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Abstract 
 

This brief paper introduces a new approach to assessing the trustworthiness of research 

comparisons when expressed numerically. The ‘number needed to disturb’ a research finding 

would be the number of counterfactual values that can be added to the smallest arm of any 

comparison before the difference or ‘effect’ size disappears, minus the number of cases 

missing key values. This way of presenting the security of findings has several advantages 

over the use of significance tests, effect sizes and confidence intervals. It is not predicated on 

random sampling, full response or any specific distribution of data. It bundles together the 

sample size, magnitude of the finding and the level of attrition in a way that is standardised 

and therefore comparable between studies.  

 

 

Introduction: the problems with current approaches to analysis 
 

The use of sampling theory statistics as aids to analysis and for presenting the security of 

research findings has been around for one hundred years. But from their inception, their use 

has been questioned and their logic pulled apart. More recently, there has been an emphasis 

instead on presenting results as effect sizes. This is certainly an improvement but the approach 

has almost as many problems as statistical testing does.  

 

This paper outlines the limitations of both before presenting a new approach – the number of 

counterfactual cases needed to disturb a finding. The latter forms the substance of this brief 

paper, which is not intended to cover again the full argument against the use of significance 

tests (both in themselves and in disguised form such as with modelling, power calculations 

and confidence intervals). This argument has been fully covered elsewhere (such as in Gorard 

2015). The paper is therefore primarily concerned with the scale, strength or trustworthiness 

of any research findings (an activity internal to the study) rather whether the findings might be 

more generally true for cases not involved in the study.  

 

Significance tests 

 

The use of significance tests, such as t-tests, is still widespread in the social sciences. The 

approach was developed to try and assess how unlikely it is that a research finding arose 

solely by chance, due to the vagaries of random sampling. The algorithm for calculating 

significance assumes and requires complete random samples (Siegel 1956). However, the 

approach is widely misused and misunderstood (Watts 1991). It is routine to come across 

significance tests reported in the social science literature where the cases involved have not 

been randomly selected – representing instead population data, convenience samples, and 
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incomplete attempted random samples. Much of the literature therefore cites ‘significance’ of 

a kind that is corrupt and misleading. 

 

Even when used as intended with complete random sampling, the results of significance tests 

are still widely misinterpreted (Carver 1978). In fact, significance tests are really only another 

way of presenting the scale of a piece of research – saying little or nothing about the 

magnitude or importance of a finding (Kuhberger et al. 2014). For example, a t-test may be 

used to examine the difference between the means of two sub-groups of the overall sample. It 

is extremely unlikely that any two sub-groups in the population will have exactly the same 

mean, and so the sample means will tend to differ, even if only by a tiny amount (Meehl 

1967). If a significance test gives a ‘significant’ result it means only that the sample size was 

large enough to enable the study to pick up the difference that must exist in the population.  

 

The tests generate a probability of obtaining by chance a finding (difference, pattern, or trend) 

at least as large as the one found in new research, assuming that this finding does not occur in 

the population from which the cases were drawn at random. Yet such test results are widely 

mis-reported, or utilised, as being the probability of the finding occurring in the population, 

given the size of the finding in the sample cases. These two probabilities are entirely different, 

and one may be large and the other small or vice versa. Because social scientists generally 

want to know the probability of their finding being true of the population, this fact alone 

should make significance testing a waste of time for them. No one wants to know the 

probabilistic answer the tests actually provide (Falk and Greenbaum 1995). This is 

presumably why so many researchers envisage that the significance test results that they can 

calculate (the probability of data given the null hypothesis) are the results they actually want 

(the probability of the null hypothesis given the data). 

 

Significance tests are anyway based on the standard error for the sampling distribution of the 

population, which will never be known in practice, and the inaccuracy in estimating it from 

one achieved sample can make test results misleading even in their own terms (Gorard 2015). 

 

Finally, it is clear from empirical studies that the threshold nature of ‘significance’ leads to 

serious publication bias. A very large number of reported p-values are just inside the 

traditional 5% significance threshold (Kuhberger et al. 2014). And very few non-significant 

findings are ever reported formally. There must be a better approach.  

 

Effect sizes 

 

One issue for significance tests is that even if they worked and were used as intended they 

convey no easily interpreted information about the size of the finding (difference or pattern). 

Most commentators now advocate not using significance testing for the reasons given above, 

and instead presenting findings in terms of standardised ‘effect’ sizes (Lipsey et al. 2012). 

This is certainly a preferable approach. It is not so open to abuse since the figures presented 

are easier to understand (not modus tollendo tollens as with significance test results – see 

Gorard 2010a). Effect sizes make sense even with non-random samples, and they overtly 

portray the strength of the pattern or difference in the data.  

 

However, effect sizes are also open to publication bias and abuse. Effect sizes are 

theoretically independent of sample sizes. Yet in a study of 1,000 articles, a correlation of -

0.45 was found between the sample size and reported effect size (Kuhberger et al. 2014). 
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Small samples are more likely to produce aberrant or extreme ‘effect’ sizes which, like 

significant results, are then more likely to be published (Slavin and Smith 2009). 

 

Effect sizes offer no assessment of the likelihood of a finding arising by chance and give no 

indication of the quality of the study that led to the finding. They take no account of scale 

(sample size), and are often predicated on assumptions such as a normal distribution of the 

data that are just as unrealistic in practice as having a complete random sample. Some 

commentators, in scrapping significance tests, have suggested using confidence intervals 

(CIs) with effect sizes, on the basis that CIs offer at least a likelihood estimate (Cumming 

2013). But the problems with CIs are largely the same as for significance tests. CIs are, in 

fact, significance tests. They apply only to complete random samples and, like p-values, are 

the reverse of what most commentators want and believe them to be, and again are largely the 

size of the sample converted into a less comprehensible format. This approach, of CIs with 

effect sizes, requires two sets of figures to be presented together, but still does not allow easy 

interpretation of the findings by the intended user.  

 

Missing data 

 

Perhaps most importantly of all, neither significance testing or effect sizes take any account of 

missing data in the findings (Berk and Freedman 2001). In real-life research there will always 

be missing data, including inaccurate recording of values, missing values and missing cases. 

Cases will refuse to participate, have lost records, and drop out during research. There is no 

reason to assume that these hard-to-reach cases and values will be a random sub-set of the 

total (Peress 2010). Therefore, missing data must be assumed to lead to bias in research 

findings, such as in the reported differences between groups, or the apparent relationships 

between variables when modelling with datasets.  

 

Some commentators attempt to defend the use of traditional statistics with incomplete 

samples by drawing a purported distinction between data missing randomly (an unlikely 

scenario), which they term missing completely at random, and data missing at random, which 

they claim is data whose ‘missingness’ does not depend upon its value (Brunton-Smith et al. 

2014). This then ‘permits’ them to use their favoured statistical approaches with over 60% of 

the relevant data missing (for example, see Pampaka et al. 2014). The distinction is a false 

one. Randomness is a very simple concept, meaning that events happen by chance. Since we 

are sure from empirical studies that missing data does not occur by chance, it cannot and must 

not be assumed to be random in nature (Hansen and Hurwitz 1946, Sheikh and Mattingly 

1981). This has been repeatedly demonstrated when population or administrative data are 

compared to surveys of the same cases, or where different studies using the same selected 

‘sample’ have different response rates (Dolton et al. 2000). These differences can have a 

‘dramatic impact’ on the data, and lead to ‘puzzingly different results’ (Behaghel et al. 2009, 

p.1). Any bias in the substantive results caused by missing data generally cannot be corrected 

by technical means (Cuddeback et al. 2004). In fact fiddling with the data post hoc, rather 

than improving the situation, usually creates further bias by emphasising the cases that are not 

missing (Gorard 2014a).   

 

 

Introducing the ‘number needed to disturb’ 
 

A better alternative to all of the above is to consider how different the data obtained would 

have to have been in order for the finding of interest to disappear. If little would have to 
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change then the finding is clearly not a strong one, unless the finding is that there is no 

difference (pattern or trend). There are a number of ways of implementing this approach. The 

method proposed here is simple, standardised, and takes into account in one summary figure 

the sample size, the magnitude of the finding and the level of missing data. It involves 

calculating the number of counterfactual cases needed to disturb the finding. 

  

Imagine a piece of research comparing the mean scores of two groups. Perhaps these are the 

outcomes scores in a simple trial comparing an intervention and a control group. Assuming 

that the study design was good, the measurements secure, and that there are no obvious threats 

to validity, then the difference between the means is an estimate of the impact of the 

intervention given to one group but not the other (Gorard 2014b). 

 

The proposed procedure is explained first using a small imaginary dataset, and then illustrated 

with real data in the next section. In this small imaginary dataset there are two groups each of 

10 cases with no missing data and no design problems (Table 1). The mean average of Group 

2 (5) is larger than the mean average of Group 1 (3.9). How ‘robust’ is this difference between 

the means?  

 

Table 1 -  A comparison between two groups, each of 10 cases 

Case number Group 1 Group 2 

1 3 6 

2 8 9 

3 0 7 

4 3 6 

5 6 1 

6 3 1 

7 5 9 

8 1 2 

9 4 6 

10 6 3 

Mean 3.9 5.0 

Standard deviation 2.3 2.9 

 

In terms of Hedge’s ‘effect’ size, the difference between the two groups would be expressed 

as the difference between their means (-1.1) divided by their pooled standard deviation (2.74). 

This would be -0.4, which is a fairly substantial effect size for the social sciences. To 

calculate a standardised number needed to disturb that finding, the first step is to create a 

counterfactual score from the group with the most cases to apply to the group with the fewest 

cases. Since both groups have N=10 here, it does not matter which group is used to create the 

counterfactual score. We will use Group 1 data to create the counterfactual, which is defined 

as the mean score for that group (3.9) minus the overall SD (2.74) or 1.16. The SD is 

subtracted to make the counterfactual even smaller than the mean for Group 2. If we had used 

Group 2 to create the counterfactual then we would have added the mean for that group (5) to 

the SD (2.74) to create a counterfactual of 7.74 (see summary below). 

 

If we now increase Group 2 to 11 cases by adding a counterfactual case of 1.16, then the 

mean of Group 2 drops from 5.0 to 4.65. The difference between the means of Groups 1 and 2 

would now be -0.75. The counterfactual case can be added repeatedly to the existing cases in 

Group 2 until the difference in means between the groups becomes zero or changes sign. At 
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that stage the Hedge’s effect size also becomes zero or changes sign. The number of 

counterfactual cases needed to disturb the original finding in this way becomes a standardised 

measure of the robustness of the original ‘effect’ size. The larger this number is, the safer and 

more trustworthy is the finding. The generic steps are summarised below.  

 

 Take the mean and standard deviation (SD) of the group with the most cases. 

 If this mean is larger than that of the group with the fewer cases, then add the overall 

SD to that larger mean. If the mean of the group with the most cases is smaller than 

that of the group with the fewer cases, then subtract the overall SD from the smaller 

mean. This forms the standard ‘counterfactual’ score. 

 Calculate, by iteration or estimation, how many of these counterfactual cases can be 

added as cases to the smaller group before the difference between the group means 

disappears or reverses. This is the ‘number (of counterfactual cases) needed to disturb’ 

the result (assuming that there is no dropout). 

 

Using the imaginary data from Table 1, it would take 5 counterfactual scores of 1.16 added to 

the original cases in Group 2 to make the mean of Group 2 less than or equal to the mean of 

Group 1. Similarly, and obviously, it would also take 5 counterfactual scores of 7.74 added to 

the original cases in Group 1 the make the mean of Group 1 greater than or equal to the mean 

of Group 2.  

 

In general, how much attention is paid to the difference between means in situations like this 

should depend on the number of cases in the smallest group, the size of the difference in the 

outcomes between groups, and the level of missing data. Large studies with little missing data 

are preferable to small studies or studies with high rates of attrition. For an effect to be 

meaningful the difference between the means must be considered substantial, and robust in 

face of missing data, chance and design issues such as bias. As explained further below, the 

number needed to disturb the finding (NNTD) allows all of these factors to be encompassed in 

one summary figure.  

 

 

A heuristic approach 

 

The basic NNTD can be assessed exactly by repeatedly adding a counterfactual case to the 

smaller group and recalculating the effect size until the difference between the means 

disappears (as above). This is relatively simple using syntax in SPSS or similar. Even easier is 

to approximate it using a heuristic, which our repeated tests have found to be reasonably 

accurate with group sizes of 50 or more cases. This means that the calculation can be done in 

one step with no iteration, and it can even be done when the original data are not published 

but the means and standard deviations are known.  

 

If μ1 and μ2 denote the means of the smaller and larger groups respectively, and the overall 

standard deviation is σ, then the standard counterfactual case is given by: 
 

 
 

It is established that with a sufficiently large group of N cases with mean μ1, adding each of 

the counterfactual cases c to the smaller group will change the mean by approximately: 

 



6 
 

 
 

in either direction, where N is the number of cases in the smaller group. 

 

To achieve a 'disturbance', the total change in μ1 must equal or exceed the difference between 

the two means |μ1 - μ2|. Or put another way: 

 

 
 

Hence, with large N, we can approximate NNTD with the heuristic: 
 

 
 

Where     

    
 

The result will clearly be an under-estimate for the true value since the actual N in the smaller 

group will increase by one on each step of the iterative true algorithm, slightly reducing the 

impact of each added counterfactual, even with large N. Using the data from Table 1 (above), 

the minimum estimated NNTD using this heuristic is 3 (rather than the actual figure of 5). 

This would be calculated as 10*1.1 divided by either |3.9-7.74| or |5-1.16|.  

 

 

Including scale of missing data in the NNTD 

 

The number needed to disturb (NNTD), however computed, is expressed as a number of 

cases. Therefore, it can be compared directly with the number of cases missing key data, or 

missing entirely through dropout or non-response. The initial result from the steps above 

should be reduced by the number of cases missing data. The final result would then take 

attrition into account as well, on the assumption that any missing data will tend to be 

counterfactual. This last assumption is a somewhat pessimistic one, but it does mean that any 

finding that still looks robust after this process deserves to be taken seriously. It means that 

the ‘effect’, difference or trend cannot have been caused simply by missing data, even if all of 

the missing data had been counterfactual.  

 

 

Real examples of NNTD in use 

 

As an example, a recent evaluation of a new literacy intervention (Switch-on Reading) 

initially had 314 cases in two equal groups, and an effect size in terms of gains scores of 

+0.24 (Gorard et al. 2014a). The effect size used was Hedge’s g – the difference between the 

mean scores for the two groups divided by their pooled standard deviation. The control group 

was slightly smaller (153 cases) than the intervention group (155 cases) so the intervention 

group is used to compute the ‘counterfactual’ score. This is 4.40 (the mean) plus 7.45 (the 

standard deviation), or 11.85 (Table 2). If 35 of these scores are added to the 153 existing 

scores for the control group then the ‘effect’ size is still just above zero. However, if 36 such 
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scores are added then the ‘effect’ size becomes slightly negative. Therefore, the simple 

number needed to disturb the finding is +36. The heuristic approximation underestimates this 

as +30, calculated as (153*1.81)/|2.59-11.85|.  

 

Table 2 - Estimated impact of Switch-on Reading Programme 

Treatment group N Gain 
Standard 

deviation 
‘Effect’ size 

Intervention 155 4.40 8.18 - 

Control 153 2.59 6.53 - 

Overall 308 3.50 7.45 +0.24 

 

The number of cases randomised to one of the two groups but for whom there is no post-test 

scores was 5. Subtracting this from +36 yields a complete NNTD-minus-attrition of +31. On 

the basis of working with random values in simulations, +31 seems very unlikely to arise by 

chance or to be caused by the very low level of attrition, even if all of the missing scores 

would have been counterfactual to the overall finding.  

 

Another recent evaluation of a literacy intervention (Response to Intervention) involved 373 

cases in two groups, with fewer cases in the intervention group than in the control (Table 3). It 

produced an effect size of in terms of gain scores of +0.12 (Gorard et al. 2014b). The overall 

standard deviation (9.73) is subtracted from the mean for the control group (2.80) to create the 

counterfactual (-6.93). It would take the adding of 21 of these counterfactual scores to those 

of the treatment before the effect size disappeared and became slightly negative. The initial 

NNTD is therefore +21. The heuristic approximation underestimates this as +19 calculated as 

(178*1.14)/|3.94+6.93|. 

 

Table 3 – Estimated impact of Response to Intervention 

Treatment group N Mean 
Standard 

Deviation 
Effect Size 

Intervention 178 3.94 10.62 - 

Control 195 2.80 8.83 - 

Overall 373 3.35 9.73 +0.12 

 

However, a total of 89 cases did not complete the outcome tests, and so are missing key data. 

This means that the NNTD-minus-attrition is actually -68. This suggests that the difference 

between the means is very insecure, and could easily have arisen even if only some of the 

missing cases would have been counterfactual to the overall finding.  The level of attrition 

indicates a failed trial due to dropout, and so the difference between means must be treated as 

very far from robust.   

 

 

Expanding the applicability of NNTD 
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The illustrations so far have been deliberately simple, and based on real numbers as 

measurements. However, the calculation of NNTD can be extended to almost any analytical 

situation where there is a concern to assess the robustness of a difference, trend, or other 

pattern in the data. As already shown, the process does not depend on equal sized groups. Nor 

does the data have to represent that from a random sample, or mimic a specific distribution 

(such as the normal curve). It can be used where there are more than two groups to compare, 

simply by pairwise consideration. It can even be used in modelling of the kind based on 

correlation/regression by asking how much the data would have to have differed to disturb a 

coefficient, or eliminate an increase in R linked to a specific variable.  

 

It is also reasonably simple to apply NNTD to data based on frequencies, since frequencies 

are real numbers in the same way as measurements are. In analytical terms the difference, 

between a comparison of groups of measurements classified in terms of which group they are 

in (as above) and a comparison of groups of frequencies classified in terms of which group 

they are in, is often over-emphasised (Gorard 2010b). Here the illustration again involves two 

groups, although the process could easily be extended to more complex situations. The 

example is imaginary, but a fuller explanation of these calculations appears in Chapter 3 of 

Gorard (2003). Suppose that a sample of 100 people were asked a number of questions 

including their sex, and whether they had visited their GP (doctor) in the past two years. The 

results show that 59% of males (24/41) and 49% of females (29/59) had visited their GP 

(Table 4).  

  

Table 4 - Cross-tabulation of GP visits by sex 

 Visit GP Not visit GP Total 

Male 24 17  41 

Female 29 30  59 

Total 53 47 100 

 

How robust is this apparent difference between males and females, given that there are more 

females in the sample? For the present, we will ignore the issues of sample quality and 

dropout and consider only the number of counterfactuals needed to disturb this apparent 

difference. One way to approximate the NNTD examples above would be to add new 

counterfactual cases (not visiting GP) to the smallest group (males). If 8 such cases are added, 

the percentage of males reporting visiting their GP would become 24/49 which is just under 

49% (the same percentage as for females).  

 

However, it would probably make more sense to continue to use the difference between the 

observed and expected values in each cell, as is traditional, and which can be computed using 

the marginal totals. Here, each cell differs from expectation by 2 cases, so the total would still 

be 8 cases needing to change (or 4 cases needing to exchange) in order to disturb the finding. 

Either way, the NNTD can then be compared directly to levels of non-response and missing 

data, also expressed as a number of cases.  

  

 

Discussion 
 

Of course, the approach presented in this paper for the first time still requires development, 

and consideration of issues such as how to estimate the sample size needed in order to detect a 

pre-specified ‘effect’ size with a pre-specified NNTD. And it does not, in itself, address other 

crucial factors for analysts such as the quality of the measurements, the accuracy of the 
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classifications and the design quality and biases in any study (but see Gorard 2014b). Perhaps 

most importantly, readers and users of research would need practice in judging what the 

numbers in NNTD mean. Four examples are used in this paper yielding figures of -68,5, 8, 

and 31. The first of these should more accurately be zero, showing quite clearly that the 

‘effect’ size or difference can be quite easily explained by missing data or chance. The fact 

that it is negative also implies that the research has failed as a piece of evaluation. The second 

and third figures represent situations where the pattern or difference is very weak. The 

findings should be treated as indicative at most. Only the fourth figure (+31 after the missing 

cases are accounted for) suggests a finding     

 

This paper has introduced the computation of a ‘number of counterfactual cases needed to 

disturb the finding’ (NNTD) to help assess the robustness of a pattern, trend or difference in 

numeric data. The idea of the number of counterfactual cases needed to disturb the safety of 

an empirical finding is a simple one. It is presented here as a superior alternative to the failed 

approach of significance testing and confidence intervals, and the limitations of ‘effect’ sizes 

alone. Unlike the permutation test it is not predicated on complete random sampling. In fact, 

creating NNTD requires no particular underlying assumptions, creates no threshold of 

acceptance/rejection, is comparable between studies of different sizes using different outcome 

measures, and uniquely it takes into account in one figure the sample size, magnitude of the 

finding and the level of missing data. It can be used with any form of numeric data, and any 

number of groups or classifications. It is easy to understand, and will be simple to compute 

once operationalised in software. The heuristic approach allows a minimum value to be 

estimated even when there is no access to the actual data (such as when conducting a review 

or meta-analysis). Regardless of how the details are worked out, the principle of NNTD has a 

lot to recommend it. 
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