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Abstract
We introduce an alternative method in computational fracture me-

chanics to evaluate Stress Intensity Factors (SIFs) directly using the Ex-
tended Dual Boundary Element Method (XBEM) for 2D problems. Like
other enrichment approaches, the new approach is able to yield accurate
results on coarse discretisations, and the enrichment increases the problem
size by only two degrees of freedom per crack tip. The BEM equations
formed by collocation at nodes are augmented by two additional equations
that enforce continuity of displacement at the crack tip. The enrichment
approach provides the values of SIFs KI and KII directly in the solution
vector and without any need for postprocessing such as the J-integral.
Numerical examples are used to compare the accuracy of these directly
computed SIFs to J-integral processing of both conventional and enriched
boundary element approximations.

1 Introduction

In making fracture assessments, and in particular the prediction of crack prop-
agation, it is of great importance to have an accurate understanding of the
stress field in the vicinity of the crack tip. In Linear Elastic Fracture Mechanics
(LEFM), the Stress Intensity Factors (SIFs) play a major role in the description
of the the singular stress field, and can be seen in the stress and displacement
expansions introduced by Williams [1]. SIFs can be determined from handbooks
(e.g. [2]) for some simple cases of geometry and loading. For complicated shapes
or applied boundary conditions, engineers can make use of numerical methods
to resolve the stress fields and thereby give the SIFs KI and KII for modes I and
II, respectively. It is well known that a singularity appears at the crack tip in
LEFM, making numerical methods such as Finite Element Method (FEM) and
Boundary Element Method (BEM) inefficient without modification. Watwood
[3] noted the need for using a very refined mesh near the crack tip. Much of the
computational fracture mechanics research work since then has involved devel-
oping algorithms that, in one way or another, offer a more efficient solution. In
an early example of enriched FEM formulations, Benzley [4] successfully deter-
mined SIFs using isoparametric finite elements enriched locally with functions to
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capture point singularities. Henshell and Shaw [5] presented the use of quarter-
point elements, in which the desired

√
r (where r is the distance from the crack

tip) variation in displacements could be achieved by moving the mid-nodes of
elements to quarter-point positions.

Contributions to computational fracture mechanics continued with the hy-
brid crack element introduced by Tong et al. [6] and extended by Xiao and
Karihaloo [7], showing how it can be used for direct evaluation of singular and
higher order coefficients. In parallel, Leung and Su [8, 9] introduced the fractal
finite element method which divides the domain into a regular and a singular
region, where the crack tip is the centre of similarity of the singular region. The
method was applied to modes I, II and III successfully and has shown an accu-
racy of (1%) [10]. Recently, extensions of the method have been added including
fractal hybrid finite elements [11] and fractal-like FEM [12] for bi-material prob-
lems. The Scaled Boundary Finite Element Method (SBFEM) [13] benefits from
its semianalytical formulation to provide highly accurate approximations for the
SIFs. The method suffers from its restriction to star-shaped domains (i.e. those
exhibiting a line-of-sight to all boundary points from the ”scaling centre” which
is placed at the crack tip in fracture problems) or models comprising a set of
star-shaped subdomains. This restriction has been overcome by coupling the
SBFEM to the BEM [14].

The partition of unity method was introduced as a general technique to al-
low enrichment of FEM approximations. Melenk & Babuška [15] showed how
the traditional piecewise polynomial approximation basis can be enriched by the
use of functions (or sets of functions) that offer better approximation properties.
This idea has been applied to computational fracture mechanics in the form of
the Extended Finite Element Method (XFEM) [16]. The use of XFEM enrich-
ment led to a reduction in the need for mesh refinement, and also separated the
mesh from the crack path so crack propagation analysis could proceed with the
need for remeshing, and for these reasons it has spawned a considerable volume
of literature.

In parallel with the development of finite element methods, the Boundary
Element Method (BEM) also gained popularity because of its boundary-only
meshing (offering a reduction in dimensionality of the problem) and because of
its ability to capture discontinuous functions. It also offered good accuracy of
solutions on the domain boundary whereas finite element methods offered their
greatest accuracy at integration points within the element. However, using the
classical BEM to collocate on coincident points on opposing crack surfaces gives
rise to degenerate linear systems [17]. Many methods have been proposed offer-
ing various treatments including special Green’s functions [18] and the subregion
technique [19]. Hong and Chen [20, 21] introduced the idea of Dual Boundary
Integral Equations, in which a combination of the standard Boundary Integral
Equation and its derivative can be used to provide independent equations in
order to overcome the problem of degeneracy. They showed how the Displace-
ment Boundary Integral Equation (DBIE) can be differentiated and Hookes law
applied to derive the Traction Boundary Integral Equation (TBIE). Chen and
Hong [22] for the first time solved a system formed from a combination of the
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two integral equations in the context of a Darcy problem, but Portela et al. [23]
were the rst to implement the combined use of the DBIE and TBIE in a single
system to solve crack problems. They named this the Dual Boundary Element
Method. Hong and Chen [24] reviewed the Dual BEM development up to the
end of the 1990s. Portela et al [23] also described how the use of the TBIE im-
poses certain conditions on the selection of elements used for the discretisation
of crack surfaces. These conditions arise because of the continuity requirements
of the field variables for the existence of Cauchy and Hadamard principal value
integrals. It is routine to overcome the problem while still using collocation by
using discontinuous elements, in which the nodes are located within the body of
the element, and not at its ends. Collocation at these nodes satisfies the Holder
continuity requirements of the hypersingular integral equation since the shape
functions are continuously differentiable at these points. There is considerable
literature describing the application of discontinuous element for this purpose
e.g. [23, 25, 26, 27]. These elements also permit the analysis of wide variety of
crack geometries including kinked cracks.

The use of the Williams expansions in the BEM has been presented by
Portela et al. [28] to subtract the singularity by dividing the domain into singu-
lar and regular fields. The technique was able to solve for KI and KII directly.
Recently, the partition of unity approach was used by Simpson and Trevelyan
[29], who presented a boundary element method enriched in a similar fashion to
XFEM (giving a technique that could be called XBEM, as we continue to call
it henceforth). This work extended the benefits of XFEM to provide high accu-
racy of SIFs from coarse boundary-only discretisations. Their method was soon
extended to curved cracks [30]. Both implementations relied on the use of the
J-integral [31] to calculate the SIFs. In the current paper, we extend this XBEM
approach by using a modified form of enrichment in combination with crack tip
displacement constraint equations to provide values of SIFs directly. The aim
is to enable the solution of large problems, particularly when the enrichment is
extended to 3D, by making a considerable reduction in the number of degrees of
freedom required to achieve results of a prescribed accuracy. We note that other
approaches to acceleration of BEM simulations have been developed, e.g. the
Fast Multipole Method (FMM), which has been applied successfully to speed
up the evaluation for thousands of cracks [32]. The authors believe the enriched
XBEM approach described in this article could be further accelerated with the
FMM to provide a powerful solution. Unlike [32] the proposed method is able to
evaluate SIFs directly at a cost of two additional degrees of freedom per crack
tip. This is an interesting subject for further research.

A similar square root enrichment was earlier introduced into the shape func-
tions for special crack tip elements by Li et al. [33], and applied to the relative
crack face displacements in a symmetric Galerkin BEM based on weak form
integral equations. Like [29, 30] this technique was shown to give good accuracy
from coarse meshes. The approach of [29, 30] is adopted in the current work
as it offers similar accuracy benefits but can be more easily implemented by
making a relatively simple modification to a pre-existing DBEM code.

In general determination of SIFs can be categorized into direct and post-
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processing methods. Direct methods offer speed and flexibility to evaluate
higher order terms [7]. On the other hand, the J-integral, taken over a closed
independent integral path and based on energy approach, is the most used post-
processing technique and is available to general purpose FEM and BEM codes
that do not have any special formulations injected to deal directly with the
stress singularity.

In this paper, we introduce a direct, highly accurate evaluation of SIFs by
enriching crack surface elements. Moreover, it has potential for extension to
3D, where the use of the J-integral type approaches become more cumbersome
than in 2D.

2 Extended (Dual) Boundary Element Method

Applying the classical direct collocation BEM to problems containing cracks
leads to rank deficiency since duplicate equations are formed when collocating
at coincident nodes on opposing crack surfaces. The Dual Boundary Element
Method (DBEM) [23] overcomes this difficulty and is an efficient technique for
modelling crack problems in BEM. The method consists of two independent
boundary integral equations; where the Displacement Boundary Integral Equa-
tion (DBIE) is used when collocating on one crack surface, and the Traction
Boundary Integral Equation (TBIE) is used on the another surface. Moreover,
discontinuous elements are used for the geometry discretisations to meet conti-
nuity requirement as shown in Fig. 1. The DBIE used on the upper surface is
given by

Cij(x̀)uj(x̀) + Cij(x̂)uj(x̂) +

∫
Γ

Tij(x̀, x)uj(x)dΓ =

∫
Γ

Uij(x̀, x)tj(x)dΓ, (1)

where Tij and Uij are the traction and displacement fundamental solutions,
and Cijuj represents a jump term that emerges as a result of the strongly
singular integral of the traction kernel. x and x̀ denote the usual field point
and source point in boundary element methods, and x̂ is the point coincident
with the source x̀ but lying on the opposing crack surface as shown in Figure
1. The TBIE can be obtained by differentiating the DBIE in the k direction
with respect to the normal direction at source point x̀, and can be written for
a smooth boundary as follows,

1

2
tj(x̀)− 1

2
tj(x̂) + ni(x̀)

∫
Γ

Skij(x̀, x)uk(x)dΓ = ni(x̀)

∫
Γ

Dkij(x̀, x)tk(x)dΓ, (2)

where Skij and Dkij are derivative kernels obtained by differentiating the fun-
damental solution. In this paper we consider traction-free cracks, so that tj(x̀)
and tj(x̂) in (2) vanish, and will be dropped in the description of the enriched
form of the TBIE.
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2.1 Extended boundary integral equation formulation

The stress singularity at the crack tip cannot be captured by standard quadratic
interpolation of displacements in the BEM unless highly refined meshes are
used. As an alternative, the extended boundary element method introduced
by Simpson and Trevelyan [29] shows an improvement of accuracy using coarse
meshes, made possible by the use of the asymptotic, analytical expression for
displacements around the crack tip within the BIE. The well-known Williams
expansion for displacements near the crack tip can be written as

uj = KIψIj(r, θ) +KIIψIIj(r, θ) (3)

where KI and KII are the mode I and mode II stress intensity factors, and the
terms ψIj(r, θ) and ψIIj(r, θ) are given by the following functions:

ψIx =
1

2µ

√
r

2π
cos

θ

2

[
κ− 1 + 2 sin2 θ

2

]
(4a)

ψIIx =
1

2µ

√
r

2π
sin

θ

2

[
κ+ 1 + 2 cos2 θ

2

]
(4b)

ψIy =
1

2µ

√
r

2π
sin

θ

2

[
κ+ 1− 2 cos2 θ

2

]
(4c)

ψIIy =
−1

2µ

√
r

2π
cos

θ

2

[
κ− 1− 2 sin2 θ

2

]
(4d)

where r and θ are polar coordinates centered at the crack tip, µ is the shear
modulus and κ is a parameter defined as κ = 3 − 4υ and κ = 3−υ

1+υ for plane
strain and plane stress, respectively, υ being the Poisson’s ratio. Equation (3)
can be used to enrich an otherwise classical piecewise polynomial shape function
approximation of displacement near the crack tip, in a fashion similar to the
early work of Benzley [4], as follows,

uj = K̃IψIj + K̃IIψIIj +

M∑
a=1

Nauaj (5)

Figure 1: Crack characteristics with DBEM
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where uaj is no longer the nodal displacement (as in the conventional BEM),
but is instead to be viewed simply as a coefficient scaling the Lagrangian shape
function Na for node a, and M is the total number of element nodes. Equation
(3) is able to approximate well the displacement near the crack tip. It is noted
that (3) predicts the displacement components to vanish at the crack tip, i.e. at
r = 0. Therefore an important role of the last term in (5) is to capture a non-
zero displacement of the crack tip. The coefficients K̃I and K̃II are the unknown
amplitudes of the enrichment functions ψIj , ψIIj and are found as terms in the
XBEM solution vector. When this enriched form of the displacement is used,
the DBIE (1) can be written in a discretised form,

Cij(x̀)uj(x̀) + Cij(x̂)uj(x̂) +

Ne∑
n=1

M∑
a=1

Pnaij u
na
j +

Ne∑
a=1

P̃nijIK̃I

+

Ne∑
a=1

P̃nijIIK̃II =

Ne∑
n=1

M∑
a=1

Qnaij t
na
j (6)

where

Pnaij =

∫ 1

−1

Na(ξ)Tij(x̀, x(ξ))Jn(ξ)dξ (7a)

Qnaij =

∫ 1

−1

Na(ξ)Uij(x̀, x(ξ))Jn(ξ)dξ (7b)

P̃nijI =

∫ 1

−1

Tij(x̀, x(ξ))ψIj(ξ)J
n(ξ)dξ (7c)

P̃nijII =

∫ 1

−1

Tij(x̀, x(ξ))ψIIj(ξ)J
n(ξ)dξ (7d)

Ne and M are the total number of elements and the number of nodes per
element, respectively, ξ ∈ (−1, 1) is the local parametric coordinate used to
describe the element, and Jn(ξ) is the Jacobian of coordinate transformation.

We enrich only elements on the crack surfaces and in the vicinity of the
crack tips, so that for most elements the displacement is expressed in the usual
shape function form. If element n is unenriched then P̃nijI = 0 and P̃nijII = 0.
In addition, as θ = ±π at the crack surfaces for a flat crack, ψIj and ψIIj are
functions only of ξ. The jump terms in the enriched DBIE remain the same as
the jump terms arising from the strongly singular enriched integrals will cancel
during implementation. The discretised TBIE is

ni(x̀)

Ne∑
n=1

M∑
a=1

Enakiju
na
k = ni(x̀)

Ne∑
n=1

M∑
a=1

Fnakijt
na
k (8)
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where

Enakij =

∫ 1

−1

Na(ξ)Skij(x̀, x(ξ))Jn(ξ)dξ (9a)

Fnakij =

∫ 1

−1

Na(ξ)Dkij(x̀, x(ξ))Jn(ξ)dξ (9b)

Substituting the enriched form of displacement (5) into the integral equation
(8) we arrive at

ni(x̀)

Ne∑
n=1

M∑
a=1

Enakiju
na
k + ni(x̀)

Ne∑
a=1

ẼnkijIK̃I

+ni(x̀)

Ne∑
a=1

ẼnkijIIK̃II = ni(x̀)

Ne∑
n=1

M∑
a=1

Fnakijt
na
k (10)

where, if the element n is enriched,

ẼnkijI =

∫ 1

−1

Skij(x̀, x(ξ))ψIk(ξ)Jn(ξ)dξ (11a)

ẼnkijII =

∫ 1

−1

Skij(x̀, x(ξ))ψIIk(ξ)Jn(ξ)dξ (11b)

or otherwise ẼnkijII = 0 and ẼnkijII = 0. Implementation of the TBIE and
DBIE needs much care in evaluating the hyper-singular and strongly-singular
integrals that arise (we note that the use of enrichment functions does not
change the order of the singularity). However, useful techniques have been
applied successfully to XBEM by Simpson [30], where the hyper-singular and
strongly singular integrals have been evaluated using the Guiggiani method [34],
and the Telles [35] adaptive method used for the weakly singular cases.

It is clear after introducing enrichment equations (6) and (10) that new
degrees of freedom appear. The main advantage of formulating the enrichment
as stated above is that the number of extra degrees of freedom is limited to two
per crack tip. Thus, increasing the number of enriched elements has no effect
on the size of the system. In order to achieve a square system of equations,
an additional collocation point can be used, and this allows us to solve for K̃I

and K̃II as part of the solution vector. Simpson and Trevelyan [30] suggest an
alternative, generating additional equations in which the fundamental solution
is replaced by pure mode I and mode II stress states. However, both methods
were unable to evaluate accurate SIFs directly, and the J-integral was needed
to find SIFs to the required accuracy.

3 Crack Tip Tying Constraint

In this section we introduce a new tying constraint that (i) provides a very
simple form for the additional equations required to accommodate the extra
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enrichment degrees of freedom, (ii) allows the enrichment amplitudes K̃I and
K̃II to approximate closely the stress intensity factors KI and KII , and thereby
(iii) removes the need for J-integral computations. This is achieved by the simple
method of constraining against a displacement discontinuity at the crack tip.

We define as element A, parameterised by local variable ξA, the element on
the upper crack surface and touching the crack tip at ξA = 1. We further define
as element B, parameterised by local variable ξB , the element on the lower crack
surface and touching the crack tip at ξB = −1. Applying the expression (5) to
give the displacement at the crack tip which we denote point y, and equating
the values from the elements A and B, we have

K̃IψIj(y)+K̃IIψIIj(y)+

M∑
a=1

Na
A(1)uaAj = K̃IψIj(y)+K̃IIψIIj(y)+

M∑
b=1

N b
B(−1)ubBj

(12)
Here Na

A(ξA) and N b
B(ξB) denote the shape functions for nodes a and b of ele-

ments A and B respectively. Terms uaAj , u
b
Bj denote the coefficients multiplying

the respective shape functions for these nodes (we are careful not to say they
are nodal displacements, which they would be in conventional BEM, but are
no longer because of the injection of the enrichment functions). Cancellation of
the enrichment terms, which in any case vanish at the crack tip, the constraint
becomes

M∑
a=1

Na
A(1)uaAj =

M∑
b=1

N b
B(−1)ubBj (13)

Using the constraint (13) for both x and y displacements provides two additional
equations for each crack tip. These equations are appended to the BEM system
formed by collocation at the nodes, creating a square system. Solution of the
system allows K̃I and K̃II to be revealed in the solution column with remarkable
accuracy.

4 Numerical Examples

4.1 Mode I

Two pure Mode I cases are selected to show the effect of crack tip displacement.
The first case (case 1) is a centre crack in an infinite homogeneous elastic flat
plate as shown in Figure 2. This has a well-known exact solution in which the
crack tip displacement is zero. The XBEM model is formed from the actual
crack surfaces along with a contour, Γext, truncating the infinite domain. This
contour is formed so that the entire XBEM domain lies close to the crack tip and
so pure mode I applies. Traction-free crack surfaces are prescribed, and on Γext
displacements calculated by Williams expansions have been used as boundary
conditions. The second case (case 2) considers an edge crack in a flat plate
under uniaxial traction (pull-pull) as shown in Figure 3. The reference solution
[36] represented by a ratio of KI/K0 has been used as there is no exact solution
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Figure 2: Infinite flat plate (case 1)

Figure 3: Square flate plate under axial tension (case 2)

available. The considered dimensions are a = h = 0.5W . Both cases are treated
as plane stress.

case 1 : Figure 4 shows the displaced shape considering (a) the component
of the displacement for the crack surface enriched elements associated with the
first and the second term of Eq.(5); (b) the component of the displacement rep-
resented by the shape function expansion in the last term of Equation (5), and
(c) the total displacement considering all three terms of (5). In this special case
the enrichment functions ψIj , ψIIj are capable of capturing the displacement
field over the crack surfaces. As a result there is no contribution from the shape
functions. In Figure 6a we display the percentage errors in the SIF KI using
(i) conventional, unenriched DBEM with the J-integral, (ii) enriched XBEM
with the J-integral, (iii) direct K̃I from enriched XBEM using extra collocation
points to provide the additional integral equations required, and (iv) direct K̃I

from enriched XBEM using Equation (13) to enforce displacement continuity
at the crack tip. It is seen that all the enriched methods produce highly ac-
curate SIF results in comparison with the conventional (piecewise polynomial)
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Figure 4: Displacment components for case 1

Figure 5: Displacment components for case 2
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(b) Comparison of KI for case 2

Figure 6: Results of KI for Mode I using various methods
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Table 1: Errors comparison for case 1

Method ndof KI % Error
Unenriched DBEM J-integral 312 17626523.75 -0.55299

XBEM J-integral 314 17724524.44 -0.00008

XBEM Direct K̃I (colloc.) 314 17724790.96 0.00142

XBEM Direct K̃I (Tying) 314 17724564.26 0.000145

Table 2: case 2 results compared to [36]

Method ndof KI
KI

Ko

Unenriched DBEM J-integral 372 53775818.85 3.034
XBEM J-integral 374 53299223.93 3.007

XBEM Direct K̃I (colloc.) 374 50677080.10 2.859

XBEM Direct K̃I (Tying) 374 53142056.71 2.998

BEM J-integral solutions. Because the enrichment is ideal, these results can
be achieved with very small numbers of degrees of freedom. In order to make
a comparison of the accuracy of the different methods, we focus on the set of
results at 312 and 314 degrees of freedom from Fig. 6a. Table 1 shows the error
compared to exact KI, which can be calculated as 17.7245MPa

√
m.

case 2 : The displaced shape for the second case is presented in Figure 5,
which shows the displacement component represented by the first and the sec-
ond terms of Eq.(5), Fig. 5b the displacement contribution by shape function
terms in (5), and Figure 5c which shows the total displacement considering all
three terms of (5). It is evident that the enrichment functions no longer pro-
vide a complete basis for the crack displacement, and the shape functions are
required to compensate, so that the total displacement is approximated accu-
rately. Figure 6b shows the convergence of the various methods we test (note
that the reference solution is approximate). In Table 2 we present the numeri-
cal values of KI/Ko, for the models having 372 and 374 degrees of freedom. It
can be seen that the XBEM with J-integral and the direct method using the
tying constraint are both capable of delivering results very close to the reference
solution.

Comparing the directly computed K̃I from enriched XBEM using extra col-
location points in case 1 and 2 shows the effect of the displacement discontinuity
at the crack tip. It is immediately evident that the use of the XBEM enrichment
(5) without the use of the constraint (13) causes a significant deterioration in
the ability of K̃I to approximate KI directly, and that in this case a J-integral
is necessary. The injection of the tying constraint, forcing displacement conti-
nuity at the crack tip, allows the directly calculated K̃I to approximate KI well.
Remarkable results have been achieved which show better accuracy compared
to conventional J-integral BEM approaches.
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Figure 7: Effect of the number of enriched elements (case 1)

4.1.1 Number of enriched elements

A useful feature of the new enrichment presented in this paper is that the
enrichment functions are not associated with nodal degrees of freedom as in the
Partition of Unity Method. Instead, since the new degrees of freedom K̃I , K̃II

are associated with the crack tip, this enrichment technique gives us the freedom
to increase the number of enriched elements without increasing the DOFs. The
enrichment degrees of freedom are limited to two per crack tip. By the term
“enriched element” we describe an element (on a crack surface) over which
the displacement is approximated by equation (5). The number of enriched
elements has a significant effect on the results, both when the J-integral is used
to determine the SIFs and when the directly calculated K̃I , K̃II are used. For
example, Figure 7 shows the reduction in error for case 1 when all crack surface
elements are enriched. For this reason, all results in this paper are presented
for models in which all elements on crack surfaces are enriched.

4.1.2 Order of extrapolation for tying constraint

The tying constraint enforces continuity of displacement at the crack tip, ex-
pressed through the equality of the displacements at this point as found by
extrapolation of displacements over the upper and lower crack surfaces. The
constraint is presented in Equation (13) by basing the extrapolation on the M
nodes of each element touching the crack tip. We use three-noded, quadratic
discontinuous elements (i.e. M = 3). However, it is possible to use a higher
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Figure 8: Effect of order of displacement extrapolation (case 2)

order Lagrangian extrapolation by considering the nodes on more elements.
This technique has been found to give improved accuracy. Figure 8 shows

a comparison made (for the problem case 2) of the convergence of SIF results
obtained through different orders of extrapolation. We compare results using 3
nodes to extrapolate displacement to those when 9 nodes are used. These are
the nearest nine nodes to the crack tip on each crack surface. An improvement
can be seen as a result of increasing the order used for extrapolation of dis-
placement results to the crack tip. It is tempting to suggest using even higher
order Lagrangian polynomials; however, this can increase error due to Rung’s
phenomenon.

4.2 Pure Mode II

We consider a square domain surrounding the tip of a crack in pure mode II. The
problem is shown in Figure 9; dimensions used in the analysis are h = a = 0.5W .
We prescribe boundary conditions as follows: The elements on the two crack
faces are traction-free, and to the elements on all other parts of the square
boundary of the domain we apply a displacement boundary condition equal to
the pure mode II case. We use the algorithm described in the paper to determine
KII , the exact solution for which is KII = σ

√
πa, and compare the errors in the

term K̃II against those from both a conventional BEM solution and an enriched
XBEM solution, both using the J-integral. This comparison is shown in Figure
10 and shows both enriched methods to provide highly accurate solutions in
comparison to the more slowly converging results of the classical DBEM. As for
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Figure 9: A square section sheet subject to shear

the case 1 considered in the mode I experiments, the enrichment is ideal here
leading to very small errors. To clarify further, the exact behaviour is included
in the approximation space through (in the mode II case) the second term on
the right hand side of equation (5). The role of the last term in (5) can be
viewed as the use of piecewise polynomials to capture the difference between
pure mode I and II and the displacements in the case under analysis. Cases in
which the enrichment is not ideal, i.e. we are not considering pure mode I and
II, are considered in the following sections.

4.3 Bending

A rectangular plate under bending is considered as shown in Fig. 11. The plate
is subjected to a bending moment applied to the upper and lower surfaces,
as shown in the figure, and we consider the case b = 2a. We compare the
convergence of the two enriched formulations and classical unenriched DBEM in
terms of the normalised stress intensity factor KI/Ko (where Ko = 6M

√
πa/b2).

The comparison is presented in Figure 12, and shows smooth convergence toward
the reference value from [36](we note the reference solution is presented in [36]
with accuracy of 1% which is rather large in comparison with the errors we are
finding).

4.4 Mixed Mode

In this section we apply the proposed enrichment to a mixed mode case of an
inclined edge crack in a finite plate under uniaxial tensile load. For mixed mode
cases it is customary to use a decomposition technique [37] when using the J-
integral in order to solve for both KI and KII . The plate contains an edge
inclined crack at an angle β as shown in Figure 13. The problem does not have
exact solution; instead, the numerical solution obtained by Xiao et al. [7] is
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Figure 10: Results for pure Mode II

Figure 11: Rectangular plate under bending
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Figure 12: A comparison of normalised results for bending plate

used. The plate dimensions are W = h = 1, a = 0.6 and the angle of inclination
β is 30◦. We consider Young’s modulus and Poisson’s ratio to be 105 and 0.25
respectively. Uniaxial tension σ = 1 is applied over the top edge of the plate,
and zero displacement prescribed in both directions at the lower end.

Results for KI and KII are presented in Figures 14 and 15; the same methods
as above have been used to evaluate the SIFs at various model sizes. The
reference solution is plotted as a horizontal line for comparison; the reader is
reminded that this is also a numerical approximation and included for purposes
of comparison. In the results it can be seen that the direct method is smoothly
converging toward the same value as the J-integral methods.

Figure 13: Rectangular plate subject to shear [16]
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Figure 14: KI for inclined crack results compared to Xiao et al. [7]
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Figure 15: KII for inclined crack results compared to Xiao et al. [7]
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5 Conclusion

A new, extended dual boundary element method has been presented in which
the enrichment functions are based closely on the stress intensity factors in
Linear Elastic Fracture Mechanics theory for 2D. The enrichment adds only
two degrees of freedom per crack tip. The extra equations that are therefore
required are derived from enforcement of displacement continuity at the crack
tip. The method is able to evaluate SIFs directly without any requirement
for postprocessing calculations such as the J-integral. Results are improved by
increasing the number of enriched elements. Since this can be done without
increasing the size of the system, and with negligible extra computational cost,
the optimum is to enrich all crack surface elements for more accuracy. Further
accuracy can be obtained by using high (8th) order Lagrangian polynomials in
applying the crack tip tying constraint. Strongly singular and hypersingular
integrals that arise, can be evaluated using Guiggiani method [34] as illustrated
in [29, 30]. The SIFs found from the direct method converge to the same values
as those from the J-integral, and the method clearly outperforms the use of the
piecewise polynomial dual BEM. Results are shown for two mode I problems
and a mixed mode problem.

Current work by the authors involves extending these ideas to 3D, where it
is expected that the ability to produce accurate SIFs without recourse to the
J-integral will be of significant benefit.
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