams with larger winding 
number (m = 5), in the context of nanoparticle manipulation. Finally section 4 summarises 
the main conclusions from this paper. 
 
2. Background theory and simulation method 
 
Within the probe forming aperture the vortex wavefunction has the form A(kt)exp(imΦ), 
where Φ is the azimuthal angle for the transverse wavevector component kt. A(kt) is unity for 
all kt within the aperture and zero outside it. Fourier transforming gives the vortex 
wavefuncion ψ(R) in real space [21]: 
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where k is the magnitude of the transverse wavevector, which has a maximum value of kmax 
due to the aperture. Jm is a m-order Bessel function of the first kind and φ is the azimuthal 
angle of the two-dimensional position vector R. α is a normalisation constant for the probe 
intensity. It is assumed throughout that the probe forming lens is aberration free, so that phase 
shifts due to lens distortions can be ignored. To simulate the probe using Bloch waves note 
that each partial plane wave of wavevector kt within the aperture will excite a given set of 
Bloch waves depending on the boundary conditions, i.e. the unscattered beam at the specimen 
entrance surface has unit amplitude and phase mΦ, while all diffracted beams have zero 
amplitude. The excitation of the jth Bloch wave is then given by eimΦεo

j(kt), where εo
j
 (kt) is 

the excitation for a conventional (m=0) wavevector. The total wavefunction ψ(R,z) for a 
probe incident at Ro is given by the coherent superposition of all Bloch waves excited by the 
individual partial plane waves within the aperture [17]: 
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here Cg
j and γj are the coefficients and change in longitudinal wavevector component due to 

channeling for the jth Bloch wave. β is the normalisation constant for the probe intensity. 
Summations are carried out with respect to individual Bloch waves (j) and reciprocal vectors 
(g). The z-axis is parallel to the optic axis, with the sample entrance surface at z =0 and points 
within the sample corresponding to z>0. 
 
The expectation value for the Lz angular momentum operator is given by [13]: 
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where dτ denotes an infinitesimal volume element for a 3D wavefunction or an infinitesimal 
area element for a 2D wavefunction (this paper only deals with the latter). For an electrostatic 
potential field with circular symmetry <Lz> is equal to mħ [13]. From Eq. (3) the angular 
momentum contribution of the jth-Bloch state can be defined (in units of ħ) as either the 
integral of (bj)*(∂ψ/ ∂φ) or ψ*(∂bj/ ∂φ), where bj is the net wavefunction due to the jth Bloch 
wave in a focussed probe containing many incident wavevectors (i.e. Eq. (2) but with fixed j). 
In fact none of these definitions are physically meaningful, although they share the common 
property that when summed over all Bloch states the result equals the winding number m for 
the vortex beam. A more suitable definition for the angular momentum contribution due to a 
given Bloch state is therefore: 
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The above equation can be further divided into contributions due to the Bloch wave 
interfering with itself (so-called ‘self’ terms, <Lz>j

self) and due to interference with all other 
Bloch states (so-called ‘cross’ terms, <Lz>j

cross): 
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The significance is that the self-terms are largely depth independent [18-19], so that any 
depth variation is due to the cross-terms. 
 
Apart from Bloch state contributions it will also be useful to examine real space contributions 
to <Lz>. Using (R,φ) polar coordinates Eq. (3) can be expressed as: 
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Since <Lz> is a real number the second integral within the square brackets in Eq. (6) must be 
a pure imaginary number. This can be formally proved, since integration by parts gives: 
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Note that [ψ· ψ*] is the local electron intensity which is a single valued function. The left and 
right hand side integrands are complex conjugates of one another, so that Eq. (7) can only be 
true if the two integrals are pure imaginary. Therefore a new function A(R) can be defined, 
which represents in real space the radial contribution to the vortex beam angular momentum: 
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Results are presented for [100]-oriented Fe, with the probe either incident between the atom 
columns or on an atom column (points A and B in Fig. 1 respectively). The accelerating 
voltage and semi-convergence angles for the different m =1 probes simulated in this study 



are: (i) 200 kV, 10 mrad, (ii) 200 kV, 30 mrad and (iii) 600 kV, 15 mrad. 276 partial plane 
waves were used to simulate probe (i), while for probes (ii) and (iii) the number of partial 
planes waves was 648. 121 Bloch states and Doyle-Turner [22] atom scattering factors were 
used in the calculation. Numerical convergence was confirmed by comparing the 
wavefunctions from Eqs. (1) and (2) at the specimen entrance surface (z=0). For simplicity 
absorption and other forms of inelastic scattering within the specimen are neglected. In order 
to calculate <Lz> the wavefunction was sampled over a 6Å radius (centred about the beam 
incident position) at 0.2 Å resolution for probe (i) and over a 4 Å radius at 0.07 Å resolution 
for probes (ii) and (iii). In addition two further m = 5 probes with 10 mrad (484 partial plane 
waves) and 20 mrad (648 partial plane waves) semi-convergence angles are also simulated at 
200 kV. For calculating <Lz> the wavefunction was sampled over a 10 Å radius at 0.25 Å 
resolution for the first probe and a 5 Å radius at 0.1 Å resolution for the second probe. All 
A(R) plots were calculated at 0.1 Å resolution in R. 
 
3. Results 
 
3.1 Bloch waves in [100]-Fe 
 
Before presenting results for dynamic scattering, it is useful to examine the nature of [100]-
Fe Bloch waves for normal incidence at 200 kV. Figure 2 plots the intensity of the important 
(for this paper) Bloch waves within the [100]-Fe unit cell (Fig. 1). Following convention the 
Bloch waves are arranged in descending order of γj. In this scheme Bloch waves that are 
tightly bound to the atom columns are at the top of the list, while more dispersive Bloch 
states occur further down. According to Buxton et al [23] an atom column orbital with n,l 
quantum numbers has l number of azimuthal nodal lines (fixed φ, variable R), due to the 
wavefunction exhibiting a cos(lφ), or equivalently sin(lφ) dependence, while the number of 
radial nodal lines (fixed R, variable φ) is (n-l-1). On this basis Bloch wave 1 (Fig. 2a) is 
assigned the 1s state, while Bloch wave 5 (Fig. 2b) corresponds to 2s. The s-states are 
characterised by intensity maxima at the atom column positions. Bloch wave 1 is degenerate 
with Bloch wave 2 for all incident wavevectors, and the two only differ in the phase of the 
wavefunction, rather than the intensity. The 2p states are ideally given by Bloch waves 6 and 
7 (Figs. 2e and 2f respectively), although Bloch waves 3 and 4 (Figs. 2c and 2d respectively) 
show similar characteristics, the main difference being the intensity between neighbouring 
atom column ‘orbitals’, due to some degree of ‘molecular bonding’. Bloch waves 3 and 4 are 
degenerate for all incident wavevectors, while Bloch waves 6 and 7 are only degenerate at 
special wavevectors, such as normal incidence (see also Figs. 3a and 3b). Note that the 
comparison between Bloch waves in a periodic crystal and isolated atom column orbitals is 
only approximate, the similarity breaking down for closely spaced atom columns of low 
atomic number and/or low accelerating voltages [23]. Furthermore, highly dispersive Bloch 
waves have no direct resemblance to atom column orbitals, since in this case the coupling of 
the Bloch wave to the crystal is relatively weak.  
 
Table 1 lists the γj values for the first 12 Bloch states in [100]-Fe under 200 kV, normal beam 
incidence; as will be seen later the separation in γj values determines the pendellösung for the 



intensity and <Lz> expectation value as the vortex beam propagates through the crystal. 
Dispersion surfaces along the 200 and 220 reciprocal vectors are shown in Figures 3a and 3b 
respectively. The non-1s states are densely grouped together, but there is a large difference in 
γj between these states and the tightly bound 1s state. 
 
3.2 m = 1 vortex probe incident between atom columns 
 
The normalised intensity of the 200 kV, m = 1 vortex probes with 10 and 30 mrad semi-
convergence angles are shown superimposed in Figure 4, plotted as a function of radial 
distance from the vortex centre. The intensity of the 10 mrad probe peaks at ~1 Å, and has a 
similar full width at half-maximum (FWHM). On the other hand the peak intensity position 
and FWHM of the 30 mrad probe is only 0.3 Å. Figure 4 also shows the integrated radial 
intensity distribution for Bloch wave 6 (Fig. 2e), which is taken to represent the 2p Bloch 
states. The radial distance here is measured with respect to an atom column and the 
‘anomalous’ increase in the integrated intensity for distances larger than ~1 Å is due to 
overlap with neighbouring atom columns. The 30 mrad probe has a similar peak intensity 
position and FWHM compared to the 2p Bloch state, while the 10 mrad probe is significantly 
broader and peaks at a larger distance.  
 
The <Lz> and intensity pendellösung for the 10 mrad probe is shown in Figures 5a and 5b 
respectively. The probe is incident between the atom columns, i.e.  point A in Fig. 1. The 
intensity is calculated within a 2 Å radius, an area that encloses the first peak of the vortex 
probe at the specimen entrance surface (Fig. 4). Note that <Lz> at the specimen entrance 
surface (0.94) is slightly less than unity; the result can be improved if the probe wavefunction 
is sampled at higher spatial resolution, although this significantly increases the computation 
time, without altering the fundamental physics. The <Lz> pendellösung is similar to the 
multislice result in reference [13], which suggests that the Bloch wave simulations are indeed 
valid. Note that both the <Lz> and intensity pendellösung have maxima and minima at 
approximately the same depths within the specimen, as first noted in [13]. 
 
Figure 6 shows plots for A(R) and < Lz> Bloch state contributions at the specimen entrance 
surface, the first pendellösung minimum (z=60 Å) and first maximum (z=100 Å). The Bloch 
state contributions are divided into self and (self+cross)-terms, the former being largely depth 
independent. A(R) at the specimen entrance surface has a similar form to the probe intensity 
profile (Fig. 4) as required, and <Lz> is due mainly to the first 12 Bloch states. The fact that 
cross terms make up a significant fraction of the angular momentum suggests large variations 
in <Lz> with respect to depth, as is indeed the case in Fig. 5a. At z=60 Å, the A(R) plot (Fig. 
6c) shows a distinct negative peak at ~1.4Å, which is also evident for z=100 Å (Fig. 6e), 
although the sign of the peak is reversed. In fact for all <Lz> pendellösung minima this peak 
was negative, and vice-versa for <Lz> maxima. A similar trend was observed with respect to 
the 1s Bloch state contribution to <Lz> (Figs. 6d and 6f). The A(R) peak at ~1.4Å is largely 
due to the 1s Bloch state, since this is the distance between the probe centre and the nearest 
neighbour atom columns (Fig. 1). Confirmation of this was obtained by removing the 1s 
Bloch state from the simulations and noting the suppression of the 1.4Å peak, as well as by 



comparing the area under the 1.4 Å peak to the 1s state <Lz> contribution (the two values 
were similar). The 1s <Lz> contribution is however due to interference with other non-1s 
states, the self-interference term being negligible. From Table 1 interference of the 1s Bloch 
state with (say) any of Bloch waves 3 to 7 gives a depth periodicity of ~85-91 Å, which is 
similar to that observed in Figs. 5a and 5b (note that this calculation does not take into 
account any dispersion in γj). Intensity oscillations are due to the 1s and non-1s states going 
in and out of phase with depth, and the results suggest that a similar effect may be responsible 
for the <Lz> pendellösung. The small wavelength of the oscillation is due to the relatively 
large separation between 1s and other Bloch states (Fig. 3).  
 
It is important to clarify the nature of the angular momentum transfer that gives rise to the 
<Lz> pendellösung. Although the depth variation in <Lz> is due to Bloch wave interference, 
no momentum is actually transferred between the Bloch states, but rather momentum is 
exchanged between the crystal and overlapping Bloch wavefunctions [13]. In other words the 
self-interference <Lz> terms are depth independent for a given Bloch wave, so that its angular 
momentum is constant. This is somewhat similar to Bragg diffraction in a perfect crystal, 
where intensity transfer between the unscattered and diffracted beams is due to Bloch wave 
interference, although the excitation of the Bloch states remain unchanged. However, Bloch 
state excitations can vary in a deformed crystal (for the case of small strains this is given by 
the well known Howie-Whelan equations [14]), as well as doped crystals [15], due to intra- 
and inter-band scattering. The change in excitation will lead to momentum transfer between 
Bloch states, although the net change in momentum must be zero. 
 
3.3 m = 1 vortex probe incident on an atom column 
 
Figure 7a shows the <Lz> pendellösung for the m=1, 10 mrad vortex probe incident on an 
atom column (point B in Fig. 1), calculated for depths of up to 1000 Å. Since <Lz> was 
calculated over a circular area of only 6 Å radius, there will be some inaccuracy at larger 
depths, due to probe broadening. In fact at 1000 Å depth the integrated intensity of the probe 
within a 6 Å radius was 82% of that at the specimen entrance surface. Furthermore, inelastic 
thermal diffuse scattering will also be significant at these depths, but are not taken into 
account. The pendellösung is consistent with the multislice simulations of Löffler and 
Schattschneider [13], although in that study results were only presented up to a depth of 200 
Å. <Lz> consists of short wavelength oscillations superimposed on a more slowly varying, 
long wavelength oscillation ‘background’. The power spectrum of the pendellösung revealed 
two major peaks corresponding to periodicities of 91 Å and 500 Å respectively (see vertical 
arrows in Figure 7b). The smaller wavelength is similar to that observed for a vortex probe 
positioned between atom columns (for convenience, this shall be hereafter referred to as a 
‘free space’ vortex probe); in fact a direct comparison of Fig. 5a and Fig. 7a shows that the 
minima and maxima are at approximately the same depths, but the magnitude of the <Lz> 
oscillations are significantly smaller for the probe incident on an atom column. 
 
Figure 8 shows plots for A(R) and Bloch state <Lz> contributions at the specimen entrance 
surface, and two further representative depths of z = 230 Å (smallest <Lz> for the first broad 



minimum) and 470 Å (largest <Lz> for the subsequent broad maximum). Bloch waves 3 and 
4 (2p character) are the main contributors to <Lz> at the specimen entrance surface, with 
Bloch wave 1 (1s) and Bloch waves 5-12 also partly contributing (Fig 8b). Compare this 
behaviour to the ‘free space’ vortex probe, where several Bloch states are strongly 
contributing (Fig. 6b). The self-interference terms for Bloch waves 3-4 and 6-7 are however 
small, suggesting that coupling of the m =1 vortex probe to these 2p-type Bloch states is 
weak, which is expected given the large width of the probe (Fig. 4). Similar to the ‘free 
space’ probe, the short wavelength pendellösung minima and maxima correspond to negative 
and positive contributions of the 1s Bloch state to <Lz> (e.g. Figs. 8d and 8f). However, the 
magnitude of the 1s contribution is smaller, so that the pendellösung oscillations are less 
pronounced. Since the intensity at the vortex centre is zero, excitation of the 1s Bloch state 
will be weak for the atom column on which the probe is incident. A consideration of the 
[100]-Fe unit cell geometry (Fig. 1) indicates that the first nearest neighbour atom columns 
are at a distance of 2.0 Å (=ao/√2), while the second nearest neighbours are at a distance of 
2.9 Å (=ao). The intensity of the 10 mrad vortex probe is however also weak at these 
distances (Fig. 4), so that overall the 1s Bloch state excitation, and hence its <Lz> 
contribution, is diminished, at least at the specimen entrance surface. In fact at the specimen 
entrance surface the 1s state <Lz> contribution is 0.19ħ for the ‘free space’ probe, compared 
to only 0.05ħ for the probe incident on the atom column. Although at certain depths this value 
can increase due to interference with other non-1s Bloch states, overall the weak excitation of 
the 1s Bloch state is the cause for the damping of short wavelength oscillations in the <Lz> 
pendellösung compared to the ‘free space’ probe. 
 
The A(R) plots at z = 230 Å and 470 Å (Figs. 8c and 8e respectively) show a positive peak at 
~0.5 Å, which is largely assigned to 2p-type Bloch waves 3-4 and 6-7, that are excited at the 
atom column on which the probe is incident. This was confirmed by removing the 2p-type 
Bloch waves from the simulations and noting the suppression of the peak. At z = 230 Å there 
is a broad negative ‘plateau’ in the A(R) curve, extending between ~2-3 Å, i.e. between the 
first and second nearest neighbour atom column positions. At this depth the overall <Lz> of 
the beam is negative (Fig. 7a) and it is clear that the contribution from the neighbouring atom 
columns outweighs that of the probe incident atom column (i.e. the positive peak at ~0.5Å). 
This is somewhat similar to the well known ‘cross-talk’ phenomenon in the intensity 
pendellösung for conventional (m = 0) focussed electron probes. Fig. 8d shows that at z = 230 
Å the negative <Lz> is largely due to Bloch waves 8-10, as well as Bloch waves 1 and 4. At 
still larger depths (i.e. z = 470 Å) the A(R) plot shows that atom columns beyond the second 
nearest neighbour can also contribute to the angular momentum due to further probe 
spreading. Furthermore, contributions from the first and second nearest neighbour atom 
columns do not have the same form at z = 470 Å, i.e. the broad negative ‘plateau’ in Fig. 8c is 
no longer visible. 
 
The <Lz> pendellösung for the 10 mrad probe can now be explained as follows. Consider first 
the atom column on which the probe is incident. Due to the broadness of the m = 1 vortex 
beam, coupling to the 2p-type Bloch states is non-ideal and therefore other non-1s states must 
be excited in order to match the probe wavefunction at the specimen entrance surface. 



Excitation of the 1s state is weakened (or non-existent) by the zero intensity at the vortex 
core. Interference of the 2p-type Bloch waves with other non-1s states gives rise to the ~0.5 
Å peak in the A(R) plots. The ‘tails’ of the vortex probe wavefunction overlap with the 
neighbouring atom columns, so that a mixture of 1s and non-1s Bloch states will be excited 
depending on the boundary conditions. During probe propagation interference of the 1s state 
with other non-1s states, largely along the neighbouring atom columns, gives rise to the short 
wavelength oscillations in <Lz>. The short periodicity is due to the relatively large separation 
between 1s and non-1s Bloch state energies (Figs. 3a and 3b). Interference of the non-1s 
states on the other hand, which have similar energies, gives rise to the long wavelength 
oscillations in Fig. 7a. The periodicity is expected to vary between atom columns, due to 
different combinations of Bloch states being excited by the incident probe, although at certain 
depths (e.g. 230 Å) the cumulative contribution from neighbouring atom columns can be 
larger than that of the probe incident column. As an example, the average γj value for Bloch 
waves 5-12 is -0.0041 Å-1 (Table 1) and, neglecting dispersion, this gives a periodicity of 454 
Å due to interference with Bloch waves 3 and 4, which is similar to the result (500 Å) 
obtained from Fig. 7b. 
 
For more efficient channeling it is therefore essential that the vortex probe wavefunction is 
similar to the 2p-type Bloch waves. This can be achieved by using a larger aperture and 
increasing the probe semi-convergence angle to 30 mrad (Fig. 4). The <Lz> pendellösung for 
the 30 mrad, m = 1 probe is shown in Figure 9a. The depth is limited to 200 Å due to the 
large computation time. <Lz> values for the 10 mrad, m = 1 probe are also superimposed and 
confirm that channeling is indeed enhanced for the 30 mrad probe. Channeling can be further 
improved by increasing the accelerating voltage of the microscope, whilst decreasing the 
aperture size so that the ideal probe wavefunction is maintained. The larger accelerating 
voltage means that the Bloch states are more tightly bound to the atom columns [23]. A 600 
kV, 15 mrad probe was found to have a similar wavefunction to the 200 kV, 30 mrad probe 
and its <Lz> pendellösung is also shown in Fig. 9a. The channeling is indeed better than any 
of the other probes simulated.  
 
Bloch state <Lz> contributions for the 200 kV, 30 mrad and 600 kV, 15 mrad probes at the 
specimen entrance surface are shown in Figs. 9b and 9c respectively. An important criterion 
for channeling is that the cumulative sum of the self-interference terms for individual Bloch 
states must constitute a large fraction of the overall angular momentum. This ensures that 
<Lz> for the vortex beam is largely depth independent. Indeed for the 600 kV, 15 mrad probe 
the total self-interference contribution is 0.36ħ, compared to only 0.27ħ for the 200 kV, 30 
mrad probe (for the 200 kV, 10 mrad probe however the corresponding value is -0.20ħ). Out 
of this 0.26ħ is due to 2p-type Bloch waves for the 600 kV, 15 mrad probe, compared to an 
equivalent value of only 0.19ħ for the 200 kV, 30 mrad probe.  The 200 kV, 30 mrad probe 
has large <Lz> contributions (Fig. 9b) from not only 2p-type Bloch waves 3-4 and 6-7, but 
also Bloch wave 5 (2s character; note that the angular momentum generated by Bloch wave 5 
is due to interference with other Bloch states). At 600 kV Bloch waves 3 to 6 are all 2p-type 
and Fig. 9c shows that these are the main contributors to the vortex angular momentum. Due 
to the higher accelerating voltage the more tightly bound 2p-type Bloch waves at 600 kV 



have a similar profile to the equivalent atomic column orbitals, unlike, for example, Bloch 
waves 3 and 4 at 200 kV (Figs. 2c and 2d). This may explain the enhanced coupling to the 
probe wavefunction at 600 kV. 
 
With conventional (m =0) focussed electron probes a smaller aperture size leads to a larger 
depth of field with respect to the intensity profile. The depth of field is proportional to λ/θ2, 
where λ is the electron wavelength and θ is the probe semi-convergence angle. It is 
interesting to speculate if a similar phenomenon occurs in the <Lz> pendellösung for the 600 
kV, 15 mrad and 200 kV, 30 mrad probes, i.e. if the overall shape of the pendellösung for the 
former probe varies more slowly with respect to depth (the beam energy is thought to have a 
second-order effect compared to the aperture size, based on the depth of field for a 
conventional probe). Some evidence for this effect is observed by comparing Figs. 9b and 9c. 
Many more Bloch states contribute to the 200 kV, 30 mrad probe angular momentum 
compared to the 600 kV, 15 mrad probe, meaning that the long wavelength oscillations in 
<Lz> due to interference of 2p-type Bloch waves with other non-1s states should be less 
pronounced for the latter. Overall this results in a ‘flatter’ <Lz> pendellösung for the 600 kV, 
15 mrad probe, with some short wavelength oscillations due to interference of the weakly 
excited 1s states with non-1s states (Figs. 9a and 9c; the 1s states at 600 kV correspond to 
Bloch waves 1 and 2). However, to conclusively demonstrate the depth of field effect the 
<Lz> pendellösung must be calculated to much larger depths than in Fig. 9a. This is 
computationally demanding with Bloch waves, especially for atomic scale vortex probes, but 
considerably faster using multislice. Furthermore, multislice can also correctly model the 
thermal diffuse scattering at larger specimen depths using the frozen phonon method, thereby 
improving the accuracy of <Lz> (with Bloch waves thermal diffuse scattering leads to a 
depletion of the electron intensity). 
 
Finally in EMCD measurements EELS spectra from both m = ±1 vortex probes must be 
acquired. However, simulations show that the <Lz> pendellösung for the m = -1 probe is 
simply the negative of the <Lz> pendellösung for m =1. This is easily understood since the 
chirality of the phase spiral is reversed for the two vortices, so that the azimuthal derivative 
∂/∂φ in <Lz> (Eq. 3) changes sign as well, although the absolute value is unchanged. 
Dynamic scattering of the m = -1 probe is therefore equivalent to m =1. 

 
3.4 momentum transfer for a m = 5 vortex probe 
 
Unlike EMCD the objective of nanoparticle manipulation is to transfer momentum from the 
incident electrons to the specimen as efficiently as possible, i.e. over the dimensions of the 
nanoparticle. The angular momentum due to the electromagnetic field of the vortex electrons 
is considerably smaller than that due to its mass flux [7], so that only the <Lz> pendellösung 
need be considered. From previous results it is clear that efficient momentum transfer is 
achieved through interference of the 1s state with other non-1s states, thereby giving rise to 
short wavelength oscillations in the <Lz> pendellösung. To confirm this m=5 vortex beams 
with two different convergence semi-angles (i.e. 10 and 20 mrad) are simulated at 200 kV. 
The radial intensity distributions at the specimen entrance surface for the two probes, as 



determined by Eqs. (1) and (2), are shown superimposed in Figures 10a and 10b respectively. 
In both cases the Bloch wave solution diverges slightly from the ‘optical’ solution (i.e. Eq. 
(1)), especially when reproducing the subsidiary maxima. Increasing the number of Bloch 
waves and number of partial plane waves within the aperture did not improve the 
convergence significantly. Furthermore, the convergence deteriorates further for vortex 
probes of still higher winding number (e.g. m =10). It is suggested that this could be due to 
inaccuracies in the (parameterised) Doyle-Turner atom scattering factors [22] used in the 
Bloch wave calculation, especially with regards to the atom scattering factors at small 
scattering angles, which are related to the long range electrostatic potential.  
 
Figure 11a shows the <Lz> pendellösung for the two probes and Figs. 11b and 11c show the 
individual Bloch state <Lz> contributions at the specimen entrance surface for the 10 and 20 
mrad probes respectively. The probes are incident along an atom column in [100]-Fe (point B 
in Fig. 1), although the incident position within the unit cell should not be critical, since the 
probe spans several neighbouring atom columns. Short wavelength oscillations with large 
amplitude are observed in the 10 mrad probe pendellösung, but these are damped for the 20 
mrad probe. The wavelength is similar to what has been observed previously for 1s and non-
1s Bloch state interference (Figs. 5a and 7a). A comparison of Figs. 11b and 11c show that 
for the 20 mrad probe the 1s state <Lz> contribution is smaller than the 10 mrad probe, so that 
the oscillations are diminished as required. Figs. 11b and 11c show several other interesting 
trends as the aperture size is increased. First the <Lz> contribution of 1s and other tightly 
bound Bloch states (e.g. Bloch waves 3 and 4) decrease at the expense of many high index, 
dispersive Bloch states, that are only weakly coupled to the atom columns. The Bloch state 
<Lz> contributions for a 200 kV, m =5, 30 mrad probe at the specimen entrance surface are 
shown in Fig. 11d and confirms that this trend holds true for larger apertures as well. 
Secondly the cumulative sum of Bloch wave self-interference <Lz> terms increases 
monotonically with aperture size, e.g. for the m =5 probes discussed here the total self-
interference contribution is 0.31ħ, 0.68ħ and 0.79ħ for the 10, 20 and 30 mrad probes 
respectively. This suggests that probe coupling is strongest to many high index Bloch states, 
rather than a Bloch wave of particular character, such as 2p-type for m =1 vortex probes. 
 
The above trends can be rationalised by considering the mathematical form of the vortex 
probe wavefunction as given by Eq. (1). For large values of m, the Bessel function Jm(2πkR) 
peaks at large values of kR. As the aperture size is increased the main peak of the vortex 
beam shifts to lower values of R (Figs. 10a and 10b) and in this case it is the wavevectors 
with large transverse component that contribute most strongly to this peak. Tightly bound 
Bloch states, such as 1s, are strongly excited close to normal incidence, while dispersive 
Bloch states are excited during tilted illumination [19]. For large apertures the main peak of 
the vortex beam, and consequently a large fraction of its angular momentum, is therefore due 
to the dispersive Bloch states, with the 1s state becoming progressively less important. The 
numerical results also show that large angular momentum vortex beams couple more 
efficiently to the dispersive states, rather than 1s or 2p-type non-dispersive states, which have 
smaller intrinsic angular momentum. Furthermore, the coupling is with many Bloch states, in 



contrast to small angular momentum vortex beams which couple to only a few states of well 
defined character. 
 
Efficient momentum transfer therefore requires small probe forming apertures to generate 
large amplitude, short wavelength depth oscillations in <Lz> due to interference of 1s and 
non-1s Bloch states. However, the crucial parameter is the <Lz> value at the specimen exit 
surface, which should ideally be zero so that all of the beam angular momentum is transferred 
to the sample upon transmission. This is not always possible to achieve with a rapidly 
oscillating <Lz> pendellösung. It should also be mentioned that the above calculations 
assume a semi-infinite sample with flat, parallel free surfaces. More work is required to 
determine how dynamic scattering is affected by the shape and size of the nanoparticle that is 
being manipulated. Furthermore, it could be argued that the simulations assumed static 
atoms, although the nanoparticle will rotate during angular momentum transfer from the 
beam. A momentum transfer of 5ħ from a single incident electron will result in a rotation 
period of 4x10-4 s for a 10 nm diameter Fe-nanoparticle. This is many orders of magnitude 
longer than the time it takes for the electron to traverse through the particle (5x10-17 s for a 
200 kV beam), so that the atom configuration is effectively ‘frozen’ for the incident electron. 
The momentum transfer increases linearly with the beam current and exposure time, but 
frictional damping from the support substrate [6] means that the rotation period is 
considerably longer than even the calculated value for a single electron. The static atom 
approximation is therefore justified for typical experimental conditions.  
 
4. Conclusions 
 
Vortex beam scattering in a crystal has been analysed using Bloch waves for the two 
scenarios of EMCD and nanoparticle manipulation, the latter using high angular momentum 
vortex beams. For a m = ±1 beam incident on an atom column (as in EMCD) the <Lz> 
pendellösung consists of short and long wavelength oscillations. The short wavelength 
oscillations are due to interference of the 1s Bloch state with non-1s states, and can be 
minimised by selecting a suitable probe forming aperture, so that the probe wavefunction 
approximately matches that of the 2p-type Bloch states.  Coupling can also be enhanced by 
increasing the accelerating voltage so that the 2p-type Bloch states are more tightly bound to 
the atom columns. On the other hand small probe forming apertures are desirable for high 
angular momentum vortex beams and nanoparticle manipulation, since then the 1s state is 
strongly excited and interference with non-1s states gives rise to short wavelength oscillations 
in the <Lz> pendellösung. This enables efficient angular momentum transfer between the 
incident electrons and the sample. 
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Figure captions 
 
Figure 1: Unit cell of body centred cubic-Fe in [100] orientation. Projected atom columns are 
depicted by the filled circles. Simulations are carried out for vortex beams incident between 
the atom columns (point ‘A’ marked by a cross) and on the atom column marked ‘B’. 
 
Figure 2: Bloch wave intensity profiles for a 200 kV, m=0 beam at normal incidence in 
[100]-Fe. The intensity is plotted over the [100]-Fe unit cell (Fig. 1). (a) to (f) correspond to 
Bloch waves 1 (1s character), 5 (2s), 3 (2p), 4 (2p), 6 (2p) and 7 (2p). The Bloch waves are 
arranged in descending order of γj. 
 
Figure 3: Bloch wave dispersion surfaces for [100]-Fe at 200 kV along (a) 200 and (b) 220 
reciprocal lattice vectors. In each case the longitudinal wavevector (in inverse Angstroms) for 
the Bloch wave is plotted against the transverse component of the incident wavevector 
(normalised with respect to the reciprocal lattice vector). Bloch waves 1 and 2 are degenerate 



and form the upper curve in the dispersion surface. For ease of visualisation lower lying 
Bloch states that are degenerate at normal beam incidence are depicted by dashed lines; this 
includes Bloch waves 3-4 (degenerate at all incident wavevectors) and Bloch waves 6-7. 
 
Figure 4: Radial intensity profiles for 200 kV, m =1 vortex probes with 10 and 30 mrad 
semi-convergence angles. Also superimposed is the integrated radial intensity distribution for 
the p-type Bloch wave 6 (the origin is at an atom column); note that at large (>1 Å) radial 
distances the integrated intensity of the Bloch wave is complicated by overlap with 
neighbouring atom columns. In each case the peak intensity has been normalised for ease of 
visualisation. 
 
Figure 5: (a) <Lz> and (b) intensity pendellösung for a 200 kV, 10 mrad semi-convergence 
angle, m =1 vortex probe incident between the atom columns in [100]-Fe (i.e. point A in Fig. 
1). <Lz> is plotted in units of ħ and the intensity is integrated over a 2 Å radius about the 
vortex centre. 
 
Figure 6: A(R) and Bloch state <Lz> contributions for a 200 kV, 10 mrad, m = 1 vortex probe 
incident between the atom columns. The A(R) plots at depths of z = 0, 60 and 100 Å are 
shown in (a), (c) and (e) respectively, while the corresponding Bloch state <Lz> contributions 
(in units of ħ) at the same depths are shown in (b), (d) and (f) respectively. Bloch state 
contributions are divided into self and (self+cross)-interference terms. Data points are 
labelled as ‘1s’ for Bloch state 1 and using vertical arrows for the 2p-type, Bloch states 3, 4, 6 
and 7. Lines connecting the data points are purely for visualisation purposes. 
 
Figure 7: (a) <Lz> pendellösung (in units of ħ) for a 200 kV, 10 mrad semi-convergence 
angle, m =1 vortex probe incident on an atom column in [100]-Fe (i.e. point B in Fig. 1). (b) 
Power spectrum of the <Lz> pendellösung in (a). The two main spatial frequencies 
corresponding to short and long wavelength oscillations are indicated by the vertical arrows. 
 
Figure 8: A(R) and Bloch state <Lz> contributions for a 200 kV, 10 mrad, m = 1 vortex probe 
incident along an atom column. The A(R) plots at depths of z = 0, 230 and 470 Å are shown 
in (a), (c) and (e) respectively, while the corresponding Bloch state <Lz> contributions (in 
units of ħ) at the same depths are shown in (b), (d) and (f) respectively. Bloch state 
contributions are divided into self and (self+cross)-interference terms. Data points are 
labelled as ‘1s’ for Bloch state 1 and using vertical arrows for the 2p-type, Bloch states 3, 4, 6 
and 7. Lines connecting the data points in the <Lz> plots are purely for visualisation purposes. 
 
Figure 9: (a) <Lz> pendellösung (in units of ħ) for a 200 kV, 30 mrad and 600 kV, 15 mrad 
vortex probe incident on an atom column in [100]-Fe. Also superimposed is the <Lz> 
pendellösung for the 200 kV, 10 mrad vortex probe from Fig. 7a. In each case the winding 
number of the vortex probe is +1. Bloch state <Lz> contributions (in units of ħ) at the 
specimen entrance surface for the 200 kV, 30 mrad and 600 kV, 15 mrad probes are shown in 
(b) and (c). Data points are labelled as ‘1s’ for Bloch state 1 and using vertical arrows for the 



2p-type, Bloch states. Lines connecting the data points in (b) and (c) are purely for 
visualisation purposes. 
 
Figure 10: Radial intensity distributions for 200 kV, m =5 vortex probes with (a) 10 mrad 
and (b) 20 mrad semi-convergence angle. The solid line is the solution obtained from Eq. (1), 
while the dashed line represents the Bloch wave solution (Eq. 2). The peak intensities have 
been normalised for visualisation. 
 
Figure 11: (a) <Lz> pendellösung for 200 kV, m =5 vortex probes with 10 mrad and 20 mrad 
semi-convergence angle. The probes are incident on an atom column position in [100]-Fe. 
Bloch state <Lz> contributions for the 10 and 20 mrad probes at the specimen entrance 
surface are shown in (b) and (c) respectively. (d) shows the Bloch state <Lz> contributions for 
a 200 kV, m =5 vortex probe with 30 mrad semi-convergence angle. <Lz> was calculated by 
sampling the wavefunction over a 5 Å radius at 0.1 Å resolution. In all figures <Lz> is 
expressed in units of ħ. Lines connecting the data points in (b), (c) and (d) are purely for 
visualisation purposes. 
 
Tables 
 

Bloch state γ-value (Å-1) 
1 and 2 (1s; degenerate) 0.0091 
3 and 4 (2p; degenerate) -0.0019 

5 (2s) -0.0020 
6 and 7 (2p; degenerate) -0.0026 

8 -0.0033 
9 -0.0043 

10 (3s) -0.0047 
11-12 (degenerate) -0.0062 

 
Table 1: [100]-Fe Bloch state γ-values for normal incidence at 200 kV. Bloch wave character 

and degeneracy at normal beam incidence are as indicated. 
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