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ABSTRACT 30 

Pliocene to Quaternary magmatism in the Karacadağ Volcanic Complex in southeast 31 

Turkey occurred in the foreland region of the Arabia - Eurasia collision and can be 32 

divided into two phases. The earlier Karacadağ phase formed a north-south trending 33 

volcanic ridge that erupted three groups of lavas. The same range of mantle sources 34 

contributed to the younger Ovabağ phase lavas which were erupted from 35 

monogenetic cones to the east of the Karacadağ fissure. Like several other intraplate 36 

localities across the northern Arabian Plate this magmatism represents mixtures of 37 

melt from shallow, isotopically enriched mantle and from deeper, more depleted 38 

mantle. The deep source is similar to the depleted mantle invoked for other northern 39 

Arabian intraplate volcanic fields but at Karacadağ this source contained phlogopite. 40 

This source could be located in the shallow convecting mantle or may represent a 41 

metasomatic layer in the base of the lithosphere. There is no evidence for a 42 

contribution from the Afar mantle plume, as has been proposed elsewhere in 43 

northern Arabia. Melting during the Karacadağ and Ovabağ phases could have 44 

resulted from a combination of upwelling beneath weak or thinned lithosphere and 45 

restricted local extension of that weakened lithosphere as it collided with Eurasia. 46 

Tension associated with the collision focussed magma of the Karacadağ phase into 47 

the elongate shield volcano of Mt. Karacadağ. The northern end of the fissure 48 

accommodated more extensive differentiation of magma, with isolated cases of 49 

crustal contamination, consistent with greater stress in the lithosphere closest to the 50 

collision. Most magma batches of the Karacadağ and Ovabağ phases differentiated 51 

by fractional crystallisation at ~ 5 MPa, near the boundary between the upper and 52 

lower crust. Magma batches dominated by melt from garnet lherzolite show evidence 53 

for restricted amounts of differentiation at ~ 22.5 MPa, which is close to the base of 54 

the lithospheric mantle. 55 

Keywords: Arabia; fissure volcano; intraplate; Karacadağ; Turkey. 56 

57 
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INTRODUCTION 58 

The Arabian Plate hosts several basaltic volcanic fields and so provides a valuable 59 

natural laboratory to explore intraplate magmatism (Camp and Roobol 1992; Ilani et 60 

al., 2001; Shaw et al., 2003; Krienitz et al., 2006, 2007 and 2009; Ma et al., 2011). 61 

Intraplate magmatism occurred in clusters from 30 to 16 Ma and/or from 13 to 8 Ma 62 

in southern Turkey (e.g. Gaziantep, Kilis, Karacadağ; Gürsoy et al., 2009; Lustrino et 63 

al., 2010 and 2012; Ekici et al., 2012), in northern Syria (Krienitz et al., 2006), in the 64 

Syrian Dead Sea Fault (Ma et al., 2011) and in the Harrat Ash Shaam (Shaw et al., 65 

2003; Krienitz et al., 2007), with a significant increase in activity since the Pliocene 66 

(Ilani et al., 2001). Most of this activity occurred close to and parallel to, although not 67 

always within, tectonic structures such as the Dead Sea Fault Zone, Euphrates 68 

Graben, Sirhan Graben, Karak Graben and Esdraelon Valley (Fig. 1a). Some of 69 

these structures, for example the Euphrates Graben, experienced no tectonic activity 70 

during magmatism. 71 

The Karacadağ Volcanic Complex in southeast Turkey (Fig. 1), sometimes referred 72 

to as Karacalıdağ, is one of a number of such fields distributed along the northern 73 

edge of the Arabian Plate, where it has collided with Anatolia (Allen et al., 2004). 74 

Until recently, magmatism from this complex was reported to be very young (Pearce 75 

et al., 1990; Şen et al., 2004). New geochronological data for the Siverek plateau 76 

lavas, which constitute the earliest activity of the complex, indicate that activity 77 

began no later than the Middle Miocene (Lustrino et al., 2010 and 2012; Ekici et al., 78 

2012). Petrogenetic models for the Karacadağ Volcanic Complex, and for other 79 

intraplate fields in northernmost Arabia, have tended to concentrate on the proximity 80 

of the Arabian – Anatolian collision in seeking a geodynamic context for magmatism 81 

(e.g. Keskin, 2003; Krientiz et al., 2006). The recognition of multiple phases of 82 

magmatism demonstrates that the Karacadağ Volcanic Complex is not the result of a 83 

single event or process. In a previous publication we discussed the petrogenesis of 84 
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the Miocene Siverek plateau lavas (Ekici et al., 2012). In this contribution we turn our 85 

attention to the younger magmatism. Lustrino et al. (2012) have shown this is 86 

geochemically distinct from the earlier Siverek phase. Our analysis reveals further 87 

levels of distinction within each of the two young phases of activity at the complex. 88 

We explore the genesis and differentiation of this magmatism in the context of 89 

tectonic activity associated with the developing collision and the structure of the 90 

Arabian Plate. 91 

GEOLOGICAL SETTING 92 

The Karacadağ Volcanic Complex, in southeast Turkey, lies immediately south of the 93 

Arabian – Anatolian Collision Zone (Fig. 1). The collision is the result of northward 94 

motion of the Arabian Plate, with respect to Eurasia and the Anatolian Plate (Allen et 95 

al., 2004). During the Paleocene this caused Neo-Tethyan oceanic lithosphere to be 96 

subducted beneath Anatolia. Subduction continued until formation of the Bitlis Suture 97 

between Arabia and Anatolia (Fig. 1a). Continued convergence between Arabia and 98 

Eurasia led to westward extrusion of Anatolia along the Northern- and Eastern 99 

Anatolian faults during the Late Miocene (Robertson, 2000; Şengör et al., 2008). 100 

The structure of the northernmost Arabian Plate is relatively poorly known, with most 101 

constraints coming from studies in Saudi Arabia, Jordan and Syria. Heat flow 102 

measurements and xenolith petrology have been used to estimate that the 103 

lithosphere – asthenosphere transition occurs at approximately 80 km depth 104 

(McGuire and Bohannon, 1989; Nasir and Safarjalani, 2000; Shaw et al., 2007). 105 

Seismic data suggest that beneath 35 km depth a mafic, lower crust is succeeded by 106 

a 5 to 8 km-thick mantle transition zone (El-Isa et al., 1987a, b). Both petrologic and 107 

seismic evidence indicate that a boundary between upper and lower crust lies close 108 

to 19 km beneath the surface (El-Isa et al., 1987b; Nasir, 1992). 109 

The Karacadağ Volcanic Complex has been active since the Middle Miocene when 110 

the Siverek phase plateau basalts were produced (Ercan et al., 1990; Lustrino et al., 111 
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2010; Ekici et al., 2012) but is particularly well known for its Late Miocene to 112 

Quaternary products (Pearce et al., 1990; Ercan et al., 1990; Adıyaman and 113 

Chorowicz, 2002; Keskin, 2003; Şen et al., 2004; Brigland et al., 2007; Demir et al., 114 

2007; Lustrino et al., 2010). This younger activity can be grouped into two further 115 

phases, termed Karacadağ and Ovabağ. 116 

During the Late Miocene to Quaternary alkali basaltic and basanitic lavas were 117 

erupted from Mt. Karacadağ, a north-south fissure volcano approximately 25 km in 118 

length. We refer to three summits on the volcanic axis as the northern, central and 119 

southern summits (Fig. 1b). Individual lavas from Mt Karacadağ initially flowed east 120 

or west, extending up to 15 km to either side of the volcanic ridge. The lava fields 121 

also extend up to 25 km north and south of the fissure. Nine Ar-Ar measurements 122 

yield ages ranging from 4.50 to 0.91 Ma (Ekici et al., submitted), which agree with 123 

prior radiometric measurements for Mt. Karacadağ (Pearce et al., 1990; Lustrino et 124 

al., 2010). Adıyaman and Chorowicz (2002) have suggested that the northern end of 125 

Mt. Karacadağ lies at the southern end of a WNW-ESE fault extending from the East 126 

Anatolian Fault. The Karacadağ fissure indicates that the lithosphere was under 127 

tensional stress during this stage of the collision, although there is little evidence that 128 

this part of the northern margin of the Arabian Plate experienced significant east-129 

west extension. 130 

Products of the youngest phase of activity in the complex lie approximately 15 km to 131 

the east of Mt. Karacadağ, around the village of Ovabağ (Fig. 1b). These are 132 

predominantly alkali basalt flows erupted from monogenetic cones and cover 133 

approximately 150 km2. The youngest of these flows, erupted from the 100m high 134 

Baruttepe cone, is exceptionally fresh although there is little evidence of alteration of 135 

any of the Ovabağ flows. Most of these were erupted from cones, similar to 136 

Baruttepe, and flowed east up to 20 km from the eastern flank of Mt. Karacadağ 137 

before being channelled into river valleys and flowing up to a further 5 km east or 138 

southeast. The flows are vesicular and often retain flow structures such as pahoehoe 139 
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surfaces and surface break-out structures. Vesicles are generally empty and only 140 

rarely contain secondary calcite. Similar monogenetic cones occur further to the east 141 

and south of the Karacadağ Volcanic Complex, towards the border with Syria. Ekici 142 

et al. (submitted) obtained an Ar-Ar ages of 0.29Ma ± 0.13 and 0.53Ma (± 1.14) for 143 

an Ovabağ lava, which is consistent with the geomorphological evidence of very 144 

recent activity. 145 

ANALYTICAL METHODS 146 

Seventy-six fresh samples, forty-eight from Mt. Karacadağ and twenty-eight from 147 

Ovabağ, were analysed for major and trace element concentrations at ACME 148 

laboratories (Canada; Table 1). Any calcite-bearing vesicles were avoided when 149 

preparing material for analysis. Major element analyses were conducted by X-ray 150 

fluorescence upon fused discs prepared by using six parts of lithium tetraborate and 151 

one part of rock powder. The mixture was fused in crucibles of 95% Pt and 5% Au at 152 

1050°C for 60 minutes to form a homogeneous melt that was cast into a thick glass 153 

disc. Trace element concentrations were analysed by ICP-MS using a fusion 154 

method. Precision was monitored using an internal standard (SO-18) while accuracy 155 

was calibrated using standards W-2, GSP-2, BCR-2, SY4 and SY-3 (Supplementary 156 

Tables 1 & 2). Uncertainty on these measurements is better than ± 3 % for major 157 

element oxides and ± 10 % for trace elements. 158 

Isotope ratios of Pb, Sr, and Nd were measured on splits separated from the same 159 

0.2 g aliquots at the University of Geneva using a 7-collector Finnigan MAT 262 160 

thermal ionisation mass spectrometer during December 2008. Samples were 161 

processed using procedures described in Chiaradia et al. (2011). The 90° magnetic 162 

sector mass analyser has an extended geometry with stigmatic focusing. 87Sr/86Sr 163 

and 143Nd/144Nd ratios were measured in semi-dynamic mode, using double Re 164 

filaments. Conventional Pb isotope ratio measurements were obtained in dynamic 165 

mode with a single Re filament. 88Sr/86Sr = 8.375209 was used to correct the mass 166 
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fractionation of 87Sr/86Sr, which was compared to the NIST-SRM987 87Sr/86Sr value 167 

of 0.710240 (87Sr/86Srmeasured = 0.710240 ± 0.000012 (2 σ), n = 31). 143Nd/144Nd was 168 

mass fractionation corrected relative to a 146Nd/144Nd value of 0.721903 and 169 

normalized to the Nd La Jolla standard value of 0.511835 (143Nd/144Ndmeasured = 170 

0.511845 ± 0.000004 (2 σ), n = 26). Lead isotope data were corrected for 171 

instrumental mass fractionation and machine bias by applying a discrimination factor 172 

determined by multiple analyses of NBS SRM981, using the reference value of Todt 173 

et al. (1984). The discrimination factor averaged 0.00082 +/- 0.00005 (2 SE, n = 132) 174 

per mass unit. External reproducibility (2 σ) of the standard ratios are 0.05% for 175 
206Pb/204Pb, 0.08% for 207Pb/204Pb and 0.10% for 208Pb/204Pb. These standard 176 

analyses were performed during a 6-month period in which the Karacadağ lavas 177 

were analysed. Pb, Sr and Nd blanks were all below their respective detection limits. 178 

RESULTS 179 

Petrography 180 

All lavas from Mt. Karacadağ itself are alkaline, being alkali basalts, trachybasalts, 181 

basanites and tephrites, with rare phonotephrite. Most lavas are very fresh, the vast 182 

majority having low Loss on Ignition (LOI) values of less than 1 % (Table 1). The 183 

lavas are fine grained and porphyritic, containing olivine and plagioclase 184 

phenocrysts, up to 25 modal %, set in a matrix of the same minerals, plus 185 

clinopyroxene, which is occasionally titanium-rich and oxides. Phenocrysts are 186 

generally 0.2 – 1 mm in size with groundmass crystals less than 0.1 mm. Plagioclase 187 

phenocrysts show some signs of disequilibrium with sieve textures observed in a 188 

number of samples. Such disequilibrium might arise from magma-mixing or 189 

contamination (Dungan and Rhodes, 1978) but could also result from decompression 190 

or heating (Nelson and Montana 1992; Thy et al., 2013). Therefore, the sieve 191 

textures, in themselves, do not provide evidence for open system behaviour. 192 
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Lavas from Ovabağ are exceptionally fresh as shown by their very low, and 193 

frequently positive, LOI, which is due to iron oxidation during ignition. These lavas 194 

include basalts, alkali basalts, trachybasalts and rare tephrites. Like Karacadağ 195 

phase lavas these are fine-grained flows but differ in the predominance of olivine 196 

phenocrysts. Again, there is a range of phenocryst contents, up to 25 modal %. 197 

Titanaugite is more common than at Karacadağ, sometimes as micro-phenocrysts, 198 

but usually as part of the groundmass. 199 

Results 200 

Lavas from both phases can be split into three groups based on geochemistry. In the 201 

discussion below these are referred to as groups K1, K2 and K3 for the Karacadağ 202 

Phase and O1, O2 and O3 for the Ovabağ phase. Similarities between Karacadağ 203 

groups and Ovabağ groups will be mentioned where appropriate. 204 

Karacadağ Phase 205 

Lavas from both the Karacadağ and Ovabağ phases show similar ranges of major 206 

and trace element compositions to those observed by prior studies (Fig. 2 and 3). 207 

Karacadağ phase lavas display a much wider range in compositions than those from 208 

Ovabağ. Group K1 lavas have lower MgO (2.2 – 6.7 wt. %) and higher Al2O3 (> 15 209 

wt. %) than the remaining two Karacadağ groups (Fig. 2). In groups K2 and K3 MgO 210 

is generally greater than 8 wt. % but K3 is offset to lower SiO2 and Al2O3 and to 211 

higher TiO2, Fe2O3, Na2O, K2O and P2O5 for any particular MgO content. Most major 212 

element oxides correlate well with MgO, particularly in group K1, although Fe2O3 and 213 

TiO2 display more scatter than others due to an inflection at around 5 wt. % MgO. 214 

The major element groupings of the Karacadağ phase are also readily apparent in 215 

trace element concentrations. Nickel contents of K2 and K3 lavas are similar to one 216 

another and significantly greater than those of K1 (Table 1). Within each group of the 217 

Karacadağ phase concentrations of incompatible elements increase with decreasing 218 

MgO (Fig. 3). 219 
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In mantle normalised plots all Karacadağ phase lavas show patterns that are 220 

enriched in the most incompatible elements, peaking at Nb, and depleted in the 221 

heavy rare earth elements and Y (Fig. 4). A striking negative Pb anomaly is apparent 222 

in the patterns of all groups. Patterns for K1 and K2 lavas are very similar but with 223 

greater concentrations in the former, consistent with their lower MgO contents. 224 

Group K3 lavas have more elevated concentrations of incompatible elements than 225 

those from group K2 (Fig. 2) but with similar shaped patterns (Fig. 4b and c), except 226 

for the presence of negative K anomalies in most K3 samples. The magnitude of this 227 

anomaly is not linked to MgO content but it is more pronounced in silica-poor rocks 228 

(Fig. 5a and b).  229 

Group K3 lavas display the lowest values of 87Sr/86Sr and Δ7/4 and Δ8/4, and the 230 

highest values of 143Nd/144Nd (Table 2 and Fig. 6) of any lava from the Karacadağ 231 

Volcanic Complex. Ratios for the other two Karacadağ groups largely overlap one 232 

another but a K1 sample (DK-58) displays the most radiogenic Sr and least 233 

radiogenic Nd isotopic ratios in this study. However, these values are not as extreme 234 

as noted for the Miocene Siverek plateau lavas (Fig. 6). With the exception of DK-58, 235 

the ranges of isotopic ratios are similar to those previously observed for intra-plate 236 

magmatism elsewhere in the northern Arabian Plate (Shaw et al., 2003; Krienitz et 237 

al., 2009; Ma et al., 2011). 238 

Ovabağ Phase 239 

All Ovabağ lavas contain more than 8 wt. % MgO. Group O1 lavas have higher SiO2 240 

and Al2O3, and lower CaO, Fe2O3, TiO2, K2O and Na2O than O3 lavas at similar 241 

MgO. The restricted ranges in composition make it difficult to resolve systematic 242 

variations of other major elements with MgO within each group. Group O2 lavas are 243 

relatively scarce in our dataset and have the highest SiO2 and lowest K2O, TiO2, 244 

Na2O for any MgO content in the Ovabağ phase (Fig. 2). Groups O1 and O3 display 245 

parallel, negative correlations between MgO and Ni (not shown), while O3 lavas are 246 
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consistently enriched in incompatible elements compared to O1 at a particular MgO 247 

content (Fig. 3). Group O2 lavas have the lowest incompatible element contents of 248 

the Ovabağ groups. 249 

Comparing the Ovabağ and Karacadağ phases with one another, concentrations of 250 

major and incompatible trace elements in Group O1 lavas most closely resemble 251 

Group K2 but possess slightly higher SiO2 and K2O (and most incompatible trace 252 

elements), and lower Fe2O3 and TiO2 (Fig. 2 and 3). Several O1 lavas also show 253 

minor, positive K anomalies (Fig. 5b). The shapes of O2 lavas in the multi-element 254 

plot are similar to O1 but, as noted above, have lower concentrations of all 255 

incompatible elements (Fig. 4). The greatest distinction of group O3 from other 256 

Ovabağ lavas is their negative K anomalies, which are not as pronounced as seen in 257 

group K3 but are, again, associated with lower silica contents (Fig. 5b). Lavas from 258 

groups K3 and O3 are very similar with respect to many major and trace elements 259 

(Fig. 2 and 3) and trace element ratios (Fig. 4 and 5). 260 

Lavas from the Ovabağ Phase of magmatism display more restricted ranges of 261 

radiogenic isotope ratios than the Karacadağ Phase (Table 2). The lowest 87Sr/86Sr 262 

and highest 143Nd/144Nd ratios occur in group O3, with values approaching those of 263 

group K3 (Fig. 6). A lava from group O1 (DO-68) possesses Sr, Nd and Pb isotopic 264 

ratios that lie within the range of the K1 and K2 lavas. The remaining Ovabağ lavas 265 

have isotopic ratios that lie within the range previously observed for other northern 266 

Arabian intraplate volcanic fields (Fig. 6). 267 

DISCUSSION 268 

The existence of multiple magmatic phases within the Karacadağ Volcanic Complex 269 

has only been reported recently (Lustrino et al., 2010; Ekici et al., 2012). Previously, 270 

the complex, along with its sources and causative mechanisms, was regarded as 271 

having a short magmatic history (e.g. Pearce et al. 1990; Keskin, 2003). Lustrino et 272 

al. (2012) recognised differences between the major and trace element geochemistry 273 
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of Karacadağ and Ovabağ phase lavas and attributed this to a long term secular 274 

change in source compositions that included the preceding Siverek plateau lavas. 275 

The range in 87Sr/86Sr that we have recognised is similar to that documented by 276 

Lustrino et al. (2012) but offset to slightly lower values. Our new data reveal a 277 

significantly larger range in 143Nd/144Nd, largely due to the small number of samples 278 

for which Lustrino et al. (2012) determined Nd isotopic ratios. 279 

We have previously documented that much of the isotopic variation of the Siverek 280 

lavas can be attributed to crustal contamination (Ekici et al., 2012). Our new data 281 

reveal that there are significant variations in major and trace element chemistry 282 

within both the Karacadağ and Ovabağ phases. For Mt. Karacadağ this variation 283 

also involves a spatial aspect, with K1 lavas being clustered close to the northern 284 

summit and K3 close to the central summit (Fig. 1b). Thus, before evaluating 285 

changes in the mantle sources we must determine the role of differentiation, 286 

including crustal contamination, in generating the chemical diversity of the 287 

Karacadağ and Ovabağ lavas. 288 

Fractional Crystallisation 289 

Most lavas in this study possess relatively high MgO contents. The main exception to 290 

this is group K1 in which MgO varies between 2.3 and 6.7 wt. %, suggesting 291 

moderate to extensive differentiation of primary magma. Some K3 lavas also show 292 

slightly more evolved compositions with MgO contents of c. 6 wt. %. To examine 293 

whether fractional crystallisation could generate the variations within these groups 294 

we undertook modelling using alphaMELTS software (Smith and Asimow, 2005). 295 

The low MgO contents of K1 lavas suggest that none of these represent a parental 296 

magma but most ratios of incompatible trace element in K1 lavas are very similar to 297 

those of group K2 (Figs. 4 and 5). Therefore, we selected a primitive group K2 lava, 298 

KD-102, as the starting composition with which to attempt to replicate variations 299 

within group K1. For K3 lavas, which cannot be produced from a K2 parent, we 300 
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chose KD-26, the member of this group with the most elevated MgO. Relatively low 301 

water contents (0.35 wt. %) were required for both parent compositions and the 302 

oxygen fugacity was set at the QFM buffer. More extreme values for either of these 303 

parameters failed to generate suitable models. Specifically, elevated ƒO2 resulted in 304 

early oxide saturation while more elevated H2O supressed plagioclase crystallisation 305 

in lower pressure models. An iterative approach revealed that only a narrow range of 306 

differentiation conditions replicated the compositional variation of each group. 307 

Major element variations of group K1 can be replicated through fractional 308 

crystallisation of KD-102 at 5 MPa. In this model the initial stages of crystallisation, 309 

which account for removal of less than 10 % of the original mass of melt, are 310 

dominated by olivine with minor spinel. This stage is able to generate much of the 311 

major element variation observed in the K2 group, although there is some scatter of 312 

the alkali and alkaline earth metals (see below). Group K1 closely resemble melts 313 

generated after olivine is replaced on the liquidus by clinopyroxene at c. 7 wt. % 314 

MgO (Fig. 7). The proportion of spinel crystallising in the 5 MPa model increases 315 

significantly at 5 wt. % MgO, which corresponds to a significant inflection in TiO2, 316 

Fe2O3 and V in the K1 array (Fig. 3 and 7) although some groundmass 317 

clinopyroxene in K1 lavas is titanaugite, which could also contribute to depletion of 318 

these elements. At around 4 wt. % MgO the model precipitated plagioclase. This is 319 

consistent with the very minor inflections for Al2O3 (Fig. 2 and 7) at which point 320 

slightly less than 40% of the original melt had crystallised. The models are also 321 

consistent with petrographic observations of olivine ± clinopyroxene ± oxide ± 322 

plagioclase phenocryst assemblages in most Karacadağ phase lavas. 323 

To explore the role of fractional crystallisation further we examined the ratios of 324 

incompatible trace elements with similar bulk partition coefficients. Most group K1 325 

and K2 lavas show no systematic variation in such ratios with changing MgO (Fig. 5). 326 

There is relatively little variation of these ratios and almost complete overlap in the 327 

ratios of groups K1 and K2 (Fig. 5). Therefore, we are confident that the model 328 
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generated from the alphaMELTS software captures the important features of 329 

differentiation in these groups. However, there are two deviations from expected 330 

behaviour. First, Sm/Zr shows a systematic change within group K1 (Fig. 5f). This 331 

appears to be part of a progressive depletion in the middle (M-) and heavy rare earth 332 

elements (HREE), relative to other elements with similar compatibility, with 333 

decreasing MgO in K1 lavas. Since the absolute concentrations of REEs increase 334 

with decreasing MgO (c.f. ytterbium in Fig. 2) we attribute this to the MREE and 335 

HREE behaving slightly less incompatibility than normally expected during 336 

crystallisation of the magma. Second, a small subset of group K1 has elevated K/La 337 

and Ba/Yb at a particular value of MgO. Because Ba/Yb has previously been 338 

proposed as a proxy for crustal contamination in the Karacadağ Volcanic Complex 339 

we have identified this subset as Group K1a in Figures 3, 5 and 7. Their 340 

development is discussed in the next section. 341 

Group K3 compositions cannot be generated from a K2 parent, or vice versa. 342 

Therefore, the K3 series records a distinct initial melt, while its major element 343 

variations suggest differentiation under different conditions. In particular, garnet 344 

crystallisation is required to suppress Al2O3 enrichment (with decreasing MgO) whilst 345 

matching the other K3 major element characteristics. For the DK-26 parent 346 

composition the optimum alphaMELTS model involves differentiation at 22.5 MPa, 347 

initially of 5 % orthopyroxene with minor spinel followed by removal of an 348 

assemblage comprising garnet, clinopyroxene and spinel. This achieves the 349 

enrichment of K2O and N2O whilst suppressing Al2O3 and SiO2 enrichment and also 350 

depleting CaO in the melt (Fig. 7).  351 

Ovabağ Phase lavas display restricted ranges in concentrations of all major 352 

elements implying that fractional crystallisation played a limited role in the evolution 353 

of these melts. Like group K2, the restricted variations within groups O1 and O2 can 354 

be replicated by removal of less than 10% olivine, with minor spinel, from a parental 355 
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basalt with around 10 wt. % MgO. The similarity of group O3 to group K3 suggests 356 

that these also differentiated at relatively high pressure. 357 

Crustal contamination 358 

Crustal contamination is known to have affected Neogene and Quaternary 359 

magmatism throughout the Arabian Plate (Baker et al., 2000; Shaw et al., 2003; 360 

Krienitz et al., 2009; Ma et al., 2011). For example, despite the absence of crustal 361 

xenoliths or xenocrysts in the Miocene Siverek magmatism of the Karacadağ 362 

Volcanic Complex, variations towards higher 87Sr/86Sr, Δ7/4 and Δ8/4 and lower 363 
143Nd/144Nd demonstrate that some of those lavas interacted with the crust (Ekici et 364 

al., 2012). Contamination was not a ubiquitous process, however, with only some 365 

Siverek lavas displaying an isotopic signature of interaction with the crust. This 366 

contamination had a negligible impact on incompatible trace element contents and 367 

ratios, except for enriching Ba with respect to other elements. Selective Ba 368 

enrichment most probably occurred because the contamination leverage for this 369 

element – its concentration in the contaminant relative to the magma - was 370 

significantly higher than that of other elements. 371 

Concentrations of incompatible trace elements in Pliocene – Quaternary lavas are 372 

similar to or greater than those in the most trace element enriched Siverek basalts. 373 

Therefore, the same set of country rocks should exert even less contamination 374 

leverage upon incompatible trace element concentrations in Karacadağ and Ovabağ 375 

phase magma than was the case for Siverek. This is evaluated further in Fig. 5. 376 

Rocks containing more than 8 wt. % MgO display the full range for most of the 377 

incompatible trace element ratios and show no obvious correlations either within 378 

particular groups or in the datasets as a whole. This observation suggests that 379 

ranges for these ratios were present in the most primitive magma batches and that 380 

crustal contamination had a negligible impact upon the trace element chemistry of 381 

Mg-rich magma. The highest Ba/Yb ratios occur in the two most evolved members of 382 
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group K3 (Fig. 5). Yet, these same two samples show the lowest 87Sr/86Sr, Δ7/4 and 383 

Δ8/4, and highest 143Nd/144Nd observed for the Karacadağ and Ovabağ phases, 384 

suggesting that a crustal influence was not required to generate the range of trace 385 

element ratios observed in this magmatism. 386 

Further insight comes from comparing the incompatible trace element ratios of 387 

groups K1 and K2, which were shown to be related by fractional crystallisation 388 

(previous section). The small subset of K1a lavas, with elevated Ba/Yb and K/La at a 389 

given value of MgO, include sample DK-58 (Fig. 5), which possesses the most 390 

extreme isotopic characteristics of all the Pliocene – Quaternary lavas (Fig. 6). 391 

However, the changes to incompatible trace element ratios are small and not 392 

systematic for all elements. For example, while group K1a lavas all have elevated 393 

K/La and Ba/Yb (Fig. 5c), some do not show elevated K2O or Ba at a given MgO 394 

content, relative to the rest of group K1 (Fig. 3). Similarly, there are some other 395 

group K1 lavas that have elevated K2O and Ba but not elevated K/La and Ba/Yb. 396 

There are negligible differences of the concentrations of most major and trace 397 

elements in groups K1 and K1a. Only the alkali and alkaline earth elements show 398 

systematic, although small, enrichments in the latter (Figs. 3 and 7). These, 399 

apparently contradictory, observations probably reflect the low contamination 400 

leverage of most crustal rocks on the trace element contents of magma from the 401 

Karacadağ Volcanic Complex. Thus, while the K1a group suggests some magma – 402 

crust interaction occurred, the restricted magnitude of variations suggest that most 403 

trace element and isotopic ratios in Karacadağ and Ovabağ phase magma were not 404 

modified significantly by crustal contamination. 405 

Modelling the contamination that has occurred is hampered by the absence of data 406 

for suitable crustal rocks for northern Arabia, a problem which has been recognised 407 

by several studies (Shaw et al., 2003; Krienitz et al., 2006 and 2009; Ma et al., 408 

2011). To estimate the amount of melt – crust interaction we employed the approach 409 

of Ekici et al. (2012) who used Sudanese lithologies to investigate crustal 410 
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contamination of Siverek plateau basalts. These offer a range of Sr, Nd and Pb 411 

isotopic compositions with which to constrain the role of crustal rocks. In taking this 412 

approach we are not trying to advocate any shared provenance between Sudanese 413 

and Turkish basement but are testing the suitability of upper versus lower crustal 414 

rocks as contaminants within the northern Arabian lithosphere. Since the K2 group 415 

are parental to group K1 we used the K2 sample with the most elevated 143Nd/144Nd 416 

(KD-29) as the primitive magma in these models. 417 

Contamination of a magma with the initial isotopic composition of DK-29 by lower 418 

crust provides a good fit to Sr and Nd ratios of DK-58 with only a restricted amount of 419 

differentiation (F = 0.93) for a relatively high ratio of assimilation to crystallisation (r = 420 

0.75; model LC in Fig. 6). Contamination by upper crust does not produce such low 421 
143Nd/144Nd relative to 87Sr/86Sr as seen in DK-58. The lower crust model also 422 

provides a more suitable fit to the displacement of DK-58 in Pb isotope space. 423 

However, the amount of contaminant required to produce the Sr and Nd isotopic 424 

variation would, in most cases, lead to substantially more extreme Pb isotopic ratios 425 

than observed in DK-58. This may be because the parental melt was significantly 426 

richer in Pb than DK-29 or the crust beneath Karacadağ was able to exert 427 

considerably less Pb isotopic leverage than these models suggest. In either case, 428 

the amount of contamination suggested by Pb is substantially less than estimated 429 

from 87Sr/86Sr and 143Nd/144Nd for DK-58. Therefore, the Sr and Nd isotope data 430 

provide an upper limit for contamination of 5% and suggests most batches of magma 431 

experienced substantially less contamination than this. 432 

Composition of mantle sources 433 

Crustal contamination introduced little isotopic and trace element heterogeneity into 434 

magma of the Karacadağ and Ovabağ phases. Therefore, most of the variation in 435 

these lavas must have existed in their parental magmas. Previous studies of 436 

northern Arabian Plate volcanism have advocated peridotitic sources with elemental 437 
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concentrations resembling primitive mantle (Shaw et al., 2003; Ekici et al., 2012). In 438 

addition, Ma et al. (2011) invoked garnet-bearing hornblendite veins to explain the 439 

incompatible trace element characteristics of low-silica lavas from the northern Dead 440 

Sea Fault. In this section, we shall explore the origin of the variation in the source of 441 

Karacadağ Volcanic Complex lavas. Since group K1 experienced greater 442 

differentiation than the remaining groups we shall exclude these whilst constraining 443 

the trace element characteristics of sources beneath the north Arabian Plate. 444 

However, we shall include relevant K1 data when using isotopic ratios to place 445 

further constraints upon those sources.  446 

Ovabağ data show how the rare earth element systematics of the Karacadağ 447 

Volcanic Complex lavas can be reconciled with fractional, non-modal melting of 448 

peridotite with element concentrations resembling primitive mantle, with or without a 449 

small amount of MREE enrichment (Shaw et al., 2003; Ekici et al., 2012). Groups O2 450 

through O1 to O3 form a shallow, positive array in Dy/Yb versus La/Yb space (Fig. 451 

8a). The low Dy/Yb ratios in the group O2 lavas coincide with the spinel lherzolite 452 

melting model suggesting low degrees of melting (2 to 3 %) of a relatively shallow 453 

source. Groups O1 and O3 form a tight cluster trending from O2 values towards a 454 

restricted range of compositions with high Dy/Yb and La/Yb, which would represent 455 

low degree (< 1.5 %) partial melting of a garnet lherzolite. Therefore, groups O2 and 456 

O3 represent mixtures of melt from primitive spinel lherzolite with progressively 457 

greater amounts of melt derived from below the spinel - garnet transition. The tight 458 

array suggests little variation in the degree of partial melting in the shallow and deep 459 

sources. The greater prominence of low degrees of partial melting implied for the 460 

group O3 lavas is also consistent with their higher trace element contents (Fig. 3). 461 

Groups K2 and K3 can be interpreted in a similar way but are displaced from the 462 

Ovabağ array to intersect the modelled melting curves at higher degrees of melting 463 

(Fig. 8a). In addition, the more elevated Dy/Yb values in group K3 also indicate a 464 

greater relative contribution from garnet lherzolite. 465 
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Models invoking primitive mantle concentrations of REEs provide valuable 466 

information on the relative contributions from different depths during polybaric 467 

melting of the mantle. But Karacadağ Volcanic Complex lavas show fractionation of 468 

large ion lithophile elements from both the rare earth elements and high field 469 

strength elements, which cannot be produced by melts of primitive spinel- and 470 

garnet-lherzolite alone (Fig. 8c). These fractionations also preclude an origin 471 

involving only a primitive mantle and hornblendite veins as proposed by Ma et al. 472 

(2011), which cannot generate the (K/La)n values greater than one that are common 473 

to groups K2, O1 and O2. The low K/La and K/Nb ratios of group K3 lavas could be 474 

interpreted as reflecting derivation from a source containing hornblendite (Fig. 8c) 475 

but their elevated and variable Dy/Yb ratios are not consistent with this origin (Fig. 476 

8a). Furthermore, low Sm/Zr ratios suggest a limited or non-existent role for this 477 

lithology in the genesis of all Karacadağ Volcanic Complex lavas (Fig. 8d). 478 

Incompatible trace element ratios of Karacadağ and Ovabağ lavas are not consistent 479 

with derivation from a carbonated mantle (Nelson et al., 1988; Blundy and Dalton, 480 

2000; Dixon et al., 2008; Sisson et al., 2009). They display low Ba/Th and elevated 481 

Nb/La, with the most silica-poor (Mg-rich) liquids possessing the lowest La/Nb (Fig. 482 

5e), and Zr depletion is negligible (Fig. 4 and Fig. 5f). These signatures also contrast 483 

with those proposed for carbonated mantle in the northern Arabian Plate (Shaw et 484 

al., 2007). Therefore, in an attempt to reproduce the incompatible trace element 485 

variation we modelled melting of hydrous garnet lherzolite (Fig. 9). Fractional, non-486 

modal melting was modelled for two sources. First, we explored the amphibole-487 

bearing source and melting proportions given by Ma et al. (2011). The second model 488 

was a phlogopite-garnet peridotite of Sisson et al. (2009) using partition coefficients 489 

from Sisson et al. (2009) and Adam and Green (2011). Neither model, by itself, 490 

reproduces the range of compositions observed in the Karacadağ Volcanic Complex 491 

lavas or in the different groups that we have identified. However, mixtures of melts 492 

from phlogopite-bearing mantle and anhydrous sources with a small enrichment of 493 
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the most incompatible elements can achieve many of the key characteristics (Sisson 494 

et al., 2009). 495 

Mixtures between melt from an amphibole-garnet lherzolite and anhydrous, enriched 496 

(garnet- or spinel-) lherzolite cannot reproduce the low Ba/La and Ba/Yb and 497 

relatively high Zr/Nb ratios seen in many of the lavas from the Karacadağ and 498 

Ovabağ phases (Fig. 9a, c and d). This source does, however, provide a particularly 499 

good fit to Jordanian Harrat Ash Shaam lavas (Shaw et al., 2007) for all ratios except 500 

Rb/Ba (see below). This suggests that the trace element enrichment of magmatism 501 

close to the Syrian – Jordanian border may be due to the presence of significant 502 

amounts of amphibole in the mantle (Fig. 9a, c and d) but amphibole does not 503 

appear be an important component in the mantle beneath Karacadağ. 504 

Although melts from phlogopite-garnet lherzolite are not suitable as sole sources 505 

they do display some of the key trace element features that characterise the 506 

Karacadağ and Ovabağ lavas. Elevated Zr/Nb at low K/La, and low Ba/Yb and Ba/La 507 

are all predicted for melts derived from this source (Fig. 9a,c and d). Since REE 508 

systematics suggest derivation over a range of depths (Fig. 8a) we suggest that the 509 

Pliocene to Quaternary Karacadağ Volcanic Complex lavas were derived from 510 

mixtures of melt derived from three sources: phlogopite-bearing garnet lherzolite, 511 

enriched garnet lherzolite and enriched spinel lherzolite. No simple binary mixtures 512 

can reproduce the entire data array. However, mixtures of 1.5 to 5 % partial melts of 513 

phlogopite-garnet-peridotite with low degree (< 1 %) partial melts from anhydrous 514 

lherzolite reproduce most of the key features (Fig. 9a,c and d). The major problem 515 

comes in reproducing the low Rb/Ba ratios of the northern Arabian intra-plate 516 

magmatic suites (Fig. 9). We have tried various manipulations of the models to 517 

achieve low Rb/Ba, particularly coupled to elevated La/Yb (Fig. 9b) whilst 518 

maintaining the fits achieved for other ratios. We speculate that the most likely 519 

solution is a relatively high partition coefficient for Rb in phlogopite (e.g. DRb
phlog > 8), 520 

which is not unreasonable (Ionov et al., 1997). 521 
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Thus, we propose that most Karacadağ Volcanic Complex lavas originated as 522 

mixtures of (i) melt derived from enriched, anhydrous lherzolite over a range of 523 

depths, with (ii) melt derived from phlogopite-bearing garnet lherzolite. While lavas 524 

from Harrat Ash Shaam or the northern Dead Sea Fault appear to record evidence 525 

for amphibole in their sources (Shaw et al., 2003; Ma et al., 2011) there is little 526 

evidence to support its involvement at Karacadağ (Figs. 8 and 9). Having invoked 527 

three-component mixing in the mantle, it is difficult to also place more quantitative 528 

constraints on the degree of partial melting. However, using the REEs, which should 529 

be modified by metasomatism in a relatively systematic fashion, suggests that the 530 

Pliocene to Quaternary Karacadağ Volcanic Complex lavas formed through small 531 

degrees of partial melting similar to those calculated for other parts of the northern 532 

Arabian Plate (Fig. 7a). 533 

Origin of mantle sources 534 

Prior studies have identified a number of potential mantle sources beneath the 535 

Arabian Plate that could contribute to intraplate magmatism. These include 536 

lithospheric mantle, variably enriched by metasomatism or metasomatic phases, the 537 

convecting upper mantle and outflow of mantle derived from the Afar triple junction 538 

(Çapan et al., 1987; Pearce et al., 1990; Camp and Roobol, 1992; Bertrand et al., 539 

2003; Shaw et al., 2003; Şen et al., 2004; Weinstein et al., 2006; Krienitz et al., 540 

2006, 2007 and 2009; Lustrino et al., 2010; Ma et al., 2011; Ekici et al., 2012). Most 541 

of these studies have identified multiple components at any one site. In this section 542 

we shall evaluate the isotopic ratios of Pliocene to Quaternary magmatism in the 543 

Karacadağ Volcanic Complex relative to other locations in the northern Arabian Plate 544 

and the implications for mantle sources throughout this area. 545 

Karacadağ Volcanic Complex lavas lack 206Pb/204Pb in excess of 19.1, in contrast to 546 

the Harrat Ash Shaam, Dead Sea Fault and northern Syria, where a high 206Pb/204Pb 547 

component has been invoked (Bertrand et al., 2003; Krienitz et al., 2009; Ma et al., 548 
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2011). This component is most conspicuous in high-206Pb/204Pb lavas from Karasu 549 

Valley and Dead Sea Fault from which a 206Pb/204Pb ratio greater than 19.5, with 550 
207Pb/204Pb and 208Pb/204Pb ratios close to the Northern Hemisphere Reference Line, 551 

can be inferred (Fig. 6c and d). This high-206Pb/204Pb component was attributed to 552 

the Afar plume by Krienitz et al. (2009) although others have suggested it was an 553 

older, lithospheric source (Bertrand et al., 2003). A clear distinction between the Δ8/4 554 

values of Afar plume magmatism and Arabian intraplate lavas, including the 555 

Karacadağ Volcanic Complex, precludes involvement of Afar plume in magmatism of 556 

the northernmost Arabian Plate (Fig. 6d). Regardless of its origin, however, the high-557 
206Pb/204Pb component has not made a significant contribution to Karacadağ 558 

Volcanic Complex magmatism. 559 

A group K3 lava displays the lowest 207Pb/204Pb and 208Pb/204Pb for a given 560 
206Pb/204Pb of any sample from the Karacadağ Volcanic Complex. The Sr and Nd 561 

isotopic ratios of this sample (DK-25) are similar to low-206Pb/204Pb samples from 562 

Harrat Ash Shaam and northern Syria (Bertrand et al., 2003; Shaw et al., 2003; 563 

Krienitz et al., 2009). Therefore, we interpret this as an endmember that is common 564 

to much of the intraplate magmatism across northern Arabia and, as previously 565 

suggested by Shaw et al. (2003) and Krienitz et al. (2009), the low 206Pb/204Pb, Δ7/4, 566 

Δ8/4 and 87Sr/86Sr and high 143Nd/144Nd indicate that this is probably depleted upper 567 

mantle. Rare earth element systematics demonstrate that group K3 lavas contain a 568 

relatively large contribution from the garnet stability field and so the distinctive K3 569 

isotopic composition could reflect melt derived from either lithospheric or 570 

asthenospheric mantle. Workman and Hart (2005) characterised the long-known 571 

range of compositions in the depleted mantle as a spectrum spanning enriched (E-572 

DMM) to depleted (D-DMM) end-members. The isotopic ratios of DK-25 are very 573 

similar to those of E-DMM, which is likely to represent the most fusible component of 574 

the convecting mantle. Therefore, the K3 composition might represent small degree 575 

melts from the convecting mantle, in which phlogopite can be stable (Luth, 2003). 576 
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Alternatively, such melts may metasomatise the base of the lithospheric mantle 577 

(McKenzie, 1989) providing a hydrated lherzolite source resembling E-DMM that 578 

could contribute to magmatism generated throughout the region. Kovács et al. 579 

(2012) suggest that phlogopite would be the primary hydrous phase in peridotite at 580 

pressures greater than 3 GPa although the presence of this and alternative water-581 

bearing phases at lower pressures, principally the amphibole pargasite, is also 582 

dependent on the bulk composition and the absolute water content of the mantle. 583 

Incompatible element systematics indicate that group K1 and K2 lavas contain 584 

greater contributions from shallower mantle (Fig. 8 and 9). Melting at shallow levels 585 

could occur if asthenosphere upwells sufficiently to melt to higher degrees, so 586 

allowing increased dilution of the E-DMM component by melts from more refractory 587 

parts of the mantle (Elliott et al., 1991). However, this is not consistent with the 588 

higher 87Sr/86Sr and lower 143Nd/144Nd of the group K1 and K2 lavas (Fig. 6). In 589 

addition, large degrees of asthenospheric upwelling would be difficult to reconcile 590 

with limited or highly localised extensional tectonics during magmatism at Mt. 591 

Karacadağ (Adiyaman and Chorowicz, 2002). Therefore, we suggest that the lavas 592 

of groups K1 and K2 are dominated by melts derived from enriched parts of the 593 

shallow lithospheric mantle. The enriched, lithospheric source possesses 87Sr/86Sr ~ 594 

0.70370 and 143Nd/144Nd ~ 0.51286. Pb isotope ratios are more difficult to constrain 595 

due to the possible influence of crustal contamination. However, the enriched 596 

lithosphere is likely to have slightly lower 206Pb/204Pb than the depleted component 597 

and slightly more elevated Δ7/4 and Δ8/4 (Fig. 6). 598 

Shaw et al. (2003) concluded that the Jordanian part of the Harrat Ash Shaam was 599 

also derived from mixtures of deep, depleted and shallow, enriched mantle. Despite 600 

the evidence for differences in the nature of hydrous phases between Karacadağ 601 

and Harrat Ash Shaam (Fig. 9), the isotopic data indicate that the two volcanic 602 

regions are probably derived from similar types of mantle. 603 
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Magma transport through the crust at Mt. Karacadağ 604 

The thickness of individual lava flows was not measured as part of this study so we 605 

cannot quantify the relative volumes of magma generated by different parts of the 606 

Karacadağ volcano. However, most lavas initially flowed laterally from the loci of 607 

eruption therefore some constraints can be obtained by observing where each group 608 

predominates along the ridge crest. We combine this information with constraints 609 

obtained from fractional crystallisation models to interpret magma transport during 610 

the Karacadağ Phase of magmatism. Group K1 lavas were mainly erupted on and 611 

around the northern summit of Mt. Karacadağ but were much less abundant on the 612 

central and southern summits (Fig. 1b). Lavas of group K2, in contrast, are present 613 

along the length of the ridge. This suggests that the magmatic plumbing at the 614 

northern end of the volcano was conducive to eruption of magma that had 615 

differentiated more extensively. 616 

Late Cenozoic stress in the northern Arabian Plate was produced by its collision with 617 

Anatolia. The resultant westward escape of Anatolia, accommodated in southern 618 

Turkey along the East Anatolian Fault (Fig. 1a), has caused different types of strain 619 

throughout northern Arabia. Adıyaman and Chorowicz (2002) attributed the Mt 620 

Karacadağ fissure to far-field, east – west tension that diminished towards the south, 621 

distal to the collision. If this tensional stress diminished southward along the 622 

Karacadağ fissure then the northern part of the volcano could have provided a larger 623 

accommodation volume in the crust into which more magma could be emplaced. 624 

This, in turn, would supply more heat into surrounding crustal rocks, which would 625 

account for the northern K1 group providing the few examples where we observed 626 

evidence for crustal contamination. A differentiation pressure of 5 MPa, as 627 

determined for groups K1 and K2 from the alphaMELTS models, indicates 628 

crystallisation close to the postulated upper to lower crust transition of 19 km (Nasir 629 

and Safarjalani, 2000). This depth has also been proposed as the transition from 630 

brittle to ductile behaviour of crust in northern Arabia (Adıyaman and Chorowicz, 631 
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2002). Thus, we suggest that differentiation could proceed further at the northern 632 

end of Mt. Karacadağ as a result of relatively large volumes of magma ponding close 633 

to the petrological and rheological boundary between upper and lower crust (Fig. 10). 634 

Elsewhere along the fissure, the cooler crust would have impeded development of 635 

extensive storage zones and magma experienced less differentiation, resulting in the 636 

more primitive K2 lava flows. 637 

Group K3 has a restricted distribution on the Mt. Karacadağ ridge, being the 638 

predominant lava type of the central summit with a minor presence on the northern 639 

summit (Fig. 1b). Most of these have elevated MgO contents and the fractional 640 

crystallisation models reflect very restricted amounts of differentiation. The distinctive 641 

chemistry of this group, however, does require differentiation high at pressure (Fig. 642 

7) and it is tempting to equate the modelled pressure of 22.5 MPa with the 80 km 643 

depth estimated for the lithosphere – asthenosphere transition zone in northern 644 

Arabia (McGuire and Bohannon, 1989; Nasir and Safarjalani, 2000). The lack of 645 

evidence for low pressure crystallisation suggests that, subsequent to fractionation 646 

close to the base of the lithosphere, group K3 magmas experienced negligible further 647 

differentiation before eruption. 648 

CONCLUSIONS 649 

Mt. Karacadağ is the most conspicuous feature of the Karacadağ Volcanic Complex, 650 

forming an elongate shield volcano that has produced lateral lava flows from its north 651 

– south oriented axis. This form suggests that lithospheric tension localised 652 

magmatism during the Pliocene and Quaternary. East-west tension in this part of the 653 

Arabian Plate was the result of local stress due to the initiation of the Eastern 654 

Anatolian Fault (Adıyaman and Chorowicz, 2002). Late in the history of the 655 

Karacadağ Volcanic Complex magmatism migrated to Ovabağ, where lavas were 656 

erupted from monogenetic cones and represent melting and emplacement in the 657 

absence of significant lithospheric tension. 658 
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Previously, we interpret the earlier, Miocene phase of magmatism as the result of 659 

melting when mantle upwelled beneath a lithospheric weak-spot as the Arabian Plate 660 

migrated north and east during the Cenozoic (Ekici et al., 2012). The Karacadağ and 661 

Ovabağ phases may represent renewed melting through this process although 662 

localised tectonic processes served to focus magmatism. In the case of Mt. 663 

Karacadağ, localised extension may also have played a role in causing melting but 664 

there is restricted geological evidence at the surface to support this. Isotopic data 665 

indicate that mantle derived from the Afar plume was not involved in genesis of 666 

Karacadağ Volcanic Complex lavas. 667 

Trace element systematics of the Karacadağ Volcanic Complex lavas were 668 

influenced by the presence or absence of small quantities (< 2 %) of phlogopite in 669 

the mantle. The lavas do not display evidence for derivation exclusively from 670 

amphibole veins in the mantle as proposed for magmatism from Al Ghab volcanic 671 

field in the Dead Sea Fault (Ma et al., 2011) or for melting of carbonated mantle 672 

(Shaw et al., 2007). 673 

Trace element and isotopic ratios of groups K3 and O3 lavas are distinct in their low 674 

contents of silica and Al2O3 and their elevated TiO2 and incompatible element 675 

contents, relative to other groups. Depletion in potassium, relative to other elements 676 

of similar compatibilities, coupled with the absence of extreme Ba enrichment 677 

indicates that phlogopite was present in the source of these lavas. These groups 678 

display trace element ratios which indicate a relatively large contribution from garnet-679 

facies lherzolite. Isotopic characteristics of the lavas resemble the most fusible part 680 

of the convecting upper mantle but such a signature could also be transferred to the 681 

base of the lithospheric mantle by migration of low degree melts. This component is 682 

common to other volcanic fields across northern Arabia. Once generated, K3 and O3 683 

magmas experienced minor differentiation near the base of the lithosphere prior to 684 

eruption. 685 
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Groups K2, O1 and O2 represent melting across a range of depths but with a greater 686 

contribution from spinel-lherzolite in the lithospheric mantle than in the K3 and O3 687 

groups. These groups also have more elevated 87Sr/86Sr and Pb isotopic ratios and 688 

lower 143Nd/144Nd than groups K3 and O3. Group K2 were produced along the length 689 

of the 30 km Karacadağ fissure and crystallised limited amounts of olivine close to 690 

the transition between upper and lower crust. At the northern end of the Mt. 691 

Karacadağ volcano more protracted differentiation of K2 parental magma at the 692 

upper – lower crust transition produced magma of group K1. This and the greater 693 

amount of crustal contamination observed to the north resulted from greater stress in 694 

the crust at the Anatolian end of the Karacadağ fissure. Lavas from groups O1 and 695 

O2 show similar trace element and isotopic systematics to Group K2 suggesting that 696 

mantle sources sampled by the Karacadağ phase could be generated in the absence 697 

of significant lithospheric extension. 698 
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FIGURE CAPTIONS 889 

Figure 1. (a) Location of the Karacadağ Volcanic Complex along with other Neogene 890 

to Quaternary volcanic fields at northern margin of Arabian Plate and the locations of 891 

major tectonic features in the region. The location of (b) is indicated by a black box. 892 

(b) Map of the Karacadağ Volcanic Complex showing the distribution of the 893 

Karacadağ and Ovabağ products and sites sampled during this work. Symbols are 894 

based on geochemical discrimination (see text for details). 895 

Figure 2. Plots of selected major elements versus MgO for Karacadağ and Ovabağ 896 

phase lavas from Karacadağ Volcanic Complex. Fields of published data for both 897 

phases are from Lustrino et al. (2012) and references therein. Data for Al Ghab and 898 

Homs volcanic fields in the northern Dead Sea Fault are from Ma et al. (2011). 899 

Figure 3. Plots of selected trace elements versus MgO for Karacadağ and Ovabağ 900 

phase lavas from Karacadağ Volcanic Complex. Fields of published data for both 901 

phases are from Lustrino et al. (2012) and references therein. Data for Al Ghab and 902 

Homs volcanic fields in the northern Dead Sea Fault are from Ma et al. (2011). 903 

Figure 4. Ranges of incompatible trace element concentrations in Karacadağ 904 

Volcanic Complex lavas normalised to primitive mantle (McDonough and Sun, 1995). 905 

Karacadağ phase (a) group K1, (b) group K2 and (c) group K3. Note the more 906 
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expanded scale in panel (c). Ovabağ Phase (d) group O1, (e) group O2 and (f) group 907 

O3. 908 

Figure 5. Plots of MgO or SiO2 versus selected incompatible trace element ratios 909 

normalised to primitive mantle (McDonough and Sun, 1995) for Karacadağ and 910 

Ovabağ phase lavas from Karacadağ Volcanic Complex. 911 

Figure 6. (a) 87Sr/86Sr versus 143Nd/144Nd, (b) 206Pb/204Pb versus 207Pb/204Pb, (c) 912 
206Pb/204Pb versus 208Pb/204Pb, and (d) Δ7/4 versus Δ8/4 for Karacadağ and Ovabağ 913 

lavas from Karacadağ Volcanic Complex (KVC). Other data from KVC Siverek 914 

plateau lavas (Ekici et al., 2012; Lustrino et al., 2010) and from Karasu Valley 915 

(Çapan et al., 1987), NW Syria (Krienitz et al., 2006), the Dead Sea Fault in Syria 916 

(DSF – Syria; Ma et al., 2011), Harrat Ash Shaam in Jordan (Shaw et al., 2003) and 917 

lavas that have been attributed to a plume component beneath Afar (Deniel et al. 918 

1994; Pik et al. 1999). Northern Hemisphere Reference Line in (b) and (c) from Hart 919 

(1984). Black curves are models of assimilation with fractional crystallisation (De 920 

Paolo, 1981) by magma with the composition of lava DK-29. Ticks marks on the 921 

curves represent values for melt remaining (F) of 0.999, 0.995, 0.993, 0.99 then 0.01 922 

increments to 0.95 and 0.05 increments subsequently. Note than some of these ticks 923 

lie beyond the frame of each panel. UC is contamination of DK-29 by upper crust (Sr 924 

= 69 ppm, Nd = 18.5 ppm, Pb = 48 ppm, 87Sr/86Sr = 0.764478, 143Nd/144Nd = 925 

0.511398, 206Pb/204Pb = 18.598, 207Pb/204Pb = 16.026, 208Pb/204Pb = 39.746), while 926 

LC is contamination by lower crust (Sr = 814 ppm, Nd = 29.94 ppm, Pb = 30 ppm, 927 
87Sr/86Sr = 0.709028, 143Nd/144Nd = 0.511270, 206Pb/204Pb = 16.926, 207Pb/204Pb = 928 

15.622, 208Pb/204Pb = 37.804). Crustal compositions from Davidson and Wilson 929 

(1989). 930 

Figure 7. Plots of selected major elements versus MgO for Karacadağ phase lavas 931 

from Karacadağ Volcanic Complex. Fractional crystallisation models generated using 932 
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alphaMELTS (Smith and Asimow, 2005) for KD-102 at 5 MPa (solid line) and DK-26 933 

at 22.5 MPa (dashed line). See text for more details. 934 

Figure 8. (a) La/Yb versus Dy/Yb, (b) Ba/La versus La/Yb, (c) K/Nb versus K/La, and 935 

(d) Sm/Zr versus La/Yb for Pliocene to Quaternary Karacadağ Volcanic Complex 936 

lavas normalised to primitive mantle (McDonough and Sun, 1995). Data from Al 937 

Ghab and Homs in the Dead Sea Fault (Ma et al., 2011) and Harrat Ash Shaam in 938 

Jordan (Shaw et al., 2003) included for comparison. Melting models use partition 939 

coefficients from Adam and Green (2011), except spinel and potassium in phases 940 

not listed in that paper, which use Ma et al. (2011). Melting models for garnet- and 941 

spinel-lherzolite use primitive mantle composition of McDonough and Sun (1995), 942 

and modal and melting proportions of Thirlwall et al (1994). For hornblendite, the 943 

initial composition and melting proportions are from Ma et al. (2011). Tick marks 944 

indicate total melt fraction. 945 

Figure 9. (a) K/La versus Zr/Nb, (b) La/Yb versus Rb/Ba, (c) La/Yb versus Ba/Yb, 946 

and (d) K/Nb versus Ba/La for Pliocene to Quaternary Karacadağ Volcanic Complex 947 

lavas normalised to primitive mantle (McDonough and Sun, 1995). For sources of 948 

comparator data see caption to Fig. 6. Melting models use abundances of primitive 949 

mantle. Garnet-lherzolite (Gt-LH) and spinel-lherzolite (Sp-LH) models are as 950 

described in caption to Figure 6, except that large ion lithophile elements were 951 

increased by a factor of two (Sisson et al., 2009). Modal and melting proportions are 952 

from Ma et al (2011) for amphibole-garnet lherzolite (AG-LH) and from Sisson et al. 953 

(2009) for phlogopite-garnet lherzolite (PG-LH). Tick marks indicate total melt 954 

fractions. 955 

Figure 10. Sketch of petrogenesis at Mt Karacadağ. Siverek plateau basalts were 956 

erupted during the Miocene and are the substrate onto which the Karacadağ volcano 957 

was erupted. The scale of the vertical axis is schematic and is not intended to be 958 

regarded as linear. Constraints on the depth of the upper – lower crust boundary 959 
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come from geophysics and xenolith petrology (see text for details). Differentiation 960 

depths are from alphaMELTS models. Group K1 and K2 lavas share similar sources 961 

that represent polybaric melting but with a relatively large contribution from the spinel 962 

stability field, while group K3 lavas contain a larger contribution from deeper, garnet-963 

bearing mantle. Group K2 lavas have experienced relatively restricted amounts of 964 

differentiation close to the upper – lower crust boundary and are found along the 965 

length of the volcano. Lavas of group K1 occur predominantly in the north and 966 

developed when group K2 magma experienced more extensive differentiation at the 967 

upper – lower crustal transition. Group K3 lavas experienced small amounts of 968 

differentiation close to the base of the lithosphere. 969 
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Table 1: Major and trace element compositions of Karacadağ and Ovabağ lavas. 1 

Sample DK-1 (K1) DK-2 (K1) DK-3 (K1) DK-4 (K1) DK-5 (K1) DK-6 (K1) DK-7 (K1) DK-8 (K1) 

Latitude 37°42'35.64"N 37°42'22.44"N 37°42'55.98"N 37°42'47.34"N 37°42'49.38"N 37°42'43.32"N 37°42'15.72"N 37°42'5.22"N 

Longitude 39°49'43.20"E 39°49'42.18"E 39°49'45.60" 39°49'37.26"E 39°49'28.68"E 39°50'6.30"E 39°50'23.52"E 39°50'27.12"E 

SiO2 46.15 46.12 45.92 45.91 46.33 45.48 46.93 48.34 
TiO2 3.04 3.29 3.10 3.25 3.10 3.03 3.10 2.67
Al2O3 15.38 16.82 15.44 15.60 15.40 15.19 16.55 17.22
Fe2O3 13.49 13.38 13.53 13.67 13.51 13.86 12.70 12.11
MgO 6.55 4.33 6.02 5.65 5.92 6.63 4.62 4.08
MnO 0.17 0.18 0.17 0.17 0.17 0.17 0.17 0.17
CaO 10.10 8.33 9.61 9.52 9.61 10.25 7.87 6.75
Na2O 3.46 4.64 3.67 3.88 3.70 3.39 4.20 4.96
K2O 1.06 1.71 1.29 1.37 1.24 1.09 1.51 2.13
P2O5 0.42 0.66 0.49 0.52 0.46 0.44 0.65 0.83
Cr2O3 0.019 0.001 0.001 0.007 0.013 0.020 0.014 0.007
LOI -0.2 0.2 0.4 0.1 0.1 0.1 1.4 0.4
Total 99.65 99.66 99.66 99.66 99.66 99.67 99.71 99.67
     
Ni 72 20 55 54 67 69 31 28
Sc 24 13 21 20 22 24 14 11
V 293 229 290 297 292 313 229 139
Co 79.7 59.4 70.9 63.3 63.3 64.5 74.5 46.1
Cu 64.5 27.2 63.2 55.5 63.3 65.6 25.1 31.0
Zn 82 77 81 93 63 84 43 83
Ga 23.2 26.3 23.8 24.9 24.9 24.7 24.4 24.9
Rb 11.1 17.7 14.3 15.6 13.5 11.0 7.5 16.8
Sr 678 909 734 784 715 697 1009 1048
Y 21.1 24.6 22.9 22.6 22.0 22.9 23.6 23.8
Zr 173 243 198 202 189 177 253 323
Nb 28.4 48.9 34.5 37.7 33.3 29.9 37.8 48.5
Cs 0.3 0.4 0.3 0.4 0.4 0.2 0.3 0.2
Ba 179 273 201 220 220 170 197 237
La 21.1 33.2 25.4 27.0 24.1 22.0 30.4 39.7
Ce 47.7 71.1 55.7 58.3 53.2 49.0 67.6 85.0
Pr 6.11 8.86 7.08 7.36 6.70 6.33 8.53 10.33
Nd 26.1 36.6 29.3 31.3 28.5 26.6 34.7 41.0
Sm 5.76 7.66 6.32 6.56 6.24 6.14 7.13 7.86
Eu 2.14 2.67 2.28 2.33 2.22 2.24 2.65 2.85
Gd 5.95 7.19 6.54 6.56 6.09 6.32 6.87 7.31
Tb 0.92 1.07 0.95 0.99 0.95 0.96 1.01 1.04
Dy 4.49 5.29 4.80 4.75 4.66 4.69 5.03 5.15
Ho 0.84 0.94 0.88 0.88 0.82 0.88 0.91 0.89
Er 2.00 2.35 2.17 2.13 2.10 2.14 2.22 2.25
Tm 0.31 0.33 0.33 0.31 0.30 0.30 0.31 0.34
Yb 1.60 1.79 1.74 1.71 1.73 1.71 1.74 1.79
Lu 0.26 0.27 0.26 0.25 0.25 0.25 0.25 0.27
Hf 4.4 5.6 4.9 4.9 4.7 4.7 5.5 7.4
Ta 1.6 2.7 2.0 2.2 2.0 1.7 2.2 2.8
Pb 2.0 1.0 1.9 1.1 1.9 1.2 0.4 0.7
Th 2.1 3.1 2.5 2.7 2.5 2.1 2.9 3.4
U 0.7 1.1 0.9 0.9 0.7 0.7 1.0 1.3

 2 

 3 
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 4 

Sample DK-9 (K1) DK-10 (K1) DK-11 (K2) DK-13 (K3) DK-14 (K3) DK-15 (K1a) DK-16 (K1a) DK-17 (K1a) 

Latitude 37°41'48.60"N 37°41'46.80"N 37°41'46.08"N 37°41'24.90"N 37°41'19.02"N 37°40'54.30"N 37°40'51.24"N 37°41'1.74"N 

Longitude 39°50'40.56"E 39°50'34.80"E 39°50'26.16"E 39°49'40.86"E 39°49'24.66"E 39°48'51.06"E 39°49'39.24"E 39°50'1.02"E 

SiO2 47.40 49.04 45.86 40.53 42.09 46.76 47.05 46.85 
TiO2 2.90 2.24 2.79 3.35 3.51 3.58 3.60 3.59
Al2O3 17.17 17.70 14.33 12.49 12.89 15.56 16.23 15.65
Fe2O3 12.41 11.12 12.93 14.16 14.31 12.54 12.33 12.66
MgO 3.95 2.92 8.81 8.90 9.53 5.81 5.10 5.88
MnO 0.17 0.18 0.16 0.18 0.18 0.15 0.15 0.15
CaO 7.20 6.57 8.79 9.28 9.46 8.83 8.36 8.65
Na2O 4.80 5.33 3.33 4.02 4.26 3.64 3.90 3.59
K2O 1.87 2.49 1.30 0.95 1.85 1.96 2.07 1.99
P2O5 0.72 0.87 0.47 1.06 1.03 0.50 0.52 0.51
Cr2O3 0.004 0.002 0.046 0.036 0.034 0.018 0.012 0.017
LOI 1.1 1.2 0.8 4.7 0.3 0.3 0.3 0.1
Total 99.68 99.63 99.63 99.63 99.49 99.65 99.65 99.65
     
Ni 20 20 132 184 181 70 51 61
Sc 7 7 21 17 18 19 17 19
V 166 152 260 278 277 305 295 310
Co 53.1 42.1 74.0 71.1 78.0 58.8 60.3 60.3
Cu 26.7 22.6 41.0 32.2 61.9 46.7 43.5 46.0
Zn 59 88 76 48 107 84 87 86
Ga 23.8 23.8 22.4 26.1 26.6 25.4 25.7 25.7
Rb 13.5 22.8 10.4 37.2 14.2 25.8 27.8 26.7
Sr 1038 1267 707 1262 1210 742 793 729
Y 24.8 26.2 20.6 22.0 23.1 23.1 23.8 22.9
Zr 278 421 193 314 319 224 235 224
Nb 43.4 60.9 33.6 74.8 74.8 39.6 42.4 40.2
Cs 0.2 0.2 0.2 0.2 0.3 0.5 0.6 0.6
Ba 216 250 186 285 311 285 306 306
La 34.2 50.1 24.1 56.6 57.8 28.4 30.0 28.4
Ce 65.6 102.8 52.1 111.7 115.9 61.5 64.5 62.5
Pr 9.37 12.19 6.42 13.42 13.70 7.86 8.08 7.72
Nd 38.5 47.6 26.2 54.1 53.3 32.4 34.0 32.8
Sm 7.83 8.82 5.71 9.93 10.01 6.82 7.15 7.02
Eu 2.79 2.92 2.06 3.33 3.46 2.32 2.38 2.34
Gd 7.29 7.69 5.63 8.86 8.99 6.53 6.78 6.65
Tb 1.09 1.10 0.86 1.15 1.24 0.99 1.02 1.02
Dy 5.53 5.31 4.25 5.13 5.51 4.76 4.95 5.04
Ho 0.91 0.99 0.76 0.83 0.86 0.85 0.86 0.88
Er 2.33 2.36 1.90 1.77 1.84 2.12 2.19 2.21
Tm 0.31 0.36 0.26 0.24 0.25 0.31 0.31 0.30
Yb 1.84 2.05 1.53 1.26 1.32 1.70 1.74 1.77
Lu 0.28 0.31 0.22 0.18 0.19 0.26 0.26 0.26
Hf 6.4 9.3 4.6 7.0 7.1 5.6 5.7 5.6
Ta 2.6 3.6 2.0 3.8 3.9 2.3 2.4 2.4
Pb 1.0 3.1 0.9 1.5 3.3 2.8 2.9 2.8
Th 2.5 5.1 2.2 5.5 5.2 3.5 4.1 3.7
U 1.1 1.4 0.7 2.0 1.9 1.1 1.2 1.1
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Sample DK-18 (K1) DK-19 (K1) DK-20 (K1) DK-21 (K1) DK-22 (K-3) DK-23 (K-2) DK-24 (K-3) DK-25 (K-3) 

Latitude 37°41'10.93"N 37°41'18.74"N 37°41'9.11"N 37°41'2.22"N 37°39'5.76"N 37°39'13.44"N 37°39'23.94"N 37°39'30.42"N 

Longitude 39°49'47.22"E 39°49'57.09"E 39°50'16.70"E 39°50'25.62"E 39°50'12.30"E 39°49'39.48"E 39°49'39.84"E 39°49'40.56"E 

SiO2 47.61 51.11 47.03 47.46 41.80 45.44 41.90 42.60 
TiO2 2.65 1.79 3.07 3.02 3.43 2.61 3.85 3.13
Al2O3 17.56 17.82 16.40 17.29 13.01 14.27 13.42 13.71
Fe2O3 12.19 10.88 13.18 12.65 14.93 14.68 15.70 15.27
MgO 3.30 2.25 4.85 4.00 9.92 9.65 7.46 5.43
MnO 0.18 0.19 0.18 0.18 0.18 0.17 0.17 0.20
CaO 7.09 5.52 7.55 7.16 8.60 8.91 7.54 7.51
Na2O 4.91 5.95 4.73 5.07 4.43 3.08 5.60 5.07
K2O 1.66 2.70 1.80 1.92 1.87 0.67 1.92 2.86
P2O5 1.04 0.99 0.77 0.82 0.96 0.32 1.03 1.17
Cr2O3 0.002 0.002 0.010 0.002 0.027 0.038 0.015 0.010
LOI 1.5 0.5 0.1 0.1 0.3 -0.2 0.9 2.5
Total 99.68 99.69 99.68 99.67 99.49 99.66 99.51 99.45
     
Ni 20 20 41 20 206 223 119 76
Sc 9 9 14 10 17 21 10 8
V 112 44 185 129 247 246 258 155
Co 83.7 47.9 52.1 42.9 76.7 79.5 88.4 102.4
Cu 20.9 15.3 41.3 24.3 43.5 81.3 35.3 29.4
Zn 101 99 103 97 74 93 68 127
Ga 25.6 26.6 23.6 25.0 26.5 20.5 30.3 32.0
Rb 27.0 24.7 12.5 15.5 17.5 6.3 19.7 27.5
Sr 1132 991 896 960 1192 530 1214 1628
Y 26.3 26.7 23.7 25.9 22.1 16.9 19.9 25.2
Zr 318 375 267 294 315 109 430 501
Nb 59.2 62.2 36.3 54.2 63.6 18.3 73.6 102.5
Cs 0.4 0.3 0.2 0.2 0.2 0.1 0.3 0.4
Ba 283 343 178 231 248 124 274 409
La 46.0 51.9 33.1 38.3 51.0 13.2 55.2 74.8
Ce 97.0 107.3 72.9 83.2 104.4 30.2 115.7 155.8
Pr 12.10 12.84 9.14 10.45 12.75 4.00 13.89 18.88
Nd 47.3 49.8 37.2 42.0 51.8 17.7 55.8 74.0
Sm 8.99 8.93 7.47 8.28 9.76 4.37 10.65 13.50
Eu 1.24 2.97 2.54 2.86 3.32 1.62 3.46 4.38
Gd 8.04 7.77 6.67 7.54 8.58 4.46 9.03 11.26
Tb 1.17 1.12 0.98 1.12 1.17 0.70 1.13 1.44
Dy 5.52 5.29 4.82 5.33 5.03 3.44 4.86 5.80
Ho 0.97 0.98 0.87 0.98 0.82 0.64 0.75 0.95
Er 2.36 2.30 2.09 2.38 1.70 1.48 1.44 1.88
Tm 0.36 0.35 0.30 0.33 0.24 0.22 0.19 0.24
Yb 1.96 2.05 1.68 1.88 1.29 1.21 1.02 1.28
Lu 0.29 0.30 0.25 0.28 0.17 0.17 0.14 0.17
Hf 6.8 8.0 5.8 6.7 7.1 2.7 9.7 11.1
Ta 3.2 3.6 2.1 3.0 3.4 1.0 4.3 5.5
Pb 0.4 1.9 0.6 1.0 1.7 0.8 1.5 4.4
Th 3.5 4.5 2.2 3.1 4.7 1.1 5.1 6.6
U 1.3 1.7 1.0 1.2 1.8 0.4 2.1 2.3
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Sample DK-26 (K-3) DK-27 (K-3) DK-28 (K-3) DK-29 (K-2) DK-30 (K-2) DK-31 (K1) DK-32 (K1) DK-52 (K-2) 

Latitude 37°39'28.98"N 37°39'26.10"N 37°39'22.62"N 37°40'35.82"N 37°40'40.32"N 37°42'29.70"N 37°43'40.38"N 37°42'31.26"N 

Longitude 39°50'9.78"E 39°50'6.66"E 39°50'3.00"E 39°50'52.02"E 39°50'42.84"E 39°50'11.28"E 39°49'51.96"E 39°38'59.04"E 

SiO2 42.60 43.02 42.54 47.07 46.26 45.37 45.20 44.90 
TiO2 3.35 3.28 3.55 2.58 2.84 2.97 3.10 2.48
Al2O3 13.30 13.39 13.30 14.83 14.65 15.11 15.44 13.64
Fe2O3 14.56 15.57 15.15 12.86 13.54 13.40 13.88 14.67
MgO 10.25 6.48 9.02 7.60 8.21 6.60 6.35 10.09
MnO 0.17 0.19 0.18 0.18 0.18 0.17 0.17 0.17
CaO 8.85 7.10 8.65 7.70 8.20 10.58 10.09 9.32
Na2O 3.73 5.69 4.20 4.09 3.86 3.33 3.46 2.97
K2O 1.60 2.92 1.93 1.76 1.65 1.09 1.06 0.80
P2O5 0.76 1.14 0.86 0.77 0.76 0.43 0.45 0.35
Cr2O3 0.037 0.010 0.027 0.036 0.041 0.021 0.012 0.040
LOI 0.3 0.7 0.1 0.1 0.1 0.6 0.0 0.2
Total 99.54 99.49 99.53 99.60 100.2 99.67 99.24 99.65
     
Ni 225 99 175 129 151 71 67 223
Sc 19 7 18 16 18 25 183 202
V 265 163 263 189 217 297 301 258
Co 87.7 60.2 77.6 62.2 67.8 65.4 71.4 80.1
Cu 62.1 25.0 57.1 47.9 56.5 62.3 63.1 67.8
Zn 103 100 119 85 92 83 93 92
Ga 24.8 31.0 27.0 24.1 23.2 23.0 24.1 20.3
Rb 11.7 28.1 15.5 14.7 14.0 11.5 9.8 8.0
Sr 1020 1511 1059 816 810 652 750 579
Y 20.7 22.8 21.8 23.2 22.0 21.6 21.8 17.2
Zr 248 482 303 282 260 173 176 130
Nb 45.8 92.3 52.6 42.6 41.1 27.8 29.7 20.6
Cs 0.2 0.4 0.2 0.1 0.2 0.2 0.1 0.1
Ba 192 358 209 266 228 173 183 202
La 37.4 67.8 44.1 37.2 34.2 20.4 21.2 17.3
Ce 81.0 141.4 95.5 75.0 72.3 46.1 48.3 38.6
Pr 10.00 17.39 11.91 9.34 8.80 6.01 6.44 4.96
Nd 40.7 68.9 48.8 36.2 36.0 25.3 26.7 20.9
Sm 8.53 12.90 9.84 7.11 7.09 5.95 6.14 4.74
Eu 2.78 4.13 3.27 2.43 2.33 1.99 2.26 1.71
Gd 7.53 10.76 8.44 6.52 6.30 5.67 6.14 4.76
Tb 1.04 1.35 1.15 0.93 0.94 0.91 1.05 0.75
Dy 4.78 5.76 5.21 4.39 4.18 4.37 4.83 3.61
Ho 0.79 0.86 0.82 0.82 0.83 0.80 0.99 0.68
Er 1.76 1.64 1.79 2.09 1.92 2.00 2.20 1.69
Tm 0.25 0.20 0.23 0.29 0.27 0.28 0.41 0.24
Yb 1.29 1.07 1.26 1.69 1.64 1.59 1.72 1.29
Lu 0.18 0.14 0.21 0.24 0.25 0.24 0.36 0.23
Hf 5.7 10.9 7.0 6.6 5.9 4.3 4.4 3.7
Ta 2.6 5.0 3.0 2.4 2.3 1.5 1.7 1.2
Pb 2.3 1.3 2.5 2.0 1.5 1.6 1.8 1.5
Th 2.9 5.7 3.3 3.4 2.7 2.2 2.1 1.9
U 1.1 2.3 1.4 1.2 1.1 0.7 0.6 0.6
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Sample DK-53 (K-2) DK-55 (K-1) DK-56 (K-2) DK-57 (K-2) DK-58 (K-1a) DK-81 (K-3) DK-83 (K-1) DK-84 (K-2) 

Latitude 37°45'14.46"N 37°51'24.90"N 37°54'40.50"N 37°54'40.20"N 37°53'10.32"N 37°39'5.46"N 37°38'10.08"N 37°37'6.72"N 

Longitude 39°41'6.72"E 39°43'59.04"E 39°47'18.36"E 39°51'42.12"E 39°57'57.24"E 39°50'29.58"E 39°51'30.06"E 39°51'10.68"E 

SiO2 45.85 48.42 46.07 45.25 47.03 44.25 47.12 46.29 
TiO2 2.77 2.56 2.63 2.66 2.80 3.07 2.90 2.87
Al2O3 13.50 15.23 13.53 13.85 14.94 13.64 16.75 13.96
Fe2O3 14.99 13.17 14.33 13.81 12.60 14.22 12.50 13.93
MgO 9.73 6.03 9.67 8.09 6.28 8.92 4.00 9.39
MnO 0.17 0.16 0.16 0.17 0.15 0.17 0.18 0.17
CaO 8.78 8.70 8.48 9.19 9.71 8.20 7.58 8.62
Na2O 3.11 3.64 3.38 3.70 3.44 4.17 4.95 3.06
K2O 0.80 1.32 1.19 1.42 1.37 1.74 2.09 1.15
P2O5 0.38 0.52 0.43 0.59 0.39 0.71 1.09 0.34
Cr2O3 0.037 0.023 0.041 0.034 0.030 0.035 0.002 0.030
LOI -0.5 -0.1 -0.3 0.9 1.0 0.4 0.5 -0.2
Total 99.65 99.68 99.65 99.67 99.72 99.56 99.63 99.64
    
Ni 224 51 208 182 106 193 20 207
Sc 153 253 261 219 260 224 284 20
V 254 246 244 244 258 231 139 285
Co 80.6 54.6 73.4 69.9 58.7 71.4 47.8 81.2
Cu 74.1 39.3 57.4 58.1 50.6 51.4 23.0 51.8
Zn 91 102 92 93 72 106 93 90
Ga 21.5 23.3 22.4 23.0 21.0 24.3 25.9 22.8
Rb 8.9 20.3 17.4 17.0 20.1 17.0 17.4 14.1
Sr 546 714 604 722 580 1039 1224 555
Y 18.6 23.9 20.5 22.1 20.4 19.0 25.3 20.2
Zr 133 188 196 235 177 256 324 157
Nb 20.1 25.4 27.4 31.4 22.9 41.9 55.6 21.9
Cs 0.3 0.3 0.5 0.4 0.5 0.2 0.2 0.2
Ba 153 253 261 219 260 224 284 199
La 16.9 30.1 25.7 32.7 21.5 32.7 46.9 16.6
Ce 39.1 64.7 54.4 70.4 47.0 68.5 95.8 36.2
Pr 5.05 8.25 6.76 8.87 6.00 8.60 11.89 5.02
Nd 21.4 33.5 29.0 36.1 25.5 34.0 48.2 21.3
Sm 5.02 7.09 5.97 6.90 5.43 7.20 8.73 4.92
Eu 1.87 2.31 2.01 2.33 1.85 2.50 2.98 1.77
Gd 5.25 6.89 5.78 6.70 5.43 6.28 7.45 4.75
Tb 0.78 0.99 0.85 0.95 0.81 0.91 1.09 0.75
Dy 4.06 4.91 4.28 4.67 4.23 4.26 5.35 4.23
Ho 0.72 0.89 0.78 0.83 0.73 0.65 0.90 0.71
Er 1.75 2.22 1.90 1.92 1.82 1.62 2.28 1.77
Tm 0.26 0.31 0.29 0.26 0.28 0.20 0.31 0.25
Yb 1.36 1.89 1.59 1.63 1.59 1.09 1.73 1.35
Lu 0.24 0.32 0.26 0.28 0.27 0.15 0.24 0.20
Hf 3.6 5.0 4.8 5.6 4.6 6.1 6.8 4.1
Ta 1.2 1.5 1.6 1.9 1.4 2.6 3.4 1.4
Pb 1.9 3.9 3.0 3.0 2.7 1.0 1.8 1.2
Th 2.2 3.6 3.0 3.8 2.5 2.9 4.1 1.9
U 0.5 8.0 1.0 1.2 0.8 1.1 1.5 0.7
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Sample DK-90 (K-2) DK-93 (K-1) DK-95 (K-2) DK-97 (K-1) DK-98 (K-1a) DK-99 (K-3) DK-102 (K-2) DK-106 (K-2) 

Latitude 37°35'32.28"N 37°33'45.60"N 37°33'44.16"N 37°32'4.80"N 37°32'25.92"N 37°38'13.32"N 37°42'24.60"N 37°36'53.76"N 

Longitude 39°54'22.38"E 39°51'39.24"E 39°52'19.38"E 39°49'47.34"E 39°38'4.86"E 39°39'9.06"E 39°44'58.02"E 39°58'29.16"E 

SiO2 46.81 46.24 45.48 46.55 45.93 41.96 44.91 45.72 
TiO2 2.21 2.99 2.72 3.00 3.22 3.42 2.65 2.87
Al2O3 13.50 15.30 14.18 15.45 15.77 13.08 13.52 14.01
Fe2O3 13.27 13.93 14.79 14.08 13.27 15.29 14.55 13.57
MgO 9.37 5.71 8.68 5.75 5.42 8.94 9.84 8.64
MnO 0.17 0.17 0.18 0.17 0.16 0.18 0.19 0.17
CaO 8.82 9.92 9.45 9.88 9.64 9.03 9.00 9.25
Na2O 3.24 3.70 3.34 3.53 3.88 4.17 3.19 3.42
K2O 1.11 1.18 0.85 0.94 1.40 0.84 1.02 1.25
P2O5 0.43 0.57 0.41 0.43 0.56 0.98 0.46 0.56
Cr2O3 0.043 0.018 0.039 0.011 0.011 0.030 0.041 0.047
LOI 0.7 -0.1 0.5 -0.1 0.4 1.6 0.2 0.1
Total 99.64 99.67 99.66 99.70 99.66 99.53 99.61 99.64
      
Ni 205 78 165 51 53 191 227 145
Sc 19 21 21 21 18 16 20 19
V 222 281 284 302 280 279 273 267
Co 69.7 62.1 71.7 63.0 55.5 69.3 79.9 64.3
Cu 38.2 56.7 74.2 49.7 64.5 44.8 59.7 42.6
Zn 92 81 94 79 71 99 77 82
Ga 21.4 24.0 21.3 22.5 23.9 25.9 21.1 21.3
Rb 15.1 12.3 9.8 7.0 14.4 5.4 10.8 10.6
Sr 597 758 599 683 883 1302 737 741
Y 21.1 23.1 19.3 20.0 22.7 21.5 19.6 20.5
Zr 166 183 136 163 194 324 171 201
Nb 28.0 31.2 20.8 22.8 31.3 52.5 26.4 27.9
Cs 0.2 0.2 0.2 0.1 0.3 0.2 0.2 0.1
Ba 234 185 127 125 252 205 191 168
La 22.1 24.7 18.2 17.8 23.0 44.7 21.6 22.8
Ce 46.4 51.8 37.5 37.7 48.9 91.9 45.6 50.3
Pr 6.02 6.76 5.17 5.15 6.72 12.10 6.05 6.65
Nd 25.3 30.1 22.1 22.8 28.7 47.7 26.1 28.2
Sm 5.30 6.16 4.97 5.06 6.16 9.55 5.44 5.90
Eu 1.85 2.18 1.84 1.93 2.16 3.18 1.95 2.05
Gd 5.05 5.72 4.78 4.96 5.83 7.99 5.00 5.31
Tb 0.81 0.90 0.75 0.79 0.90 1.11 0.80 0.83
Dy 4.21 4.90 4.20 4.07 4.57 5.28 3.95 4.24
Ho 0.72 0.83 0.67 0.73 0.75 0.77 0.68 0.75
Er 1.96 2.05 1.76 1.77 1.94 1.81 1.68 1.88
Tm 0.27 0.29 0.24 0.24 0.28 0.22 0.23 0.27
Yb 1.59 1.60 1.30 1.37 1.48 1.14 1.26 1.26
Lu 0.22 0.23 0.19 0.20 0.23 0.17 0.19 0.21
Hf 4.5 4.8 4.0 3.9 4.6 7.9 4.1 5.0
Ta 1.7 1.7 1.2 1.3 2.0 3.1 1.6 1.8
Pb 0.6 1.5 0.9 1.0 1.5 2.4 1.5 1.0
Th 2.8 2.6 1.9 1.8 1.8 4.7 3.9 1.7
U 0.8 0.7 0.6 0.6 0.6 1.4 0.7 0.8
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Sample DO-59 (O-1) DO-60 (O-1) DO-61 (O-1) DO-62 (O-2) DO-63 (O-1) DO-64 (O-3) DO-65 (O-3) 

Latitude 37°41'24.84"N 37°41'24.72"N 37°42'28.50"N 37°41'5.04"N 37°41'42.24"N 37°39'11.34"N 37°39'8.35"N 

Longitude 40° 1'10.20"E 40° 1'13.14"E 40° 3'25.68"E 40° 3'46.80"E 40° 4'7.08"E 40° 0'4.38"E 40° 0'13.52"E 

SiO2 47.29 47.21 44.82 46.50 47.41 44.18 43.64 
TiO2 2.31 2.42 2.84 2.67 2.47 3.32 3.22
Al2O3 13.22 13.38 13.54 14.53 13.61 13.43 13.10
Fe2O3 12.78 13.17 14.23 13.66 13.17 14.91 14.42
MgO 10.44 10.37 9.11 8.22 9.88 9.95 9.75
MnO 0.16 0.16 0.17 0.17 0.16 0.18 0.17
CaO 8.55 8.25 9.00 8.98 8.35 9.10 8.83
Na2O 3.06 3.09 3.44 3.45 3.06 4.03 4.08
K2O 1.21 1.26 1.51 1.51 1.27 1.80 1.69
P2O5 0.43 0.44 0.67 0.47 0.46 0.70 0.71
Cr2O3 0.049 0.047 0.035 0.038 0.044 0.032 0.032
LOI 0.1 -0.2 0.2 -0.2 -0.3 0.0 -0.1
Total 99.64 99.64 99.60 99.65 99.63 101.65 99.56
    
Ni 242 245 178 110 231 181 174
Sc 21 21 21 21 21 19 19
V 229 233 253 260 237 267 255
Co 70.4 72.1 70.4 64.6 72.9 82.5 72.2
Cu 41.9 54.9 60.1 46.3 54.5 52.1 49.2
Zn 65 86 106 91 85 94 69
Ga 20.6 21.4 22.7 22.4 22.1 24.9 25.0
Rb 18.1 17.4 14.5 14.0 17.7 15.7 15.3
Sr 568 602 894 678 610 949 934
Y 20.0 21.5 24.0 24.4 21.8 24.7 24.4
Zr 162 173 219 187 178 267 255
Nb 26.3 27.9 41.1 30.9 29.4 57.2 55.5
Cs 0.8 0.7 0.2 0.3 0.8 0.2 0.2
Ba 202 221 234 216 228 258 261
La 23.1 25.4 37.8 27.3 25.9 41.8 41.3
Ce 48.3 52.3 76.5 56.5 53.0 86.0 83.9
Pr 6.14 6.55 9.61 7.32 6.84 10.87 10.71
Nd 25.2 27.8 40.0 31.6 28.2 44.7 44.4
Sm 5.33 5.65 7.64 6.13 5.78 8.56 8.31
Eu 1.90 1.93 2.59 2.27 1.98 2.86 2.74
Gd 5.35 5.74 7.44 6.31 5.83 8.13 7.82
Tb 0.82 0.86 1.09 0.94 0.88 1.14 1.01
Dy 4.18 4.42 5.10 4.91 4.60 5.42 5.27
Ho 0.76 0.81 0.90 0.90 0.83 0.93 0.89
Er 1.83 1.91 2.16 2.18 1.98 2.10 2.05
Tm 0.27 0.30 0.29 0.33 0.31 0.31 0.30
Yb 1.55 1.59 1.67 1.87 1.66 1.70 1.64
Lu 0.25 0.28 0.28 0.30 0.28 0.27 0.26
Hf 4.1 4.3 5.6 4.8 4.5 6.7 6.3
Ta 1.6 1.7 2.5 1.9 1.8 3.4 3.2
Pb 2.1 3.3 2.7 2.7 2.8 2.6 2.3
Th 3.0 3.2 3.4 3.0 2.9 3.6 3.6
U 1.1 0.9 1.0 0.9 0.8 1.3 1.3
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Sample DO-66 (O-3) DO-67 (O-3) DO-68 (O-1) DO-69 (O-1) DO-70 (O-1) DO-71 (O-1) DO-72 (O-1) 

Latitude 37°39'7.20"N 37°39'7.62"N 37°42'28.62"N 37°40'13.44"N 37°39'10.86"N 37°38'13.32"N 37°36'56.58"N 

Longitude 40° 0'29.10"E 40° 0'29.34"E 40° 8'10.98"E 39°59'10.38"E 39°58'49.08"E 39°58'14.22"E 39°58'44.58"E 

SiO2 44.48 44.95 46.28 47.06 46.92 47.26 47.18 
TiO2 2.88 2.73 2.76 2.78 2.68 2.52 2.44
Al2O3 13.14 13.22 13.97 14.24 13.26 13.23 13.37
Fe2O3 14.76 14.29 13.55 13.89 14.28 13.36 13.65
MgO 9.52 9.66 9.44 9.73 9.57 10.06 10.01
MnO 0.17 0.17 0.16 0.17 0.16 0.16 0.16
CaO 8.57 8.61 8.25 8.35 8.09 8.34 8.24
Na2O 3.94 3.77 3.37 3.46 3.34 3.27 3.17
K2O 1.74 1.62 1.33 1.38 1.36 1.20 1.19
P2O5 0.71 0.61 0.53 0.56 0.48 0.43 0.44
Cr2O3 0.032 0.035 0.046 0.047 0.035 0.045 0.043
LOI -0.4 -0.1 -0.1 0.0 -0.6 -0.3 -0.3
Total 99.57 99.60 99.62 101.69 99.61 99.62 99.62
    
Ni 176 191 194 213 227 235 234
Sc 19 20 19 20 19 20 20
V 240 235 242 247 229 233 218
Co 74.5 74.3 69.8 73.5 77.5 73.1 75.5
Cu 45.1 49.1 53.9 52.1 65.5 58.9 57.6
Zn 99 65 88 92 95 92 89
Ga 24.5 22.8 21.2 22.3 23.7 21.4 21.7
Rb 19.1 18.7 13.8 14.7 16.1 16.6 15.4
Sr 878 814 705 762 663 625 613
Y 24.7 24.4 20.5 21.6 22.0 22.1 22.4
Zr 240 235 242 203 197 172 175
Nb 52.8 47.0 27.5 27.9 29.7 29.1 29.5
Cs 0.4 0.4 0.2 0.2 0.5 0.5 0.5
Ba 272 254 209 224 187 209 201
La 43.2 37.0 28.6 29.8 28.6 26.3 26.7
Ce 85.1 72.9 58.4 59.9 56.4 52.0 52.1
Pr 10.67 9.39 7.4 7.65 7.37 6.90 6.69
Nd 42.7 37.4 31.8 32.1 31.1 28.6 28.6
Sm 8.01 7.08 5.92 6.11 6.26 5.75 5.68
Eu 2.73 2.41 2.15 2.18 2.15 2.02 2.03
Gd 7.81 7.09 5.88 5.91 6.18 5.73 5.90
Tb 1.11 1.03 0.85 0.85 0.93 0.88 0.89
Dy 5.41 5.07 4.20 4.50 4.57 4.50 4.60
Ho 0.94 0.90 0.75 0.80 0.84 0.79 0.83
Er 2.15 2.15 1.83 1.92 1.98 1.93 1.91
Tm 0.32 0.32 0.28 0.28 0.28 0.29 0.30
Yb 1.81 1.75 1.48 1.57 1.51 1.64 1.67
Lu 0.29 0.28 0.24 0.30 0.25 0.26 0.26
Hf 6.2 5.7 5.1 4.9 5.3 4.6 4.4
Ta 3.1 2.7 1.7 1.8 1.9 1.8 1.8
Pb 2.1 2.1 1.0 1.0 3.0 2.4 2.6
Th 4.5 3.7 2.3 2.7 3.3 2.9 3.0
U 1.4 1.2 0.8 0.9 1.1 0.9 0.9
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Sample DO-73 (O-1) DO-74 (O-1) DO-75 (O-1) DO-76 (O-1) DO-77 (O-3) DO-78 (O-3) DO-107 (O-1) 

Latitude 37°36'33.96"N 37°35'56.46"N 37°35'45.84"N 37°35'51.18"N 37°37'10.86"N 37°37'47.04"N 37°37'1.62"N 

Longitude 39°59'11.46"E 39°59'40.14"E 40° 1'12.00"E 40° 3'33.96"E 40° 4'45.36"E 40°10'58.26"E 39°58'37.74"E 

SiO2 47.05 47.80 45.68 47.31 44.05 45.88 46.73 
TiO2 2.35 2.40 2.62 2.53 3.31 2.43 2.50
Al2O3 13.39 13.50 13.35 13.25 12.58 12.79 13.62
Fe2O3 14.12 13.36 13.63 13.25 14.74 13.63 13.22
MgO 10.27 10.17 10.29 10.01 10.59 11.25 10.35
MnO 0.16 0.16 0.17 0.16 0.18 0.17 0.17
CaO 8.71 8.07 8.69 8.36 9.47 8.73 8.56
Na2O 3.16 3.27 3.34 3.36 3.55 3.16 3.12
K2O 1.08 1.13 1.30 1.22 1.45 1.20 1.23
P2O5 0.40 0.39 0.53 0.47 0.70 0.46 0.44
Cr2O3 0.041 0.045 0.042 0.044 0.038 0.043 0.046
LOI -0.6 -0.7 -0.1 -0.4 0.0 -0.2 -0.4
Total 99.64 99.64 99.58 99.61 100.69 99.58 99.64
    
Ni 241 255 213 234 227 251 246
Sc 21 21 21 20 21 21 21
V 215 213 225 215 267 221 221
Co 73.9 68.8 76.9 70.1 74.2 71.3 78.4
Cu 61.5 59.2 46.0 60.0 56.3 57.7 50.2
Zn 89 87 101 87 105 91 80
Ga 20.8 21.9 21.0 22.1 23.3 20.7 21.0
Rb 13.4 14.5 15.4 16.2 12.8 15.3 15.3
Sr 546 503 752 582 886 637 583
Y 20.9 20.3 21.7 21.8 23.9 20.8 20.0
Zr 158 158 184 183 228 168 173
Nb 24.1 23.4 36.8 31.6 50.8 34.7 29.4
Cs 0.2 0.3 0.3 0.5 0.2 0.2 0.5
Ba 164 167 235 197 291 377 212
La 22.5 18.7 26.8 22.3 35.8 22.8 22.4
Ce 45.3 41.5 59.3 51.0 77.2 51.0 47.1
Pr 6.02 5.37 7.44 6.43 9.67 6.50 6.44
Nd 25.2 22.1 30.5 27.7 38.6 27.2 27.7
Sm 5.33 5.06 6.27 5.92 7.90 5.50 5.96
Eu 1.86 1.82 2.09 1.95 2.67 1.94 1.90
Gd 5.35 5.38 6.09 5.98 7.65 5.51 5.56
Tb 0.86 0.85 0.90 0.89 1.07 0.83 0.84
Dy 4.56 4.23 4.60 4.44 5.13 4.30 4.21
Ho 0.80 0.75 0.80 0.82 0.87 0.77 0.78
Er 1.88 1.78 2.04 1.94 2.09 1.89 1.99
Tm 0.28 0.26 0.27 0.27 0.29 0.28 0.24
Yb 1.58 1.49 1.53 1.49 0.22 1.52 1.49
Lu 0.26 0.22 0.23 0.22 0.22 0.24 0.21
Hf 4.2 4.1 4.6 4.7 5.7 4.3 4.7
Ta 1.4 1.4 2.2 2.0 3.0 2.0 1.9
Pb 2.4 2.5 2.5 3.8 2.0 2.3 2.1
Th 2.5 2.2 3.4 3.4 3.6 3.3 2.7
U 0.7 0.4 1.0 0.9 1.1 0.8 0.7
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Sample DO-108 (O-1) DO-109 (O-1) DO-110 (O-2) DO-113 (O-2) DO-114 (O-3) DO-117 (O-3) DO-120 (O1) 

Latitude 37°38'19.56"N 37°43'0.90"N 37°43'27.18"N 37°41'6.34"N 37°40'17.88"N 37°37'32.52"N 37°38'4.98"N 

Longitude 39°58'16.20"E 40° 0'6.54"E 40°15'38.34"E 40°10'23.70"E 40°13'52.50"E 40° 9'36.66"E 40° 6'7.80"E 

SiO2 47.03 45.14 47.60 48.37 45.07 42.12 47.50 
TiO2 2.47 2.80 2.04 2.26 2.76 3.27 2.25
Al2O3 13.39 13.50 14.35 13.87 13.12 12.20 13.41
Fe2O3 13.38 13.52 13.74 13.45 13.65 14.96 13.64
MgO 10.10 9.13 9.12 8.81 10.42 10.50 9.72
MnO 0.17 0.17 0.17 0.17 0.18 0.19 0.17
CaO 8.32 9.06 8.52 8.33 9.15 9.91 8.25
Na2O 3.20 3.53 2.88 3.26 3.15 3.44 3.24
K2O 1.23 1.48 0.72 1.12 1.50 1.60 1.29
P2O5 0.45 0.59 0.28 0.36 0.62 0.81 0.41
Cr2O3 0.046 0.038 0.046 0.044 0.038 0.039 0.040
LOI -0.2 0.7 0.2 -0.4 -0.1 0.5 -0.3
Total 99.63 99.65 99.67 99.67 99.59 99.53 99.64
    
Ni 241 185 185 165 221 220 207
Sc 21 21 23 23 22 21 21
V 238 247 229 227 260 279 213
Co 77.2 70.9 76.8 66.7 88.9 86.9 68.7
Cu 49.9 48.0 37.3 40.2 44.3 51.0 43.0
Zn 81 94 77 79 75 90 88
Ga 22.0 23.8 21.1 20.9 22.3 23.0 19.2
Rb 16.5 15.6 5.6 17.3 19.1 17.4 17.5
Sr 604 766 401 487 859 961 537
Y 20.9 22.2 20.7 20.9 23.2 23.7 21.3
Zr 180 202 137 156 211 235 164
Nb 30.6 36.4 16.0 21.7 48.1 56.0 29.0
Cs 0.5 0.2 0.1 0.2 0.2 0.2 0.4
Ba 217 207 225 205 294 301 220
La 23.2 29.5 15.9 20.3 34.6 38.7 22.5
Ce 48.5 62.1 34.8 43.6 70.0 79.7 46.7
Pr 6.56 8.24 4.74 5.87 9.00 10.38 6.07
Nd 28.8 34.5 21.8 26.0 37.0 45.0 27.1
Sm 6.02 7.10 4.85 5.50 7.44 8.29 5.57
Eu 1.87 2.25 1.55 1.68 2.23 2.64 1.74
Gd 5.58 6.35 4.66 5.04 6.56 7.31 5.30
Tb 0.89 0.99 0.77 0.83 0.95 1.08 0.83
Dy 4.24 4.85 4.04 4.29 4.69 5.03 4.51
Ho 0.81 0.84 0.78 0.84 0.84 0.85 0.85
Er 2.13 2.11 2.19 2.13 2.29 2.03 2.02
Tm 0.27 0.29 0.29 0.29 0.30 0.28 0.28
Yb 1.47 1.58 1.63 1.72 1.54 1.51 1.70
Lu 0.21 0.21 0.26 0.26 0.24 0.23 0.25
Hf 4.3 5.6 4.0 4.7 5.3 6.1 4.4
Ta 2.0 2.2 1.1 1.4 2.9 3.3 1.8
Pb 1.6 1.2 1.9 1.5 2.2 2.2 2.2
Th 2.4 2.4 3.0 4.2 4.4 5.5 2.9
U 0.9 1.0 0.3 0.6 1.2 1.4 0.8
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Table 2: Karacadağ and Ovabağ Isotopic Results 
 
Sample 143Nd/144Nd 87Sr/86Sr 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb

DK-1 (K-1) 0.512863 0.703687 19.032 15.616 38.823 

DK-10 (K-1) 0.512916 0.703321    

DK-19 (K-1) 0.512880 0.703303    

DK-23 (K-2) 0.512856 0.703484 19.018 15.615 38.816 

DK-25 (K-3) 0.512924 0.703065 19.113 15.552 38.728 

DK-27 (K-3) 0.512933 0.703095    

DK-29 (K-2) 0.512881 0.703379 19.130 15.595 38.874 

DK-52 (K-2) 0.512878 0.703683    

DK-58 (K-1a) 0.512657 0.704303 18.873 15.636 38.828 

DO-59 (O-1) 0.512794 0.704063 18.948 15.628 38.752 

DO-62 (O-2) 0.512816 0.703722 18.832 15.606 38.729 

DO-64 (O-3) 0.512928 0.703235    

DO-67 (O-3) 0.512880 0.703501    

DO-68 (O-1) 0.512864 0.703726 18.989 15.594 38.820 

 


