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Abstract. The hydrology of tropical mountain catchments

plays a central role in ecological function, geochemical

and biogeochemical cycles, erosion and sediment produc-

tion, and water supply in globally important environments.

There have been few studies quantifying the seasonal and

annual water budgets in the montane tropics, particularly

in cloud forests. We investigated the water balance and hy-

drologic regime of the Kosñipata catchment (basin area:

164.4 km2) over the period 2010–2011. The catchment

spans over 2500 m in elevation in the eastern Peruvian

Andes and is dominated by tropical montane cloud for-

est with some high-elevation puna grasslands. Catchment-

wide rainfall was 3112± 414 mm yr−1, calculated by cali-

brating Tropical Rainfall Measuring Mission (TRMM) 3B43

rainfall with rainfall data from nine meteorological stations

in the catchment. Cloud water input to streamflow was

316± 116 mm yr−1 (9.2 % of total inputs), calculated from

an isotopic mixing model using deuterium excess (Dxs) and

δD of waters. Field streamflow was measured in 2010 by

recording height and calibrating to discharge. River run-

off was estimated to be 2796± 126 mm yr−1. Actual evapo-

transpiration (AET) was 688± 138 mm yr−1, determined us-

ing the Priestley and Taylor–Jet Propulsion Laboratory (PT-

JPL) model. The overall water budget was balanced within

1.6± 13.7 %. Relationships between monthly rainfall and

river run-off follow an anticlockwise hysteresis through the

year, with a persistence of high run-off after the end of the

wet season. The size of the soil and shallow groundwater

reservoir is most likely insufficient to explain sustained dry-

season flow. Thus, the observed hysteresis in rainfall–run-off

relationships is best explained by sustained groundwater flow

in the dry season, which is consistent with the water isotope

results that suggest persistent wet-season sources to stream-

flow throughout the year. These results demonstrate the im-

portance of transient groundwater storage in stabilising the

annual hydrograph in this region of the Andes.

1 Introduction

The routing of water from the eastern flank of the Andes de-

termines the quantity and quality of this economically and

ecologically valuable resource for the region (Célleri and

Feyen, 2009; Barnett et al., 2005; Postel and Thompson,

2005) and impacts the biogeochemical cycles and ecology

of the lowland Amazon (McClain and Naiman, 2008; Alle-

gre et al., 1996; Stallard and Edmond, 1983). The Amazon

River has the highest discharge of all of the world’s rivers,

at 6300 km3 yr−1, with a very high run-off of 1000 mm yr−1

over its watershed (Milliman and Farnsworth, 2011), and
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it contributes 20 % of the global water discharge to oceans

(Beighley et al., 2009; Richey et al., 1990). The Andean por-

tion of the Amazon Basin (> 500 m) represents an area of

623 217 km2 and covers ∼ 10 % of the Amazon River basin

(McClain and Naiman, 2008). Although the water input from

the Andes to the Amazon is approximately proportional to

areal coverage (10 %) (McClain and Naiman, 2008; Dunne

et al., 1998), the Andes are the dominant source of the Ama-

zon’s dissolved load (McClain and Naiman, 2008; Gaillardet

et al., 1999; Guyot et al., 1996) and contribute 80–90 % of

its suspended sediment (Richey et al., 1986; Meade et al.,

1985; Gibbs, 1967). Steep, high-elevation Andean slopes are

a particularly important source of material delivered to the

lowland Amazon (Lowman and Barros, 2014). Information

about Andean river discharge, flow sources, and flow rout-

ing is thus critical for understanding the suspended sediment

fluxes and chemical weathering processes of the Amazon

River (Bouchez et al., 2012; Wittmann et al., 2011; Guyot et

al., 1996), for quantifying how the Andes contribute to car-

bon and nutrient cycles (Clark et al., 2013; Townsend-Small

et al., 2008), and for assessing the aquatic ecology of the re-

gion (Anderson and Maldonado-Ocampo, 2011; Ortega and

Hidalgo, 2008). Hydrologic information is particularly im-

portant for understanding related responses to changes in cli-

mate and land use.

Despite this importance, the dynamics of Andean hydrol-

ogy are still incompletely characterised. This is especially

true in Andean tropical montane cloud forest (TMCF), which

comprises a small area (Bubb et al., 2004) but is likely to

contribute disproportionately to the overall water balance of

the region due to its topographic position that receives high

precipitation (Bruijnzeel et al., 2011; Killeen et al., 2007).

The hydrology of TMCFs is of particular interest because

these forests are valuable and diverse ecosystems (Bruijnzeel

et al., 2010; Bubb et al., 2004; Myers et al., 2000) and have

been shown to provide an important supply of water to down-

stream regions, due in large part to their relatively high wa-

ter yield, i.e. high stream water output for a given precipi-

tation input (Tognetti et al., 2010; Zadroga, 1981). TMCFs

are unique hydrologic systems because of the additional wa-

ter input from cloud water interception (CWI) and because

frequent fog occurrence may lower incoming solar radiation,

increasing humidity and potentially lowering evapotranspi-

ration (ET) (Giambelluca and Gerold, 2011; McJannet et al.,

2010; Zadroga, 1981).

Transient groundwater storage may play a significant role

in mountain hydrological systems (Andermann et al., 2012;

Calmels et al., 2011; Tipper et al., 2006). The importance

of groundwater in TMCF hydrology has recently been high-

lighted by studies in a Mexican TMCF, where groundwater

was shown to stabilise the rainfall–run-off response (Muñoz-

Villers and McDonnell, 2012), and in an Andean TMCF in

Ecuador, where considering the effect of groundwater reser-

voirs was important for accurately predicting streamflow

(Crespo et al., 2012). Improved understanding of the extent

to which groundwater stabilises Andean TMCF hydrology

is likely to be important for accurately assessing how envi-

ronmental change, such as land use change or shifting cloud

base, might affect hydrological functioning in the Andes and

downstream in the Amazon (Rapp and Silman, 2014; Crespo

et al., 2012; Bruijnzeel et al., 2011; Mulligan, 2010; Ataroff

and Rada, 2000).

In this paper we evaluate stream discharge of the Kosñi-

pata River, in a well-studied region in the eastern Andes of

Peru (Rapp and Silman, 2014; Halladay et al., 2012a; van

de Weg et al., 2012; Salinas et al., 2011; Girardin et al.,

2010; Malhi et al., 2010), over a 1-year period. We compare

discharge data to rainfall, CWI, and evapotranspiration es-

timates in order to assess the water balance and hydrologic

variability throughout the study year. We determine rainfall

from meteorologic station data and Tropical Rainfall Mea-

suring Mission (TRMM) data sets, and we estimate actual

evapotranspiration using meteorological driver data and the

Priestley–Taylor–Jet Propulsion Laboratory (PT-JPL) model

(Fisher et al., 2008). We use the distinct water isotope com-

position of cloud and rain water to constrain the role of cloud

water input. Stable water isotopes, i.e. δD (‰) and δ18O

(‰), can be used to distinguish water sources due to dis-

tinct fractionation that occurs during evaporation and con-

densation (Scholl et al., 2011; Froehlich et al., 2002; Gat,

1996; Rozanski et al., 1993; Craig, 1961). Stable water iso-

topes have been used in studies of cloud forest hydrology to

deduce the contribution of wet-season precipitation to dry-

season streamflow (Guswa et al., 2007), estimate local water

recycling (Scholl et al., 2007; Rhodes et al., 2006), deter-

mine temporal and spatial variation of rainfall (Windhorst et

al., 2013), trace water paths through soil layers in a catch-

ment (Goller et al., 2005), evaluate water sources in storm-

flow (Muñoz-Villers and McDonnell, 2012), quantify water

mean transit time (Timbe et al., 2014), and examine ecohy-

drological processes including seasonal water–plant relations

(Goldsmith et al., 2012) and interactions between fog and

vegetation (Dawson, 1998). In this study, we extend the ap-

plication of stable water isotopes to constrain the contribu-

tions of different precipitation sources to annual streamflow,

and in the process we add valuable new water isotope data to

a growing number of TMCF studies in the Andes (Windhorst

et al., 2013).

There are few similar studies evaluating the water bud-

get in TMCF (Caballero et al., 2013; Schellekens, 2006;

Zadroga, 1981), with particularly few providing comprehen-

sive estimates of precipitation inputs (Schellekens, 2006).

Our comprehensive analysis of the sources and sinks in the

Kosñipata catchment allows us to focus attention on the fol-

lowing questions: (1) how well can the annual water budget

of the Kosñipata catchment be closed and what are the un-

certainties? (2) What is the importance of baseflow, i.e. the

constant supply of water throughout the year, not associated

with short-term fluctuations due to storms? (3) Are there any

significant seasonal lags between rainfall and stream run-off,
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Table 1. Descriptions of the Kosñipata catchment.

Catchment Area Mean Mean Elevation Land cover typeb Geologyc Gauge Gauge

(km2) slopea elevationa rangea (∼%) (∼%) lat/long elevation

(◦) (m a.s.l.) (m a.s.l.) (S, W) (m a.s.l.)

Kosñipata at 164.4 28 2805 1360 to TMCF (92.7), puna/ mudstones 13◦3′37′′, 1360

San Pedro 4000 transition (7.3) (80), pluton 71◦32′40′′

intrusions (20)

Kosñipata at 48.5 26 3195 2250 to TMCF (75), puna/ mudstones 13◦9′46′′, 2250

Wayqechad 3905 transition (25) (100) 71◦35′21′′

a Based on Shuttle Radar Topography Mission (SRTM) data with a 90 m× 90 m resolution. b Land cover types were determined using 2009 Quickbird 2 imagery.
c Basin geology derived from Carlotto Caillaux et al. (1996). d Results presented in Supplement.

Figure 1. (a) The Kosñipata catchment, eastern Andes of Peru, showing the Kosñipata River catchment measured at the San Pedro (SP)

river gauging station and the nested sub-catchment at the Wayqecha (WQ) river gauging station, overlaid on 90 m× 90 m digital elevation

model (Shuttle Radar Topography Mission) (Farr et al., 2007). Black box indicates the extent of the TRMM 3B43 tile used in this study

(cf. Fig. 2a). The meteorological stations used for rainfall data are numbered 1 to 9 (Table S2). (b) The Kosñipata River flows into the Alto

Madre de Dios (AMdD) and then into the Madre de Dios River, a major tributary of the Amazon River (c). The river network was produced

from HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales) (Lehner et al., 2008).

and what are the causes of these lags? (4) What is the relative

importance of rainfall and cloud water in sustaining stream-

flow throughout the year? (5) What are the roles of soil and

groundwater storage in determining seasonal patterns of river

flow?

2 Study area

The Kosñipata catchment (13◦3′37′′ S, 71◦32′40′′W) study

area ranges from 1360 to 4000 m a.s.l. (metres above sea

level) (Fig. 1a). We focus on the Kosñipata River measured

at the San Pedro gauging station, which drains an area of

164.4 km2. In the Supplement we present results from the

nested Wayqecha sub-catchment that encompasses the head-

waters of the Kosñipata River, draining an area of 48.5 km2

(Table 1). Downstream of the study region, the river flows

into the Alto Madre de Dios River, which feeds the Madre de

Dios River (Fig. 1b), a major tributary of the Amazon River

(Fig. 1c). The geology of the study area is dominated by

meta-sedimentary mudstones covering ∼ 80 % of the catch-

ment, with a plutonic intrusion comprising ∼ 20 % of the

catchment (Table 1) (Carlotto Caillaux et al., 1996). The ge-

ological characteristics and vegetation of the catchment are

generally representative of the larger eastern Andean region

of southern Peru and northern Bolivia (INGEMMET, 2013;

Consbio, 2011; Carlotto Caillaux et al., 1996).

The climate of the eastern Andes is influenced by the

South American Low Level Jet (SALLJ), which carries hu-

mid winds west over Amazonia and then south along the An-

dean flank (Marengo et al., 2004). The Kosñipata catchment

sits in a band of persistent cloudiness that runs along the

eastern Andes (Halladay et al., 2012a) and has high rainfall

relative to the Andean regions to the north and to the south

because of its location on an east–west kink of the Andean

range that situates it perpendicular to the SALLJ (Killeen et

al., 2007). Within the catchment, rainfall decreases with in-
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creasing elevation, from 5300 mm yr−1 at 1500 m a.s.l. down

to 1560 mm yr−1 at 3025 m a.s.l., near the treeline (Girardin

et al., 2014; Huaraca Huasco et al., 2014) where down-valley

winds collide with most air from Amazonia (Halladay et al.,

2012a). Due to orographic effects, rainfall is highest from

1000 to 1500 m a.s.l. (Rapp and Silman, 2012). Note that

lower total annual rainfall amounts were reported previously

for this catchment (Lambs et al., 2012), but the data used in

this previous study were incomplete for the locations where

we recorded highest rainfall. Orographic fog (cf. Scholl et

al., 2011) plays an important role in the Kosñipata catch-

ment. Cloud base varies in height throughout the year, with

the cloud base at its lowest in the dry season (June to August)

(Halladay, 2011). In July (mid-dry-season) the cloud base

is > 60 % of the time > 1800 m a.s.l. and 30 % of the time

between 1500 and 1800 m a.s.l. (Rapp and Silman, 2014).

Nearby, in the central Peruvian Andes on leeward slopes,

intercepted evaporation (rainfall interception losses by the

canopy) was 210 mm yr−1 in the upper montane cloud forest

(UMCF) and 660 mm yr−1 in the lower montane cloud for-

est (LMCF) (Gomez-Peralta et al., 2008); similar ranges are

expected in the Kosñipata catchment. Annual mean temper-

atures in the Kosñipata catchment range from∼ 19 ◦C at low

elevations to∼ 12 ◦C at high elevations (Girardin et al., 2014;

Huaraca Huasco et al., 2014), with an adiabatic air temper-

ature lapse rate of 4.94 ◦C km−1 of altitude (Girardin et al.,

2010). The wet season is generally defined to be December

to March, the wet–dry transition season to be April, the dry

season to be May to September, and the dry–wet transition

season to be October and November (Table S1 in the Supple-

ment). These terms are used in a relative sense in the Andes,

since precipitation is still significant in the dry season.

Cloud water interception has not been measured previ-

ously in this part of the Andes; however, in other similar TM-

CFs, CWI ranges from 50 to 1200 mm yr−1 (Bruijnzeel et al.,

2011). In many perhumid TMCFs (Holwerda et al., 2010a, b;

McJannet et al., 2007, 2010; Schmid et al., 2010; Eugster et

al., 2006), CWI typically makes up a smaller proportion of

the total input compared to seasonal and drier areas where

CWI is often a more important component in the annual wa-

ter budget (García-Santos and Bruijnzeel, 2011; Marzol-Jaén

et al., 2010; Guswa et al., 2007; Mulligan and Burke, 2005).

The Kosñipata catchment is dominated by forest (∼ 93 %),

with the remainder of the area covered by high-elevation

grasslands called puna (Squeo et al., 2006) (Table 1) (Cons-

bio, 2011). The timberline, the lowest elevation at which

trees do not grow, occurs at 3000 to 3600 m a.s.l., with puna

grasslands and shrubland at higher elevations (Gibbon et al.,

2010). The soils in the puna grasslands are usually satu-

rated for ∼ 8 months of the year (November to June; I. Oliv-

eras, personal communication, 2013) due to relatively high

precipitation and low temperatures (Wilcox et al., 1988).

Small areas of bare bedrock are exposed at the highest el-

evations. In the forested area of the Kosñipata catchment,

vegetation consists of upper montane cloud forest from ap-

proximately 2000 to 3450 m a.s.l., and lower montane cloud

forest and lower montane tropical rainforest from approx-

imately 1200 to 2000 m a.s.l. (Consbio, 2011). The Kosñi-

pata catchment is partially contained in Manu National Park,

where logging is prohibited. The soils in the forested parts

of the catchment are predominantly inceptisols (Asner et

al., 2014). Soil water content varies temporally by < 15 %

throughout the year, and soil moisture ranges spatially from

21 to 71 % throughout the catchment (Girardin et al., 2014;

Huaraca Huasco et al., 2014; Teh et al., 2014). At lower alti-

tudes there are only short periods at mid-day at the driest time

of year which show some signs of moisture stress (Rapp and

Silman, 2012).

3 Materials and methods

3.1 Catchment-wide rainfall estimates

Meteorological stations are located throughout the Kosñi-

pata valley along an altitudinal gradient from 887 to

3460 m a.s.l. (Figs. 1a and 2a), distributed in various land

cover types and on a range of slopes and aspects (Table S2).

Only data from the Wayqecha meteorological station (at

2900 m a.s.l.) were recorded over the full length of this river

study, so rainfall was estimated using the long-term monthly

record from 0.25◦× 0.25◦ merged TRMM data (TRMM,

2013) together with the long-term monthly rainfall data from

nine meteorological stations (Girardin et al., 2014; Huaraca

Huasco et al., 2014; ACCA, 2012; Rapp and Silman, 2012;

SENAMHI, 2012).

The 3B43 v7a TRMM is a third-level product with out-

puts in millimetres per day, which have been converted to

millimetres per month, with an output each month from

1998 to 2012. The Kosñipata catchment is situated entirely

within one 3B43 TRMM tile, which covers an area of

∼ 730 km2 centred at 12◦7′48′′ S, 71◦38′6′′W (Fig. 1a). The

raw TRMM 3B43 data underestimate rainfall in the Andes

(Scheel et al., 2011; Bookhagen and Strecker, 2008). Indeed,

in the case of the Kosñipata catchment, TRMM 3B43 rainfall

is an underestimate compared to nearly all of the data from

meteorological station rainfall gauges in the catchment and

is most comparable to the meteorological stations at high el-

evations with low rainfall (Fig. 2a). Because of the apparent

systematic bias, we did not use the TRMM data directly but

instead calibrated the TRMM data using meteorological data

to make catchment-wide rainfall estimates. This had the ad-

vantage of allowing us to use the long-term TRMM record

that covers periods of time when data are not available from

the meteorological stations, since the latter only have spo-

radic coverage, ranging from 13 to 79 months (Table S2).

Details of the calibration procedure we used are provided in

the Supplement.

In order to make robust catchment-wide rainfall estimates,

rainfall loss due to wind around the rainfall gauge was es-
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Figure 2. (a) Mean monthly rainfall data for the nine meteorological stations in the Kosñipata catchment study area (from ∼ 900 to

∼ 3500 m a.s.l.) (dark dashes and light error bars) and estimated mean monthly rainfall (grey circles and dark error bars) covering the

months of the 1-year study period (February 2010 to January 2011) determined using the linear regression equations for each meteorological

station derived from Tropical Rainfall Measuring Mission (TRMM) data (Table S8). The grey line is the linear fit with elevation for the

estimated mean monthly rainfall (mm month−1
=−0.1216± 0.0187× elevation+ 593.16± 44.94, R2

= 0.86; P = 0.0003). The error bars

are 2× standard error of monthly data. Mean monthly rainfall for five meteorological stations outside of the study area but within the larger

Madre de Dios Basin is also shown as triangles (Rapp and Silman, 2012). The shaded box shows the TRMM 3B43 v7a monthly mean

rainfall for the 1-year study period with 2× standard error. Elevation range is shown for the 34.5 km× 34.5 km TRMM tile. The altitudinal

range of the study area is represented by the dark grey bar with arrows between 1350 and 4000 m a.s.l. (b) Linear regressions of estimated

catchment-wide rainfall by month from February 2010 to January 2011, colour-coded by season. The distribution of annual rainfall with

elevation by season for the Kosñipata River is shown for the San Pedro (SP) gauging station (c) and the Wayqecha (WQ) gauging station (d)

at 100 m intervals using the monthly linear regressions (b) incorporating the correction for wind-induced rainfall loss (Table S3).

timated using wind data from available meteorological sta-

tions along the Trocha Union (“Union Trail”) at 3450, 2750,

and 1800 m a.s.l. and at San Pedro at 1500 m a.s.l. (Table S2).

Cup anemometers were located in the tree canopy at the same

height as the rain gauges. Correction of rainfall using wind

speed followed Eqs. (1) and (2) in Holwerda et al. (2006).

The mean and standard error of wind speed, and wind-

induced rainfall loss (%) were determined seasonally and an-

nually (Table S3), and seasonal averages for wind-loss rain-

fall (%) were used to correct catchment-wide rainfall (corre-

sponding to an annual correction of 2.50± 0.56 %).This ap-

proach may underestimate some wind-loss rainfall since the

correction may have been larger at some meteorological sta-

tions (e.g. 4.2 % at Wayqecha), but precise wind data were

only available at a few sites, so it was not possible to make

site-specific corrections for all of the rainfall data from indi-

vidual meteorological stations.

3.2 Discharge and run-off measures

This study is based on measurements of Kosñipata River

discharge made over a 1-year period (Figs. 1a and 3), fo-

cusing on the Kosñipata River gauging station located at

San Pedro (13◦3′37′′ S, 71◦32′40′′W), at 1360 m a.s.l. Field

measurements consisted of river height, flow velocity, and

cross-sectional area, which together allowed us to estimate

discharge and run-off over the study period. For full de-

tails of the measurements and corrections see the Supple-

ment; a brief summary is provided here. River stage height

was measured from January 2010 to February 2011 using a

river logger (Global Water WL16 Data Logger, range 0–9 m),

recording river level every ∼ 15 min. The instantaneous dis-

charge associated with each height measurement was calcu-

lated based on calibrated stage–discharge relationships. To-

tal monthly discharge was determined by summing over each

www.hydrol-earth-syst-sci.net/18/5377/2014/ Hydrol. Earth Syst. Sci., 18, 5377–5397, 2014
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Figure 3. Run-off for the Kosñipata River at the San Pedro and Wayqecha gauging stations. Rainfall (top axis) from the Wayqecha (WQ)

meteorological station is on the secondary axis. The Kosñipata River run-off at San Pedro and baseflow were measured nearly continuously

through the year, with a 31-day gap partly in July and August that is covered by three manual measurements. The gap was filled using linear

interpolation. The Kosñipata River run-off at Wayqecha was measured throughout the year from a daily to a monthly interval and is discussed

in the Supplement.

month, and the monthly totals were converted into an instan-

taneous discharge (m3 s−1) for each month. Monthly, sea-

sonal, and annual discharge and run-off were determined

from these values. There was a gap in the logger data of

31 days in the dry season between mid-July and early August

(Fig. 3); these gaps were filled by linear interpolation. This

interpolation misses storms, but these should have little in-

fluence on the annual discharge because of low flow through-

out this period of time. Baseflow was determined from mean

daily discharge (m3 s−1) using the method outlined in Gus-

tard et al. (1992). Baseflow index (BFI) was calculated as

the ratio of the total volume of baseflow divided by the total

volume of streamflow.

3.3 Actual evapotranspiration estimates

Actual evapotranspiration (AET) was estimated using the

ecophysiologically downscaled PT-JPL AET method devel-

oped by Fisher et al. (2008). This method has been evalu-

ated extensively throughout the tropics (Fisher et al., 2009).

The model is based on ecophysiological theory using traits

that are measurable in the field or remotely. It takes a bio-

meteorological approach incorporating the radiation-based

model from Priestley and Taylor (1972) to determine rates of

actual evapotranspiration. The model requires only four vari-

ables: normalised difference vegetation index (NDVI), net

radiation (Rn), maximum air temperature (Tmax), and min-

imum relative humidity (RHmin). The PT-JPL model pre-

dicts three components of the evapotranspiration budget:

canopy transpiration (AETc), rainfall evaporation intercep-

tion (AETi), and soil evaporation (AETs). Details of the pa-

rameter values selected for actual evapotranspiration esti-

mates are provided in the Supplement.

3.4 Water isotope measurements

River water, rainfall, and cloud water were collected from

2009 to 2011 from a range of elevations throughout the

catchment. River water was collected from the river surface,

passed through a 0.2 µm nylon filter, and stored unpreserved

in containers that prevented evaporative loss (see Supple-

ment). Rainfall samples were collected at the time of river

water collection near the river gauge, with additional sam-

ples collected along an altitudinal transect in the catchment

between 1500 and 3600 m a.s.l. (Table S4a). Cloud vapour

was collected along the altitudinal transect below the canopy

using a cryogenic pump (Table S4b).

Isotopic analysis was carried out on the samples to de-

termine δD (delta deuterium, 2H/1H, ‰), δ18O (delta 18-

oxygen, 18O/16O, ‰), and deuterium excess (defined as

Dxs= δD− 8× δ18O, in ‰), all reported relative to Stan-

dard Mean Ocean Water (SMOW). Deuterium excess (Dxs),

representing the offset from the meteoric water line (see Sup-

plement), provides information about the source conditions

of water vapour (Dansgaard, 1964). It is controlled by ki-

netic effects during evaporation, where a larger Dxs value

is an indicator of enhanced moisture recycling and a lower

value indicates an enhanced evaporative loss (Cappa et al.,

2003; Salati et al., 1979).

River water, rainfall, and water vapour samples were anal-

ysed with a Picarro L1102-i cavity ring-down spectrometer

(CRDS). River water and rainfall from 2011 were injected

five times, and the final three samples were averaged. Preci-

sion (1σ ) was 0.2 ‰ for δ18O and 1 ‰ for δD, though some

samples showed larger uncertainties. VSMOW and VSLAP

standards were analysed at the same time and were used

to assess accuracy and precision of the instrument between

runs. Rainfall from 2009 and water vapour were injected

nine times, and the final six samples were averaged. Preci-

sion (1σ ) was < 0.1 ‰ for δ18O and 1 ‰ for δD. Calibra-

tion of results to VSMOW was achieved by analysing in-

Hydrol. Earth Syst. Sci., 18, 5377–5397, 2014 www.hydrol-earth-syst-sci.net/18/5377/2014/



K. E. Clark et al.: The hydrological regime of a forested tropical Andean catchment 5383

Table 2. Water budget components for the Kosñipata catchment at the San Pedro (SP) gauging station, for the annual period from Febru-

ary 2010 to January 2011. Percentages indicate fraction of the annual total for that component.

Number Q Run-off Baseflow BFIa Rainfallb CWI AET mm d−1

of (m3 s−1) mm d−1, (%) mm d−1 (%) mm d−1 (%) mm d−1 (%) (%)

months/

days

Wet 4/121 23.1± 1.3 12.13± 0.68 9.41± 0.77 0.77± 0.04 15.00± 3.08 1.37± 0.70 1.87± 0.37

(52) (52) (58) (52) (33)

Wet–dry 1/30 19.6± 2.6 10.29± 1.37 8.75± 1.35 0.85± 0.02 6.95± 2.58 1.16± 1.39 1.86± 0.37

(11) (12) (7) (11) (8)

Dry 5/153 8.1± 0.9 4.31± 0.46 3.58± 0.48 0.83± 0.04 4.32± 0.73 0.50± 0.32 1.81± 0.36

(24) (26) (21) (24) (40)

Dry–wet 2/61 11.3± 1.5 5.94± 0.81 3.56± 0.73 0.60± 0.04 7.02± 1.95 0.63± 0.75 2.11± 0.42

(13) (10) (14) (12) (19)

Annual 12/365 14.6± 0.7 7.66± 0.35 5.95± 0.37 0.77± 0.04 8.53± 1.13 0.87± 0.32 1.88± 0.38

(100) (100) (100) (100) (100)

Seasonal contribution as percentage of total in parentheses. Uncertainties are propagated 1σ errors. a Baseflow index (BFI) is the ratio of the total volume of baseflow

divided by the total volume of discharge following the method outlined in Gustard et al. (1992). b Catchment-wide rainfall is corrected for wind-induced loss and is reported

for February 2010 to January 2011 to coincide with the study period.

ternal standards before and after each set of seven to eight

samples. Internal standards SPIT, BOTTY, and DELTA were

used to calibrate against VSMOW. Additional analyses us-

ing isotope-ratio mass spectrometry (IRMS) were used as a

check on the CRDS results (see Supplement).

4 Results

4.1 Catchment-wide rainfall

The estimated annual wind-loss-corrected rainfall for the

12-month study period (February 2010 to January 2011)

was 3112± 414 mm, or 90.8± 16.5 % of total water inputs

(3428± 430 mm) (Table 2), where uncertainties are propa-

gated errors reported at 1 standard deviation (the same con-

vention is used throughout the text). Based on the long-

term calibrated TRMM record, the 15-year (1998 to 2012)

mean annual rainfall was 2881± 124 mm, indicating that

our river discharge measurements were made in a year

with slightly higher than average rainfall (Fig. 4; Table S5).

The total rainfall contribution over the study period was

divided into 100 m altitudinal bins to evaluate how rain-

fall was distributed over the catchment. Although most of

the catchment area is located at mid- to high-elevation

ranges (∼ 2400–3400 m a.s.l.), maximum rainfall occurs at

∼ 2400 m a.s.l. (Fig. 2c).

4.2 Discharge and run-off

The Kosñipata River basin at San Pedro, with a mean eleva-

tion of 2805 m a.s.l. and an area of 164.4 km2, was estimated

to have a mean discharge of 14.6± 0.7 m3 s−1 and run-off
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Figure 4. Catchment-wide TRMM calibrated rainfall for the Kosñi-

pata catchment from 1998 to 2012. The thick red line represents the

1-year study period.

of 2796± 126 mm (81.6± 11.0 % of total precipitation) over

the 1-year study period (Table 2). This value falls within the

run-off range of 2100 to 3070 mm yr−1 for two microcatch-

ments in the Ecuadorian Andes with very similar vegetation

cover and elevation (Crespo et al., 2011). In the Kosñipata

catchment, 52 % of the annual flow was during the wet sea-

son, which covers only 33 % of the year (Table 2).

Baseflow was 2173± 133 mm of the annual total run-off.

BFI is the ratio between the total baseflow volume and total

streamflow volume. The BFI value for the Kosñipata (77 %)

is consistent with the two Ecuadorian catchments discussed

above, where 80 % of annual flow was attributed to baseflow

(Crespo et al., 2011).
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4.3 Evapotranspiration

Actual evapotranspiration (AET) was estimated from the

PT-JPL model (Fisher et al., 2008) at 688± 138 mm (20.1

± 4.8 % of total precipitation). In previous work in low-

land tropical forests, AET was estimated to be 1000–

1300 mm yr−1 (Bruijnzeel et al., 2011; Fisher et al., 2009),

while TMCFs were characterised by ET values more similar

to the Kosñipata catchment, between 545 and 1200 mm yr−1

(Bruijnzeel et al., 2011). AET in TMCFs is reduced because

fog immersion in TMCFs reduces solar radiation and lowers

the vapour pressure deficit, resulting in lower atmospheric

evaporative demand (McJannet et al., 2010; Letts and Mulli-

gan, 2005; Bruijnzeel and Veneklaas, 1998), and because wet

leaf surfaces lower transpiration and photosynthesis (Letts

and Mulligan, 2005).

The interception evaporation component of the PT-JPL

model was not tested against data because no data were avail-

able. However, the model has been tested against many low-

land tropical forest flux sites, where the total ET measured

does include intercepted evaporation (Fisher et al., 2008).

In the Kosñipata catchment the PT-JPL model predicts in-

tercepted evaporation to be 226± 45 mm yr−1 in the UMCF,

324± 65 mm yr−1 in the LMCF, and 104± 21 mm yr−1 in

the puna/transition. This compares favourably with direct in-

tercepted evaporation estimated in the Yanchaga–Chemillén

forests in the central Peruvian Andes, where intercepted

evaporation in UMCF contributed 210 mm yr−1, or 7.7 %

of the bulk precipitation, and where in LMCF it con-

tributed 660 mm yr−1, or 33 % of the bulk precipitation in-

put (Gomez-Peralta et al., 2008). Our basin-wide estimate of

AETi was 225± 45 mm yr−1, or 6.6± 1.6 % of the bulk pre-

cipitation (3428± 430 mm yr−1).

Sap flow was measured in tree trunks in the Wayqecha for-

est plot (2900 m a.s.l.) for 1 month from mid-July to mid-

August 2008. These sap flow values were used in the soil–

plant atmospheric (SPA) model to predict a canopy transpi-

ration rate of 53 mm month−1 (van de Weg et al., 2014). For

the same time period, using the same meteorological data,

the PT-JPL model predicted a canopy transpiration (AETc)

of 49 mm. These similarities suggest that, even though the

PT-JPL model has not been deployed in TMCF previously, it

provides a reasonable estimate of canopy transpiration and

intercepted evapotranspiration. Thus, we allocate a maxi-

mum error of ∼ 20 % on AET.

4.4 Isotopic analyses and mixing calculations

Rainwater δD and δ18O values display considerable seasonal

variation, whereas variation with elevation during a given

season is less pronounced (Table S4a; Fig. 5). Rainwater δD

and δ18O values are highest during the dry season. Seasonal

variation in Dxs is minimal (Fig. 5). The δ18O and δD of

Kosñipata cloud water vapours are not clearly distinct from

rainwaters. This result departs from the isotopic enrichment
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Figure 5. Hydrogen isotope ratio (δD, ‰) and deuterium excess

(Dxs, ‰) of dry-season cloud water vapour (yellow diamonds), and

river water (grey circles) from the Kosñipata catchment. Rainwater

samples (squares) are from the dry season (May to August, yellow)

and from the wet season (December to March, green). All error bars

correspond to 2 standard deviations. The grey shaded regions en-

compass the mean δD and Dxs values and 1 standard deviation for

each endmember (i.e. wet-season rainfall, dry-season rainfall, and

dry-season cloud water vapour). The ranges defined by these grey

boxes were used to generate random sets of endmember composi-

tions for the three-endmember mixing model.

found in cloud waters in non-orographic settings, but sim-

ilarity between cloud and rainwater isotopes has also been

found in the few cases of orographic cloud formation that

have been studied (Scholl et al., 2011). Despite the overlap

in δ18O and δD, the cloud water vapour samples from the

Kosñipata catchment have higher and more variable Dxs val-

ues than all of the rainwater samples (Fig. 5; Table S4b).

Stream water δD, δ18O, and Dxs values ranged from

−94.8 to −64.9 ‰, −14.5 to −10.9 ‰, and 19.1 to 22.6 ‰,

respectively (Table S6). A slight seasonality is apparent in

stream water isotopic composition, with slightly higher δD

values during the dry season and dry-to-wet season transition

(Fig. 6a). A significant seasonal variation in Dxs in stream

water is not apparent (Fig. 6b). See the Supplement for full

details on the δD, δ18O, and Dxs isotope results.

Qualitative comparison between the Kosñipata River wa-

ter isotope data and the rainwater and cloud water isotope

data suggests that, throughout the year, wet-season precipi-

tation is the dominant contributor to river discharge (Fig. 5).

As discussed below, this probably results from the storage

of wet-season precipitation in groundwater that is released to

the stream over time. It is possible that isotopic enrichment

may take place via evaporation as water makes its way from

precipitation to streamflow, either associated with through-

fall (e.g. Brodersen et al., 2000) or in soils (e.g. Dawson

and Ehleringer, 1998; Thorburn et al., 1993). Such isotopic
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Figure 6. Time series of river water hydrogen isotopes (δDriver) and river water deuterium excess (Dxsriver), and the calculated mixing

proportions of different sources for the Kosñipata River. (a) The time series of δDriver values with error bars signifying 2 standard deviations.

(b) The time series of Dxsriver values with error bars signifying 2 standard deviations. Time series of the 5th (lower error bar), 50th (open

circle), and 95th percentile (upper error bar) values of the distribution of fractional contributions to river discharge, calculated using the three-

endmember mixing model, of (c) wet-season rain; (d) dry-season rain; and (e) cloud water vapour. (f) Time series of the mean contributions

of wet-season rain (circle), dry-season rain (square), and cloud water vapour (diamond) to river discharge.

enrichment could bias inferences about water sources using

isotopic signatures. However, we note that any evaporative

enrichment would act to decrease the relative contribution

from wet-season rainfall (the depleted source), supporting

the qualitative inference that wet-season rainfall is the dom-

inant source of streamflow throughout the year. Moreover,

the Kosñipata stream waters appear to have little geochemi-

cal imprint of evaporation. Chloride concentrations provide

a conservative tracer that should be enriched during evapora-

tion; in the Kosñipata samples, Cl concentrations are similar

in rainwater (2–20 µM) and stream water (2–12 µM) (Torres

et al., 2014). Kosñipata stream waters also lie on the same lo-

cal meteoric water line as rainwater (see Supplement), with

no evidence of relative D depletion that may be expected dur-

ing evaporation.

To quantitatively constrain the relative contributions of

different water sources to river discharge, a three-endmember

mixing model was used (see Supplement for details). In this

model, mixing between wet-season precipitation, dry-season

precipitation, and dry-season cloud water vapour is consid-

ered along with observed variability in the isotopic composi-

tions of each of these endmembers (i.e. Phillips and Gregg,

2001). Since we assume minimal evaporative enrichment of

water isotopes during run-off generation, the results of this

model provide a minimum constraint on the contribution

from wet-season rainfall. Results of the three endmember

mixing calculations are distributions of possible endmem-

ber contributions (Fig. 6c–f). For individual samples, mean

contributions of wet-season rainfall, dry-season rainfall, and

cloud water vapour to river discharge range from 46 to 67, 19

www.hydrol-earth-syst-sci.net/18/5377/2014/ Hydrol. Earth Syst. Sci., 18, 5377–5397, 2014



5386 K. E. Clark et al.: The hydrological regime of a forested tropical Andean catchment

5 10 15 20 25 30 350.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

Discharge (m3 s-1)
5 10 15 20 25 30 350.40

0.45

0.50

0.55

0.60

0.65

0.70

m
ea

n 
fra

ct
io

n

Discharge (m3 s-1)

5 10 15 20 25 30 350.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Discharge (m3 s-1)

5 10 15 20 25 30 35−95

−90
−85
−80
−75
−70
−65
−60
−55

δD
riv

er
 (‰

)

Discharge (m3 s-1)
5 10 15 20 25 30 3510

15

20

25

30

D
xs

riv
er
 (‰

)

Discharge (m3 s-1)

d e

c

a b

Wet Season 
Rain

Dry Season
Rain

Cloud Water

m
ea

n 
fra

ct
io

n

m
ea

n 
fra

ct
io

n  Wet   
 Wet/Dry  

Dry  
Dry/Wet

Figure 7. Variation in the isotopic composition of river water (a) deuterium excess (Dxsriver, ‰) and (b) hydrogen isotope ratio (δDriver,

‰) plotted versus discharge (m3 s−1). Variation in the mean contributions to river flow as a function of water discharge for cloud water

vapour (c), wet-season rain (d), and dry-season rain (e), all as calculated by the endmember mixing analysis.

to 33, and 7 to 31 %, respectively (Fig. 6f; Table S7). Simi-

larly, the maximum likely contributions of each source to a

single sample, which we define as the 95th percentile value

of the distributions from our mixing calculations, range from

66 to 87, 38 to 60, and 19 to 52 % for wet-season precipi-

tation, dry-season precipitation, and cloud water vapour, re-

spectively (Fig. 6c–f). It is worth noting that only two sam-

ples (n= 62) show mean and maximum likely contributions

of cloud water vapour greater than 18 and 40 %, respectively

(Fig. 6f; Table S7). These contributions calculated from the

water isotope mixing model reflect the ultimate source of the

water-to-stream run-off, with storage and mixing in ground-

water likely to be an important intermediary but one which

would not affect the source partitioning.

4.5 Cloud water in streamflow

Isotopic mixing calculations constrain the statistically most

likely cloud water vapour contribution to between 7 and 31 %

of streamflow, with only two samples > 18 % (Table S7).

All samples, except for the two with the highest analytical

uncertainties, show this range of cloud water vapour con-

tribution regardless of collection season (Figs. 6f and 7c).

Based on our estimated monthly total river discharge and the

average values for cloud water contribution in each month,

we estimate that total cloud water contribution to stream-

flow was 316± 116 mm yr−1, using the 50th percentile val-

ues of the cloud water fraction and confidence intervals de-

fined by the 5th and 95th percentiles (Tables 3 and S7). Our

estimated cloud water flux to the river falls within the (admit-

tedly very broad) range of CW interception fluxes measured

in other TMCFs, which range from ∼ 50 to 1200 mm yr−1

(Bruijnzeel et al., 2011; Bendix et al., 2008). Compared to
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Table 3. Breakdown of streamflow into its sources.

n Fraction wet- Fraction Fraction Wet-season Dry-season Cloud Total stream

season dry-season cloud rain as a rain as a water as a run-off

rainfalla rainfalla watera source source source (mm month−1)

(mm month−1)b (mm month−1)b (mm month−1)b

Feb 2010 28 0.62± 0.04 0.24± 0.04 0.11± 0.03 231± 16 91± 17 41± 13 372± 38

Mar 2010 2 0.62± 0.15 0.25± 0.16 0.10± 0.12 261± 70 105± 72 44± 56 420± 41

Apr 2010 2 0.65± 0.14 0.21± 0.14 0.11± 0.12 200± 49 66± 49 35± 42 309± 41

May 2010 3 0.61± 0.12 0.25± 0.13 0.11± 0.10 143± 34 59± 35 27± 28 235± 40

Jun 2010 1 0.63± 0.20 0.22± 0.20 0.12± 0.17 103± 40 36± 40 19± 35 163± 35

Jul 2010 2 0.58± 0.13 0.28± 0.14 0.12± 0.11 61± 17 28± 18 13± 14 105± 30

Aug 2010 3 0.58± 0.13 0.27± 0.14 0.12± 0.10 51± 15 24± 16 10± 12 87± 26

Sep 2010 3 0.59± 0.13 0.26± 0.23 0.12± 0.11 42± 12 19± 13 8± 10 70± 23

Oct 2010 1 0.64± 0.22 0.26± 0.23 0.08± 0.16 127± 53 51± 55 16± 39 199± 36

Nov 2010 3 0.52± 0.14 0.30± 0.15 0.14± 0.12 86± 28 50± 31 23± 25 164± 34

Dec 2010 4 0.56± 0.12 0.30± 0.13 0.10± 0.09 188± 44 98± 50 35± 33 333± 42

Jan 2011 2 0.55± 0.16 0.29± 0.18 0.14± 0.14 186± 62 99± 69 46± 54 339± 43

Fractional contributions by seasonc

Wet 0.59± 0.07 0.27± 0.08 0.11± 0.05

Wet–dry 0.65± 0.14 0.21± 0.14 0.11± 0.12

Dry 0.61± 0.09 0.25± 0.09 0.12± 0.07

Dry–wet 0.59± 0.16 0.28± 0.17 0.11± 0.13

Annual 0.60± 0.05 0.26± 0.05 0.11± 0.04

a Calculated from monthly average values of mixing model results. Reported errors are propagated uncertainty (1σ ) from individual samples per month, accounting for uncertainties

from the Monte Carlo mixing model (Table S7). b Calculated from monthly fractional contributions and monthly run-off. Reported errors are propagated uncertainty (1σ ) from the

mixing modelling and from the variation in stream run-off. c Calculated based on run-off totals for each month, from each source, summed for a given season. Reported errors are

propagated uncertainty from monthly run-off estimates from each source. n= number of samples measured for water isotopes in each month.

our annual discharge of 2796± 126 mm, this means cloud

water contributed 11± 4 % to annual streamflow.

Our results suggest that cloud water appears to contribute

non-negligibly to stream run-off in the Kosñipata River, but

that it remains secondary to precipitation inputs even dur-

ing the dry season when rainfall is at its lowest and cloud

immersion is most frequent. Cloud frequency is high in

the catchment, with cloud cover > 70 % year-round (Hal-

laday et al., 2012a). In the dry season the cloud base was

> 1800 m a.s.l. 40 % of the time (Rapp and Silman, 2014).

Cloud immersion is a key characteristic of TMCF (Brui-

jnzeel et al., 2011) and provides an important water source

to the forest canopy and the diverse epiphyte community

(Rapp and Silman, 2014; Bruijnzeel et al., 2011; Giambel-

luca and Gerold, 2011). However, it is possible that much

of the intercepted water is transpired or evaporated directly

from the canopy. Overall, cloud water contribution to stream

run-off supplies a relatively constant proportion of total flow

throughout the year and never dominates water inputs to the

Kosñipata River, even during times of the lowest flow (Ta-

ble 3).

5 Discussion

5.1 Water balance

The annual water balance for the Kosñipata catchment

(Fig. 8a) can be described by the following equation (water

inputs to the catchment on the left, losses from the catchment

on the right):

rainfall+CWI= AET+ run-off+ residual. (1)

Rainfall was estimated catchment-wide from TRMM and

meteorological station rainfall at 3112± 414 mm yr−1. CWI

was estimated from the isotope mixing model at 316

± 116 mm yr−1. AET was estimated from the PT-JPL model

(Fisher et al., 2008) at 688± 138 mm yr−1. Run-off was es-

timated from the gauging station at 2796± 126 mm yr−1.

The residual of Eq. (1) sums to −56± 469 mm, which is

−1.6± 13.4 % of total annual water inputs through rainfall

and CWI, indicating that any imbalance within our budget is

within the estimated uncertainties of the water balance cal-

culation.

There are several additional structural uncertainties in our

calculation of the water balance for the Kosñipata catch-

ment. Rainfall was estimated for the catchment by calibrat-

ing TRMM rainfall using actual rainfall collected from nine

gauging stations. In the Kosñipata catchment there was a de-
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Figure 8. A schematic illustration of the water budget for the Kosñipata catchment for (a) the study year, (b) the early wet season (December

and January), and (c) the early dry season (May and June). Black arrows represent inputs, and red arrows represent outputs; yellow arrows

represent the reversible flux of the residual over the wet and dry seasons, reflecting the transient seasonal storage of water in soil and fractured

bedrock (see Discussion in text). The sizes of the arrows are scaled logarithmically with the magnitude of the flux. Values indicated are sums

for that time period in mm.

crease of rainfall with an increase of elevation, correspond-

ing to an average annual rainfall gradient of ∼−148 mm per

hundred metres (Fig. 2a). It is possible that rainfall deviates

from this trend along the altitudinal gradient because our re-

sults are limited to nine meteorological stations dispersed

over a large area (Fig. 1a). Intense localised storm activity

also increases the chance of underestimating precipitation.

The types of rain gauges used in the catchment (Table S2)

are not ideal for cloud forests due to an underestimation of

wind-driven precipitation on steep slopes (Bruijnzeel et al.,

2011; Frumau et al., 2011). Although we have corrected for

wind losses (Holwerda et al., 2006), this correction method

has not been tested specifically in the Kosñipata catchment.

Stream run-off can be overestimated in mountain rivers due

to an overestimation of velocity by taking measurements pre-

dominantly near the surface of the channel (Chen and Chiu,

2004; Thome and Zevenbergen, 1985). We have taken this

into consideration and corrected surface velocity to estimate

mean channel velocity (following Eq. S1 in the Supplement),

but it is possible that our run-off values remain overesti-

mated. Taking these methodological uncertainties into con-

sideration, our rainfall input value may be conservative, and

stream run-off output value may be an upper bound.

Improvements in our estimates of the water budget might

be possible from additional work, including (1) characteris-

ing the interactions between topography, wind speed and the

amounts of rainfall received on slopes with varying wind ex-

posure; (2) measuring throughfall (crown drip) stable water

isotope composition, which would make it possible to use

isotope mass balance of different precipitation sources to test

the calculated cloud water inputs; and (3) using distinct two

component mass balance models to infer CWI for the differ-

ent ecosystem types (puna/transition, UMCF, and LMCF),

i.e. as a variant of the wet canopy water budget approach

of Holwerda et al. (2006) that was also used in Scholl et

al. (2011).

5.2 Hysteresis

5.2.1 Characterising hysteresis

A monthly breakdown of the water balance shows the dis-

tribution of annual residual when water is going into stor-

age (+) and when water is coming out of storage (−; Fig. 9).

The mid-wet-season (January and February) was a time of

recharge with positive residual values. This store was sub-

sequently drained as discharge to stream run-off in the wet–

dry transitional season (April) and most of the dry season

(May to August), both of which showed negative residual

values (Fig. 9). This seasonal shift (see Fig. 8) illustrates how

rainfall stored during the wet season plays an important role

in sustaining steady dry-season run-off. The results of the

isotope mixing analysis confirm this inference by showing

that wet-season rainfall is still prominent in contributing to

streamflow in the dry season. Sources of streamflow from

May to September 2010 were 61± 9 % from wet-season

rainfall, 25± 9 % from dry-season rainfall, and 12± 7 %

from cloud water (Table 3).

At seasonal timescales, streamflow and baseflow in the

Kosñipata catchment both follow an annual anticlockwise

hysteresis pattern (Fig. 10). This pattern is similar to that

observed by Andermann et al. (2012) in the Nepalese

Himalaya. In the wet season (December to March), the

catchment-wide rainfall in the Kosñipata catchment was

greater than streamflow and baseflow (Fig. 10a and c). Dur-

ing the wet–dry transition season (April), and the start of the

dry season (May and June) however, there was a switch and

streamflow and baseflow were greater than rainfall. By the

Hydrol. Earth Syst. Sci., 18, 5377–5397, 2014 www.hydrol-earth-syst-sci.net/18/5377/2014/
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Figure 9. Cumulative water inputs (rainfall and cloud water inter-

ception) are represented by the black line. Cumulative water outputs

(river run-off and actual evapotranspiration) and the residual are

separated out into cumulative coloured stacked bars. Run-off is sep-

arated into its three sources: wet-season rainfall (WSR), dry-season

rainfall (DSR), and cloud water (CW) (Table 3). The study period is

separated by month, and the monthly balance is determined for the

study year, February 2010 to January 2011.

middle of the dry season (July and August) rainfall was equal

to streamflow and baseflow. By the time of the late dry sea-

son (September), rainfall started to increase and was greater

than streamflow and baseflow. The dry–wet transition season

(October and November) had higher rainfall than streamflow

and baseflow. Finally, in the early wet season (December to

January) the cycle was completed where the contribution of

rainfall dominated streamflow and baseflow (Fig. 10a and c).

The annual anticlockwise hysteresis was most pronounced

when streamflow and baseflow were compared to the rainfall

gathered over the study period at the Wayqecha meteorolog-

ical station at 2900 m a.s.l. (Fig. 10b and d).

The water isotope data support the indication of seasonal

hysteresis observed in the water balance estimates. The re-

lationship between river discharge and δD showed a sea-

sonal clockwise hysteresis, but this was not observed in Dxs

(Fig. 7a and b). Considering the observed endmember δD and

Dxs compositions, this observation implies that there was

seasonal variation in the relative contributions of wet- and

dry-season rainfall but not cloud water vapour (Fig. 7c–e).

The Monte Carlo-derived confidence intervals on the mix-

ing results provide large ranges. However, the mean results

(Fig. 7), which best represent each endmember composition,

show a seasonal anticlockwise hysteresis between river dis-

charge and the mean contribution of wet-season precipitation

that is consistent with the hysteresis observed in the water

balance. Dry-season and dry–wet transitional season run-off

appear to be sustained by relatively lower, but still dominant,

contributions from wet-season precipitation (Fig. 7d). A cor-

responding variation in the contribution of dry-season pre-

cipitation with discharge is also evident, whereby dry-season

and dry–wet transitional season run-off is composed of a

larger proportion of dry-season rainfall (Fig. 7e). The hys-

teresis in the mixing model results is attributable to the sea-

sonal hysteresis in stream water δD. No seasonal hysteresis

in the contribution of cloud water interception to river dis-

charge is apparent (Fig. 7c), consistent with there being no

seasonal pattern in the stream water Dxs.

The consistent, annual anticlockwise hystereses in both

the water balance and the contribution from different sources

inferred from the water isotopes indicate that there are im-

portant factors other than the storm run-off response that

influenced hydrologic variability throughout the year in the

Kosñipata catchment. The lag in run-off can be explained by

a significant portion of wet-season rainfall being stored and

then, several months later, discharged as run-off in the wet–

dry transition and dry seasons (Fig. 10a and Table 2). The

delay in rainfall to streamflow run-off helps provide water

in the catchment at times of lower rainfall, stabilising dry-

season run-off.

5.2.2 Can soil water explain seasonal hysteresis?

There are several potential mechanisms causing a seasonal

lag in streamflow. The water isotope data points to rainfall,

rather than cloud water, as the primary source of water, but

it is still unclear how rainfall is stored temporarily over the

year. Shallow groundwater (i.e. lateral flow through soil lay-

ers) derived from accumulation of water in soils during the

wet season may contribute to the delayed stream run-off.

In the Kosñipata catchment, shallow groundwater may be

sourced from drainage of saturated puna grassland soils. In

páramo wetlands (a wetter mountain top biome) in the north-

ern Andes of Ecuador, delayed groundwater has been shown

to play an important role in dry-season run-off (Buytaert and

Beven, 2011). Tropical montane cloud forest soils, as found

in a similar forest in Ecuador, can also be a potential source

of delayed run-off over shorter periods of∼ 3.5 to∼ 9 weeks

(Timbe et al., 2014).

If seasonal variations in soil water content are sufficient to

account for the seasonal lag in run-off in the Kosñipata, then

Acatchment×ED= Astorage× d ×1V, (2)

where Acatchment is the area of the drainage basin (m2),

ED is the seasonal excess discharge (mm) consisting of the

sum of the monthly residual values from the wet–dry tran-

sitional season and most of the dry season (April to Au-

gust; Fig. 9), Astorage is the area of the basin covered in

soil (m2), d is depth of soil layer (m), and 1V is the sea-

sonal variation in soil water content that needs to occur to

account for the excess discharge. Since the area of the catch-

ment and area covered in soil are approximately the same,

the area variables in Eq. (2) cancel out. For our calcula-

tion, we assume mean soil depth (d) to be ∼ 0.5 m, con-

sistent with data from the Kosñipata catchment (Gibbon et

www.hydrol-earth-syst-sci.net/18/5377/2014/ Hydrol. Earth Syst. Sci., 18, 5377–5397, 2014
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Figure 10. Mean monthly rainfall (corrected for wind-induced loss) versus river run-off (mm d−1) for the Kosñipata catchment, showing

anticlockwise hysteresis throughout the year, with months numbered chronologically and colour-coded by season (see Figs. 2 and 7). Plots

show stream run-off versus (a) catchment-wide rainfall and (b) meteorological station rainfall for the Wayqecha meteorological station

(2900 m a.s.l.), and baseflow versus (c) catchment-wide rainfall and (d) meteorological station rainfall at Wayqecha. Error bars represent 1

standard deviation. The one-to-one line for rainfall to river run-off is represented by the grey dashed line. Note: in (b) and (d) days with zero

rainfall were excluded as per the approach used by Andermann et al. (2012).

al., 2010; Zimmermann et al., 2009). Typical soil water con-

tent in the TMCF and puna ranges spatially between 32 and

71 % (Teh et al., 2014). Catchment-wide seasonal variation

(1V ) of <∼ 13 % was estimated using basin proportions

(Fig. 2c) for each ecosystem type and soil moisture varia-

tions observed in each ecosystem. LMCF and lower montane

rain forest (LMRF) dominates from 1350 to 2000 m a.s.l. and

comprises 8.3 % of the catchment area; UMCF dominates

from 2000 to 3450 m a.s.l. and comprises 80.6 % of the catch-

ment; and transition/puna is found > 3450 m a.s.l., compris-

ing 10.1 % of the catchment (Consbio, 2011). Temporal vari-

ability in soil moisture determined in past studies (Girardin et

al., 2014; Huaraca Huasco et al., 2014; Teh et al., 2014) indi-

cates1V = 5.4 % for LMCF/LMRF,1V = 15 % for UMCF,

and 1V = 0.4 % for puna grasslands.

Using an inferred catchment-wide 1V = 12.6 %, the to-

tal discharge contributed by soil water release, i.e. the right-

hand side of Eq. (2), is estimated to be 65 mm. This sug-

gests that water release from soil accounts for ∼ 17 % of the

total seasonal ED in the Kosñipata River, with the remain-

ing 310 mm (83 %) not explained by seasonal storage and

drainage of soils. How much more variable would soil water

content have to be in order to explain all of the seasonal ED?

By re-arranging Eq. (2) as 1V =ED/d , we find that volu-

metric water content would need to vary by ∼ 75 % between

seasons to fully account for our calculated seasonal excess

discharge of 373 mm. This magnitude of required seasonal

change is much greater than observed in any of the Kosñi-

pata soils.

5.2.3 Importance of groundwater in hysteresis

If soil water content changes are insufficient to account for

the excess dry-season discharge, the source of this excess

discharge is likely to be groundwater stored within the frac-

tured bedrock below the shallow soil layer. In central eastern

Mexico, groundwater in the TMCF was found to be an im-

portant component of dry-season run-off (Muñoz-Villers et
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al., 2012). Groundwater occurs mostly in permeable bedrock

and within fractures of impermeable bedrock (Jardine et al.,

1999; Gascoyne and Kamineni, 1994; Todd and Mays, 1980).

In the Nepal Himalayas, deep groundwater recharges through

fractured bedrock containing aquifers several tens of metres

deep and has a storage residence time of ∼ 45 days (Ander-

mann et al., 2012). Fracturing and the exposure of bedding

planes through the process of uplift and erosion in the Kosñi-

pata catchment (Carlotto Caillaux et al., 1996) could provide

conduits that aid in deep groundwater flow. In the Kosñipata,

∼ 80 % of the catchment area consists of sedimentary mud-

stones and shale, and ∼ 20 % consists of plutonic intrusions

(Table 1). Shale has a very low porosity and permeability

(Domenico and Schwartz, 1998; Morris and Johnson, 1967),

but when fractured its porosity is greatly increased (Jardine

et al., 1999). Plutonic intrusions, as found in lower parts of

the catchment, also have increased porosity as a result of

fracturing (Gascoyne and Kamineni, 1994). Thus we view

deep fractured bedrock as the likely transient storage reser-

voir that may explain the annual hydrograph in the catch-

ment. Further investigations into the hydrogeological char-

acteristics of the soil profile and weathered bedrock, such as

saturated hydraulic conductivity (Kim et al., 2014; Kuntz et

al., 2011; Larsen, 2000) and specific yields of fractured rock

types (Domenico and Schwartz, 1998), would help better elu-

cidate the role of groundwater in sustained dry-season base-

flow. Some of the seasonal storage of water could also be in

valley fills, lower slope colluvial deposits, peat and epiphyte

biomass in the TMCF, and in saprolite, and better constrain-

ing the potential water storage in such reservoirs would also

be valuable further work.

The observation of a significant role for seasonal ground-

water storage and release in Kosñipata River has implica-

tions for understanding Andean water resources, predicting

flooding, and quantifying biogeochemical fluxes. The capac-

ity for transient storage of water in bedrock may be affected

by land use changes, particularly if forests are removed and

resulting loss of forest soils reduces the “forest sponge” that

facilitates water infiltration and groundwater storage during

the wet season (Bruijnzeel, 2004). Our observations are im-

portant for assessing how the hydrologic system may re-

spond to changing climate. The rate of warming over the

next 100 years in the region of the Kosñipata catchment

is expected to proceed an order of magnitude faster than

the 1 ◦C increase in temperature per 1000 years during the

Pleistocene–Holocene (Bush et al., 2004). The observation

of upslope shift of plant distributions already indicates a dra-

matic pace of change in the Kosñipata (Tovar et al., 2013;

Feeley et al., 2011; Hillyer and Silman, 2010). It remains

unclear how patterns of rainfall and cloud frequency have

been changing and will change in the future (Halladay et al.,

2012b; Rapp and Silman, 2012), much less how the hydro-

logic system will respond, to changes both in magnitude and

in seasonality of precipitation sources. The baseline of water

isotope data, the partitioning of precipitation sources, and the

conceptual framework presented in this study offer the poten-

tial to help understand what hydrologic responses might be

expected if precipitation changes (e.g. as evaluated in Puerto

Rico; Scholl and Murphy, 2014). Moreover, further explo-

ration and verification of the observations in this study – for

example by conducting long-term streamflow measurements

(Larsen, 2000), considering longer-term water budgets (An-

dermann et al., 2012), considering detailed analysis of stream

hydrochemistry (Calmels et al., 2011; Tipper et al., 2006),

and/or analysing the isotopic composition of throughfall (i.e.

net precipitation) – would strengthen understanding of how

Andean TMCFs function hydrologically today and how this

function may evolve in the future.

6 Conclusions

An annual water budget for the Kosñipata catchment in-

dicates that 3112± 414 mm (90.8± 16.5 % of total wa-

ter inputs) was contributed to the catchment by rainfall,

316± 116 mm (9.2± 3.6 % of total water inputs) was sup-

plied by cloud water, 2796± 126 mm (81.6± 11.0 % of total

water inputs) was removed as streamflow, and 688± 138 mm

(20.1± 4.8 % of total water inputs) was lost through ac-

tual evapotranspiration. The annual water budget balances

to −1.6± 13.4 %. Annual stream run-off was composed of

60± 5 % wet-season rainfall, 26± 5 % dry-season rainfall,

and 11± 4 % cloud water. Baseflow contributed 77 % of the

streamflow over the 1 year of study. Run-off followed an

annual anticlockwise hysteresis with respect to rainfall, ex-

hibiting a lag in stream run-off that maintained stream wa-

ter flow in the early dry season. Of total dry-season run-off,

61± 9 % originated as wet-season rainfall. The contribution

from cloud water, although important to the TMCF ecol-

ogy, plays a secondary role in river streamflow (∼ 10 %) in

this catchment, even during the low flow of the dry season.

Seasonal excess discharge measured throughout the wet–dry

transitional season and dry season (April to August) was

∼ 373 mm, with storage and release of water in soil account-

ing for only ∼ 17 % of this excess. Deep groundwater in

fractured rock is probably the cause of the remaining ma-

jority of the seasonal lag in stream run-off. The observation

of seasonal groundwater storage in this system has important

implications for how land use and climate changes may af-

fect the hydrologic system in the Andes. Although significant

over seasonal timescales, there is no evidence of significant

change in groundwater storage over the course of the 1-year

study period, given the balanced water budget and similar

discharge at the beginning and end of the study.

The Supplement related to this article is available online

at doi:10.5194/hess-11-5377-2014-supplement.
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