
Closing Complexity Gaps for
Coloring Problems on H-Free Graphs ?

Petr A. Golovach1, Daniël Paulusma2, and Jian Song2

1 Department of Informatics, Bergen University,
PB 7803, 5020 Bergen, Norway
petr.golovach@ii.uib.no

2 School of Engineering and Computing Sciences, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, United Kingdom

{daniel.paulusma,jian.song}@durham.ac.uk

Abstract. If a graph G contains no subgraph isomorphic to some graph
H, then G is called H-free. A coloring of a graph G = (V,E) is a mapping
c : V → {1, 2, . . .} such that no two adjacent vertices have the same
color, i.e., c(u) 6= c(v) if uv ∈ E; if |c(V)| ≤ k then c is a k-coloring. The
Coloring problem is to test whether a graph has a coloring with at most
k colors for some integer k. The Precoloring Extension problem is
to decide whether a partial k-coloring of a graph can be extended to a
k-coloring of the whole graph for some integer k. The List Coloring
problem is to decide whether a graph allows a coloring, such that every
vertex u receives a color from some given set L(u). By imposing an
upper bound ` on the size of each L(u) we obtain the `-List Coloring
problem. We first classify the Precoloring Extension problem and the
`-List Coloring problem for H-free graphs. We then show that 3-List
Coloring is NP-complete for n-vertex graphs of minimum degree n−2,
i.e., for complete graphs minus a matching, whereas List Coloring is
fixed-parameter tractable for this graph class when parameterized by the
number of vertices of degree n− 2. Finally, for a fixed integer k > 0, the
List k-Coloring problem is to decide whether a graph allows a coloring,
such that every vertex u receives a color from some given set L(u) that
must be a subset of {1, . . . , k}. We show that List 4-Coloring is NP-
complete for P6-free graphs, where P6 is the path on six vertices. This
completes the classification of List k-Coloring for P6-free graphs.

Keywords. graph coloring, precoloring extension, list coloring, forbid-
den induced subgraph.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by inte-
gers called colors such that no two adjacent vertices receive the same color. The
corresponding decision problem is called Coloring and is to decide whether a

? This work has been supported by EPSRC (EP/G043434/1) and ERC (267959); an
extended abstract of it has been accepted for ISAAC 2012.

graph can be colored with at most k colors for some given integer k. Because
Coloring is NP-complete for any fixed k ≥ 3, its computational complexity has
been widely studied for special graph classes, see e.g. the surveys of Randerath
and Schiermeyer [24] and Tuza [27]. In this paper, we consider the Coloring
problem together with two natural and well-studied variants, namely Precol-
oring Extension and List Coloring for graphs characterized by one or more
forbidden induced subgraphs. Before we summarize related results and explain
our new results, we first state the necessary terminology.

1.1 Terminology.

We only consider finite undirected graphs without loops and multiple edges. We
refer to the textbook of Bondy and Murty [1] for any undefined graph terminol-
ogy.

A coloring of a graph G = (V,E) is a mapping c : V → {1, 2, . . .} such that
c(u) 6= c(v) whenever uv ∈ E. We call c(u) the color of u. A k-coloring of G is
a coloring c of G with 1 ≤ c(u) ≤ k for all u ∈ V . The problem k-Coloring
is to decide whether a given graph admits a k-coloring. Here, k is fixed, i.e.,
not part of the input. If k is part of the input, then we denote the problem as
Coloring. A list assignment of a graph G = (V,E) is a function L that assigns
a list L(u) of so-called admissible colors to each u ∈ V . If L(u) ⊆ {1, . . . , k} for
each u ∈ V , then L is also called a k-list assignment. The size of a list assignment
L is the maximum list size |L(u)| over all vertices u ∈ V . We say that a coloring
c : V → {1, 2, . . .} respects L if c(u) ∈ L(u) for all u ∈ V .

The List Coloring problem is to test whether a given graph has a coloring
that respects some given list assignment. For a fixed integer k, the List k-
Coloring problem has as input a graph G with a k-list assignment L and
asks whether G has a coloring that respects L. For a fixed integer `, the `-List
Coloring problem has as input a graph G with a list assignment L of size
at most ` and asks whether G has a coloring that respects L. In precoloring
extension we assume that a (possibly empty) subset W ⊆ V of G is precolored
by a precoloring cW : W → {1, 2, . . . k} for some integer k, and the question is
whether we can extend cW to a k-coloring of G. For a fixed integer k, we denote
this problem as k-Precoloring Extension. If k is part of the input, then we
denote this problem as Precoloring Extension.

Note that k-Coloring can be viewed as a special case of k-Precoloring
Extension by choosing W = ∅, and that k-Precoloring Extension can be
viewed as a special case of List k-Coloring by choosing L(u) = {cW (u)} if
u ∈W and L(u) = {1, . . . , k} if u ∈W \V . Moreover, List k-Coloring can be
readily seen as a special case of k-List Coloring. Hence, we can make the fol-
lowing two observations for a graph class G. If k-Coloring is NP-complete for G,
then k-Precoloring Extension is NP-complete for G, and consequently, List
k-Coloring and hence k-List Coloring are NP-complete for G. Conversely, if
k-List Coloring is polynomial-time solvable on G, then List k-Coloring is
polynomial-time solvable on G, and consequently, k-Precoloring Extension

2

is polynomial-time solvable on G, and then also k-Coloring is polynomial-time
solvable on G.

The graph Pr denotes the path on r vertices, i.e., V (Pr) = {u1, . . . , ur} and
E(Pr) = {uiui+1 | 1 ≤ i ≤ r − 1}. The graph Kr denotes the complete graph
on r vertices, i.e., V (Kr) = {u1, . . . , ur} and E(Kr) = {uiuj | 1 ≤ i < j ≤ r}.
The vertex set of a complete graph is called a clique. The disjoint union of two
graphs G and H is denoted G + H, and the disjoint union of r copies of G is
denoted rG.

Let G be a graph and {H1, . . . ,Hp} be a set of graphs. We say that G
is (H1, . . . ,Hp)-free if G has no induced subgraph isomorphic to a graph in
{H1, . . . ,Hp}; if p = 1, we sometimes write H1-free instead of (H1)-free.

Let G be a graph. The complement of G denoted by G has vertex set V (G) and
an edge between two distinct vertices if and only if these vertices are not adjacent
in G. We denote the neighborhood of a vertex u in G by N(u) = {v ∈ V (G) | uv ∈
E(G)}. For a set S ⊆ V (G), we let G[S] = (S, {uv ∈ E(G) | u, v ∈ S}) denote
the subgraph of G induced by S.

1.2 Related and New Results.

Král’, Kratochv́ıl, Tuza and Woeginger [17] completely determined the compu-
tational complexity of Coloring for H-free graphs by showing the following
dichotomy.

Theorem 1 ([17]). Let H be a fixed graph. If H is a (not necessarily proper)
induced subgraph of P4 or of P1+P3, then Coloring can be solved in polynomial
time for H-free graphs; otherwise it is NP-complete for H-free graphs.

In Section 2 we use Theorem 1 and a number of other results from the
literature to obtain the following two dichotomies, which complement Theorem 1.
Theorem 3 shows amongst others that Precoloring Extension is polynomial-
time solvable on (P1+P3)-free graphs, which contain the class of 3P1-free graphs,
i.e., complements of triangle-free graphs. As such, this theorem also generalizes
a result of Hujter and Tuza [13] who showed that Precoloring Extension is
polynomial-time solvable on complements of bipartite graphs.

Theorem 2. Let ` be a fixed integer, and let H be a fixed graph. If ` ≤ 2 or
H is a (not necessarily proper) induced subgraph of P3, then `-List Coloring
is polynomial-time solvable on H-free graphs; otherwise `-List Coloring is
NP-complete for H-free graphs.

Theorem 3. Let H be a fixed graph. If H is a (not necessarily proper) induced
subgraph of P4 or of P1 + P3, then Precoloring Extension can be solved
in polynomial time for H-free graphs; otherwise it is NP-complete for H-free
graphs.

In Section 3 we consider the List Coloring problem for graphs that are
obtained from a complete graph after removing the edges of some matching. We

3

call such a graph a complete graph minus a matching. Note that a graph G on
n vertices is a complete graph minus a matching if and only if G is (3P1, P1 +
P2)-free if and only if G has minimum degree at least n − 2. Our motivation
to study complete graphs minus a matching comes from the fact that List
Coloring is NP-complete on almost all non-trivial graph classes, such as can
be deduced from Theorem 2 and from other results known in the literature.
For example, List Coloring is NP-complete for complete split graphs [16], for
line graphs of complete graphs [20], and moreover, even for complete bipartite
graphs [16], which are (P1 + P2)-free and for (not necessarily vertex-disjoint)
unions of two complete graphs [15], which are 3P1-free. We refer to Table 1 in
the paper by Bonomo, Durán and Marenco [2] for an overview. It is known that
List Coloring can be solved in polynomial time for block graphs [15], which
contain the class of complete graphs and trees. Our aim was to extend this
positive result. However, as we show, already 3-List Coloring is NP-complete
even on graphs that are (P1 +P2)-free and 3P1-free, i.e., complete graphs minus
a matching.

On the other hand, we can use parameterized complexity to get a more
positive result. In parameterized complexity theory, we consider the problem
input as a pair (I, p), where I is the main part and p is the parameter. A problem
is fixed-parameter tractable if an instance (I, p) can be solved in time f(p)|I|c,
where f is a computable function that only depends on p, and c is a constant
independent of p. As a positive result, we show that List Coloring is fixed-
parameter tractable for complete graphs minus a matching when parameterized
by the number of matching edges removed. In fact we show a slightly stronger
result, namely that List Coloring is fixed-parameter tractable with parameter
p for complete−pe graphs, which are those graphs that can be modified into
complete graphs by adding at most p edges.

The above result can be placed in a study of parameterized coloring problems
for graph classes F + pe, F − pe, F + pv and F − pv, which consist of all graphs
that can be transformed into a graph from a class F by deleting at most p edges,
adding at most p edges, deleting at most p vertices and adding at most p vertices,
respectively. This research was initiated by Cai [6] who showed that Coloring
with parameter p is fixed-parameter tractable on split+pe graphs, and that this
is unlikely, i.e., W[1]-hard for split+pv graphs. Cai [6] also showed that whenever
Coloring is polynomial-time solvable on a graph class F that is closed under
edge contraction, then Coloring is fixed-parameter tractable on F − pe when
parameterized by p. This yields fixed-parameter tractability of Coloring with
parameter p for split−pe graphs, and also for example, for interval−pe graphs and
chordal−pe graphs. The same result is obtained for split−pv, interval−pv, and
chordal−pv, because split, interval and chordal graphs are closed under vertex
deletion (and for such graph classes F we obtain F − pv = F). Marx [21] ex-
tended these results by showing that Coloring is fixed-parameter tractable on
interval+pe graphs and chordal+pe graphs but W[1]-hard for interval+pv graphs
and chordal+pv graphs. Jansen and Kratsch [14] considered the k-Coloring
problem for various graph classes F + pv in order to obtain polynomial kernels.

4

k-Coloring k-Precoloring Extension List k-Coloring

r k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6

r ≤ 5 P P P P P P P P P P P P
r = 6 P ? NP-c NP-c P ? NP-c NP-c P NP-c NP-c NP-c
r = 7 ? NP-c NP-c NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c
r ≥ 8 ? NP-c NP-c NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c

Table 1. The complexity of k-Coloring, k-Precoloring Extension and List k-
Coloring on Pr-free graphs for fixed k and r. The bold entry is our new result.

In Section 4, we consider the List k-Coloring problem. As we explained
in Section 1.1, this problem is closely related to the problems k-Coloring and
k-Precoloring Extension. In contrast to Coloring and Precoloring Ex-
tension (cf. Theorems 1 and 3), the complexity classifications of k-Coloring
and k-Precoloring Extension for H-free graphs are yet to be completed,
even when H is a path. Hoàng et al. [10] showed that for any k ≥ 1, the k-
Coloring problem can be solved in polynomial time for P5-free graphs. Ran-
derath and Schiermeyer [23] showed that 3-Coloring can be solved in polyno-
mial time for P6-free graphs. These results are complemented by the following
hardness results of Huang [12]: 4-Coloring is NP-complete for P7-free graphs
and 5-Coloring is NP-complete for P6-free graphs. Also the computational
complexity of the List k-Coloring problem is still open for Pr-free graphs.
Hoàng et al. [10] showed that their polynomial-time result on k-Coloring
for P5-free graphs is in fact valid for List k-Coloring for any fixed k ≥ 1.
Broersma et al. [3] generalized the polynomial-time result of Randerath and
Schiermeyer [23] for 3-Coloring on P6-free graphs to List 3-Coloring on
P6-free graphs. Table 1 summarizes all existing results for these three problems
restricted to Pr-free graphs. We prove that List 4-Coloring is NP-complete
for P6-free graphs. Because List 3-Coloring is polynomial-time solvable on
P6-free graphs [3], we completely characterized the computational complexity of
List k-Coloring for P6-free graphs. In Table 1 we indicate this result in bold.
All cases marked by “?” in Table 1 are still open.

2 Classifying Precoloring Extension and 3-List Coloring

For the proof of Theorem 2 we need the following lemma, which is well-known
(cf. [2]). We give its proof in order to explain the bound on the running time
stated in this lemma; we need this bound for our fixed-parameter tractability
result in Section 3.

Lemma 1. List Coloring can be solved in O((n + k)
5
2) time on n-vertex

complete graphs with a k-list assignment.

Proof. Let G = (V,E) be a complete graph on n vertices u1, . . . , un with some
k-list assignment L. Let V (G) = {u1, . . . , un}. Then we construct a bipartite

5

graph B as follows. One partition class of B consists of n vertices u1, . . . , un,
whereas the other partition class consists of vertices 1, . . . , k. We add an edge
between two vertices ui and j if and only if j ∈ L(ui). Now G has a coloring
that respects L if and only if B has a matching that contains an edge with ui

as one of its end-vertices for i = 1, . . . , n. We can solve the latter problem in
O((n + k)

5
2) time by using the Hopcroft-Karp algorithm [11]. ut

We are now ready to give the proof of Theorem 2; we restate this theorem below.

Theorem 2. Let ` be a fixed integer, and let H be a fixed graph. If ` ≤ 2 or
H is a (not necessarily proper) induced subgraph of P3, then `-List Coloring
is polynomial-time solvable on H-free graphs; otherwise `-List Coloring is
NP-complete for H-free graphs.

Proof. Early papers by Erdös, Rubin and Taylor [8] and Vizing [28] already
observed that 2-List Coloring is polynomial-time solvable on general graphs.
Hence, we can focus on the case ` ≥ 3. Because the `-Coloring problem is a
special case of the `-List Coloring problem, the following results are useful.
Kamiński and Lozin [19] showed that for any k ≥ 3, the k-Coloring problem
is NP-complete for the class of graphs of girth (the length of a shortest induced
cycle) at least p for any fixed p ≥ 3. Their result implies that for any ` ≥ 3,
the `-Coloring problem, and consequently, the `-List Coloring problem is
NP-complete for the class of H-free graphs whenever H contains a cycle.

The proof of Theorem 4.5 in the paper by Jansen and Scheffler [16] is to show
that 3-List Coloring is NP-complete on P4-free graphs but as a matter of
fact shows that 3-List Coloring is NP-complete on complete bipartite graphs,
which are (P1 + P2)-free. The proof of Theorem 11 in the paper by Jansen [15]
is to show that List Coloring is NP-complete for (not necessarily vertex-
disjoint) unions of two complete graphs but as a matter of fact shows that 3-
List Coloring is NP-complete for these graphs. As the union of two complete
graphs is 3P1-free, this means that 3-List Coloring is NP-complete for 3P1-free
graphs.

The above results leave us with the case when H is a (not necessarily proper)
induced subgraph of P3. By Lemma 1 we can solve List Coloring in polyno-
mial time on complete graphs. This means that we can solve `-List Coloring
in polynomial time on P3-free graphs for any ` ≥ 1. Hence we have proven The-
orem 2. ut

We are now ready to prove Theorem 3; we restate this theorem below.

Theorem 3. Let H be a fixed graph. If H is a (not necessarily proper) induced
subgraph of P4 or of P1 + P3, then Precoloring Extension can be solved
in polynomial time for H-free graphs; otherwise it is NP-complete for H-free
graphs.

Proof. Let H be a fixed graph. If H is not an induced subgraph of P4 or of P1 +
P3, then Theorem 1 tells us that Coloring, and consequently, Precoloring
Extension is NP-complete for H-free graphs. Jansen and Scheffler [16] showed

6

that Precoloring Extension is polynomial-time solvable for P4-free graphs.
Hence, we are left with the case H = P1 + P3.

Let (G, k, cW) be an instance of Precoloring Extension, where G is a
(P1 + P3)-free graph, k is an integer and cW : W → {1, . . . , k} is a precoloring
defined on some subset W ⊆ V (G). We first prove how to transform (G, k, cW) in
polynomial time into a new instance (G′, k′, cW ′) with the following properties:

(i) G′ is a 3P1-free subgraph of G, k′ ≤ k and cW ′ : W ′ → {1, . . . , k′} is the
restriction of cW to some W ′ ⊆W ;

(ii) (G′, k′, cW ′) is a yes-instance if and only if (G, k, cW) is a yes-instance.

Suppose that G is not 3P1-free already. Then G contains at least one triple T
of three independent vertices. Let u ∈ T . Here we make the following choice if
possible: if there exists a triple of three independent vertices that intersects with
W , then we choose T to be such a triple and pick u ∈ T ∩W .

D1 D2 D3 D4

N(u)

u

1

Fig. 1. An example of a graph G that shows a vertex u that belongs to a set of (at
least) three independent vertices and the corresponding complete graphs D1, . . . , Dp

In this example, p = 4 and edges between vertices in N(u) have not been displayed.
Also note that the vertices in V (D1) ∪ · · · ∪ V (D4) have the same neighbors in N(u),
as stated in Claim 1.

Let S = V (G)\({u}∪N(u)). Because G is (P1 +P3)-free, G[S] is the disjoint
union of a set of complete graphs D1, . . . , Dp for some p ≥ 2; note that p ≥ 2
holds, because the other two vertices of T must be in different graphs Di and
Dj . We refer to Figure 1 for an example. We will use the following claim.

Claim 1. Every vertex in V (D1) ∪ · · · ∪ V (Dp) is adjacent to exactly the same
vertices in N(u).

We prove Claim 1 as follows. First suppose that w and w′ are two vertices in two
different graphs Di and Dj , such that w is adjacent to some vertex v ∈ N(u).
Then w′ is adjacent to v, as otherwise w′ and u, v, w form an induced P1 +P3 in

7

G, which is not possible. Now suppose that w and w′ are two vertices in the same
graph Di, say D1, such that w is adjacent to some vertex v ∈ N(u). Because
p ≥ 2, the graph D2 is nonempty. Let w∗ be in D2. As we just showed, the fact
that w is adjacent to v implies that w∗ is adjacent to v as well. By repeating
this argument with respect to w∗ and w′, we then find that w′ is adjacent to v.
Hence, we have proven Claim 1.

We now proceed as follows. First suppose that u ∈W . Let cW (u) = x. We assign
color x to an arbitrary vertex of every Di that does not contain a vertex colored
with x already and that contains at least one vertex outside W . Now suppose
that u /∈W . Then by our choice of u no vertex from V (D1)∪· · ·∪V (Dp) belongs
to W . In that case, u must be adjacent to every vertex of W . We let x be a new
color not used by cW , and we assign x to u and also to an arbitrary vertex of
every Di. Afterward, in both cases, we remove all vertices colored x from G. We
let G′ denote the resulting graph, and we let W ′ ⊆ W denote the resulting set
of precolored vertices. We observe the following. If u ∈ W , then by symmetry
we may assume that cW (u) = x = k. If u /∈ W , then we already deduced that
u is adjacent to every vertex of W . If every color of {1, . . . , k} is used on W by
cW , then (G, k, cW) is a no-instance because there is no color available for u. As
we can detect this situation in polynomial time, we may assume without loss of
generality that this is not the case. Then, by symmetry, we may assume that
cW (W) ⊆ {1, . . . , k − 1}, and consequently, we can take x = k in this case as
well. We now prove that (G′, k−1, cW ′) is a yes-instance if and only if (G, k, cW)
is a yes-instance.

First suppose that (G′, k−1, cW ′) is a yes-instance. Then G′ allows a (k−1)-
coloring c′ that extends cW ′ . We assign color k to every vertex that we removed
from G. Because those vertices form an independent set of G, this results in a
k-coloring c of G that extends cW ′ . Because every vertex removed from W had
color k and because W ′ ⊆W , we find that c is a coloring of G that extends cW .

Now suppose that (G, k, cW) is a yes-instance. Then G allows a k-coloring
c that extends cW . Let V ∗ ⊆ V (D1) ∪ · · · ∪ V (Dp) be the set of vertices that
we removed from G besides vertex u, so V (G′) = V (G) \ ({u} ∪ V ∗). We note
that our algorithm would assign color k to every vertex of {u} ∪ V ∗, whereas c
may color a vertex from V ∗ with a color different from k. However, whenever
v ∈ {u} ∪ V ∗ belongs to W , we do have c(v) = k. The reason is that both c and
the coloring prescribed by our algorithm give such a vertex v the same color, as
they both extend cW , and the algorithm would assign color k to v. We first show
how to modify c such that it assigns color k to all the other vertices of {u}∪V ∗
as well.

Let v be a vertex in ({u} ∪ V ∗) \ W with c(v) 6= k. First suppose that
v = u. As u /∈ W , our choice of u implies that W ⊆ N(u), and consequently,
cW (W) ⊆ {1, . . . , k− 1} as we already argued. Because W ⊆ N(u), we find that
cW does not use color c(u). Because cW (W) ⊆ {1, . . . , k − 1}, we also find that
cW does not use color k. Then, by symmetry, we may modify c by assigning
color k to every vertex of G that had color c(u) and vice versa. Hence, we may
assume without loss of generality that c(u) = k.

8

Now suppose that v ∈ V ∗. Then v ∈ V (Di) for some 1 ≤ i ≤ p. If Di does
not contain a vertex w with color c(w) = k, then we change the color of v into
k. We may do so for the following two reasons. First, all neighbors of v outside
Di are adjacent to u with c(u) = k, and as such these neighbors of v did not
receive color k from c. Hence, c does not assign color k to any neighbor of v in
G. Second, v /∈ W by assumption, which means that we still extend cW when
we change c(v). If Di does contain a vertex w with color c(w) = k, then we swap
the colors of v and w. We may do so for the following three reasons. First, w is
the only neighbor of v with color k, and v is the only neighbor of w with color
c(v), because Di is a complete graph, and because v and w have exactly the
same set of neighbors outside Di due to Claim 1. Second, v /∈W by assumption.
Third, w /∈W , as otherwise cW (w) = k because c extends cW , and in that case
we would have put w in V ∗ instead of v.

Due to the above, we may assume without loss of generality that every vertex
v ∈ {u} ∪ V ∗ has color k. Recall that our algorithm puts a vertex from every
Di in V ∗ unless V (Di) ⊆ W and Di contains no vertex precolored with color
k by cW . We then find that every vertex from V (G) \ ({u} ∪ V ∗) that is not
precolored by cW is adjacent to a vertex {u}∪V ∗, i.e., to a vertex that received
color k from c. Because the vertices of V (G) \ ({u} ∪ V ∗) that are precolored
by cW have a color not equal to k, this means that the set of vertices in G
that are given color k by c is {u} ∪ V ∗. Consequently, the restriction c′ of c to
V (G′) = V (G) \ ({u} ∪ V ∗) is a (k − 1)-coloring of G′. Because c extends cW
and W ′ = W \ ({u} ∪ V ∗), we find that c′ is a coloring of G′ that extends cW ′ .

We observe that (G′, k − 1, cW ′) satisfies condition (i) except that G′ may
not be 3P1-free. Therefore we repeat the step described above until the resulting
graph is 3P1-free, and consequently both conditions (i) and (ii) are satisfied. This
takes polynomial time in total, because every step takes polynomial time and in
every step the number of vertices of the graph reduces by at least 1. Hence, we
may assume without loss of generality that in our initial instance (G, k, cW), the
graph G is 3P1-free.

We now apply the algorithm of Hujter and Tuza [13] for solving Precolor-
ing Extension on complements of bipartite graphs. Because G is 3P1-free, G
has no three mutually nonadjacent vertices. Suppose that u and v are two non-
adjacent vertices in W . Then every vertex of V (G)\{u, v} is adjacent to at least
one of {u, v}. This means that we can remove u, v if they are both colored alike
by cW in order to obtain a new instance (G−{u, v}, k−1, cW\{u,v}) that is a yes-
instance of Precoloring Extension if and only if (G, k, cW) is a yes-instance.
If u and v are colored differently by cW , then we add an edge between them.
We perform this step for any pair of non-adjacent vertices in W . Afterward,
we have found in polynomial time a new instance (G∗, k∗, cW∗) with the follow-
ing properties. First, |V (G∗)| ≤ |V (G)|, k∗ ≤ k and cW∗ : W ∗ → {1, . . . , k}
is a precoloring defined on some clique W ∗ of G∗. Second, (G∗, k∗, cW∗) is a
yes-instance if and only if (G, k, cW) is a yes-instance. Hence, we may consider
(G∗, k∗, cW∗) instead. Because W ∗ is a clique, we find that (G∗, k∗, cW∗) is a
yes-instance if and only if G∗ is k∗-colorable. Because G is 3P1-free and G∗ is

9

obtained by only removing vertices from G, we find that G∗ is 3P1-free as well.
This means that we can solve the Coloring problem with input (G∗, k∗) by
using Theorem 1 (which in this particular case comes down to computing the
size of a maximum matching in the complement of G∗). This completes the proof
for the case H = P1 + P3, and we have proven Theorem 3. ut

3 List Coloring for Complete Graphs Minus a Matching

We prove that 3-List Coloring is NP-complete for complete graphs minus
a matching. In order to do this we use a reduction from a variant of Not-
All-Equal 3-Satisfiability with positive literals only, which we denote as
Not-All-Equal (≤ 3, 2/3)-Satisfiability with positive literals. The Not-
All-Equal 3-Satisfiability problem is NP-complete [25] and is defined as
follows. Given a set X = {x1, x2, ..., xn} of logical variables, and a set C =
{C1, C2, ..., Cm} of three-literal clauses over X in which all literals are posi-
tive, does there exist a truth assignment for X such that each clause contains
at least one true literal and at least one false literal? The variant Not-All-
Equal (≤ 3, 2/3)-Satisfiability with positive literals asks the same question
but takes as input an instance I that has a set of variables {x1, . . . , xn} and a
set of literal clauses {C1, . . . , Cm} over X with the following properties. Each Ci

contains either 2 or 3 literals, and these literals are all positive. Moreover, each
literal occurs in at most three different clauses. One can prove that Not-All-
Equal (≤ 3, 2/3)-Satisfiability is NP-complete by a reduction from Not-
All-Equal-3-Satisfiability via a well-known folklore trick.3

Let I be an arbitrary instance of Not-All-Equal (≤ 3, 2/3)-Satisfiability
with positive literals. We let x1, x2, . . . , xn be the variables of I, and we let
C1, C2, . . . , Cm be the clauses of I. We first define a graph GI with a list as-
signment L of size three. We then show that GI is a complete graph minus a
matching, and that GI has a coloring that respects L if and only if I has a
satisfying truth assignment in which each clause contains at least one true and
at least one false literal.

We construct GI and L in four steps.

1. We represent every variable xi by a vertex with L(xi) = {1i, 2i} in GI . We
say that these vertices are of x-type and these colors are of 1-type and 2-
type, respectively.

2. For every clause Cp with two variables we fix an arbitrary order of its vari-
ables xh, xi and we introduce a set of vertices Cp, ap,h, ap,i, bp,h, bp,i that
have lists of admissible colors {3p, 4p}, {1h, 3p}, {1i, 4p}, {2h, 4p}, {2i, 3p},
respectively, and we add edges Cpap,h, Cpbp,h, Cpap,i, Cpbp,i, ap,hxh, bp,hxh,
ap,ixi, bp,ixi.

3 If a literal x appears in k ≥ 4 clauses C1, . . . , Ck, then we replace x by 2k new literals
x1, . . . , x2k and add 2k new clauses (x1, x2), (x2, x3), . . . , (x2k, x1), which guarantee
that x1, x3, . . . , x2k−1 have the same values in any satisfying truth assignment. Hence,
we may replace x by x2i−1 in Ci for i = 1, . . . , k.

10

For every clause Cp with three variables we fix an arbitrary order of its
variables xh, xi, xj and we introduce a set of vertices Cp, ap,h, ap,i, ap,j , bp,h,
bp,i, bp,j that have lists of admissible colors {3p, 4p, 5p}, {1h, 3p}, {1i, 4p},
{1j , 5p}, {2h, 5p}, {2i, 3p}, {2j , 4p}, respectively, and we add edges Cpap,h,
Cpbp,h, Cpap,i, Cpbp,i, Cpap,j , Cpbp,j , ap,hxh, bp,hxh, ap,ixi, bp,ixi, ap,jxj ,
bp,jxj .

We say that the new vertices are of C-type, a-type and b-type, respectively.
We say that the new colors are of 3-type, 4-type and 5-type, respectively.

3. For each variable xj that occurs in three clauses we fix an arbitrary order of
the clauses Cp, Cq, Cr, in which it occurs. Then we do as follows. First, we
modify the lists of ap,j , aq,j , bp,j and bq,j . In L(ap,j) we replace color 1j with
a new color 1′j . In L(aq,j) we replace color 1j with a new color 1′′j . In L(bp,j)
we replace color 2j with a new color 2′j . In L(bq,j) we replace color 2j with
a new color 2′′j . Next we introduce four vertices a′p,j , a

′
q,j , b

′
p,j , b

′
q,j with lists

of admissible colors {1j , 1′j}, {1′j , 1′′j }, {2j , 2′j}, {2′j , 2′′j }, respectively. We say
that these vertices are of a′-type or b′-type, respectively. We say that the
new colors are also of 1-type or 2-type, respectively. We add edges ap,ja

′
p,j ,

a′p,ja
′
q,j , a

′
p,jxj , aq,ja

′
q,j , bp,jb

′
p,j , b

′
p,jb
′
q,j , b

′
p,jxj , bq,jb

′
q,j .

4. We add an edge between any two not yet adjacent vertices of GI whenever
they have no common color in their lists.

In Figure 2 we give an example, where in order to increase the visibility we
display the complement graph GI of GI instead of GI itself.

As can be seen from Figure 2, the graph GI is isomorphic to the disjoint
union of a number of P1s and P2s. This means that GI is a complete graph
minus a matching. We formally prove this statement in Lemma 2, whereas the
hardness reduction is stated in Lemma 3.

Lemma 2. The graph GI is a complete graph minus a matching.

Proof. Let z ∈ V (G|). We obtain the following from the construction of GI .
Suppose that z is of x-type. Let L(z) = {1j , 2j}. By step 4, there is an edge

between z and any vertex that has neither color 1j nor color 2j in its list. The
only vertices that have color 1j or 2j in their lists are vertices of a-type, a′-type,
b-type or b′-type that correspond to clauses in which z occurs. Of those vertices,
the vertices of a-type and b-type are made adjacent to z in step 2, whereas the
vertices of a′-type and b′-type are made adjacent to z in step 3 (if they exist).
Hence, z is adjacent to all vertices of V (GI)\{z}, that is, has degree |V (GI)|−1.

Suppose that z is of C-type. Let L(z) = {3p, 4p, 5p}. By step 4, there is an
edge between z and any vertex that has neither color 3p nor color 4p nor color 5p
in its list. The only vertices that have color 3p or 4p or 5p in their lists are vertices
of a-type or b-type that correspond to literals contained in z. These vertices are
made adjacent to z in step 2. Just as in the previous case, we conclude that z is
adjacent to all vertices of V (GI) \ {z}, that is, has degree |V (GI)| − 1.

11

C1 Cp Cq Cr

ap,h bp,h
ap,i bp,i

ap,j bp,j
aq,j bq,j

ar,j br,j

a′
p,j

b′
p,ja′

q,j b′
q,j

x1 xh xi xj xn

Cm

{31, 41, 51} {3p, 4p, 5p} {3q, 4q, 5q} {3r, 4r, 5r}

{1h, 3p} {2h, 5p}{1i, 4p} {2i, 3p}{1′
j, 5p} {2′

j, 4p}{1′′
j , 4q} {2′′

j , 3q}{1j, 5r} {2j, 4r}

{1j, 1
′
j}

{2j, 2
′
j}{1′

j, 1
′′
j }

{2′
j, 2

′′
j }

{11, 22} {1h, 2h} {1i, 2i} {1j, 2j} {1n, 2n}

{3m, 4m, 5m}

1

Fig. 2. An example of a graph GI in which a clause Cp and a variable xj are highlighted.
Note that in this example Cp is a clause with ordered variables xh, xi, xj , and that xj

is a variable contained in ordered clauses Cp, Cq and Cr.

Suppose that z is of a-type or b-type. We already deduced that z is adjacent
to all vertices that are of x-type and of C-type. By steps 3 and 4, we find that z
is adjacent to all vertices of GI except to perhaps one vertex, which is of a′-type
if z is of a-type, and which is of b′-type if z is of b-type (also see Figure 2). This
means that z has degree |V (GI)| − 2 in this case.

Finally, if z is of a′-type or b′-type, then z is adjacent to all vertices of GI

except to perhaps one vertex, which is of a-type if z is of a′-type, and which is
of b-type if z is of b′-type. This means that z has degree |V (GI)|−2 in this case.

From the above we conclude that every vertex in GI has degree at least
|V (GI)| − 2. Hence GI is a complete graph minus a matching. ut
Lemma 3. The graph GI has a coloring that respects L if and only if I has a
satisfying truth assignment in which each clause contains at least one true and
at least one false literal.

Proof. First suppose that GI has a coloring that respects L. Consider a variable
xj contained in ordered clauses Cp, Cq, and Cr. If the color of xj is 1j then the
color of a′p,j is 1′j . Consequently, the color of a′q,j is 1′′j . We conclude that the
colors of ap,j , aq,j , ar,j are all not of 1-type. Similarly, if the color of xj is 2j ,
then the colors of bp,j , bq,j , br,j are all not of 2-type. We use this observation
as follows. Consider a clause Cp with three literals ordered as xh, xi, xj . If xh,
xi and xj all have a 1-type color, then ap,h, ap,i and ap,j have colors 3p, 4p
and 5p, respectively. Then there is no color available for Cp. A similar argument

12

can be made for clauses that contain only two literals. Hence, we find that at
least one literal in every clause is colored with a 2-type color. Analogously, we
find that at least one literal in every clause is colored with a 1-type color. This
means that the truth assignment that sets a literal to true if the corresponding
x-type vertex has a 1-type color, and to false otherwise, is a satisfying truth
assignment in which each clause contains at least one true and one false literal.

Now suppose that I has a satisfying truth assignment in which each clause
contains at least one true and at least one false literal. We give each x-type vertex
that represents a true literal its 1-type color, whereas we color all other x-type
vertices with their 2-type color. Consider a variable xj contained in ordered
clauses Cp, Cq, and Cr. If the color of xj is 1j then we color b′p,j by 2j and b′q,j
by 2′j . Consequently, we can color bp,j , bq,j , br,j with their 2-type color. If the
color of xj is 2j then we color a′p,j by 1j and a′q,j by 1′j . Consequently, we can
color ap,j , aq,j , ar,j with their 1-type color. We use this observation as follows.
Consider a clause Cp with literals ordered as xh, xi, xj . Due to our observation
and the definition of L, we may assume without loss of generality that xh, xi

are true and xj is false. Then using our observation we can color ap,h, ap,i, ap,j ,
bp,h, bp,i, bp,j with colors 3p, 4p, of 1-type, of 2-type, of 2-type, 4p, respectively.
This means that we can color Cp by 5p. A similar argument can be made if Cp

consists of two literals only. Hence, we find that GI has a coloring that respects
L. This completes the proof of Lemma 3. ut

Recall that complete graphs minus a matching are exactly those graphs that
are (3P1, P1 +P2)-free, or equivalently, graphs of minimum degree at least n−2,
where n is the number of vertices. By observing that 3-List Coloring belongs
to NP and using Lemmas 2 and 3, we have proven Theorem 4.

Theorem 4. The 3-List Coloring problem is NP-complete for complete graphs
minus a matching.

To complement Theorem 4, we show that List Coloring is fixed-parameter
tractable on complete graphs minus a matching when parameterized by the num-
ber of removed matching edges, or equivalently, for n-vertex graphs G of min-
imum degree at least n − 2 when parameterized by the number of vertices of
degree n− 2. In fact we prove that List Coloring is fixed-parameter tractable
on complete−pe graphs when parameterized by p. Our proof is following the
same approach as the one that Cai used for showing that whenever Coloring
is polynomial-time solvable on a graph class F that is closed under edge contrac-
tion, then Coloring is fixed-parameter tractable on F−pe when parameterized
by p (Theorem 3.1 in [6]).

Theorem 5. The List Coloring problem can be solved in O(2p(n+k)
5
2) time

on pairs (G,L) where G is an n-vertex graph with p pairs of non-adjacent vertices
and L is a k-list assignment.

Proof. Let G be an n-vertex graph with p pairs of non-adjacent vertices. Let L
be a k-list assignment of G. We branch as follows. Consider two non-adjacent

13

vertices u and v. Then we either choose to color them alike (provided u and v
have overlapping lists) or we choose to color them differently. We stress that we
do not assign any color to u or v; we only made a choice to color them alike or
differently. In the first case we identify u and v and assign the new vertex the list
L(u) ∩ L(v) as its list of admissible colors. In the second case we place an edge
between u and v (and leave L(u) and L(v) unaltered). We repeat this step in
the resulting graph as long as possible. Afterward, we have obtained a complete
graph Kn−r with a k′-list assignment L′; here, r is the number of times we chose
two non-adjacent vertices to be colored alike, and k′ ≤ k.

Because the number of pairs of non-adjacent vertices is p, we have created at
most 2p new instances of List Coloring that each consist of a complete graph
with some list assignment. By Lemma 1 we can test in O((n + k)

5
2) whether a

complete graph on n− r ≤ n vertices has a coloring that respects a given k′-list
assignment for some k′ ≤ k. Hence, we have proven Theorem 5. ut

4 List 4-Coloring for P6-Free Graphs

We prove that List 4-Coloring is NP-complete for P6-free graphs. We use a
reduction from the Not-All-Equal 3-Satisfiability problem with positive
literals; recall that this is an NP-complete problem [25]. We consider an arbitrary
instance I of Not-All-Equal 3-Satisfiability with variables x1, x2, . . . , xn

and 3-literal clauses C1, C2, . . . , Cm that all contain positive literals only. From
I we construct a graph GI with a 4-list assignment L. Next we show that GI is
P6-free and that GI has a coloring that respects L if and only if I has a satisfying
truth assignment in which each clause contains at least one true and at least one
false literal.

To obtain the graph GI with its 4-list assignment L we modify the construc-
tion of the (P7-free but not P6-free) graph used to prove that 4-Precoloring
Extension is NP-complete for P7-free graphs [4]. We do this as follows.

• For each clause Cj , we introduce five vertices aj,1, bj,1, aj,2, bj,2, aj,3 that
have lists of admissible colors {2, 4}, {3, 4}, {2, 3, 4}, {3, 4}, {2, 3}, respec-
tively, and we add the edges aj,1bj,1, bj,1aj,2, aj,2bj,2, bj,2aj,3.

We take a copy C ′h for each clause Ch.

For each copy C ′h, we introduce five vertices a′j,1, b
′
j,1, a

′
j,2, b

′
j,2, a

′
j,3 that have

lists of admissible colors {1, 4}, {3, 4}, {1, 3, 4}, {3, 4}, {1, 3}, respectively, and
we add the edges a′j,1b

′
j,1, b

′
j,1a
′
j,2, a

′
j,2b
′
j,2, b

′
j,2a
′
j,3.

We say that all these vertices (so including the vertices in the copy) are of
a-type and b-type, respectively. They induce a disjoint union of 2m P5s in
GI , which we call clause-components.

• We represent every variable xi by a vertex, which we also denote by xi and
which we give a list of admissible colors L(xi) = {1, 2} in GI . We say that

14

these vertices are of x-type.

• For every clause Cj , we fix an arbitrary order of its variables xi1 , xi2 , xi3 and
add edges aj,hxih and a′j,hxih for h = 1, 2, 3.

• We add an edge between every x-type vertex and every b-type vertex.

In Figure 3 we illustrate an example in which Cj is a clause with ordered variables
xi1 , xi2 , xi3 . The thick edges indicate the connection between these vertices and
the a-type vertices of the two copies of the clause gadget. We omitted the indices
from the labels of the clause gadget vertices to increase the visibility.

We now prove two lemmas. Lemma 4 shows that the graph GI is P6-free. In
Lemma 5 we prove that GI has a coloring that respects L if and only if I has a
satisfying truth assignment in which each clause contains at least one true and
at least one false literal.

a b a b a ababa

x1 xi1 xi2 xi3 xn

Cj C ′
j

1

Fig. 3. The graph GI for the clause Cj = {xi1 , xi2 , xi3}.

Lemma 4. The graph GI is P6-free.

Proof. Let P be an induced path in GI . We show that P has at most 5 vertices.
We distinguish the following cases.

Case 1. P contains no x-type vertex.
This means that P is contained in one clause-component, which is isomorphic
to an induced P5. Consequently, P has at most 5 vertices.

Case 2. P contains exactly one x-type vertex.
Let xi be this vertex. Then P contains vertices of at most two clause-components.
Since xi is adjacent to all b-type vertices, we then find that P contains at most
two vertices of each of the clause-components. Hence P has at most 5 vertices.

15

Case 3. P contains exactly two x-type vertices.
Let xh and xi be these two vertices. If P contains no b-type vertex, then there
is no subpath in P from xh to xi, a contradiction. If P contains two or more
b-type vertices, then P contains a cycle, another contradiction. Hence P contains
exactly one b-type vertex z. Then xhzxi is a subpath in P . If xh has a neighbor
in V (P)\{z}, then this neighbor must be of a-type, and consequently, an end-
vertex of P (because an a-type vertex is adjacent to only one x-type vertex).
The same holds for xi. Hence P contains at most five vertices.

Case 4. P contains at least three x-type vertices.
Then P contains no b-type vertex, because such vertices would have degree 3
in P . However, then there is no subpath between any two x-type vertices in
P . We conclude that this subcase is not possible. This completes the proof of
Lemma 4. ut
Lemma 5. The graph GI has a coloring that respects L if and only if I has a
satisfying truth assignment in which each clause contains at least one true and
at least one false literal.

Proof. First suppose that GI has a coloring that respects L. Consider a clause
Cj with literals ordered as xi1 , xi2 and xi3 . Suppose that xi1 , xi2 and xi3 all
have color 2. Since the list of aj,1 is {2, 4}, we find that aj,1 must receive color
4. Consequently, its neighbor bj,1 must have color 3. Similarly, aj,4 must have
color 3 and bj,2 must have color 4. This means that aj,2 has neighbors, namely
xi2 , bj,1, bj,2, with colors 2, 3, 4, respectively. However, L(aj,2) = {2, 3, 4}. Hence,
this is not possible. We conclude that at least one literal in every clause is colored
with color 1. By considering the copy gadgets, we find in a similar way that at
least one literal in every clause is colored with color 2. This means that the truth
assignment that sets a literal to false if the corresponding x-type vertex has
color 2, and to true otherwise, is a satisfying truth assignment of I in which
each clause contains at least one true and at least one false literal.

Now suppose that I has a satisfying truth assignment in which each clause
contains at least one true and at least one false literal. We use color 1 to color
the x-type vertices representing the true literals and color 2 to color the x-type
vertices representing the false literals. Since each clause contains at least one true
literal, we can color aj,1, aj,2 and aj,3 respecting their lists. Similarly, since each
clause contains at least one false literal, we can color a′j,1, a′j,2 and a′j,3 respecting
their lists. We color all other remaining uncolored vertices in a straightforward
way. This completes the proof of Lemma 5. ut

The observation that List 4-Coloring belongs to NP, together with Lem-
mas 4 and 5, immediately gives us the main result of this section.

Theorem 6. The List 4-Coloring problem is NP-complete for P6-free graphs.

5 Concluding Remarks

The main tasks are to determine the computational complexity of Coloring
for AT-free graphs and to solve the open cases marked “?” in Table 1. This table

16

shows that so far all three problems k-Coloring, k-Precoloring Extension
and List k-Coloring behave similarly on Pr-free graphs. Hence, our new NP-
completeness result on List 4-Coloring for P6-free graphs may be an indication
that 4-Coloring for P6-free graphs is NP-complete, or otherwise at least this
result makes clear that new proof techniques not based on subroutines that solve
List 4-Coloring are required for proving polynomial-time solvability.

Another question arising from Table 1 is whether there exists an integer r ≥ 7
such that List 3-Coloring is NP-complete for Pr-free graphs. If so, this leads to
an affirmative answer of the corresponding question for 3-Coloring, i.e., then
we also find an integer r′ ≤ 2r + 1 such that 3-Coloring is NP-complete for
Pr′ -free graphs. This can be seen as follows. We modify a given Pr-free graph G
that is an instance of List 3-Coloring by adding three new vertices u1, u2, u3

that form a triangle. We then connect this triangle to the other vertices of G
by adding edges in such a way that the required lists of admissible colors are
imposed on the vertices of V (G). Because u1, u2, u3 form a triangle, any induced
path can only use two of them. Hence, the resulting graph is P2r+1-free.

Table 1 not only shows that we have completed the computational com-
plexity classification of List k-Coloring for P6-free graphs but also of List
4-Coloring for Pr-free graphs for all r ≥ 1. However, we point out that there
still exist several gaps in the computational complexity classification of List 4-
Coloring for H-free graphs. It is known that List k-Coloring is NP-complete
for H-free graphs whenever k ≥ 3 and H is not a linear forest, i.e., a dis-
joint union of a collection of paths (cf. [4]). Couturier et al. [7] generalized the
polynomial-time result of Hoàng et al. [10] on List k-Coloring for P5-free
graphs and fixed k ≥ 1 to (P5 + sP1)-free graphs for any fixed integer s ≥ 0.
However, several smaller cases, such as the following, are still unresolved.

What is the computational complexity of List 4-Coloring for (P2 + P3)-free
graphs, for 2P3-free graphs and for (P2 + P4)-free graphs?

We note that List 3-Coloring is polynomial-time solvable on (P2 + P4)-free
graphs and on sP3-free graphs for any fixed integer s ≥ 1 [4]. Moreover, both
4-Coloring and 4-Precoloring Extension are polynomial-time solvable on
(P2+P3)-free graphs [9], whereas List 5-Coloring is known to be NP-complete
for (P2 + P4)-free graphs [7].

Another long-standing open problem, which was posed by Broersma et al. [5],
is to determine the computational complexity of the Coloring problem for the
class of asteroidal triple-free graphs, also known as AT-free graphs. An asteroidal
triple is a set of three mutually non-adjacent vertices such that each two of
them are joined by a path that avoids the neighborhood of the third, and AT-
free graphs are exactly those graphs that contain no such triple. We note that
unions of two complete graphs are AT-free. Hence NP-completeness of 3-List
Coloring for this graph class [15] immediately carries over to AT-free graphs.
Stacho [26] showed that 3-Coloring is polynomial-time solvable on AT-free
graphs. Recently, Kratsch and Müller [18] extended this result by proving that
List k-Coloring is polynomial-time solvable on AT-free graphs for any fixed
positive integer k. Marx [22] showed that Precoloring Extension is NP-

17

complete for proper interval graphs, which form a subclass of AT-free graphs.
An asteroidal set in a graph G is an independent set S ⊆ V (G), such that every
triple of vertices of S forms an asteroidal triple. The asteroidal number is the
size of a largest asteroidal set in G. Note that complete graphs are exactly those
graphs that have asteroidal number at most one, and that AT-free graphs are
exactly those graphs that have asteroidal number at most two. We observe that
Coloring is NP-complete for the class of graphs with asteroidal number at
most three, as this class contains the class of 4P1-free graphs and for the latter
graph class one may apply Theorem 1.

We finish our paper by posing two more open problems. We showed that
List Coloring is fixed-parameter tractable for complete−pe graphs when pa-
rameterized by p. It is readily seen that this problem is also fixed-parameter
tractable for complete+pe graphs and complete−pv graphs when parameterized
by p. This leaves us with the remaining case of complete+pv graphs. As vertices
in a complete graph must be colored differently, Coloring is fixed-parameter
tractable for complete+pv graphs when parameterized by p. What is the pa-
rameterized complexity of List Coloring and Precoloring Extension for
complete+pv graphs?

References

1. J.A. Bondy and U.S.R. Murty, Graph Theory, Springer Graduate Texts in Math-
ematics 244 (2008).

2. F. Bonomo, G. Durán and J. Marenco, Exploring the complexity boundary between
coloring and list-coloring, Ann. Oper. Res. 169 (2009) 3–16.

3. H.J. Broersma, F.V. Fomin, P.A. Golovach and D. Paulusma, Three complexity
results on coloring Pk-free graphs, European Journal of Combinatorics 34 (2013)
609–619.

4. H.J. Broersma, P.A. Golovach, D. Paulusma and J. Song, Updating the complexity
status of coloring graphs without a fixed induced linear forest, Theoretical Com-
puter Science 414, 9–19 (2012) .

5. H.J. Broersma, T. Kloks, D. Kratsch and H. Müller, Independent sets in asteroidal
triple-free graphs, SIAM Journal on Discrete Mathematics 12 (1999) 276–287.

6. L. Cai, Parameterized complexity of vertex colouring, Discrete Applied Mathemat-
ics 127 (2003) 415–429.

7. J.F. Couturier, P.A. Golovach, D. Kratsch and D. Paulusma, List coloring in the
absence of a linear forest, Proc. WG 2011, LNCS 6986, 119–130 (2011).

8. P. Erdös, A.L. Rubin and H. Taylor, Choosabilty in graphs, Proc. West Coast
Conference on Combinatorics, Graph Theory and Computing, Arcata, California,
Congressus Numerantium XXVI (1979) 125–157.

9. P.A. Golovach, D. Paulusma, and J. Song, 4-Coloring H-free graphs when H is
small, Proc. SOFSEM 2012, LNCS 7147, 289–300 (2012).

10. C.T. Hoàng, M. Kamiński, V. Lozin, J. Sawada, and X. Shu, Deciding k-colorability
of P5-free graphs in polynomial time, Algorithmica 57, 74–81 (2010).

11. J.E. Hopcroft and R.M. Karp, An n
5
2 algorithm for maximum matchings in bipar-

tite graphs, SIAM J. Comput. 2, 225–231 (1973).
12. S. Huang, Improved complexity results on k-coloring Pt-free graphs, Proc. MFCS

2013, LNCS 8087 (2013) 551–558.

18

13. M. Hujter and Zs. Tuza, Precoloring extension. II. Graph classes related to bipartite
graphs, Acta Math. Univ. Comenianae Vol. LXII, 1–11 (1993).

14. B. Jansen and S. Kratsch, Data reduction for graph coloring problems, Proc. FCT
2011, LNCS 6914, 90–101 (2011).

15. K. Jansen, Complexity Results for the Optimum Cost Chromatic Partition Prob-
lem, Universität Trier, Mathematik/Informatik, Forschungsbericht 96–41 (1996).

16. K. Jansen and P. Scheffler, Generalized coloring for tree-like graphs, Discrete Appl.
Math. 75, 135–155 (1997).

17. D. Král’, J. Kratochv́ıl, Zs. Tuza, and G.J. Woeginger, Complexity of coloring
graphs without forbidden induced subgraphs, Proc. WG 2001, LNCS 2204, 254–
262 (2001).

18. D. Kratsch and H. Müller, Colouring AT-free graphs, Proc. ESA 2012, LNCS 7501,
707–718 (2012).

19. M. , Coloring edges and vertices of graphs without short or long cycles, Contribu-
tions to Discrete Math. 2, 61–66 (2007).

20. M. Kubale, Some results concerning the complexity of restricted colorings of
graphs. Discrete Applied Mathematics 36, 35-46 (1992).

21. D. Marx, Paramaterized coloring problems on chordal graphs, Theoretical Com-
puter Science 351, 407-424 (2006).

22. D. Marx, Precoloring extension on unit interval graphs, Discrete Applied Mathe-
matics 154, 995–1002 (2006).

23. B. Randerath and I. Schiermeyer, 3-Colorability ∈ P for P6-free graphs, Discrete
Appl. Math. 136, 299–313 (2004).

24. B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs - a
survey, Graphs Combin. 20, 1–40 (2004).

25. T. J. Schaefer, The complexity of satisfiability problems, Proc. STOC 1978, 216–
226 (1978).

26. J. Stacho. 3-Colouring AT-free graphs in polynomial time, Algorithmica 64, 384–
399 (2012).

27. Zs. Tuza, Graph colorings with local restrictions - a survey, Discuss. Math. Graph
Theory 17, 161–228 (1997).

28. V.G. Vizing, Coloring the vertices of a graph in prescribed colors, in Diskret.
Analiz., no. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem 101, 3–10 (1976).

19

