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Abstract

We study n-monotone lower previsions, which constitute
a generalisation of n-monotone lower probabilities. We
investigate their relation with the concepts of coherence
and natural extension in the behavioural theory of impre-
cise probabilities, and improve along the way upon a num-
ber of results from the literature.
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1 Introduction

Lower and upper previsions, mainly due to Walley [13],
are among the more interesting uncertainty models in im-
precise probability theory. They can be viewed as lower
and upper expectations with respect to closed convex
sets of probability measures (also called credal sets; see
Levi [10]), and they provide a unifying framework for
studying many other uncertainty models, such as proba-
bility charges (Bhaskara Rao and Bhaskara Rao [2]), 2-
and n-monotone set functions (Choquet [3]), possibility
measures ([4, 5, 6, 14]), and p-boxes (Ferson et al [9]).
They have also been linked to various theories of integra-
tion, such as Choquet integration (Walley [12, p. 53]) and
Lebesgue integration (Walley [13, p. 132]).

The goal of this paper is to investigate how n-
monotonicity can be defined for lower previsions, and
to study the properties of these n-monotone lower previ-
sions. We start out from Choquet’s [3] original and very
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general definition of n-monotonicity for functionals de-
fined on arbitrary lattices.

The paper is structured as follows. Section 2 highlights
the most important aspects of the theory of lower previ-
sions that we shall need in the rest of the paper. Sec-
tion 3 is concerned with the definition of n-monotonicity
for lower previsions. In Section 4, we establish a number
of interesting properties, and generalise a number of re-
sults in the literature, for n-monotone lower probabilities
on fields of events. In Section 5, we relate n-monotone
lower previsions to comonotone additive functionals and
Choquet integrals. Finally, Section 6 contains some con-
clusions on the matter at hand.

2 Coherent lower previsions

In this section, we introduce a few basic notions about
lower previsions. We refer to Walley [13] for a more in-
depth discussion, and for a behavioural interpretation of
the notions discussed below.

Consider a non-empty set Q. A gamble f on Q is a
bounded real-valued mapping on Q. The set of all gam-
bles on Q is denoted by .. It is a real linear space
under the point-wise addition of gambles, and the point-
wise scalar multiplication of gambles with real numbers.
Hence, a linear space of gambles will mean in this paper
a subset of .Z that is closed under these two operations.

Special gambles are the ones that only take values in
{0,1}: let A be any subset of Q, also called an event,
then the gamble 4, defined by Iy(w) := 1 if ® € A and
Iy (@) := 0 otherwise, is called the indicator of A. This
establishes a correspondence between events and {0,1}-
valued gambles. Often we shall identify events A with



their indicators 4, and simply denote I4 by A.

A lower prevision P is defined as a real-valued map (a
functional) defined on some subset dom P of .Z; we call
dom P the domain of P. For any gamble f in domP, P(f)
is called the lower prevision of f. If the domain of P
contains only (indicators of) events A, then we also call P
a lower probability, and we write P(I4) also as P(A), the
lower probability of A.

Given a lower prevision P, the conjugate upper
prevision P of P is defined on domP = —domP :=
{—f: fedomP} by P(f) := —P(—f) for every —f in
the domain of P. This conjugacy relationship allows us to
focus on the study of lower previsions only.

A lower prevision P whose domain is a linear space is
called coherent if the following three properties are satis-
fied for all f, g in dom P and all non-negative real A:

(P1) P(f) > inf f (accepting sure gain);
(P2) P(Af) = AP(f) (positive homogeinity);
(P3) P(f+g) > P(f) +(g) (superadditivity).

A coherent lower prevision on a linear space can al-
ways be extended to a coherent lower prevision on all
gambles. A lower prevision P with a general domain
(not necessarily a linear space) is then called coherent if it
can be extended to a coherent lower prevision on all gam-
bles. This is the case if and only if sup Y, fi — mfo] >

" P(f;) — mP(fp) for all natural numbers n > 0 and
m >0, and fy, fi, ..., fn in the domain of P.

There are a number of common consequences of co-
herence that we shall use throughout the paper. A lower
envelope of coherent lower previsions (with the same do-
main) is again a coherent lower prevision. Moreover,
consider a coherent lower prevision P, let f and g be
elements in domP, and let g and A be real numbers,
with A > 0. Then whenever the relevant gambles be-
long to domP, we have that P(f +g) > P(f) + P(g),
P(Af) = AP(f), P(u) = i and P(f + p) = P(f) + .
Moreover inf f < P(f) < P(f) < sup f and consequently
0 < P(|f]) < P(|f]) < sup|f]. Also, P is monotone: if
f < g then P(f) < P(g). Finally, both |P(f)—P(g)| <
P(|f —g|) and |P(f) — P(g)| < P(f — g]). As an imme-
diate consequence of these properties, we see that if a
sequence f, of gambles converges uniformly to a gam-
ble f, i.e., sup|f, — f| — 0, then also P(f,) — P(f) and

P(f,) — P(f), so any coherent lower or upper prevision
is continuous with respect to the supremum norm.

A lower prevision Q is said to dominate a lower previ-
sion P, if domQ O domP and O(f) > P(f) for any f in
dom P. We say that a lower prevision P avoids sure loss if
it is dominated by some coherent lower prevision on .Z.
This is the case if and only if sup[Y}, fi] > Y1, P(f})
for any natural number n > 1 and any fi, ..., f, indomP.
A lower prevision avoids sure loss if and only if there is
a point-wise smallest coherent lower prevision Ep on .Z
that dominates P, namely, the lower envelope of all the
coherent lower previsions on . that dominate P. Ep is
then called the natural extension of P. B

A linear prevision P is a real-valued functional defined
on a set of gambles domP, that satisfies sup[Yr, fi —
Y78l = X P(fi) — X}, P(g;) for all natural num-
bers n >0 and m >0, and f1, ..., fu, €1> ---» &n IN
domP. A linear prevision P is coherent, both when in-
terpreted as a lower, and as an upper prevision; the for-
mer means that P is a coherent lower prevision on dom P,
the latter that —P(—-) is a coherent lower prevision on
—dom P. For any linear prevision P, it holds that P(f) =
—P(—f) whenever f and —f belong to the domain of P.
A lower prevision P whose domain is negation invariant
(i.e., —dom P = domP), is a linear prevision if and only
if it is coherent and self-conjugate, i.e., P(—f) = —P(f)
for all f in domP. A linear prevision P on .Z is a non-
negative, normed [P(1) = 1], real-valued, linear func-
tional on .Z. Its restriction to (indicators of) events is
then a probability charge (or finitely additive probability
measure) on ().

Let us denote the set of linear previsions on £ that
dominate P by .#(P). The following statements are
equivalent: (i) P avoids sure loss, (ii) the natural extension
of P exists; and (iii) .# (P) is non-empty. The following
statements are equivalent as well: (i) P is coherent; (ii) P
coincides with its natural extension £ on dom P; and (iii)
P coincides with the lower envelope of ./# (P) on domP.
The last statement simply follows from the important fact
that the natural extension of P is equal to the lower enve-
lope of ./ (P): Ep(f) =mingc_4p) O(f), for any gamble
fin Z. Often, as we shall see, this expression provides
a convenient way to calculate the natural extension of a
lower prevision that avoids sure loss. Finally it holds that
M (P) = A (Ep). This result can be used to prove the
following “transitivity” property for natural extension: if



we denote by Q the restriction of the natural extension Ep
of a lower prevision (that avoids sure loss) to some set of
gambles #" D domP, then .# (P) = .#(Q) = 4 (Ep),
and consequently E, coincides with Ep on all gambles.

3 n-Monotone lower previsions

Let us introduce our notion of n-monotonicity for lower
previsions. A subset . of .Z is called a lattice if it is
closed under point-wise maximum V and point-wise min-
imum A, i.e., if for all f and gin .%,both fVgand fAg
also belong to .. For instance, the set .Z of all gambles
on  is a lattice. The set of natural numbers without zero
is denoted by N. By N* we denote N U {oo}.

The following definition is a special case of Choquet’s
[3] general definition of n-monotonicity for functions
from an Abelian semi-group to an Abelian group.

Definition 1. Let n € N*, and let P be a lower prevision
whose domain dom P is a lattice of gambles. Then we call
P n-monotone if forall pe N, p<n, and all f, fi, ...,
fp in domP:

(—np (fA/\ﬁ) > 0.
p}

icl

The conjugate upper prevision of an n-monotone lower
prevision is called n-alternating. An co-monotone lower
prevision (i.e, a lower prevision which is p-monotone for
all p € N) is also called completely monotone, and an
co-alternating upper prevision completely alternating.

We use the convention that for [ = 0, A;c; f; simply
drops out of the expressions (we could let it be equal to
+o0). Clearly, if a lower prevision P is n-monotone, it is
also p-monotone for 1 < p < n. The following proposition
gives an immediate alternative characterisation for the n-
monotonicity of lower previsions.

Proposition 1. Let n € N*, and consider a lower previ-
sion P whose domain domP is a lattice of L. Then P is
n-monotone if and only if

(i) P is monotone, i.e., for all f and g in domP such
that f < g, we have P(f) < P(g),; and

(ii) forallpeN,2<p<mn,andall fi, ..

P(\,,/ﬁ) > Y (-ptip (/\fl).
i=1 0AIC{L,....,p} iel

Coherence guarantees n-monotonicity only if n = 1:
any coherent lower prevision on a lattice of gambles is
monotone (or equivalently, I-monotone) but not necessar-
ily 2-monotone, as the following counterexample shows.

., fpindomP:

Counterexample 1. Let Q = {a,b,c}, and consider the
lower prevision P defined on the singleton {f} by P(f) =
1, where f(a) =0, f(b) =1, f(c) =2. The natural ex-
tension Ep of P, defined on the set £ of all gambles on
(obviously a lattice), is the coherent lower prevision given

by
Ep(g) = min {g(b)7g(c)’ 8(“);8(6)}

for all gambles g on Q. The restriction of Ep to the lat-
tice of {0,1}-valued gambles (i.e., indicators) on Q, is
a 2-monotone coherent lower probability, simply because
Q contains only three elements (see Walley [12, p. 58]).
However, Ep is not 2-monotone: consider the gamble g
defined by g(a) = g(b) = g(c) = 1, then 1 = Ep(f V g) <
Ep(f)+Ep(g) —Ep(fAg) =1+41—0.5, which violates
the condition for 2-monotonicity.

Theorem 2. A linear prevision P on a lattice of gambles
is completely monotone and completely alternating.

Proof. Any linear prevision P is the restriction of some
coherent prevision Q on . (see for instance [13, Theo-
rem 3.4.2]). Now recall that Q is a real linear functional,
and apply it to both sides of the following well-known
identity (for indicators of events this is known as the sieve
formula, or inclusion-exclusion principle, see [1])

(=D A S

OAIC{1,....p} il

to get

p
Q(\/ﬁ) _ Y (g (/\ﬁ>.
=1 0£IC{1,...p} icl

So Q is completely monotone, and because in this case
condition (ii) in Proposition 1 holds with equality, it is



completely alternating as well. Now recall that Q and P
coincide on the lattice of gambles dom P, that contains all
the suprema and infima in the above expression. U

4 n-Monotone lower probabilities

4.1 Coherence, natural extension to events,
and the inner set function

If a lattice of gambles contains only (indicators of) events,
we call it a lattice of events. A lattice of events is there-
fore a collection of subsets of Q that is closed under (fi-
nite) intersection and union. If it is also closed under set
complementation and contains the empty set @, we call
it a field. An n-monotone lower prevision on a lattice of
events is called an n-monotone lower probability. A com-
pletely monotone lower probability is of course one that is
co-monotone, or equivalently, p-monotone for all p € N.

In what follows, we shall assume that both 0 and
belong to the domain. This simplifies the notation and
the proofs of the results that follow. These results can
be easily generalised to n-monotone lower probabilities
whose domain does not contain €.

Let us first study the relationship between n-
monotonicity and coherence. Recall that 1-monotonicity
is necessary, but not sufficient, for coherence. We shall
show in what follows that for n > 2, n-monotonicity is
(up to normalisation) sufficient, but not necessary, for co-
herence. To this end, we consider the inner set function
P, associated with a monotone lower probability P whose
domain domP is a lattice of events, containing @ and Q.
P, is defined by

P.(A) =sup{P(B): B€domP and BC A},

for any A C Q. Clearly this inner set function P, is mono-
tone as well, and it coincides with P on its domain dom P.
Let’s first mention some important known results for 2-
monotone lower probabilities (recall that any n-monotone
lower probability, for n > 2, is also 2-monotone). A co-
herent lower probability P defined on a lattice of events is
2-monotone if and only if for all A and B in dom P:

P(AUB)+P(ANB) > P(A)+ P(B).

Walley showed that a 2-monotone lower probability P on
a field is coherent if and only if P(0) =0 and P(Q) =1

(this is a consequence of [12, Theorem 6.1, p. 55-56]).
He also showed that if P is a coherent 2-monotone lower
probability on a field, then its inner set function P, is 2-
monotone as well and agrees with the natural extension
Ep of P on events (see [13, Theorem 3.1.5, p. 125]). In
this section, we generalise these results to n-monotone
lower probabilities defined on a lattice of events.

First, we prove that the inner set function preserves n-
monotonicity; this result is actually due to Choquet [3,
Chapter IV, Lemma 18.3] (once it is noted that Choquet’s
‘interior capacity’ coincides with our inner set function).
As the proof in Choquet’s paper consists of no more than
a hint [3, p. 186, 11. 6-9], we work out the details below.

Theorem 3. Let n € N*. If a lower probability P defined
on a lattice of sets, containing 0 and €, is n-monotone,
then its inner set function P, is an n-monotone lower
probability as well.

Proof. Let p € N, p <n, and consider arbitrary subsets B,
By, ..., B, of Q. Fix € > 0. Then for each I C {1,...,p}
it follows from the definition of P, that there is some Dy
in dom P such that D; C BN ();;B; and

P, <BmﬂB,-> —e<P(D) <P, (BmﬂB,») ;)

iel iel
P, is real-valued since P(0) < P, < P(Q). Similarly as
before, we use the convention that for / = @, the corre-
sponding intersection drops out of the expressions (we
let it be equal to Q). We shall also let the union of an
empty class be equal to 0. Define, for any I C {1,...,p},
E; =Ujcscq,..py Dy, then clearly E; € domP and Dy C
E; C BmﬂieIBi' Now let F = Ep and Fj, = E{k} CF
for k=1,...,p. Then F and all the F; belong to domP,
and we have for any K C {1,...,p} and any k € K that
Ex C E{k} = F, C BN By, whence

ExC (VFk=FN()FCBN() Bk
kek kek kek

Summarising, we find that for every given € > 0, there are
F and Fj in dom P, such that forall I C {1,...,p}

D CFN(FCBN()B; ©)
icl icl

and, using the monotonicity of P, and the fact that it co-

incides with P on its domain dom P, since P is monotone,



we deduce from Eqgs. (1) and (2) that

P, (BﬂﬂB,) —¢ gP(FmﬂF,-) <P, (BﬁﬂB,) .

iel iel iel

Consequently, for every € > 0 we find that

)y @quGﬂﬂ&>
1C{1,....,p} i€l

*(BﬂﬂB,)— Y P*<Bﬂﬂ3i>
I1C{1,...,p} icl IC{1,...p} icl

I even
- Yy |p (FﬂﬂFi) +e
IC{1,...p} iel
I odd
= Y (nlp (Fﬂﬂﬁ) —Npe > —Npe,
IC{1,...p} iel

where N, = 27! is the number of subsets of {1,...,p}
with an odd number of elements, and the last inequality
follows from the n-monotonicity of P. Since this holds
for all € > 0, we find that P, is n-monotone on the lattice
of events (Q). O

We mentioned in Section 2 that a coherent lower prob-
ability on a lattice of events is always (1-)monotone. In
Counterexample 1, we showed that a coherent lower pre-
vision that is 2-monotone on all events need not be 2-
monotone on all gambles. But at the same time, a lower
probability defined on a field of events can be coherent
without necessarily being 2-monotone, as Walley shows
in [12, p. 51]. Conversely, a 2-monotone lower proba-
bility defined on a lattice of events need not be coher-
ent: it suffices to consider any constant lower probability
P on o(Q). Below, we give simple necessary and suffi-
cient conditions for the coherence of an n-monotone lower
probability, we characterise its natural extension, and we
prove that the natural extension of an n-monotone lower
probability to all events is still n-monotone.

Proposition 4. Let P be an n-monotone lower probability
(n € N*, n > 2) defined on a lattice . that contains 0
and Q. Then P is coherent if and only if P(0) = 0 and
P(Q)=1.

Proof. The conditions are clearly necessary for coher-
ence. Conversely, Theorem 3 implies that the inner
set function P, of P is also n-monotone, and hence 2-
monotone. Now, by Delbaen [7, p. 213], this lower prob-
ability is coherent, and consequently so is P. O

The following proposition relates the natural extension
Ep of an n-monotone lower probability P with the inner
set function P,.

Proposition 5. Let P be a coherent n-monotone lower
probability (n € N*, n > 2) defined on a lattice of events
. that contains O and Q. Then its natural extension Ep
restricted to events is an n-monotone lower probability as
well, and coincides with the inner set function P, of P.

Proof. Consider any A C Q. Then for any P in .Z (P),

P(A)> sup P(B)>

BCABES

sup P(B) =P, (A).
BCA.Be.Y

Since we know that Ep(A) = min{Q(A): Q € #(P)},
we deduce that Ep(A) > P, (A) forallA C Q.
Conversely, let P be a coherent n-monotone lower prob-
ability on .. From Theorem 3, P, is n-monotone if P is,
and applying Proposition 4, P, is a coherent extension of
P to all events. It therefore dominates the natural exten-
sion Ep of P, whence Ep(A) <P, (A) forallAC Q. [

In particular, the natural extension to all events of a
coherent and n-monotone lower probability is also n-
monotone. This result will be generalised further on.

4.2 Natural extension to all gambles, and
the Choquet integral

Walley [12, p. 56] has shown that the natural extension Ep
to all gambles of a coherent 2-monotone lower probability
P defined on the set @(Q) of all events, is given by the
Choquet functional with respect to P.

Suj

Ep(f) = () / FAP =inff+ (R) / " e @)

inf f



where the integral on the right-hand side is a Rie-
mann integral, and the function G? defined by G?(x) =

P({f > x}), is the decreasing distribution function of
f with respect to P; GE is always bounded and non-
increasing, and therefore always Riemann integrable. We
have used the common notation {f > x} for the set
{0 € Q: f(w) > x}). This tells us that this natural exten-
sion is comonotone additive on £, because that is a prop-
erty of any Choquet functional associated with a mono-
tone set function on a field (see [8, Proposition 5.1]): if
two gambles f and g are comonotone, i.e.,

(Vor, 0 € Q)(f(@) < f(@r) = gl(or) < g(an)),

then Ep(f +8) = Ep(f) +Ep(g)-
By Proposition 5 we may assume that a coherent 2-

monotone lower probability defined on a lattice of events
that contains @ and Q, is actually defined on all of ©(Q),
since we can extend it from the lattice of events domP
to () using the inner set function (natural extension)
P, associated with P, which is still 2-monotone. More-
over, the natural extension of P to all gambles coincides
with the natural extension of P, to all gambles, because
of the transitivity property mentioned in Section 2. So
Eq. (3) also holds for 2-monotone coherent lower proba-
bilities defined on a lattice of events. We conclude:

Theorem 6. Let n € N*, n > 2, and let P be a coherent n-
monotone lower probability defined on a lattice of events
that contains both 0 and Q. Then its natural extension Ep
to the set £ of all gambles is given by a

/fdP =inff+ (R )/

inf f

sup f

Ep(f P.({f = x})dx

We already know from Theorem 3 that the natural ex-
tension P, of P to the set of all events is 2-monotone (or
more generally n-monotone) as well. This result holds
also for the natural extension to gambles.

Theorem 7. Let n € N*, n > 2. If a coherent lower prob-
ability P on a lattice of events ., containing O and Q, is
n-monotone, then its natural extension Ep is n-monotone
on the lattice of gambles L. a

Proof. LetpeN, p<nm,andletf, fi,...,
gambles on Q. Let

fp be arbitrary

P
a = min{inf f, rkni{linffk} , b =max{supf, rl?lélfcsupfk}.

Consider I C {1,...,p} then a <inf(f A A;; f;) and b >
sup(f A Ajer fi)- Tt is easily verified that

b
Ep (f/\/\ft> =a+(R )/ Gf/\/\zelfl( x) dx.

i€l

Since it is obvious that for any x in R

Giimers @ =B, <{f >xn{fi = x}) :

iel
it follows from the n-monotonicity of P, (see Theorem 3)
that for all real x

1
(=116 p,cy 7 (0) = 0.
1C{1,...p}
If we take the Riemann integral over [a, b] on both sides of
this inequality, and recall that ¥;cqy, . 3 (— DI =0, we
get
Y (-DVEp (fA/\ﬁ) > 0.
1<{1,....p} iel
This tells us that £ P 1S n-monotone. O

We deduce in particular from this result that given a
coherent n-monotone lower probability defined on $£(Q),
the lower prevision that we can define on .Z by means
of its Choquet functional is also n-monotone. Since triv-
ially the converse also holds, we deduce that the Choquet
functional respect to a lower probability P on @£(Q) is n-
monotone if and only if P is. This generalises a result by
Walley [12, Theorem 6.4].

Corollary 8. Let P be any coherent lower probability de-
fined on a lattice containing both O and Q. Let n € N*,
n > 2. Then P is n-monotone, if and only if Ep is n-
monotone, if and only if (C) [ -dP, is n-monotone.

Proof. If P is n-monotone, then Ep is n-monotone by
Theorem 7. B

If Ep is n-monotone, then P is n-monotone since Ep is
an extension of P (because P is coherent), and so, by The-
orem 6, Ep must coincide with (C) [ -dP,, which must be
therefore n-monotone as well.

Finally, if (C) [-dP, is n-monotone, then P, must be
n-monotone since (C) [-dP, is an extension of P,. But,
P, is also an extension of P (because P is coherent), so, P
is n-monotone as well. This completes the chain. [



5 Representation results

Let us now focus on the notion of n-monotonicity we have
given for lower previsions. If P is a monotone lower pre-
vision on a lattice of gambles that contains all constant
gambles, then its inner extension P, is given by
P.(f)=sup{P(g): g€domPand g < f}. (4)
for all gambles f on Q. Clearly this inner extension is
monotone as well, and it coincides with P on its domain

dom P. The following result generalises Theorem 3; their
proofs are completely analogous.

Theorem 9. Let n € N*. If a lower prevision P defined on
a lattice of gambles that contains all constant gambles is
n-monotone, then its inner extension P, is n-monotone on

Z.

We now investigate whether a result akin to Theorem 7
holds for n-monotone lower previsions: when will the nat-
ural extension of a coherent n-monotone lower prevision
be n-monotone? For Theorem 7, we needed the domain
of the lower probability to be a lattice of events containing
0 and Q. It turns out that for our generalisation we also
have to impose a similar condition on the domain: it will
have to be a linear lattice containing all constant gambles.
Recall that a subset J#" of .Z is called a linear lattice if
J is closed under point-wise addition and scalar multi-
plication with real numbers, and moreover closed under
point-wise minimum A and point-wise maximum V.

Consider a coherent lower prevision whose domain is
a linear lattice of gambles .2 that contains all constant
gambles. Then its natural extension to the set of all gam-
bles .Z is precisely its inner extension P, (see Walley [13,
Theorem 3.1.4]). This leads at once to the following theo-
rem, which is a counterpart of Theorem 7 for n-monotone
lower previsions.

Theorem 10. Let n € N*. If a coherent lower prevision
P defined on a linear lattice of gambles that contains all
constant gambles is n-monotone, then its natural exten-
sion Ep to £ is equal to its inner extension P,, and is
therefore n-monotone on the lattice of gambles £ .

Counterexample 1 tells us that this result cannot be ex-
tended to lattices that are not linear spaces.

We have not made any mention yet of the Choquet in-
tegral in relation to the natural extension. It turns out that
there is also a relationship between both concepts. Con-
sider a linear lattice of gambles %" that contains all con-
stant gambles. Then the set Z» = {A C Q: Iy € # '} of
events that belong to %" is a field of subsets of Q. Let us
denote by £z, the uniformly closed linear lattice

Lz, =cl(span(lz,,)),

where of course Iz, = {Ix: I € £}, ‘cl’ denotes uni-
form closure, and ‘span’ the linear span. £z, contains
all constant gambles as well. We call its elements .% -
measurable gambles. Every .7 ,-measurable gamble is

a uniform limit of .% , -simple gambles, i.e., elements of
span(l/z,, ). Moreover, Lz, C cl(%).

Theorem 11. Let P be an n-monotone coherent lower
prevision on a linear lattice of gambles ¥ that contains
all constant gambles. This lower prevision has a unique
coherent extension (its natural, or inner, extension) Ep to
cl(Z), and this extension is n-monotone as well. Denote
by Q the restriction of P to ¥ . Then for all f in Lz,

Consequently, Ep is both n-monotone and comonotone
additive on Lz ,,.

Proof. Let us first show that P has a unique coherent
extension to cl(#"). Let P’ be any coherent extension.
There is at least one coherent extension, namely its natu-
ral extension, which we denote by Ep. We show that P’
and Ep coincide on cl(.#"). Consider any element / in
cl(#). Then there is a sequence g, of gambles in %" that
converges uniformly to 4. Since both P’ and Ep coincide
with P on .#, and are continuous on their domain cl(.%),
because they are coherent, we find that
/ . . .

P'(h) = lim P'(g,) = lim P(g,) = lim Ep(g) = Ep(h).
Since P is n-monotone and coherent, its restriction Q to
the field .%  is an n-monotone and coherent lower p?ob—
ability. By Theorem 6, the natural extension E of Q to



the set . of all gambles is the Choquet functional associ-
ated with the n-monotone inner set function Q_of Q: for
any gamble f on Q,

sup f

Q9 ({f=x})dx.

Eo(f)=(C) [ 4@, = intf+(R)

inff

To prove that the coherent lower previsions E, and Ep
coincide on the subset fg‘%, of cl(.%), it suffices to
prove that E(, and P coincide on span(Iz ), since the
lower previsions E, and Ep are guaranteed by coher-
ence to be continuous, and since E p and P coincide on
span(lz, ) C %, because P is coherent on ¢ . Let there-
fore h be any element of span(lz,, ), i.e., his an .7 4 -
simple gamble. Then we can always find n > 1, real y;,
real non-negative L, ..., U,, and nested F> O --- D F,
such that h = puy + Y;_, telp,. It then follows from
the comonotone additivity of the Choquet integral that
Eg(h) = w1 + X}, ik Q(Fi). On the other hand, it fol-
lows from the coherence and the 2-monotonicity of P that

P(h)=ui +P (Z ,ukIFk>
k=2
=M —M+P (Z “lek> + P(12)
k=2

<u—tp+P (I.lz \Y Z ,UkIFk> +P (#2 A Z ,LLkIFk>
=2 k=2

Now it is easily verified that t V Yi_, tlp = to +
Yi—3 Milp, and pp AYY 5 i lR, = UaIF,, and consequently,
again using the coherence and the 2-monotonicity of P,
the fact that Q coincides with P on Z , and continuing

in the same fashion,
P(h) <p—pa+P (Hz +) uklpk> +P(12lr)
k=3
=W +mQ(FR)+P (Z .ukIFk>
k=3

<+ wQ(F) +u3Q(F3) +P (Z .UkIFk>

k=4

<+ Y mQ(Fy).
k=2

This tells us that Ey(h) > P(h). On the other hand, since
P is a coherent extension of Q, and since the natural ex-
tension E, 0 is the point-wise ‘smallest coherent extension
of 0, we also find that Eg (h) < P(h). This tells us that P

and E indeed coincide on span(lz ). O

Walley has shown in [13] that in general a coherent
lower prevision is not determined by the values it assumes
on events. But the preceding theorem tells us that for co-
herent lower previsions that are 2-monotone and defined
on a sufficiently rich domain, we can somewhat improve
upon this negative result: on .% ,-measurable gambles, at
least the natural extension Ep of the n-monotone coherent
P is completely determined by the values that P assumes
on the events in .# . Nevertheless, the following coun-
terexample tells us that we cannot expect to take this result
beyond the set £z, of .7 y-measurable gambles.

Counterexample 2. Let Q be the closed unit interval
[0,1] in R, and let P be the lower prevision on the lattice
H of all continuous gambles on Q, defined by P(f) =
f(0) for any f in J¢. Since P is actually a linear pre-
vision, it must be completely monotone (see Theorem 2).
Observe that ¢ is a uniformly closed linear lattice that
contains all constant gambles. Moreover, F_y = {0,Q},
so Lz, is the set of all constant gambles, and the natu-
ral extension E of the restriction Q of P to F y is the
vacuous lower prevision on £ : Ey(f) = inff for all
gambles f on Q. Therefore, for any g in J# such that
g(0) > infg, it follows that Ey(g) < P(g): the equality



in Theorem 11 holds only for those gambles in ¢ that
satisfy g(0) = infg.

So we conclude that an n-monotone and coherent lower
prevision P defined on a linear lattice of gambles that
contains the constant gambles, cannot generally be writ-
ten (on its entire domain) as a Choquet functional associ-
ated with its restriction Q to events. The following the-
orem is therefore quite surprising, as it tells us that, for
a lower prevision is defined on a sufficiently rich domain,
2-monotonicity and comonotone additivity of a lower pre-
vision are equivalent under coherence. As a consequence,
2-monotone coherent lower previsions P on such domains
can indeed always be represented on their entire domain
by a Choquet integral (but not necessarily with respect to
the inner set function of the restriction Q of P to events).

Theorem 12. Let P be a coherent lower prevision on a
linear lattice of gambles that contains all constant gam-
bles. Then P is comonotone additive if and only if it is
2-monotone, and in both cases we have for all f in dom P

sup f
PU)=(©) [ fap. =inif+(R) [ ({2 x])ax
Proof. Let us first prove the direct implication. Assume
that P is comonotone additive. Let us define %, :=
{f €domP: f >0}, and let P be the restriction of P to
J¢,. This lower prevision is also coherent and comono-
tone additive, and it is defined on a class of non-negative
gambles. Moreover, given f in %, and a > 0, the gam-
bles af, f Aa and f — f Aa belong to JZ; because dom P
is a linear lattice that contains the constant gambles and all
the above gambles are trivially non-negative. Hence, we
may apply Greco’s representation theorem (see [8, The-
orem 13.2], the conditions (iv) and (v) there are trivially
satisfied because all elements in J#; are bounded), and
conclude that there is a monotone set function y on £(Q)
with (1(0) =0 and p () = 1 such that for all f in 7, :

P(f)=(C) [ fdu.
Consider now any f in domP. Since f is bounded, and

coherence implies that P(f +a) = P(f) +aforallain R,
this also implies that inf f 4+ P, (f —inf f) = P(f), whence

p() =intf+(C) [1f—inffdu = (C) [ fau. (5)

It follows from the proof of Greco’s representation theo-
rem (see [8, Theorem 13.2]) that we can actually assume
U to be defined as the restriction of P, to events:

1(A) =P, (A) =sup{P(f): f <Isand f € domP} (6)

for all A C Q. By Theorem 10, u is also equal to the re-
striction to events of the natural extension Ep = P, of P.
Let us consider A C B C Q, and show that Ep(I4 +I5) =
Ep(Iy) +Ep(Ig) = u(A) + u(B). Since the coherence of
Ep implies that it is superadditive, we only need to prove
that Ep(I4 + Iz) < u(A) + u(B). Given &€ > 0, we de-
duce from Eq. (4) that there is some f in domP such
that f < Iy +1Ip and Ep(I4 + Ig) < P(f) + €. We may
assume without loss of generality that f is non-negative
[because fV 0 belongs to dom P and satisfies the same in-
equality]. Let us define g = fAland go =f—fAL
These gambles belong to the linear lattice dom P. More-
over, g1 + g» = f. Let us show that gy < Ip and gy < I4.
If ¢ B, we have 0 < f(w) < (I4 + I)(®) = 0 whence
g1(w) = g2(w) = 0. If on the other hand @ € A, there
are two possibilities: if f(w) < 1, then g(w) = 0 and
g1(w) = f(mw) < 1. If on the other hand f(®) > 1, then
g1(®w)=1and g(®0) = f(®) — 1 <2—1=1. Finally, if
® € B\ A, we have f(w) < I, whence g;(0) = f(0) <1
and g>(®) =0.

Moreover, g and g, are comonotone: consider any @
and @, in Q, and assume that g>(®;) < g2(@,). Then
g2(@y) > 0 and consequently @, € A and f(;) > 1. This
implies in turn that indeed g;(@,) = 1 > g1(®;). Hence,
since P is assumed to be comonotone additive,

Ep(Ia+1p) <P(f)+e=P(g1+g&2)+¢
=P(g1)+P(g2) +e <Ep(A)+Ep(B)+¢,
and since this holds for all € > 0 we deduce that indeed
Ep(Is+1p) <Ep(A)+Ep(B) = u(A) + pu(B).

Now consider two arbitrary subsets C and D of Q. Then
CND C CUD, and consequently

u(CUD)+pu(CND) = Ep(Icup +1Icrp)
=Ep(lc+1p) > Ep(lc) +Ep(Ip) = u(C) + u(D),
taking into account that Ep is superadditive (because it is

coherent). We conclude that y is 2-monotone on ().
From Proposition 4, we conclude that y is a coherent



lower probability on #(Q), so by Theorem 6, its natu-
ral extension is the Choquet functional associated with u,
and is therefore equal to P, by Eq. (5). If we now ap-
ply Theorem 7, we see that the coherent lower prevision
P given by P(f) = (C) [ fdu for all f in domP is also
2-monotone.

We now prove the converse implication. Assume that
P is 2-monotone. Then, applying Theorems 9 and 10,
its natural extension Ep = P, to all gambles is also 2-
monotone, and consequently so is its restriction p to
events. Moreover, Z,q) = £, because any gamble is the
uniform limit of some sequence of simple gambles. If we
now apply Theorem 11, we see that Ep(f) = (C) [ fdu
for all fin .#. Consequently, E p is comonotone additive,
because the Choquet functional associated with a mono-
tone lower probability is, and so is therefore P. O

Hence, the natural extension of an n-monotone (n > 2)
and coherent lower prevision defined on a linear lattice
of gambles that contains the constant gambles is always
comonotone additive. Indeed, this natural extension is the
Choquet functional associated to its restriction to events.

Corollary 13. Let n € N*, n > 2, and let P be an n-
monotone coherent lower prevision defined on a linear
lattice that contains all constant gambles. Then Ep is
n-monotone, is comonotone additive, and is equal to the
Choquet integral with respect to P, (restricted to events).

Moreover, such a lower prevision is generally not
uniquely determined by its restriction to events, but it is
uniquely determined by the values that its natural exten-
sion Ep = P, assumes on events. Of course, this natural
extension also depends in general on the values that P as-
sumes on gambles, as is evident from Eq. (6).

An n-monotone (n > 2) coherent lower probability P on
(), which usually has many coherent extensions to .Z,
has actually only one 2-monotone coherent extension to
Z. Of course, this unique 2-monotone coherent extension
coincides with the natural extension of P.

Corollary 14. Let n € N*, n > 2. An n-monotone coher-
ent lower probability defined on all events has a unique
2-monotone (or equivalently, comonotone additive) co-
herent extension to all gambles, that is furthermore au-
tomatically also n-monotone.
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Proof. Let P be an n-monotone lower probability defined
on all events. By Theorem 7, its natural extension Ep
to . is an n-monotone, and hence, 2-monotone coherent
extension of P. The proof is complete if we can show that
Ep is the only 2-monotone coherent extension of P.

750, let Q be any 2-monotone coherent extension of P.
We show that Q = E. p- Let f be any gamble on Q, then

0()=(0) [ rag=(C) [ fdp=Ep().

where the first equality follows from Corollary 13, the
second equality holds because Q coincides with P on
events, and the third one follows by applying Theorem 6.
This establishes uniqueness. O

Next, we give a couple of properties that relate
comonotone additivity (or, equivalently, 2-monotonicity)
of coherent lower previsions to properties of their sets of
dominating linear previsions.

Proposition 15. Let P be a coherent lower prevision on a
linear lattice of gambles. Consider its set of dominating
linear previsions .4 (P).

(a) If P is comonotone additive on its domain then for
all comonotone f and g in domP, there is some P in
A (P) such that P(f) = P(f) and P(g) = P(g).

(b) Assume in addition that domP contains all constant
gambles. Then P is comonotone additive (or equiv-
alently 2-monotone) on its domain if and only if for
all comonotone f and g in dom P, there is some P in
4 (P) such that P(f) = P(f) and P(g) = P(g).

Proof. To prove the first statement, assume that P is
comonotone additive on its domain, and consider f and
g in domP that are comonotone. Then f + g also be-
longs to dom P, so we know that P(f +g) = P(f) +P(g).
On the other hand, since P is coherent, there is some P
in .4/(P) such that P(f +g) = P(f +g) = P(f) + P(s).
So P(f)+ P(g) = P(f) + P(g) and since we know that
P(f) < P(f) and P(g) < P(g), this implies that P(f) =
P(f) and P(g) = P(g).

The ‘only if* part of the second statement is an im-
mediate consequence of the first. To prove the ‘if” part,
consider arbitrary comonotone f and g in domP. Then
fVgand fAg are comonotone as well, and belong to



dom P, so by assumption there is a P in .# (P) such that
P(fAng)=P(fAg)and P(fVg)=P(fVg). Then

P(fVg)+P(fNg)=P(fVg) +P(fNg)
=P(f)+P(g) > P(f)+P(g)-

This tells us that P is 2-monotone, and by Theorem 12
also comonotone additive, on its domain. O

As a corollary, we deduce the following result, appar-
ently first proven by Walley [12, Cors. 6.4 and 6.5, p. 57].

Corollary 16. Let P be a coherent lower probability on
a lattice of events. Consider its set of dominating linear
previsions .# (P). Then P is 2-monotone if and only if for
all A and B in dom P such that A C B, there is some P in
M (P) such that P(A) = P(A) and P(B) = P(B).

Proof. We just show that the direct implication is a con-
sequence of the previous results; the converse follows
easily by applying the condition to ANB C AU B, for
A and B in domP. Let P be a coherent lower previ-
sion defined on a lattice of events, that is moreover 2-
monotone. By Theorem 7, the natural extension Ep of P
to all gambles is 2-monotone and coherent. Hence, given
A C B € domP, since I4 and Ip are comonotone, Proposi-
tion 15 implies the existence of a P in .# (Ep) = .4 (P)
such that P(A) = Ep(A) = P,(A) = P(A) and P(B) =
Ep(B) = P,(B) = P(B). O

6 Conclusions

The results in this paper show that there is no real reason
to restrict the notion of n-monotonicity to lower proba-
bilities. In fact, it turns out that it is fairly easy, and com-
pletely within the spirit of Choquet’s original definition, to
define and study this property for lower previsions. And
we have shown above that doing this does not lead to just
another generalisation of something that existed before,
but that it leads to genuinely new insights. One important
conclusion that may be drawn from our results is that, un-
der coherence, 2-monotonicity of a lower prevision is ac-
tually equivalent to comonotone additivity, and therefore
to being representable as a Choquet functional (see Theo-
rem 12 for a precise formulation).

We have presented our results for coherent lower previ-
sions, which are positively homogeneous, super-additive
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functionals that satisfy a normalisation condition. Our re-
sults can be easily generalised to situations where nor-
malisation isn’t important, which is the case, for instance,
with Maal}’s so-called exact functionals [11]. Moreover,
the material presented above allows us to claim that most
(if not all) of the lower integrals defined in the literature
are actually completely monotone, and therefore repre-
sentable as Choquet functionals. Due to limitations of
space, we could not discuss these additional results here,
but we do intend to report on them elsewhere.
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