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Abstract12

Biological carbon fixation is limited by the supply of Fe in vast regions of the global ocean. Dissolved13

Fe in seawater is primarily sourced from continental mineral dust, submarine hydrothermalism, and14

sediment dissolution along continental margins. However, the relative contributions of these three15

sources to the Fe budget of the open ocean remains contentious. By exploiting the Fe stable isotopic16

fingerprints of these sources, it is possible to trace distinct Fe pools through marine environments,17

and through time using sedimentary records. We present a reconstruction of deep-sea Fe-isotopic18

compositions from a Pacific Fe-Mn crust spanning the past 76 Myr. We find that there have been19

large and systematic changes in the Fe-isotopic composition of seawater over the Cenozoic that20

reflect the influence of several, distinct Fe sources to the central Pacific Ocean. Given that deeply21

sourced Fe from hydrothermalism and marginal sediment dissolution exhibit the largest Fe-isotopic22

variations in modern oceanic settings, the record requires that these deep Fe sources have exerted23

a major control over the total Fe inventory of the Pacific for the past 76 Myr. The persistence of24

deeply sourced Fe in the Pacific Ocean illustrates that multiple sources contribute to the total Fe25

budget of the ocean and highlights the importance of oceanic circulation in determining if deeply26

sourced Fe is ever ventilated at the surface.27

Significance

The vertical supply of dissolved Fe (iron) is insu�cient compared to the physiological needs of marine
phytoplankton in vast swathes of the open ocean. However, the relative importance of the main sources
of ‘new’ Fe to the ocean – continental mineral dust, hydrothermal exhalations, and sediment dissolution –
and their temporal evolution are poorly constrained. By analyzing the isotopic composition of Fe in marine
sediments, we find that much of the dissolved Fe in the central Pacific Ocean originated from hydrothermal
and sedimentary sources thousands of meters below the sea surface. As such, these data underscore the
vital role of the oceans’ physical mixing in determining if any deeply sourced Fe ever reaches the Fe-starved
surface-dwelling biota.

28
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Introduction29

IRON (Fe) is the most abundant transition metal in marine phytoplankton, reflecting its importance for30

a range of biochemical processes such as photosynthesis and nitrogen fixation.1 The high cellular31

requirements for Fe, coupled with its low solubility and concentrations in seawater, render Fe a limit-32

ing nutrient in vast regions of the global ocean.2 In turn, this makes the availability of dissolved Fe a33

potential controlling factor for changes in atmospheric pCO2 and thereby major oscillations in Earth’s34

climate. Global biogeochemical models show that more regions of the surface ocean are dominated by35

circulation-driven dissolved Fe fluxes from below than by surface aerosol fluxes (e.g3, 4). This upward36

flux of dissolved Fe is itself primarily sourced from three main pathways: dissolution of mineral dust37

(e.g.5), submarine hydrothermalism (e.g.6–8), and from sediment dissolution along continental margins38

(e.g.9, 10), with the main removal mechanism being scavenging onto sinking particles (e.g.11). However,39

the significance of deeply-derived Fe sources – submarine sediment dissolution and hydrothermalism40

– compared with surface Fe sources (dust dissolution), remains controversial (e.g12, 13). Given the key41

role of Fe in supporting oceanic primary production, quantifying the relative importance of the various42

Fe sources – both in the modern ocean and in the geological record – is critical to understanding how43

micronutrient cycles are related to Earth’s climatic state.44

One promising way to trace Fe sources in the modern ocean is with measurements of stable Fe-isotopic45

compositions, where d56/54Fe =
�56/54Fesample/56/54FeIRMM�14 � 1

�
⇥ 1, 000. Recent studies showed that46

the Fe-isotopic composition of seawater is primarily controlled by the relative input of isotopically dis-47

tinct Fe sources,14–16 and that these source signatures can be transported and retained over thousands48

of kilometers within the ocean interior.14 The large range in Fe-isotopic compositions observed between49

different Fe sources (� 4 ‰) and in seawater (> 2 ‰14–18) should therefore also be reflected in sedimen-50

tary archives that faithfully capture the Fe-isotopic composition of seawater.51

Here, we report a record of d56/54Fe from CD29-2, a mineralogically-uniform19 Fe-Mn (ferromanganese)52

crust collected from the flank of the Karin Ridge at 16�42.40 N, 168�14.20 W in the central Pacific (;20
53

Fig. 1). The present water depth of CD29-2 is ⇡ 2, 000 m, though the depth at the time when Fe-Mn54

crust formation commenced was likely ⇠ 1, 000 m (owing to thermal subsidence; see SI, Supporting In-55

formation). Hydrogenetic Fe-Mn crusts are irregularly layered sedimentary deposits that form through56

chemical precipitation of Fe- and Mn-oxides from ambient seawater, forming a mineral termed feroxy-57

hyte.21 Their persistence on rocky substrates away from sediment sources that might bury the crust21
58

allows other metals to adsorb and become incorporated into Fe-Mn crusts via lattice replacement or59

co-precipitation with Fe- or Mn-oxides.22 Detailed elemental stratigraphy showed that CD29-2 is hy-60

drogenetic – rather than hydrothermal or diagenetic – in origin.19 This designation means that the Fe61

and other metals contained within CD29-2 were sourced from ambient seawater at the time of deposi-62

tion, rather than diagenetic remobilization of sedimentary metals, or through accretion of hydrothermal63

vent-derived Fe- and Mn-oxides.64

The extremely slow growth rate of most hydrogenetic deposits (1 � 10 mm Myr�1;23) renders Fe-Mn65

crusts as ideal recorders of long term changes in seawater trace element-isotopic chemistry. CD29-266

has an average growth rate of ⇡ 1.4 mm Myr�1,23 with each discrete sample for d56/54Fe (between67

0.2� 0.5 mm) integrating between 140� 350 kyr of Earth history. Since the residence time of dissolved Fe68

in the deep ocean (⇡ 270 years24) is less than the mixing time of the oceans (⇡ 1, 000 years25), our record69

provides a ‘local’ history of the central Pacific, rather than of global seawater d56/54Fe. Postdepositional70

processes such as diffusional re-equilibration with seawater26 or precipitation of calcium fluorapatite71

in Fe-Mn crust pore spaces27 have not affected the Fe-isotopic record in CD29-2 (see SI). Therefore, the72
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Figure 1: Map of sample locations. Sample CD29-2 was recovered from the flanks of the Karin Ridge at ⇠ 2, 000 m depth.
CD29-2 is a semi-continuous hydrogenetic depositional record of many trace element isotopic compositions – including Fe –
spanning the past ⇡ 76 Ma (Fig. 3). The locations of other samples referred to throughout the text and in Fig. 4 are also shown:
28DSR9, a hydrogenetic Fe-Mn crust with a detailed Fe-isotopic stratigraphy for the past ⇡ 10 Ma;28 and DSDP (Deep Sea
Drilling Project) Site 57629 and LL44-GPC3,30 two continuous Cenozoic records of aeolian deposition. Map drafted in Ocean
Data View.31

Figure 2: Calculation of the Fe-isotopic o↵set between modern Fe-Mn crust surfaces and ambient seawater. (A) Fe-
isotopic topology between Fe-Mn crusts (diamonds33) and the three nearest seawater stations (squares16). The thickness of
the connecting line denotes the proximity ranking, with the thickest line linking each crust with its nearest corresponding
seawater station, and so on. (*Fe-Mn crust 1966.069 was excluded from the offset calculation as there are no proximal seawater
data, whereas seawater data from station TAG were excluded owing to their significant hydrothermal influence.) Values
of D56/54FeFeMn�SW were calculated by comparing the Fe-isotopic composition of the surface scraping of N. Atlantic Fe-Mn
crusts with the Fe-isotopic composition of the corresponding density surface (sq) at each seawater station, for each of the three
picks. The uncertainty on each pick corresponds to the propagated 2 SD measurement uncertainty on Fe-Mn crust and seawater
d56/54Fe. Calculated D56/54FeFeMn�SW compared against: (B) distance to nearest seawater station, (C) depth to corresponding
density surface in the water column, and (D) ambient dissolved [Fe]. No relationship between D56/54FeFeMn�SW and distance,
depth, or [Fe] is evident from the data. The depths of the nine Fe-Mn crusts used in the offset calculation are shown in panel (C)
as diamonds. The mean, unweighted fractionation factor is calculated as D56/54FeFeMn�SW = �0.77 ± 0.06 ‰ (2 SE, n = 27)
and is shown as the horizontal bar in panels (B)–(D). By assuming an invariant D56/54FeFeMn�SW through time, it is possible to
reconstruct the Fe-isotopic history of seawater from Fe-Mn crusts.

Fe-isotopic range of CD29-2 (d56/54Fe = �1.12 to +1.54 ‰, with mean and median values of �0.0273

and �0.04 ‰, respectively), must reflect primary depositional signatures inherited from Fe dissolved in74

seawater.75

Estimating the Fe-isotopic fractionation factor, its driving mechanism, and variability through time76

A robust reconstruction of the Fe-isotopic history of seawater from Fe-Mn crusts requires that the frac-77

tionation factor between Fe-Mn crusts and seawater, D56/54FeFeMn�SW, is accurately known, is unaffected78

by ambient environmental conditions, and has remained relatively constant through time. Stable iso-79

topic offsets between Fe-Mn crusts and seawater are common for many elements, and likely result from80

differences in the relative binding strength between chemical species dissolved in seawater and incor-81

porated in Fe-Mn crusts (e.g.32). We calculated the fractionation factor, defined as D56/54FeFeMn�SW =82

d56/54FeFeMn � d56/54FeSW, by comparing d56/54Fe of the surface scrapings of nine N. Atlantic Fe-Mn83

crusts33 with nearby seawater d56/54Fe measurements from the recent US GEOTRACES North Atlantic84

GA03 Zonal Transect.16 Each crust was compared with linearly interpolated seawater d56/54Fe at the85

corresponding density surface for the three nearest seawater profiles (topology shown in Fig. 2a). The86

uncertainty on each estimate of D56/54FeFeMn�SW refers to the propagated 2 SD external uncertainty as87

reported in the respective original publications. The mean, unweighted fractionation factor was calcu-88

lated as D56/54FeFeMn�SW = �0.77 ± 0.06 ‰ (2 SE, n = 27), and shows no obvious dependence on crust–89

seawater distance, sample depth, or ambient dissolved [Fe] (Figs. 2b, c, and d, respectively). We chose90

to report the uncertainty about the mean value as two standard errors owing to the remarkable coher-91

ence and unidirectional nature of calculated Fe-Mn crust–seawater offsets, as well as the large number92

of independent estimates of D56/54FeFeMn�SW (Table 1).93

The comparison of modern Fe-Mn crust growth surfaces and nearby ambient seawater indicates that Fe94

bound in Fe-Mn crusts is isotopically lighter than dissolved in seawater (Fig. 2), indicative of stronger95
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binding of Fe in seawater than in Fe-Mn crusts at equilibrium (e.g.34). Given the importance of sidero-96

phore-like strong Fe-binding ligands in stabilizing dissolved Fe in seawater,35, 36 it is extremely likely97

that organic ligands play an important – if not dominant – role in setting D56/54FeFeMn�SW. Several98

studies have documented that isotopically heavy Fe will preferentially associate with organic ligands99

during equilibration between aqueous Fe(III) and Fe–ligand complexes.37–39 The binding strength of100

the Fe–ligand complex can modulate the magnitude of Fe-isotopic fractionation, with stronger ligands101

– and thus stronger bonding environments – favoring larger equilibrium Fe-isotopic fractionation fac-102

tors. (Analogous behavior has also been identified for Cu,40 which likely explains both the direction and103

magnitude of Cu-isotopic fractionation between Fe-Mn crusts and seawater.41) The calculated value of104

D56/54FeFeMn�SW of �0.77± 0.06 ‰ is essentially identical to the empirically-determined D56/54FeFe(III)�Fe(sid)105

between inorganic dissolved Fe(III) and Fe–siderophore complexes of �0.60 ± 0.15 ‰.37 The remarkable106

agreement between Fe-isotopic fractionation factors determined by experiments37 and those observed107

between naturally occurring Fe-Mn crusts and seawater (Fig. 2) suggests that organic ligands may exert108

a dominant control on D56/54FeFeMn�SW.109

Interpretation of Fe-Mn crust-derived records of seawater d56/54Fe rely on D56/54FeFeMn�SW having been110

constant through time. If ligands are indeed exerting a significant influence on Fe-isotopic fractiona-111

tion in seawater, it is important to understand how evolutionary changes in the dominant Fe-binding112

ligands may have also affected D56/54FeFeMn�SW. To address this issue, we examined the evolutionary113

history of a component from each of two common siderophore biosynthetic pathways, as siderophores114

are thought to contribute to the oceanic Fe ligand inventory:42 enterobactin synthase subunit F (EntF)115

and desferrioxamine E biosynthesis protein DesA. Whilst these are unlikely to be the only ligands in116

seawater, these ligands – and in particular, DFO (desferrioxamine) – are good analogues to other marine117

Fe ligands for several reasons: (1) The DFO class of ligands has been shown to exist in seawater;43 (2)118

DFO possesses similar conditional Fe binding constants to natural marine Fe ligands;44 and (3) The Fe-119

isotopic fractionation factor between dissolved Fe(III) and Fe–DFO complexes of D56/54FeFe(III)�Fe(DFO) of120

�0.60± 0.15 ‰37 is identical to D56/54FeFeMn�SW, within uncertainty. Analysis of sequence alignments of121

the genes encoding these proteins in extant microbes demonstrates that siderophore biosynthesis genes122

diverged from a common ancestor well before the 76 Myr timespan of interest in this study (see SI).123

Given this finding, we contend that Fe-binding ligands have been present in seawater over the past124

76 Myr, and likely far longer. Since the mineralogy of CD29-2 is invariant over this time period,19 it fol-125

lows that the differences in binding strength – and therefore the equilibrium D56/54FeFeMn�SW – between126

ligand-stabilized Fe in seawater and Fe bound in CD29-2 has also remained constant for at least 76 Myr.127

Together with the observations that there are no resolvable Fe-isotopic effects related to Fe transport128

distance, water depth, or ambient [Fe] on D56/54FeFeMn�SW in the modern ocean (Fig. 2), the use of a129

temporally-constant D56/54FeFeMn�SW of �0.77 ± 0.06 ‰ for the past 76 Myr is justified by all available130

oceanographic, experimental, and genomic data.131

Controls on the Fe-isotopic composition of seawater132

It is worthwhile to briefly review what is currently known about the Fe-isotopic systematics of the ma-133

jor Fe sources to the modern ocean, as this information is used as the interpretive framework for un-134

derstanding the seawater record contained within CD29-2. The Fe-isotopic composition of seawater is135

thought to be primarily controlled by the relative input of local, isotopically distinct Fe sources (Fig. 3a),136

modulated by secondary modification processes (Fig. 3a), and mixing by oceanic circulation.14–16 The137

persistence of primary Fe-isotopic signatures along distinct water masses spanning thousands of kilome-138

ters suggests that the oceans’ internal cycling of Fe through biological uptake and exchange with sinking139
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Figure 3: The Fe-isotopic history of central Pacific seawater over the past 76 Myr. (A) Fe-isotopic compositions of the major
oceanic Fe fluxes. The bold lines represent the end-member compositions of each flux: continental crust, hydrothermal fluids,
and non-reductive sediment dissolution. (A second end-member for reductive sediment dissolution ⇠ �3 ‰ is not shown;
ref.9) Numerous processes have been shown to modify end-member Fe-isotopic compositions; the dashed lines illustrate
the observed range of Fe-isotopic compositions for each flux resulting from secondary modification processes (see text for
references and discussion). (B) An Fe-isotopic history of central Pacific seawater recovered from CD29-2 spanning the past
76 Ma. The solid line links the measurements in relative chronological order; the break in the solid line between 37 and
42 Ma signifies a probable hiatus in the crust growth.23 The surface measurement (⇡ 0 Ma) is from Levasseur et al.33 The
gray and black error bars represent the analytical and propagated analytical and calculated uncertainties in D56/54FeFeMn�SW,
respectively. The light-colored shading indicates the boundaries between relevant geological Epochs; colors as per.45 Within
each Epoch, measurements of d56/54Fe have been binned, with the darker shading corresponding to one standard deviation
either side of the mean value for that epoch. The shaded region labeled ‘Modern’ corresponds to the mean and standard
deviation of the surfaces of globally distributed Fe-Mn crusts,33 but has been expanded to cover the Quaternary for the sake of
clarity.33 (Pliocene and Micocene averages also include Fe-Mn crust data from Chu et al.;28 see Fig. 4.) The greyed-out scale to
the right of the figure shows the measured Fe-isotopic ratios for CD29-2 that have not been corrected for D56/54FeFeMn�SW ⇡
�0.77 ‰.

particles exert only minimal influences on dissolved d56/54Fe.14, 16 As such, the Fe-isotopic composition140

of a water mass appears to be primarily governed by the Fe-isotopic composition of the dominant Fe141

source to that water mass, in addition to any source Fe-isotopic modification processes at the time of142

Fe addition. Iron-isotopic measurements can therefore be used to help elucidate the ultimate sources of143

Fe to the ocean, and in particular the deep open ocean, where the dominant sources of Fe are still hotly144

debated (e.g.7, 46–48).145

The end-member Fe-isotopic composition of the three major Fe sources to the open ocean – mineral146

aerosol or ‘dust’, seafloor sediment dissolution, and hydrothermalism – are summarized in Fig. 3a (bold147

lines). The major surface Fe source, dust, is characterized by d56/54Fe ⇡ +0.1 ± 0.2 ‰,49 identical to the148

average Fe-isotopic composition of crustal rocks (d56/54Fe ⇡ +0.1 ± 0.1 ‰50). Deeply sourced Fe from149

dissolution of shelf sediments and hydrothermalism have distinct and variable Fe-isotopic compositions.150

Reductive dissolution of marginal sediments delivers isotopically light Fe to seawater, with d56/54Fe ⇠151

�3.0 ‰,9 whereas non-reductive dissolution transfers Fe with a continental crust-like composition of152

d56/54Fe ⇡ +0.2± 0.2 ‰.10 End-member hydrothermal fluid d56/54Fe has been measured ⇡ �0.2 ‰,51, 52
153

with a small but significant fraction of this Fe escaping precipitation and becoming stabilized in seawater154

as Fe(III).7, 47
155

For each of these three major oceanic Fe fluxes, secondary modification processes have been shown156

to affect the Fe-isotopic composition of ligand-stabilized Fe in seawater (dashed lines in Fig. 3a). The157

Fe-isotopic composition of dust-derived Fe in seawater appears to be isotopically heavier than crustal158

rocks by ⇡ +0.6 ‰ at d56/54Fe ⇡ +0.7 ± 0.1 ‰(Fig. 3a;16). In the absence of ligands, total digests and159

leaching experiments on aerosol particulates have shown that Fe leached from dust possesses d56/54Fe ⇡160

+0.1 ± 0.2 ‰.49 The +0.6 ‰ offset between Fe bound in dust particles and dust-derived dissolved Fe161

in seawater is thought to result from the equilibrium isotopic partitioning of isotopically heavy Fe into162

strongly bound ligand-stabilized dissolved Fe(III) during dust dissolution.16 This interpretation is con-163

sistent with experimental studies of Fe-isotopic fractionation during mineral dissolution53 and during164

dissolved Fe(III)–ligand Fe-isotopic partitioning experiments.38, 39 Since Fe-binding organic ligands have165

an ancient biological origin that pre-dates the base of CD29-2 (see SI), it is likely that the Fe-isotopic off-166

set between dust particles and ligand-stabilized dust-derived Fe in seawater (D56/54Fedust part.�dust diss. ⇡167

�0.6 ± 0.2 ‰16, 49, 50) has remained constant over the course of our 76 Myr record. It is worth noting that168

D56/54Fedust part.�dust diss. and D56/54FeFeMn�SW are identical, within uncertainty, lending further support169

to the notion that a common ligand-mediated mechanism controls both Fe-isotopic offsets.170
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For deep Fe sources – hydrothermalism and sediment dissolution – Fe-isotopic modification processes171

have also been identified, though the mechanisms involved are different than for mineral aeorsol Fe-172

isotopic modification. The most important modification processes identified in deep settings is the pre-173

cipitation of dissolved Fe in either oxide or sulfide forms, depending on local seawater conditions. These174

two Fe-precipitating pathways impart large and distinct Fe-isotopic fractionations of opposite signs, as175

Fe-oxides generally favor precipitation of isotopically heavy Fe (i.e. D56/54Feoxide�dissolved > 0;51) and176

Fe-sulfides exclusively favor incorporation of isotopically light Fe (i.e. D56/54Fesulfide�dissolved < 0.54–56).177

Residual, dissolved Fe will thus become isotopically heavier as a result of Fe-sulfide precipitation, and178

isotopically lighter as a result of Fe-oxide precipitation. Field studies have shown that Fe-sulfide precip-179

itation in continental margin sediments10, 55 and at hydrothermal vent sites52, 57 can drive the Fe-isotopic180

composition of residual Fe, and thereby deep water Fe fluxes, toward heavier d56/54Fe by over +2 ‰58
181

compared to the end-member compositions (Fig. 3a). Furthermore, formation of isotopically heavy Fe-182

oxide precipitates around hydrothermal vents has also been shown to drive the delivery of isotopically183

light Fe to the deep ocean (e.g.16, 51).184

Given the large range of Fe-isotopic variability between different Fe sources (Fig. 3a) and observed in185

the modern ocean,14–17 we should naturally expect that changes in the dominant sources of Fe to the186

ocean with time will be accompanied by large shifts in the Fe-isotopic composition of seawater. Shifts in187

seawater d56/54Fe with time will thus depend on the relative input of different Fe sources to the ocean188

and the extent of their modification prior to stabilization in seawater (Fig. 3).189

An Fe-isotopic history of central Pacific seawater190

Examination of our record of d56/54Fe reveals large changes in the Fe-isotopic composition of central Pa-191

cific seawater over the past 76 Myr (Fig. 3b). Though much of the record lies outside of the field defined192

by source ‘end-member’ d56/54Fe (Fig. 3a), when the aforementioned source modification processes are193

taken into account, even the most extreme d56/54Fe values in the Oligocene fall within the Fe-isotopic194

range defined by modern Fe fluxes (Fig. 3). Overall, the Fe-isotopic record of seawater reveals signif-195

icant temporal variability, which suggests that the dominant Fe sources to the ocean have also varied196

over time, and that multiple Fe sources contribute to the total Fe budget of the central Pacific Ocean.197

The large intra-epoch variation seen in past seawater d56/54Fe necessitates that the dominant Fe sources198

to the Pacific have changed through time (Fig. 3). Assuming a fixed dust value of d56/54Fe ⇡ +0.7 ±199

0.1 ‰ throughout the past 76 Myr, it is clear that more than 75 % of the record is outside of the field200

defined by mineral aerosol (Fig. 4). Isotopic mixing considerations32 demand that Fe-isotopic values201

observed outside of this narrow range must originate from mixing with other Fe sources with different202

Fe-isotopic compositions (Fig. 3b).203

Deep sources have been documented to possess d56/54Fe that is highly variable and distinct from dust204

(Fig. 3a). Thus, the large range of Fe-isotopic compositions observed over the last 76 Myr require the ad-205

dition of a quantitatively significant deeply sourced Fe pool to the central Pacific Ocean, such as sediment206

dissolution or hydrothermalism (Fig. 4). Applying a constant dust-derived d56/54Fe ⇡ +0.68± 0.07 ‰,16
207

we note 12 distinct events where seawater Fe-isotopic compositions cross through the dust value (Fig. 4).208

To change seawater d56/54Fe in the past from < +0.61 to > 0.75 ‰ (and vice versa) requires the input of209

an isotopically-distinct deep Fe source term to the central Pacific, as addition of more dust will simply210

drive the record towards +0.7 ‰. That these ‘events’ are not restricted to any particular epoch (though211

notably absent from the Pliocene onward), suggests deeply sourced Fe has been a significant and persis-212

tent component of the total Fe inventory of the Pacific Ocean throughout the past 76 Myr (Fig. 4).213
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Figure 4: Persistence of deeply sourced Fe in the Pacific Ocean. (A) Latitude of CD29-2 based on the migration of nearby
DSDP locations.60 (B) The Fe-isotopic history of central Pacific seawater recovered from Fe-Mn crust CD29-2 (squares). The
high-resolution Fe-isotopic stratigraphy from 28DSR928 spanning the past ⇠ 10 Ma is also shown, renormalized to IRMM-14
and corrected for D56/54FeFeMn�SW = �0.77 ± 0.06 ‰ (triangles; 28DSR9 location shown in Fig. 1). Vertical arrows indicate
the 12 instances where the Fe-isotopic composition of seawater transits the Fe-isotopic composition of dust (horizontal bar;
ref.16) (C) Reconstructed Pacific Plate seafloor generation rate.61 Both the spreading rate (mm yr�1) and change in relative
seafloor area (dA/dt, in km2 100 yr�1) are shown, as the total amount of new crust generated depends on total ridge length
and spreading rate. (D) Records of eolian deposition in the N. Pacific ocean from DSDP 57629 and LL44-GPC3;30 note the
logarithmic scale. The interrelationships between these three records is discussed in detail in the SI.

Understanding sustained changes in the Fe-isotopic composition of central Pacific seawater214

The large intra-epoch variation in Fe-isotopic compositions recorded by CD29-2 necessitates a persistent215

influence of deep Fe sources to the total Fe inventory of Pacific seawater over the past 76 Myr. It is216

further possible to interpret some of the sustained excursions in d56/54Fe (i.e. the inter-epoch variability)217

by understanding the location history CD29-2 and how this relates to probable changes in the supply rate218

of the major Fe sources to the ocean (Fig. 4). A detailed paleogeography of CD29-2 is discussed in Klemm219

et al.59 Briefly, CD29-2 was situated at ⇡ 6 �S at the time of its formation (76 Ma), crossed the equator220

around the K–Pg boundary (⇡ 66 Ma), and has gradually progressed to its present location at ⇡ 16 �N221

(Fig. 4a). Thermal subsidence of the underlying oceanic lithosphere has likely increased the water depth222

from ⇠ 1, 000 to ⇠ 2, 000 m over the past 76 Myr, with the most rapid changes in depth occurring soon223

after CD29-2 began precipitating (see SI). With these considerations in mind, we discuss below the three224

most prominent features of the long term record: the excursion to extremely heavy d56/54Fe during the225

Oligocene, the absence of large intra-epoch shifts after the Pliocene, and a possible shift to isotopically226

light values during the Upper Cretaceous (Fig. 4). The Oligocene data are discussed in detail in the SI,227

but are briefly summarized here.228

The Oligocene data are best explained by a large and persistent increase in the hydrothermal contribu-229

tions to the total Fe budget of water masses bathing CD29-2 during this epoch (Fig. 4). The extremely230

heavy d56/54Fe of up to +2.3 ‰ necessitates that there were significant Fe-isotopic source modification231

processes that were able to deliver isotopically heavy Fe to the ocean without ‘choking off’ the Fe supply.232

Modification of hydrothermally-sourced Fe by precipitation of isotopically light Fe-sulfides seems an ob-233

vious candidate for such a process (e.g.;52, 57 SI). Hydrothermal vents can exude fluids with µM to mM Fe234

concentrations,62 and the precipitation of Fe-sulfides from hydrothermal fluids – even at high tempera-235

tures – can result in significant Fe-isotopic modification of Fe fluxes (e.g.;52 SI). Moreover, recent studies236

have documented distal transport of hydrothermally-sourced Fe thousands of kilometers across the Pa-237

cific that furthermore resemble the distributions of hydrothermally-derived helium anomalies (e.g63, 64).238

Assuming that the modern correspondence between seafloor generation rate and hydrothermal fluid239

fluxes [REF?] was also valid in the past, it is tempting to speculate that this shift to heavy Fe-isotopic240

compositions in the Oligocene was driven by the approximate doubling of the rate of seafloor genera-241

tion in the Pacific basin during this epoch (;61 Fig. 4c). Conversely, CD29-2 was likely situated ⇡ 11 �N242

during the Oligocene (Fig. 4a), which is now bathed by a distal ‘jet’ of hydrothermally-influenced deep243

waters between 1, 500–3, 000 m (evidenced by mantle-derived helium anomalies;65). Assuming that the244

vent systems at 9–10 �N along the EPR (East Pacific Rise) remained active during the Oligocene, and that245

the predominantly east-to-west geostrophic flow at these depths also persisted at this time,66 it is con-246

ceivable that CD29-2 simply moved through a plume of hydrothermally influenced deep waters. Since247

there are no other elemental indications of hydrothermal influence on CD29-2 at this – or any other –248

time19 during its ⇡ 76 Myr growth history, the Fe-isotopic systematics of CD29-2 require an unprece-249
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dented degree of Fe-isotopic source modification to waters bathing CD29-2 during this epoch. However,250

testing whether or not this isotopically heavy reflects a basin wide increase in hydrothermally-derivd Fe251

during the Oligocene, or simply a local phenomenon will require a greater spatial resolution of Fe-Mn252

crust-derived records of seawater d56/54Fe. Nonetheless, the remarkable degree of seawater Fe-isotopic253

variation across the Oligocene is encouraging, as it permits the testing and tracing of Fe-isotopic provin-254

ciality – and therefore Fe sources – in the ocean interior over geological time.255

An important feature of the record is that the intra-epoch shifts in d56/54Fe to values above and below256

the dust end-member appear to cease around the start of the Pliocene (arrows in Fig. 4). The large257

Fe-isotopic shifts seen throughout the rest of the record must be related to non dust-derived deep Fe258

sources such as hydrothermalism and marginal sediment dissolution. However, at some point during259

the past 10–20 Myr, the average Fe-isotopic composition of central Pacific seawater recorded by CD29-260

2 and 28DSR9 became largely invariant at d56/54Fe ⇡ +0.4 ± 0.1 ‰ (±2 SD). This switch to relative261

Fe-isotopic homogeneity over the past 10–20 Myr is consistent with a reduced importance of deeply262

sourced Fe and is coincident with the sharp increase in eolian dust deposition in the central and north263

Pacific (Fig. 4d;29, 30). Since dust-derived Fe is thought to possess d56/54Fe ⇡ +0.7 ‰,16 the Fe-isotopic264

chemistry of CD29-2 is consistent with the interpretation that dust has provided a significant portion265

of the central Pacific Fe inventory from ⇡ 10–20 Ma to the present day. However, the small difference266

between seawater (⇡ +0.4 ‰; inferred from Fe-Mn crusts) and the dust end-member (⇡ +0.7 ‰) of267

⇡ 0.3 ‰ is indicative of an influence from a secondary, isotopically light Fe source such as reductive268

sediment dissolution67 or Fe-oxide-influenced hydrothermalism.51
269

The sustained shift to light Fe-isotopic ratios in the Upper Cretaceous are consistent with an increased270

influence of continental margin-sourced Fe, or hydrothermalism modified by Fe-oxide precipitation to271

waters bathing CD29-2. Reductive and non-reductive dissolution of sediments along continental mar-272

gins contribute Fe to the ocean with light end-member Fe-isotopic compositions of d56/54Fe ⇠ �3 ‰ and273

⇡ +0.2 ‰, respectively (;9, 10 Fig. 3a). Analogous to Fe-sulfide modification processes described above,274

hydrothermal modification by Fe-oxide precipitation could also facilitate the release of isotopically light275

Fe to seawater.16, 51 Though it is currently not possible to distinguish between these two deep sources276

using d56/54Fe, both of these probable sources possess substantially different Fe-isotopic fingerprints277

compared with surface dust deposition, thus ruling out a major atmospheric Fe contribution to seawater278

bathing CD29-2 during the Upper Cretaceous (Fig. 3). During the Upper Cretaceous, CD29-2 was likely279

at water depths ⇡ 1, 000 m (SI), and situated south of the equator at ⇠ 6�S (;59 Fig. 4a). This is some-280

what above than most EPR-derived helium anomalies,65 such that a shallower, marginal sedimentary281

Fe source is more likely. In the modern ocean, significant quantities of reduced,68 bioavailable,69 and282

isotopically light Fe9, 67 are released under low oxygen conditions associated with the highly produc-283

tive western continental margins.70 As such, the ⇡ �0.3 ‰ shift to values ⇡ 0 ‰ in Upper Cretaceous284

seawater d56/54Fe recorded by CD29-2 are best explained by a greater importance of shelf sediment disso-285

lution to the Fe budget of waters bathing CD29-2, further illustrating the power of d56/54Fe to distinguish286

between surface and deep Fe sources through geological time.287

Conclusions and outlook288

The Fe-isotopic data for CD29-2 illustrate a dynamic Fe cycle in the central Pacific Ocean over the289

past 76 Myr. Isotopic mixing considerations demand a persistent and significant influence from deeply290

sourced Fe to the waters bathing CD29-2 in the central Pacific over the past 76 Myr. Deeply sourced Fe291

may have even contributed the majority of the Fe during certain epochs, such as during the Oligocene,292
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underscoring the importance of the oceans’ circulation in controlling the spatial extent of deeply sourced293

Fe and its contribution to basin-scale Fe budgets. However, it is clear that more records of Fe-isotopic294

compositions from other Fe-Mn crusts are required to test the provinciality of oceanic Fe sources in the295

past; the long-term record from CD29-2 is merely the first step towards this goal.296

Reconstructions of past oceanic Fe sources can reveal much about the oceans Fe cycle in the past, but it297

is clear that there is still much to learn. For example, what is the maximum lateral extent that dissolved298

d56/54Fe signatures can persist across the ocean? Are there locations in the modern open ocean where dis-299

solved d56/54Fe exceeds +2 ‰? Did the deeply sourced Fe of the Oligocene ever ventilate at the surface?300

Is deeply sourced Fe an important contributor to the total Fe inventory in other ocean basins? Are the301

changes in the supply ratio of different Fe sources to the ocean responding to major climatic changes, or302

driving them? All of these questions can be tackled with a greater spatial coverage of dissolved d56/54Fe303

in the modern ocean and by performing further paleoceanographic studies of past seawater d56/54Fe304

in other ocean basins. Coupling these currently scant Fe-isotopic observations to models of global Fe305

biogeochemistry will help to iron-out these issues, and will refine our understanding of the role that306

different Fe sources play in modulating global climate.307

Materials and Methods308

The samples of CD29-2 analyzed in this study were previously collected for Tl- and Os-isotopic investigations,309

with discrete samples taken via microdrilling. The age model for the crust was determined by matching the310

Re decay-corrected Os-isotopic ratios for each discrete sample with the known osmium isotopic evolution of311

seawater. Sample aliquots were then purified for Fe-isotopic analysis using anion-exchange column chemistry312

and converted to nitrate form before mass spectrometric analysis. Iron isotopic analyses were carried out on a Nu313

Instruments Nu Plasma HR multiple-collector inductively coupled plasma mass spectrometer at the University314

of Oxford. Corrections for instrumental mass bias and isobaric overlap of 54Cr on 54Fe were performed by315

standard–sample bracketing and monitoring 53Cr, respectively. Mass dependence, reproducibility, and accuracy316

were evaluated by analysis of various internal and external reference standards and found to be in excellent317

agreement with previously published values (where available). Further description of methods and samples is318

available in SI Materials and Methods.319
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SI Materials and Methods328

Samples and sampling329

Ferromanganese crust F7-86-HW CD29-2, referred to throughout the text as ‘CD29-2’, was recovered330

via dredging along the Karin Ridge, a submarine volcanic feature east of Johnston Island in the central331

Pacific.20 Sample CD29-2 was recovered from the ridge flank at 16�42.40 N; 168�14.20 W, ⇡ 200 � 600 m332

from the ridge summit. The age of the base of the crust is ⇡ 75.5 Ma,23 based on an extrapolation of333

the average growth rate between the PETM (⇡ 55.5 Ma) and the Paleocene–Late Cretaceous boundary334

(66 Ma;45). Alkalic basalts from the ridge itself exhibit 40Ar/39Ar ages between 81.4 � 85.6 Ma,71 which335

are currently situated at 1, 800 m depth. The flat top of the Karin Ridge is strong evidence that it was336

previously exposed above sea level,72 implying that substantial thermal subsidence has occurred to the337

ridge over the past 81.4 � 85.6 Myr, bathing CD29-2 in progressively deeper water masses. Assuming338

that this 1, 800 m of subsidence occurred in proportion to t 1
2 (e.g. ref.73) over ⇡ 83.5 Myr, CD29-2 likely339

formed in a water depth between 750 � 1, 150 m, and has subsided ⇠ 16 m Myr�1 to its current depth340

between 1970 � 2390 m. These water depth constraints, though necessarily rough, suggest that CD29-2341

has been submerged below ⇡ 1, 000 m for its entire growth history of ⇡ 76 Myr.23
342

The samples analyzed in this study were previously collected for Tl- and Os-isotopic investigations,23, 74
343

where samples were drilled from slabs of CD29-2 at a spacing of 0.2, 0.5, or 1 mm via microdrilling.344

The age of the crust was determined by the osmium isotopic stratigraphy, where Re decay-corrected345

Os-isotopic ratios measured on discrete samples through the entire crust74 were matched to the known346

Os-isotopic evolution of Cenozoic seawater (see74 and references therein). Because portions of the Ceno-347

zoic Os-isotopic seawater curve are largely invariant, the age model for CD29-2 was constructed by348

identifying specific events characterized by large Os-isotopic excursions (such as the K–Pg and Eocene–349

Oligocene boundaries) and interpolating crust growth rates in between these fixed points. Therefore,350

absolute ages may be somewhat uncertain (up to several million years uncertainty) when furthest away351

from these fix points. However, the relative chronology of the crust is very robust as samples were352

drilled in sequence. The use of Os-isotopic stratigraphy to date Fe-Mn crusts is discussed in Klemm et353

al.,74 and the revised age model used for CD29-2 is discussed in Nielsen et al.23
354

Analytical procedures355

Powder samples of CD29-2 were leached in 6 M HCl, centrifuged, and transferred from 2 mL poly-356

propylene centrifuge tubes into acid-cleaned Savillex vials and were evaporated to dryness and oxidized357

several times with hydrogen peroxide and concentrated nitric acid (Analar grade and Teflon-distilled,358

respectively) after which they were converted to chloride form via several reflux cycles with 6 M Teflon-359

distilled HCl. The samples were then purified for Fe using standard anion-exchange column chemistry,75
360

and converted to nitrate form using hydrogen peroxide and concentrated nitric acid. The combined361

blank for sample dissolution and column chromatography was < 5 ng Fe; this is negligible relative to362

the amounts of Fe extracted from the samples (typically over 300 µg total Fe).363

Iron isotopic analyses were carried out on the Nu Instruments Nu Plasma HR multiple-collector induc-364

tively coupled plasma mass spectrometer at the University of Oxford following established procedures.76
365
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Samples were analyzed in 0.01 M HNO3 and mass bias was corrected by sample–standard bracketing.366

Measurements included collection of ion currents on m/z: 57, 56, 54, and 53 (53Cr), to allow for correction367

of any interference of 54Cr on 54Fe, although no difference between Cr-corrected and uncorrected ratios368

were observed; this is due to the purification of the samples prior to analysis and effective separation of369

Cr from Fe.370

In order to monitor Fe-isotopic data quality and, in particular, the absence of artifacts relating to (i) in-371

complete Fe separation during column processing or (ii) sample matrix, several tests were performed.372

Firstly, aliquots of pure IRMM-14 Fe standard (by definition, d56/54Fe of IRMM-14 ⌘ 0 ‰) were passed373

through columns. Column-processed IRMM-14 yielded d56/54Fe = 0.00 ± 0.06 ‰ (2 SD, n = 3) with a374

recovery of 100 ± 2 %, demonstrating that no Fe-isotopic fractionation took place during column pro-375

cessing and that Fe yields were quantitative, respectively. Secondly, sample matrix effects were eval-376

uated by performing IRMM-doped sample matrix tests. All Fe-free sample matrix fractions were re-377

tained during column chromatography, and those corresponding to CD29-2 33.2 mm and 34.2 mm (Ta-378

ble 2) were doped with IRMM-14 to match the original Fe : matrix ratio of the corresponding sample.379

These IRMM-14-doped samples of CD29-2 were then re-processed through column chromatography380

and analyzed for their Fe-isotopic compositions, yielding d56/54Fe = +0.01 ± 0.07 ‰ (2 SD, n = 3) and381

�0.03 ± 0.09 ‰ (2 SD, n = 2) for CD29-2 33.2 mm and 34.2 mm, respectively.382

Reproducibility and accuracy were also evaluated by analysis of several in-house and international Fe-383

isotopic reference standards:384

• An in-house FeCl powder, obtained from the ETH Zürich (ETH Fe salt standard); d56/54Fe =385

�0.73 ± 0.10 ‰ (2 SD, n = 48), in agreement with published values from Mikutta et al.77 of386

d56/54Fe = �0.72 ± 0.13 ‰.387

• USGS Pacific Fe-Mn nodule sample (Nod-P-1); d56/54Fe = �0.39 ± 0.07 ‰ (2 SD, n = 7), in agree-388

ment with published values from Dideriksen et al.:78 d56/54Fe = �0.42 ± 0.09 ‰.389

• USGS Icelandic Basalt sample (BIR-1); d56/54Fe = +0.04 ± 0.07 ‰ (2 SD, n = 4), in excellent390

agreement with published values from Weyer et al.:79 d56/54Fe = +0.05 ± 0.04 ‰.391

SI Discussion392

Estimating Fe di↵usivity in Fe-Mn crusts393

Diffusional resetting or ‘smoothing’ of primary signals can affect certain trace metal isotopic records394

recovered from Fe-Mn crusts (e.g.26, 80). To assess if this was an issue for records of Fe-isotopic composi-395

tions recorded by CD29-2, we estimated the diffusivity of Fe in Fe-Mn crusts by assuming that the rate of396

chemical exchange between fluid (seawater) and solid (Fe-Mn crusts) is governed by the same processes397

for Fe as for U. From this, we applied the general Fe-Mn crust diffusivity equation from Henderson and398

Burton:26
399

DFe
eff. =

DU
eff.K

U
c

KFe
c

(1)
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Figure 5: The ancient biological origin of siderophore production. Percent identity of BLASTp results from (A) enterobactin
synthase subunit F (EntF) and (B) desferrioxamine E biosynthesis protein DesA. All sequences have been ordered by e-value
(low to high), showing percent identities for sequences with e-values <1E-5 and <2E-30 for EntF and DesA, respectively (mean
DesA sequence length is 419 amino acids).

where DE
eff. is the effective diffusivity of element E in Fe-Mn crusts (cm2 yr�1) and KE

c is the concentration400

ratio of E in Fe-Mn crusts relative to its porewaters (assumed to be seawater;26). Assuming a range of401

[Fe] for deep Pacific seawater between 0.4� 0.6 nM81 and [Fe] of CD29-2 crusts between 10� 20 wt. %,19
402

the Fe concentration ratio between CD29-2 : seawater is between 3 � 9 ⇥ 109. As such, we calculate403

DFe
eff. between 4 ⇥ 10�13 and 1 ⇥ 10�12 cm2 yr�1. Such a slow rate of Fe diffusion – at least half the404

rate of Th diffusivity in Fe-Mn crusts26 – suggests that our Fe-isotopic dataset is a primary record and405

has not been smoothed or reset by diffusion. Diagenetic precipitation of calcium fluorapatite (calcium406

fluorophosphate) in the lower half of CD29-2 (e.g.19, 27) does not appear to affect d56/54Fe. This is likely407

because secondary calcium fluorapatite contains little, if any, Fe compared to the average 15 wt. % Fe of408

CD29-2, and the predominantly pore-filling nature of calcium fluorapatite precipitation that primarily409

serves to reduce Fe-Mn crust porosity.410

The age and origin of strong Fe-binding ligands in the ocean411

While neither the composition of the strong ligands in ocean seawater nor microbial siderophore biosyn-412

thetic pathways specific to abundant marine microbes are known, the global prevalence of seawater Fe413

ligands and the similarity of their similar conditional binding strengths to those of siderophores strongly414

implies a contribution of siderophores to the oceanic Fe ligand inventory.44 Moreover, field studies have415

identified ferrioxamine-type ligands in seawater enrichment studies,43 demonstrating the presence of416

siderophore biosynthetic capacity in natural assemblages and bolstering the case for their contribution417

to the oceanic Fe ligand reservoir.418

Two types of biosynthetic pathways for siderophores are currently known, non-ribosomal peptide syn-419

thesis (NRPS) and NRPS-independent siderophore synthesis (NIS).82 To examine if siderophore synthe-420

sis is older than the ⇡ 76 Myr time period of interest in this study, we examined the diversity of a gene421

across numerous microbial genomes from each of these two siderophore biosynthetic pathways, focus-422

ing on the specific siderophores desferrioxamine E biosynthesis protein DesA and enterobactin synthase423

subunit F (EntF). EntF is a component of a three protein NRPS complex,83, 84 and DesA was recently im-424

plicated in NIS siderophore synthesis.82 Microbial genomes were analyzed using the Standard Protein425

Basic Local Alignment Search Tool (BLASTp;85), which is used to identify seed amino acid sequences (the426

query) in other organisms by searching within a specified database. For each query, regions of similarity427

(identity) and their alignment with other amino acid sequences are identified. Each potential match is428

scored and assigned an e-value (expected value), which decreases exponentially towards 0 the higher429

the statistical confidence that the match is not simply chance. Using BLASTp and the non-redundant430

sequence database with seed sequences from siderophore-producing model bacteria (E. coli and Strepto-431

myces sp.), sequence search and alignments showed each gene to correspond to a broad range of sequence432

identities across diverse range of microbes, extending to as low as ⇡ 30 % identity while maintaining433

low e-values consistent with a shared ancestral origin (Fig. 5; Tables 3 and 4).434

Amino acid sequence alignments and identities have been used to attempt to calculate evolutionary435

distance and divergence times of major taxa throughout Earth history, using a calibration against the436
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vertebrate fossil record.86, 87 Using a conservative approach here, a comparison of the range of sequence437

identities from the two siderophore biosynthetic gene identities with the previous approaches to con-438

strain the age of divergence major groups of organisms using amino acid distance measurements, implies439

that the last common ancestor for both genes is extremely old. For example, the evolutionary distances440

that corresponds to a 91 % identity is estimated to have a last common ancestor (divergence) of 100 Ma,441

whilst a 60 % identity corresponds to more than 1, 000 Ma.88 Both of these estimates are higher in iden-442

tity than the homologous sequences examined here, hence implying these biosynthetic genes diverged443

from a last common ancestor far longer than the ⇡ 76 Myr timescale of this study (Tables 3 and 4). This444

observation remains true even if with the caveat that the calculated ages for bacterial sequences may445

be biased several-fold faster due to a distinct synonymous substitution rate in bacteria relative to the446

calibrated vertebrate fossil record.89
447

As expected, sequences with higher percentage identities are found within the same species (e.g. E. coli448

for EntF) and hence most likely share siderophore biosynthetic function. Yet at lower identities it can449

be more challenging to constrain protein function due to limited experimental evidence and potential450

recruitment from related enzyme pathways. In the case of the enterobactin EntF gene, Salmonella sp.451

are known to also produce enterobactin using this pathway,90 providing support for this siderophore452

biosynthetic function. EntF of Salmonella sp. has a ⇡ 80 % sequence identity, implying an age of over453

300 Ma for a divergence from a shared genetic ancestor using the approach described above (Table 3).454

Other sequences within the lower range of sequence identity are annotated as EntF and may have sim-455

ilar siderophore biosynthesis function. For DesA, annotations of homologous sequences correspond to456

DesA or the enzyme L-2,4-diaminobutyrate aminotransferase. Recent biochemical and genomic charac-457

terization of this enzyme have demonstrated it to have the lysine carboxylase activity required as a key458

step in NIS siderophore biosynthesis and to be broadly disseminated in bacteria,82 consistent with the459

search results in Table 4.460

Together, these calculated evolutionary distances for two gene representatives of two siderophore biosyn-461

thetic pathways show them both to be much older than the ⇡ 76 Myr time span focused on in this study.462

Overall, these observations lend support to the notion that the siderophore biosynthetic pathways that463

may contribute seawater Fe ligand production are similarly old and that the resulting ligand-mediated464

Fe-isotopic offsets in seawater – D56/54Fedust part.�dust diss. and D56/54FeFeMn�SW) – have also been stable465

for ⇡ 76 My, if not far longer.466

Deeply sourced Fe persists regardless of how the dust value is assigned467

The interpretation that deeply sourced Fe has been important in the Pacific Ocean for the past 76 Myr is468

robust regardless of how the dust-derived Fe-isotopic end-member is assigned. If dust-derived d56/54Fe469

was not +0.7 ± 0.1 ‰ but possessed a different value, there is no unique Fe-isotopic composition of470

dust-derived Fe that can account for the entire record without requiring mixing with another deep Fe471

source that has a distinct Fe-isotopic composition; such a scenario is only possible if D56/54FeFeMn�SW also472

changed. However, temporally-constant seawater d56/54Fe with temporally variable D56/54FeFeMn�SW is473

essentially precluded by the following considerations. Firstly, for seawater d56/54Fe to have remained474

constant, d56/54Fe heavier than ⇡ +0.5 ‰ recorded by CD29-2 would necessitate periodic reversals475

in the sense of Fe-isotopic fractionation between Fe-Mn crusts and seawater. Given the mineralogical476

homogeneity of CD29-2,19 we consider such a scenario highly implausible. Secondly, there is no evidence477

to suggest that D56/54FeFeMn�SW is variable in the modern ocean, despite the large range of depths, [Fe],478

and d56/54Fe encountered in the offset calibration (⇠ 200 � 4, 000 m, ⇡ 0.4 � 1 nM, ⇡ +0.2 to +0.7 ‰,479
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Figure 6: Pb-isotopic array for CD29-2. Plot of 207Pb/206Pb vs. 208Pb/206Pb for CD29-2 from Christensen et al.91 using the
age model of Nielsen et al.23 Given that the Pb-isotopic data were not obtained on the same slab of CD29-2 as the Os-isotopic
stratigraphy, the absolute ages for the Pb-isotopic data have considerable uncertainty. To account for this uncertainty, the Pb-
isotopic data have not been re-plotted against age, but instead have been binned into their respective geological Epochs to
illustrate broad temporal patterns. Pb-isotopic uncertainties are shown at the 2 SD level and are discussed in Christensen et
al.91

respectively; Fig. 2; Table 1). Thirdly, current evidence suggests that Fe-isotopic offsets between Fe-480

oxides and ligand-stabilized dissolved Fe(III), and by analogy D56/54FeFeMn�SW, is primarily governed481

by ligands,53 which have an ancient biological origin and are thus likely present throughout the 76 Myr482

record sampled by CD29-2 (SI Discussion). Whilst it is not possible to definitively demonstrate that483

D56/54FeFeMn�SW did not change in the past, all available evidence supports the use of a temporally-484

constant D56/54FeFeMn�SW of �0.77 ± 0.06 ‰ for the past 76 Myr.485

What drove the excursion to extremely heavy Fe-isotopic compositions during the Oligocene?486

The processes that may have affected the Fe-isotopic composition of central Pacific seawater over the487

past 76 Myr can be broadly subdivided into two categories based on their overall mechanism of influ-488

encing seawater Fe-isotopic chemistry: indirect and direct influences. Indirect influences on seawater489

Fe-isotopic chemistry are those processes that affect the cycling of Fe within the ocean interior, but do490

not necessarily alter the marine Fe inventory. Direct influences are those processes that alter the oceanic491

inventory of Fe and/or the Fe-isotopic modification of a source as it becomes stabilized in seawater.492

There is considerable evidence to suggest that direct factors exert the primary control on modern oceanic493

d56/54Fe, such as the large range of Fe-isotopic compositions measured between the principal marine Fe494

sources (Fig. 3a) and the numerous documented Fe-isotopic source modification processes that can sup-495

ply isotopically fractionated Fe to the oceans (e.g.;10, 52, 55, 57 Fig. 3a). We briefly outline how indirect496

influences are unlikely to be a major control on seawater d56/54Fe, before discussing each of the major497

features of the Fe-isotopic record in the text below.498

The most important of the indirect influences on central Pacific seawater Fe-isotopic compositions are499

likely to be changes in deep water circulation patterns over the past 76 Myr. Though changes in the depth500

of carbonate compensation92 and changes in atmospheric pCO2
93 have occurred during the record, it is501

not clear how these processes would affect seawater d56/54Fe. However, changes in deep water circula-502

tion would result in CD29-2 being bathed in different water masses throughout its growth, which would503

cause d56/54Fe to vary so long as different water masses possessed distinct Fe-isotopic compositions.504

Since little is known about Pacific deep water mass geometry throughout the Cenozoic, it is only possi-505

ble to infer changes in ambient water masses through comparison with other geochemical proxy records506

recovered from CD29-2. The high-resolution Pb-isotopic stratigraphy of Christensen et al.91 would ap-507

pear to support this inference, as the Pb-isotopic data for CD29-2 indicate numerous changes in central508

Pacific Pb sources over the Cenozoic (Fig. 6). However, the three main Pb-isotopic arrays91 do not cor-509

respond to major features of the Fe-isotopic record (Fig. 3b), and it is unclear if the Pb- and Fe-isotopic510

records from CD29-2 are directly comparable given the differing geochemical behaviors of these two511

elements in seawater (e.g.25). Ultimately a water mass structure control on central Pacific d56/54Fe still512

implies that distinct Fe sources (i.e. direct factors) exert the dominant control over seawater d56/54Fe, but513

that indirect factors determine the Fe-isotopic depth structure of the water column. With this in mind,514

we interpret the major shifts in the seawater Fe-isotopic record from CD29-2 in terms of changes in the515

relative balance and/or modifications to the dominant Fe fluxes to the ocean through time.516
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The Fe-isotopic record indicates that central Pacific seawater was as heavy as d56/54Fe ⇡ +2.3 ‰ dur-517

ing the Oligocene, with a sustained shift to values ⇡ +0.8 ‰ heavier than the mean value of the other518

epochs (Fig. 4). The Oligocene is notable for numerous environmental changes, including: a drop in519

global sea-level and the emplacement of major ice sheets on Antarctica, a global increase in chemical520

weathering rates, a deepening of the carbonate compensation depth, a drop in atmospheric pCO2, a sig-521

nificant increase in seafloor generation rate in the Pacific basin, and the opening of the Antarctic seaways522

(e.g.61, 91–94). We outline below why an increased rate of seafloor generation and associated hydrothermal523

fluid fluxes in the Oligocene is likely responsible for the observed shift in seawater d56/54Fe, although524

we concede that it is difficult to entirely rule out other possible explanations for the Oligocene data.525

In the modern ocean, isotopically-heavy Fe sources share an important characteristic: modification by526

Fe-sulfide precipitation. A shift to heavier Fe-isotopic compositions is thus inconsistent with an in-527

creased Fe flux from reductive sediment dissolution (⇠ �3 ‰;9 Fig. 3a) or increased source modification528

by Fe-oxide precipitation, as both of these factors would drive marine Fe-isotopic compositions toward529

lighter values. The sustained shift to isotopically heavy d56/54Fe in the Oligocene must relate to in-530

creased source modification by Fe-sulfide precipitation (Fig. 4), as this is the only plausible modification531

process that can generate heavy Fe-isotopic compositions. Fe-sulfide precipitation can occur in conti-532

nental margin10, 55 and hydrothermal settings,57 and has been documented to drive residual, dissolved533

Fe towards heavy d56/54Fe in field settings. In sedimentary systems with oxic bottom waters, Fe-sulfide534

precipitation (usually as pyrite56) occurs well below the sediment–water interface in sulfidic sedimen-535

tary horizons.10, 55 These sulfidic redox horizons are frequently characterized by low ambient [Fe], as536

abundant free sulfide will favor the precipitation of Fe-sulfide minerals, thus ‘choking off’ the benthic537

Fe supply. Overall, these considerations suggest that the Fe-sulfide-influenced Fe flux from continental538

margins is unlikely to have a significant influence on open ocean d56/54Fe.539

Precipitation of Fe-sulfide also occurs in deep-sea hydrothermal systems, which account for large fluxes540

of Fe to the deep ocean6, 8, 63, 95, 96 that can be stabilized by organic compounds.48 End-member hydrother-541

mal fluids appear to possess d56/54Fe ⇡ �0.2 ‰ (Fig. 3a;51, 52), although ligand-stabilized Fe that es-542

capes the local hydrothermal source may be significantly modified toward heavier or lighter d56/54Fe,543

depending on the proportion of Fe-oxide versus Fe-sulfide precipitation (D56/54Feoxide�dissolved > 0;544

D56/54Fesulfide�dissolved < 0). The partitioning of Fe between oxides and sulfides depends primarily on545

the Fe : H2S ratio of the vent fluids and the kinetics of Fe(II) oxidation in ambient seawater.51 In the546

high (> 20;51) Fe : H2S ultramafic-hosted Rainbow hydrothermal system in the north Atlantic, Fe precip-547

itation is near-quantitative and occurs almost exclusively as Fe-oxides that exhibit Fe-isotopic composi-548

tions similar to end-member hydrothermal fluid.51 In other basalt-hosted Atlantic vent systems, where549

Fe : H2S is ⇠ 1,97 significant Fe-isotopic fractionation has been observed, resulting in a net transfer of550

isotopically heavy dissolved Fe to seawater.57 The hydrothermal systems of the EPR (East Pacific Rise)551

exhibit even lower Fe : H2S ratios  0.1,98 such that dissolved Fe escaping to seawater is expected to552

exhibit extremely heavy Fe-isotopic compositions. Unpublished Fe-isotopic profiles of seawater from553

the southeast Pacific Ocean appear to confirm this phenomenon,99 though open ocean seawater values554

in excess of d56/54Fe ⇠ +1 ‰ remain to be observed.555

Indirect evidence for an important role for hydrothermal Fe-sulfide precipitation can be obtained via556

examination of the Fe-rich hydrothermal precipitates at active vent sites (i.e. the reaction products of the557

Fe source modification processes). Fe-isotopic analyses of pyrite-rich hydrothermal chimneys from the558

EPR exhibit d56/54Fe between ⇡ �1.3 and �0.5 ‰, thus requiring the accompanying 350 �C hydrother-559

mal fluids to possess d56/54Fe between +1.0 and +1.5 ‰ (at equilibrium;52). Even heavier Fe-isotopic560

compositions are theoretically possible if Fe-isotopic fractionation follows a Rayleigh distillation inside561

16



the hydrothermal stockwork. For example, in a hydrothermal system with ⇡ 97 % precipitation of an562

initial hydrothermal fluid characterized by d56/54Fe = �0.2 ‰,51 the residual dissolved d56/54Fe should563

be in excess of +2 ‰ assuming all precipitation as Fe-sulfides when D56/54Fesulfide�dissolved = �0.6 ‰57 .564

At 99 % precipitation, residual d56/54Fe would reach ⇡ +3 ‰, suggesting that the cumulative Fe-isotopic565

composition of precipitates formed from that system would exhibit d56/54Fe ⇡ �0.2 ‰. Indeed, pyrite-566

rich hydrothermal precipitates at certain EPR vent sites have been shown to exhibit d56/54Fe ⇡ �0.2 ‰ in567

field settings.52 The Fe-isotopic values observed in the Oligocene strongly indicate that deeply sourced568

hydrothermal Fe dominated the total Fe inventory of the central Pacific, and that Fe-sulfide precipitation569

was the major source modification process at that time.570

The Oligocene shift to heavy seawater d56/54Fe is coincident with a time of increased seafloor generation571

rate (assumed to be a proxy for hydrothermal activity;61 Fig. 4c) in the Pacific basin and extremely low572

rates of eolian deposition (Fig. 4d). The confluence of these two factors likely explains the sustained shift573

to heavy values during this epoch. During the Oligocene, CD29-2 was situated at an average latitude574

of 11 �N, which would place it at the periphery of the maximum modern primordial d(3He) anomaly575

in the central Pacific at ⇠ 2, 000 m.65 (Primordial d(3He) anomalies are sourced through the degassing576

of mantle-derived 3He at hydrothermal vents.100) The extremely low dust fluxes of the Oligocene (;29, 30
577

Fig. 4d) would have provided little Fe to buffer against this predominantly hydrothermally-sourced Fe578

anomaly. Though hydrothermal fluxes are also relatively high in the modern Pacific ocean compared to579

the rest of the Cenozoic,61 the d56/54Fe of seawater ambient to CD29-2 has been lighter than either the580

Oligocene values or dust value since the Pliocene (Fig. 3b). The reduced influence of deeply sourced Fe581

on modern central Pacific d56/54Fe may reflect the significant increase in eolian-sourced Fe since the mid-582

Pliocene, the transit of CD29-2 to more northerly latitudes away from the primordial d(3He) anomaly, or583

a change in the chemistry of EPR vent fluids since the Oligocene.584

Deeply-derived hydrothermal Fe is increasingly recognized as an important component of the total Fe585

inventory of the modern deep Pacific,6, 63, 64 as well as other ocean basins (e.g.8, 101–103). Our Fe-isotopic586

record from CD29-2 suggests that this has also been true in the past, and that deeply sourced hydrother-587

mal Fe was likely the major Fe source to water masses bathing CD29-2 during the Oligocene. More588

broadly, these data underscore the fact that multiple Fe sources contribute to the deep oceans’ Fe inven-589

tory, and illustrate that the relative importance of these sources – and their Fe-isotopic chemistry – have590

also varied significantly through time.591
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Table 2: Fe-isotopic record from central Pacific Fe-Mn crust CD29-2. See text in Methods for age model description.
aDepth from top in mm
bFractional depth in the crust
cModel age from23
dSurface value from33

DfTa d56/54Fe ±2 SD f b Agec (Ma) DfTa d56/54Fe ±2 SD f b Agec (Ma)
0.5 �0.41d 0.09 0.0047 0.27 43.2 +0.01 0.08 0.4075 42.26
16.5 �0.25 0.09 0.1557 8.85 57.0 +0.71 0.06 0.5377 47.44
20.5 �0.07 0.04 0.1934 11.00 60.0 +0.27 0.10 0.5660 48.56
28.5 �0.25 0.09 0.2689 22.06 65.0 +0.11 0.10 0.6132 50.44
29.0 +0.39 0.08 0.2736 22.75 67.0 +0.40 0.02 0.6321 51.19
30.0 +1.21 0.03 0.2830 24.13 69.0 �0.02 0.02 0.6509 51.94
30.5 +0.28 0.13 0.2877 24.82 69.5 �0.05 0.03 0.6557 52.13
31.5 +0.08 0.10 0.2972 26.20 70.0 +0.15 0.04 0.6604 52.31
32.5 +1.54 0.08 0.3066 27.59 70.5 +0.06 0.05 0.6651 52.50
33.2 +0.79 0.07 0.3132 28.55 71.0 +0.13 0.04 0.6698 52.69
34.2 +1.31 0.09 0.3226 29.94 71.5 �0.38 0.06 0.6745 52.88
35.2 +1.32 0.02 0.3321 31.32 73.0 �0.90 0.06 0.6887 53.44
35.4 +0.62 0.06 0.3340 31.59 73.5 �0.13 0.02 0.6934 53.63
35.6 �0.69 0.05 0.3358 31.87 74.0 �1.12 0.10 0.6981 53.81
37.0 +0.06 0.05 0.3491 33.81 75.0 �0.17 0.08 0.7075 54.19
37.2 �0.01 0.10 0.3509 34.08 80.0 �0.03 0.07 0.7547 56.70
37.8 �0.57 0.10 0.3566 34.65 83.0 �0.06 0.05 0.7830 59.10
40.0 �0.11 0.01 0.3774 35.75 86.5 +0.02 0.11 0.8160 61.90
40.4 +0.21 0.10 0.3811 35.95 90.5 +0.35 0.07 0.8538 65.10
40.6 +0.03 0.10 0.3830 36.05 91.0 �0.25 0.09 0.8585 65.50
40.8 �0.04 0.19 0.3849 36.15 91.5 �0.83 0.12 0.8632 65.90
41.0 �0.11 0.02 0.3868 36.25 93.5 �0.75 0.14 0.8821 67.50
41.2 �0.07 0.02 0.3887 36.35 95.5 �0.69 0.06 0.9009 69.10
41.4 �0.02 0.05 0.3906 36.45 96.0 �0.28 0.06 0.9057 69.50
41.6 �0.67 0.08 0.3925 36.55 97.0 �0.78 0.12 0.9151 70.30
41.8 �0.08 0.05 0.3943 36.65 100.0 �0.60 0.10 0.9434 72.69
42.0 �0.47 0.10 0.3962 36.75 102.0 �0.43 0.02 0.9623 74.29
42.4 �0.03 0.03 0.4000 36.95 102.5 +0.17 0.05 0.9670 74.69
42.6 �0.03 0.09 0.4019 42.04 104.0 �0.30 0.09 0.9811 75.89

20



Ta
bl

e
3:

S
el
ec

te
d
se
ar
ch

re
su
lt
s
fr
o
m

B
L
A
S
T
p
o
u
tp
u
t
o
f
en

te
ro
b
ac

ti
n
sy
n
th
as
e
su
b
u
n
it

F
ag

ai
n
st

n
o
n
-r
ed

u
n
d
an

t
se
q
u
en

ce
d
at
ab

as
e
(N

R
).

M
an

y
ho

m
ol
og

ou
s

pr
ot
ei
ns

ar
e
de
te
ct
ed

w
it
hi
n
ex
is
ti
ng

th
e
cu
rr
en
t
se
qu

en
ce

da
ta
ba

se
s,

ex
te
nd

in
g
to

se
qu

en
ce
s
w
it
h
am

in
o
ac
id

id
en
ti
ti
es

as
lo
w

as
⇡

30
%
,
w
it
h
m
an

y
of

th
es
e
b
ei
ng

an
no

ta
te
d
as

b
ei
ng

re
la
te
d
to

en
te
ro
ba

ct
in

bi
os
yn

th
es
is
,
an

d
ot
he
rs

b
ei
ng

re
la
te
d
to

th
e
la
rg
er

no
n-
ri
b
os
om

al
p
ep
ti
de

sy
nt
he
si
s
gr
ou

p
to

w
hi
ch

th
is
en
zy
m
e
b
el
on

gs
.

E-
va

lu
e

%
id

en
tit

y
Ta

xo
n

BL
A

ST
p

A
nn

ot
at

io
n

Ta
xo

n
G

ro
up

0
10

0.
00

Es
ch

er
ic

hi
a

co
li;

Es
ch

er
ic

hi
a

co
li

K
-1

2
en

te
ro

ba
ct

in
sy

nt
ha

se
m

ul
tie

nz
ym

e
co

m
pl

ex
co

m
po

ne
nt

en
te

ro
ba

ct
er

ia
0

98
.5

3
Es

ch
er

ic
hi

a
co

li;
Es

ch
er

ic
hi

a
co

li
A

TC
C

87
39

en
te

ro
ba

ct
in

sy
nt

ha
se

su
bu

ni
tF

en
te

ro
ba

ct
er

ia
0

81
.9

8
Sh

ig
el

la
fle

xn
er

i1
23

5-
66

en
te

ro
ba

ct
in

sy
nt

ha
se

co
m

po
ne

nt
F

en
te

ro
ba

ct
er

ia
0

81
.6

7
C

itr
ob

ac
te

rr
od

en
tiu

m
;C

itr
ob

ac
te

rr
od

en
tiu

m
IC

C
16

8
en

te
ro

ba
ct

in
sy

nt
he

ta
se

co
m

po
ne

nt
F

en
te

ro
ba

ct
er

ia
0

79
.2

1
Sa

lm
on

el
la

en
te

ri
ca

;O
ra

ni
en

bu
rg

st
r.

02
50

en
te

ro
ba

ct
in

sy
nt

ha
se

su
bu

ni
tF

en
te

ro
ba

ct
er

ia
0

78
.1

3
K

le
bs

ie
lla

pn
eu

m
on

ia
e;K

le
bs

ie
lla

pn
eu

m
on

ia
eU

H
K

PC
06

en
te

ro
ba

ct
in

sy
nt

he
ta

se
co

m
po

ne
nt

F
en

te
ro

ba
ct

er
ia

0
78

.1
3

H
af

ni
a

al
ve

iB
ID

M
C

31
en

te
ro

ba
ct

in
sy

nt
ha

se
co

m
po

ne
nt

F
en

te
ro

ba
ct

er
ia

0
76

.8
9

K
os

ak
on

ia
ra

di
ci

nc
ita

ns
;E

nt
er

ob
ac

te
rr

ad
ic

in
ci

ta
ns

D
SM

16
65

6
en

te
ro

ba
ct

in
sy

nt
ha

se
su

bu
ni

tF
en

te
ro

ba
ct

er
ia

0
58

.3
7

ga
m

m
a

pr
ot

eo
ba

ct
er

iu
m

W
G

36
en

te
ro

ba
ct

in
sy

nt
ha

se
su

bu
ni

tF
g-

pr
ot

eo
ba

ct
er

ia
0

58
.3

1
Ps

eu
do

m
on

as
sp

.3
13

en
te

ro
ba

ct
in

sy
nt

ha
se

su
bu

ni
tF

g-
pr

ot
eo

ba
ct

er
ia

0
49

.5
7

M
et

hy
lo

cy
st

is
ro

se
a

hy
po

th
et

ic
al

pr
ot

ei
n

a-
pr

ot
eo

ba
ct

er
ia

0
44

.2
6

M
ar

in
om

on
as

sp
.D

10
4

ch
ro

m
op

ho
re

ly
as

e
g-

pr
ot

eo
ba

ct
er

ia
0

42
.7

4
M

ar
in

om
on

as
m

ed
ite

rr
an

ea
M

M
B-

1
am

in
o

ac
id

ad
en

yl
at

io
n

pr
ot

ei
n

g-
pr

ot
eo

ba
ct

er
ia

0
40

.3
9

Vi
br

io
ca

m
pb

el
lii

pe
pt

id
e

sy
nt

he
ta

se
g-

pr
ot

eo
ba

ct
er

ia
0

37
.7

5
St

en
ot

ro
ph

om
on

as
m

al
to

ph
ili

a
5B

A
-I

-2
en

te
ro

ba
ct

in
sy

nt
ha

se
g-

pr
ot

eo
ba

ct
er

ia
0

36
.9

6
A

er
om

on
as

ve
ro

ni
i;

A
er

om
on

as
ve

ro
ni

iA
ER

39
en

te
ro

ba
ct

in
sy

nt
ha

se
g-

pr
ot

eo
ba

ct
er

ia
2.

E-
17

3
34

.7
5

Ba
ci

llu
sa

m
yl

ol
iq

ue
fa

ci
en

s;B
ac

ill
us

am
yl

ol
iq

ue
fa

ci
en

sD
SM

7
si

de
ro

ph
or

e
2

fir
m

ic
ut

es
8.

E-
13

9
33

.8
3

A
ct

in
ok

in
eo

sp
or

a
sp

.E
G

49
Si

de
ro

ph
or

e
bi

os
yn

th
es

is
no

n-
ri

bo
so

m
al

pe
pt

id
e

sy
nt

he
ta

se
m

od
ul

e
hi

gh
G

C
G

ra
m
+

2.
E-

12
7

32
.4

1
M

et
hy

lo
ba

ct
er

m
ar

in
us

hy
po

th
et

ic
al

pr
ot

ei
n

g-
pr

ot
eo

ba
ct

er
ia

6.
E-

16
4

31
.1

3
C

ya
no

th
ec

es
p.

PC
C

74
24

am
in

o
ac

id
ad

en
yl

at
io

n
pr

ot
ei

n
cy

an
ob

ac
te

ri
a

1.
E-

88
29

.1
8

R
ho

do
co

cc
us

op
ac

us
;R

ho
do

co
cc

us
op

ac
us

M
21

3
no

n-
ri

bo
so

m
al

pe
pt

id
e

sy
nt

he
ta

se
hi

gh
G

C
G

ra
m
+

21



Ta
bl

e
4:

S
el
ec

te
d
se
ar
ch

re
su
lt
s
fr
o
m

B
L
A
S
T
p
o
u
tp
u
t
o
f
d
es
fe
rr
io
xa

m
in
e
E

b
io
sy
n
th
es
is

pr
o
te
in

D
es
A

ag
ai
n
st

n
o
n
-r
ed

u
n
d
an

t
se
q
u
en

ce
d
at
ab

as
e
(N

R
).

M
an

y
ho

m
ol
og

ou
s
pr
ot
ei
ns

ar
e
de
te
ct
ed

w
it
hi
n
ex
is
ti
ng

th
e
cu
rr
en
t
se
qu

en
ce

da
ta
ba

se
s,

ex
te
nd

in
g
to

se
qu

en
ce
s
w
it
h
am

in
o
ac
id

id
en
ti
ti
es

as
lo
w

as
⇡

30
%
,
al
th
ou

gh
m
os
t

an
no

ta
ti
on

s
ar
e
re
la
te
d
to

ca
rb
ox
yl
as
e
or

hy
p
ot
he
ti
ca
l
pr
ot
ei
ns
.

E-
va

lu
e

%
id

en
tit

y
Ta

xo
n

BL
A

ST
p

A
nn

ot
at

io
n

Ta
xo

n
G

ro
up

0
10

0.
00

St
re

pt
om

yc
es

sp
.P

A
M

C
26

50
8

de
sf

er
ri

ox
am

in
e

E
bi

os
yn

th
es

is
pr

ot
ei

n
D

es
A

@
Si

de
ro

ph
or

e
bi

os
yn

th
es

is
L-

2
hi

gh
G

C
G

ra
m
+

0
99

.3
8

St
re

pt
om

yc
es

fla
vo

gr
is

eu
sA

TC
C

33
33

1
py

ri
do

xa
l-d

ep
en

de
nt

de
ca

rb
ox

yl
as

e
hi

gh
G

C
G

ra
m
+

0
85

.0
3

St
re

pt
om

yc
es

gl
ob

is
po

ru
s

py
ri

do
xa

l-d
ep

en
de

nt
de

ca
rb

ox
yl

as
e

hi
gh

G
C

G
ra

m
+

0
82

.5
0

St
re

pt
om

yc
es

sc
ab

ie
i8

7.
22

si
de

ro
ph

or
e

bi
os

yn
th

es
is

py
ri

do
xa

l-d
ep

en
de

nt
de

ca
rb

ox
yl

as
e

D
es

A
hi

gh
G

C
G

ra
m
+

0
82

.4
6

St
re

pt
om

yc
es

sp
.C

N
S6

15
py

ri
do

xa
l-d

ep
en

de
nt

de
ca

rb
ox

yl
as

e
hi

gh
G

C
G

ra
m
+

0
77

.9
6

St
re

pt
om

yc
es

al
bu

sJ
10

74
4-

di
am

in
ob

ut
yr

at
e

de
ca

rb
ox

yl
as

e,
py

ri
do

xa
l-d

ep
en

de
nt

de
ca

rb
ox

yl
as

e
hi

gh
G

C
G

ra
m
+

0
70

.2
3

St
re

pt
om

yc
es

sp
.F

xa
na

C
1

py
ri

do
xa

l-d
ep

en
de

nt
de

ca
rb

ox
yl

as
e

hi
gh

G
C

G
ra

m
+

0
65

.4
2

Sa
lin

is
po

ra
pa

ci
fic

a
py

ri
do

xa
l-d

ep
en

de
nt

de
ca

rb
ox

yl
as

e
hi

gh
G

C
G

ra
m
+

0
64

.0
7

A
ct

in
op

ol
ys

po
ra

ha
lo

ph
ila

hy
po

th
et

ic
al

pr
ot

ei
n

hi
gh

G
C

G
ra

m
+

0
62

.9
1

N
oc

ar
di

op
si

sh
al

ot
ol

er
an

s
py

ri
do

xa
l-d

ep
en

de
nt

de
ca

rb
ox

yl
as

e
hi

gh
G

C
G

ra
m
+

0
59

.3
4

Ps
eu

do
m

on
as

st
ut

ze
ri

B1
SM

N
1

ty
ro

si
ne

de
ca

rb
ox

yl
as

e
g-

pr
ot

eo
ba

ct
er

ia
0

58
.2

3
Ps

eu
do

m
on

as
sp

.H
PB

00
71

hy
po

th
et

ic
al

pr
ot

ei
n

g-
pr

ot
eo

ba
ct

er
ia

0
57

.7
1

Pa
nt

oe
a

ag
gl

om
er

an
s2

99
R

D
es

fe
rr

io
xa

m
in

e
E

bi
os

yn
th

es
is

pr
ot

ei
n

D
es

A
en

te
ro

ba
ct

er
ia

0
56

.8
2

M
ar

in
ob

ac
te

ri
um

rh
iz

op
hi

lu
m

hy
po

th
et

ic
al

pr
ot

ei
n

g-
pr

ot
eo

ba
ct

er
ia

0
55

.7
8

M
et

hy
lo

ba
ct

er
m

ar
in

us
hy

po
th

et
ic

al
pr

ot
ei

n
g-

pr
ot

eo
ba

ct
er

ia
5.

E-
16

8
50

.1
0

Ps
eu

do
al

te
ro

m
on

as
tu

ni
ca

ta
D

2
cy

to
ch

ro
m

e
C

bi
og

en
es

is
pr

ot
ei

n
C

cm
H

g-
pr

ot
eo

ba
ct

er
ia

7.
E-

11
4

44
.6

1
H

al
al

ka
lic

oc
cu

sj
eo

tg
al

iB
3

4-
di

am
in

ob
ut

yr
at

e
de

ca
rb

ox
yl

as
e,

Py
ri

do
xa

l-d
ep

en
de

nt
de

ca
rb

ox
yl

as
e

eu
ry

ar
ch

ae
ot

es
3.

E-
10

8
39

.7
1

Vi
br

io
flu

vi
al

is
PG

41
D

ia
m

in
ob

ut
yr

at
e–

2-
ox

og
lu

ta
ra

te
am

in
ot

ra
ns

fe
ra

se
g-

pr
ot

eo
ba

ct
er

ia
2.

E-
47

36
.3

9
Sy

ne
ch

oc
oc

cu
se

lo
ng

at
us

PC
C

63
01

L-
2-

di
am

in
ob

ut
yr

at
e

de
ca

rb
ox

yl
as

e
cy

an
ob

ac
te

ri
a

22



References593

[1] Twining BS, Baines SB (2013) The Trace Metal Composition of Marine Phytoplankton. Ann. Rev.594

Mar. Sci. 5:191–215.595

[2] Boyd PW, et al. (2007) Mesoscale iron enrichment experiments 1993-2005: Synthesis and future596

directions. Science 315:612–617.597

[3] Aumont O, Maier-Reimer E, Blain S, Monfray P (2003) An ecosystem model of the global ocean598

including Fe, Si, P colimitations. Global Biogeochem. Cycles 17.599

[4] Misumi K, et al. (2014) The iron budget in ocean surface waters in the 20th and 21st centuries:600

projections by the Community Earth System Model version 1. Biogeosci. 11:33–55.601

[5] Jickells TD, et al. (2005) Global iron connections between desert dust, ocean biogeochemistry, and602

climate. Science 308:67.603

[6] Tagliabue A, et al. (2010) Hydrothermal contribution to the oceanic dissolved iron inventory. Nat.604

Geosci. 3:252–256.605

[7] Sander SG, Koschinsky A (2011) Metal flux from hydrothermal vents increased by organic com-606

plexation. Nat. Geosci. 4:145–150.607

[8] Saito MA, et al. (2013) Slow-spreading submarine ridges in the South Atlantic as a significant608

oceanic iron source. Nat. Geosci. 6:775–779.609

[9] Severmann S, McManus J, Berelson WM, Hammond DE (2010) The continental shelf benthic iron610

flux and its isotope composition. Geochim. Cosmochim. Acta 74:3984–4004.611

[10] Homoky WB, John SG, Conway TM, Mills RA (2013) Distinct iron isotopic signatures and supply612

from marine sediment dissolution. Nat. Comm. 4.613

[11] Wu J, Boyle EA, Sunda W, Wen LS (2001) Soluble and colloidal iron in the oligotrophic North614

Atlantic and North Pacific. Science 293:847–849.615

[12] Fung IY, et al. (2000) Iron supply and demand in the upper ocean. Global Biogeochem. Cycles 14:281–616

295.617

[13] Moore JK, Doney SC, Glover DM, Fung IY (2001) Iron cycling and nutrient-limitation patterns in618

surface waters of the World Ocean. Deep Sea Res. Part II 49:463–507.619

[14] Radic A, Lacan F, Murray JW (2011) Iron isotopes in the seawater of the equatorial Pacific Ocean:620

New constraints for the oceanic iron cycle. Earth Planet. Sci. Lett. 306:1–10.621

[15] John SG, Adkins J (2012) The vertical distribution of iron stable isotopes in the North Atlantic near622

Bermuda. Global Biogeochem. Cycles 26.623

[16] Conway TM, John SG (2014) Quantification of dissolved iron sources to the North Atlantic Ocean.624

Nature 511:212–215.625

[17] Lacan F, et al. (2008) Measurement of the isotopic composition of dissolved iron in the open ocean.626

Geophys. Res. Lett. 35.627

23



[18] Owens JD, et al. (2012) Iron isotope and trace metal records of iron cycling in the proto-North628

Atlantic during the Cenomanian-Turonian oceanic anoxic event (OAE-2). Paleoceanography 27.629

[19] Frank M, O’Nions RK, Hein JR, Banakar VK (1999) 60 Myr records of major elements and Pb–Nd630

isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry.631

Geochim. Cosmochim. Acta 63:1689–1708.632

[20] Hein JR, et al. (1987) Farnella Cruise F7-86-HW, Cobalt-rich Ferromanganese Crust Data Report for633

Karin Ridge and Johnston Island, Central Pacific., (US Geol. Surv.), Open File Rep. 87-663.634

[21] Hein J, et al. (2000) in Handbook of marine mineral deposits, ed Cronan DS (CRC Press, Boca Raton,635

FL), pp 239–279.636

[22] Koschinsky A, Hein JR (2003) Uptake of elements from seawater by ferromanganese crusts: solid-637

phase associations and seawater speciation. Mar. Geol. 198:331–351.638

[23] Nielsen SG, et al. (2009) Thallium isotope evidence for a permanent increase in marine organic639

carbon export in the early Eocene. Earth Planet. Sci. Lett. 278:297–307.640

[24] Bergquist BA, Wu J, Boyle EA (2007) Variability in oceanic dissolved iron is dominated by the641

colloidal fraction. Geochim. Cosmochim. Acta 71:2960–2974.642

[25] Broecker WS, Peng TH (1982) Tracers in the Sea (Lamont-Doherty Geological Observatory,643

Columbia University), p 690.644

[26] Henderson GM, Burton KW (1999) Using (234U/238U) to assess diffusion rates of isotope tracers in645

ferromanganese crusts. Earth Planet. Sci. Lett. 170:169–179.646

[27] Hein JR, et al. (1993) Two major Cenozoic episodes of phosphogenesis recorded in equatorial647

Pacific seamount deposits. Paleoceanography 8:293–311.648

[28] Chu NC, et al. (2006) Evidence for hydrothermal venting in Fe isotope compositions of the deep649

Pacific Ocean through time. Earth Planet Sci. Lett. 245:202–217.650

[29] Janecek TR (1985) in Deep Sea Drilling Project Leg 86, Western North Pacific, Init. Repts. DSDP, ed651

Turner KL (U.S. Govt. Printing Office, Washington, D.C.) No. 19, pp 589–603.652

[30] Janecek TR, Rea DK (1983) Eolian deposition in the northeast Pacific Ocean: Cenozoic history of653

atmospheric circulation. Geol. Soc. Am. Bull. 94:730–738.654

[31] Schlitzer R (2011) Ocean Data View. (http://odv.awi.de/).655
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