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Sébastien Foucaud,3,4 W. S. Burgett,5 K. C. Chambers,5 N. Kaiser,5 R. P. Kudritzki,5

E. A. Magnier,5 P. A. Price,6 J. L. Tonry5 and C. Waters5

1Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
2Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
3Department of Earth Sciences, National Taiwan Normal University, 88 Tingzhou Road, Sec. 4, Wenshan district, Taipei 11677, Taiwan
4Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan
5Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
6Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

Accepted 2013 October 7. Received 2013 October 4; in original form 2013 March 28

ABSTRACT
The Panoramic Survey Telescope and Rapid Response System 1 survey is currently obtaining
imaging in five bands (gP1, rP1, iP1, zP1 and yP1) for the 3π steradian survey, one of the
largest optical surveys ever conducted. The finished survey will have spatially varying depth,
due to the survey strategy. This paper presents a method to correct galaxy number counts
and galaxy clustering for this potential systematic based on a simplified signal-to-noise ratio
measurement. A star and galaxy separation method calibrated using realistic synthetic images
is also presented, along with an approach to mask bright stars. By using our techniques on
a 69 square degree region of science verification data this paper shows PS1 measurements
of the two-point angular correlation function as a function of apparent magnitude agree with
measurements from deeper, smaller surveys. Clustering measurements appear reliable down
to a magnitude limit of rP1 < 22.5. Additionally, stellar contamination and false detection
issues are discussed and quantified. This work is the second of two papers which pave the way
for the exploitation of the full 3π survey for studies of large-scale structure.
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1 IN T RO D U C T I O N

Panoramic Survey Telescope and Rapid Response System 1;
Pan-STARRS1 (PS1) is a 1.8 m telescope on Haleakala, Maui
(Hodapp et al. 2004). Its unique selling point is its high etendue,
the product of its collecting area and field of view, which allows it
to survey large areas of sky quickly (Kaiser et al. 2002). To fully
utilize this it has a huge camera (GPC1), with 1.4 Gpixels and a 3.◦3
field of view (Tonry et al. 2008). It was designed as a prototype of
PS4, an array of four identical telescopes scanning the whole sky
in relatively short intervals for potentially threatening Near Earth
Objects (NEOs; Kaiser et al. 2002). The multiepoch nature of PS1
observations is not only good for the detection of moving and tran-
sient objects but also provides the redundancy necessary for highly
accurate zero-point calibration (Schlafly et al. 2012; Magnier et al.
2013), which is important for large-scale structure analysis.

As well as the main goal of detecting NEOs, PS1 has always
been envisaged to meet a wide variety of science goals, including
detecting comets, extrasolar planets, supernovae and active galactic

� E-mail: d.j.farrow@durham.ac.uk

nuclei (AGNs) as well as measuring large-scale structure. PS1 does
not have a spectrograph but photometric redshifts will be available
from a dedicated pipeline (Saglia et al. 2012). As of 2013 July, PS1
has been successful in detecting many new Solar system objects,1

as well as supernovae (e.g. Valenti et al. 2010), variable AGN (e.g.
Ward et al. 2011) and satellite galaxies around Andromeda (Martin
et al. 2013). It has also been successfully used as a source of optical
data for other surveys to measure the clustering of extremely red
galaxies (Kim et al. in preparation). We now extend this success to
large-scale structure using PS1 data alone with static objects, where
individual exposures are co-added to gain greater depth.

The finished PS1 survey will have two major co-added data
products.2 The 3π survey with 31 500 square degrees of imag-
ing and 10 deeper 8.5 square degree fields known as the ‘Medium
Deeps’, both in the PS1 bands of gP1, rP1, iP1, zP1 and yP1.
The 3π survey will be deeper and have a larger area than its

1 http://www.minorplanetcenter.org/iau/mpc.html
2 The PS1 catalogue data is currently restricted to the private PS1 consortium
but will be made available through the Space Telescope Science Institute
when the proprietary period is complete. Access to the measurements pub-
lished here can be obtained from the lead author.
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PS1: testing galaxy clustering with SAS2 749

predecessors, and it will also benefit from, yP1, a near-infrared band.
For more details on the 3π survey please refer to Chambers et al.
(in preparation).

In this work, we lay the foundations of exploiting the 3π sur-
vey for large-scale structure by demonstrating how galaxy number
counts and the angular two-point galaxy correlation function, w(θ ),
can be reliably measured. Namely we tackle, from a large-scale
structure stand point, issues of star/galaxy separation, false posi-
tives, depth, angular masks and how completeness varies with sky
position. We will refer to the fraction of objects detected as a func-
tion of magnitude as the ‘detection efficiency’ throughout. As this
paper is mainly a proof of concept, we concentrate mostly on the
rP1-band. This is the second of two papers assessing PS1 viability
for large-scale structure studies, we will refer to our first paper,
Metcalfe et al. (2013), as Paper I hereafter.

This paper is organized as follows. In Section 2, we introduce the
data sets we are using from PS1 along with the Sloan Digital Sky
Survey (SDSS) comparison samples. In Section 3, we present the
angular masks and in Section 4 we create synthetic images and use
them to define star and galaxy separators. Section 5 introduces our
method of dealing with spatially varying depth. In Section 6, we
present our measurements of clustering and number counts along
with careful tests of how systematic errors and our corrections
affect them. In Section 7, we discuss implications of our work to
the scientific exploitation of the finished 3π survey.

2 TH E DATA

2.1 The PS1 Small Area Survey 2

The Small Area Survey 2 (SAS2) is a subset of the 3π sur-
vey roughly covering the region of 327.5 < α(deg) < 338.5 and
−5.5 < δ(deg) < 5.5. It is designed to be representative of the
finished 3π survey. A large number of individual exposures were
taken, co-added and mosaicked to form around 69 square degrees of
imaging. It has a median point spread function (PSF) full width at
half-maximum (FWHM) of 0.94 arcsec, which has an rms scatter of
less than 0.05 arcsec across the field (Paper I). PS1 has a raw pixel
scale of 0.256 arcsec before ‘warping’ (see later in this section) and
0.25 arcsec after. A careful study of the depth of this data set can be
found in Paper I, which reports that 50 per cent of stars are recovered
at magnitudes in gP1, rP1, iP1, zP1 and yP1 of 23.4, 23.4, 23.2, 22.4
and 21.3, respectively. All magnitudes in this paper are measured
in the AB system.

Different subareas of the finished SAS2 stacked data have dif-
ferent numbers of input exposures. This is down to the observing
strategy, which means exposures in a stack are not always coinci-
dent with each other. Additionally, around 25 per cent of individual
exposures are masked (Paper I), which is mainly due to gaps be-
tween CCD chips as well as defective CCD cells and other regions.
The decision to build up stacks using multiple, rotated and non-
coincident individual exposures was chosen in order to meet the
needs of scientists interested in transient and moving objects, who
require large area imaging over multiple epochs.

We will refer to the number of input exposures to a pixel as the
‘coverage’ throughout this paper. To illustrate this, Fig. 1 gives the
‘coverage map’, i.e. an image recording the number of exposures
stacked for each pixel, in a 26 arcmin by 26 arcmin region. A typical
SAS2 stacked image has an average coverage of around 8.9 expo-
sures per pixel (Paper I), and this coverage has a standard deviation
of around 3 exposures per pixel. In the stacks, this gives rise to a
spatially varying noise level. To track this, PS1 produces ‘variance

Figure 1. The coverage, i.e. the number of input exposures, of a typical
26 by 26 arcmin SAS2 stack skycell. The black areas correspond to 11
input exposures for that pixel, white corresponds to no input exposures (a
blank pixel). The grid pattern arises from the gaps between CCD chips in
individual exposures.

maps’ which record the variance of the noise in each image pixel.
This variance includes contributions from sources of astronomi-
cal noise including sky background, read noise and Poisson noise,
and how they scale with the weighting of exposures in a stack.
Naturally, the spatially varying image noise leads to different depths
in different positions on the sky (see Section 5).

In addition to coverage maps and variance maps the PS1
Image Processing Pipeline (IPP; Magnier 2006) also produces im-
age masks. These image masks track pixel quality and highlight
pixels which have been flagged as suspicious (e.g. likely to be cos-
mic rays or image artefacts) by the pipeline. Image masks, variance
maps, coverage maps and images are all supplied in approximately
26 arcmin by 26 arcmin units called ‘skycells’. These skycells do
not represent unique areas on the sky but overlap, and in these over-
lap regions’ pixels from different skycells are not necessarily the
same, since decisions on which exposures to reject from a stack are
made on a skycell by skycell basis.

It is also important to note that transforming the exposures from
the CCD coordinates to the stack pixel coordinate system, a process
known as ‘warping’, introduces correlations between the image
pixels on scales of less than around 1 arcsec (see Paper I). The
image, I, the variance, V, and the warped image, I ′, and variance,
V ′, are related by a warping kernel, k, thus

I ′(x, y) =
∑
u,v

k(u, v)I (x − u, y − v), (1)

V′(x, y) =
∑
u,v

k(u, v)2V (x − u, y − v), (2)

where x and y are image pixel indices and u and v are kernel pixel
indices. Here the kernel has been normalized so it sums to unity.
This warping process converts some variance into covariance, such
that V ′(x, y) no longer represents all of the noise associated with a
pixel. To measure a warped pixel’s total noise one needs to use a
covariance matrix which accounts for the correlations between the
pixels in the image. Storing the full covariance matrix would require
a prohibitive amount of space so a much smaller matrix, known as
the ‘covariance pseudo-matrix’ is stored per stack image.

The covariance pseudo-matrix, C̃(i, j ), describes the covariance
of a single pixel with each of the pixels in its neighbourhood, with

 at D
urham

 U
niversity L

ibrary on February 19, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


750 D. J. Farrow et al.

relative pixel coordinate (i, j). For initially uncorrelated data this
matrix is simply a function of the warping kernel,

C̃(i, j ) =
∑
u,v

k(u − i, v − j )k(u, v)N, (3)

where N = (
∑

u, vk2(u, v))−1, such that C̃(0, 0) = 1 and N =∑
i,j C̃(i, j ). The latter property follows from the normalization

of kernel, k. When making measurements, which combine many
pixels, the effect of covariance on the overall variance of the mea-
surement can be approximated by simply boosting individual vari-
ances by the factor N and otherwise ignoring covariance. This ap-
proximation is asymptotically exact for apertures much larger than
the kernel size. The value of N changes from place to place on the
sky but has an approximately Gaussian distribution with a mean of
1.379 with an rms of 0.006 for SAS2 rP1-band. In Paper I, we show
how the warping process has no effect on the depth of images, but
we will revisit the covariance pseudo-matrix in Section 3.1.

2.2 PS1 magnitudes, flags and nomenclature

In this work, we use Kron magnitudes (Kron 1980) as measured by
the IPP code PSPHOT (Magnier 2006) with zero-points accurate to
10 mmag from the calibration described in Schlafly et al. (2012) and
Tonry et al. (2012). Kron magnitudes measure flux in an aperture
with a radius called the ‘Kron radius’, which is some multiple (2.5
for PS1) of the first moment radius of the flux (Kron 1980). Kron
magnitudes are designed to contain the majority of flux for a given
source profile regardless of size, but a small, profile dependent
correction term is required to account for flux outside the Kron
radius. For defining clustering samples, we base our selection on
uncorrected Kron magnitudes, as they are well defined for all of our
objects. This correction needs to be considered when comparing
total magnitudes from synthetic objects to observed quantities and
when comparing to the literature galaxy number counts. From table
2 of Paper I, we see that this correction has a weak magnitude
dependence and changes by a few hundredths of a magnitude. It
is also expected that this correction will slightly depend on galaxy
profile. For this work, we adopt an average correction of magTotal =
magKron − 0.2 to convert from Kron magnitude to total magnitudes;
we will state explicitly wherever we apply this correction throughout
this paper.

For the purposes of star/galaxy separation, we also use PSF mag-
nitudes, which are magnitudes based on extrapolating the magnitude
from a small aperture, chosen to maximize the signal-to-noise ratio
(SNR), using the IPP PSF model (see Section 4.1). We shall label
these magnitudes with the suffix ‘PSF’ to contrast with the Kron
magnitudes which are labelled using the name of the filter, i.e. gP1,
rP1, iP1, zP1 and yP1.

All number count, colour–colour, colour–magnitude and cluster-
ing plots are corrected for galactic extinction using the dust maps
and associated IDL code of Schlegel, Finkbeiner & Davis (1998),
using the coefficients from Schlafly & Finkbeiner (2011). Star and
galaxy separation and detection efficiency plots are all uncorrected
for extinction, as the measured magnitude is more relevant for these
plots. These extincted, measured magnitudes will be labelled with
the suffix ‘raw’.

To remove known spurious detections we use IPP flags. All ob-
jects with the PSPHOT flags FITFAIL, SATSTAR, BADPSF, DEFECT, SATU-
RATED, CR_LIMIT, MOMENTS_FAILURE, SKY_FAILURE, SKYVAR_FAILURE OR

SIZE_SKIPPED set are removed. Further discussion of these flags can
be found in Paper I.

Figure 2. The difference between r-band SDSS Stripe 82 Petrosian mag-
nitudes and rP1-band PS1 Kron magnitudes, for all objects in an overlap
region. Points with error bars show the median values along with upper and
lower quartiles. The two magnitudes are fairly well matched, with a small
median offset that varies slightly with magnitude.

2.3 SDSS magnitudes and flags for the comparison sample

The SAS2 field overlaps with SDSS DR8 and is partially covered
by the SDSS Stripe 82 co-added data (Annis et al. 2013), the size of
the Stripe 82 overlap region is around 16 square degrees (see fig. 1
of Paper I). We compare PS1 to both of these. Stripe 82 comparisons
are particularly useful as Stripe 82 is deeper than PS1.

SDSS measures magnitudes in an a sin h magnitude system
(Lupton, Gunn & Szalay 1999). We adjust this to the standard
Pogson system using the formula available on the SDSS website.3

This adjustment is very small, at its maximum value, r = 23.0, it
is only 0.04 mag in size. The SDSS bands are slightly different to
those of PS1, transformations are given in Tonry et al. (2012). These
transformations in our comparison band, rP1, are very small, less
than 0.01 mag for a wide range of colours in fig. 6 of Tonry et al.
(2012), and hence are neglected.

SDSS DR8 and SDSS Stripe 82 do not provide Kron magnitudes.
Whilst the SDSS magnitudes measured using model fits, so-called
modelMags, give an estimate of the total magnitude of a galaxy,
we want to select a magnitude estimator most similar to our Kron
magnitudes (see Paper I for PS1 Kron and SDSS modelMag com-
parisons). Petrosian magnitudes (Petrosian 1976), a modified form
of which are provided by SDSS (see Blanton et al. 2001; Yasuda
et al. 2001) measure flux within an aperture of a size determined by
the ratio of a surface brightness in an annulus around a source to
the average surface brightness of the region interior to that annulus.
In theory, the fraction of flux enclosed by a Kron magnitude and a
Petrosian magnitude could differ. A comparison of PS1 measured
Kron magnitudes and SDSS DR8 Petrosian magnitudes (Fig. 2)
shows that these two magnitude measures are fairly well matched
in the rP1-band and r band for objects in SDSS.

To define SDSS galaxies we use the Strauss et al. (2002) star–
galaxy separator,

rpsf − rmodel > 0.3, (4)

where rpsf is the SDSS PSF magnitude and rmodel is the SDSS
model magnitude. We use SDSS flags to remove false positives in

3 http://www.sdss3.org/dr8
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SDSS DR8. Following the spectroscopic target selection of Strauss
et al. (2002) we reject SDSS objects with SATURATED or BRIGHT flags,
and require the BINNED1 flag to be set (i.e. a 5σ detection). Again
following Strauss et al. (2002) we apply, to the DR8 data, a Petrosian
half-light surface brightness cut of

μ50 = mpetro + 2.5 log10(πR2
50,petro) < 24.0, (5)

where mpetro is the Petrosian magnitude and R50, petro is the radius
enclosing 50 per cent of the Petrosian flux. Strauss et al. (2002)
adopted a similar cut to remove low surface brightness false posi-
tives; though they used a slightly more complicated cut than ours,
which was dependent on sky values and fibre magnitudes. We adopt
this simplified, less conservative cut [the Strauss et al. (2002) could
be as bright as μ50 < 23.0] to DR8 as we find it is sufficient to
remove SDSS false (unmatched to PS1) detections from the magni-
tude ranges we consider. Applying this surface brightness cut limits
SDSS DR8 depth faintward of r = 20.0, so we do not compare to
SDSS DR8 faintward of this value. With more work, it is likely
possible to measure SDSS DR8 clustering over SAS2 for galaxies
fainter than this, but we choose instead to use the literature and
Medium Deep data for faint clustering comparisons.

We do not apply any surface brightness cut to Stripe 82 data as
our main use of Stripe 82 is to estimate PS1 depth and these cuts
could limit Stripe 82 depth. How Stripe 82 false detections affect
this work will be discussed in Section 5. Stripe 82 does not have
a publicly available mask for the co-added data, so we created our
own by visual inspection of the area. This mask defines areas with
no Stripe 82 imaging and removes a satellite trail in Stripe 82.

A further use for Stripe 82 is to test how strongly detection
efficiency depends on apparent colour. A galaxy’s colour is corre-
lated with its morphology, red galaxies tend to be ellipticals and
blue galaxies tend to be spirals. Galaxies with different morpholo-
gies have different surface brightness distributions and as such may
have a different chance of being detected. Since galaxy clustering
is a function of colour and morphology, with red ellipticals being
more clustered, this effect could modify our clustering for cuts and
depth corrections based on apparent magnitude. Fig. 3 shows a
colour–magnitude diagram using Stripe 82 model magnitudes for
objects classed as galaxies by Stripe 82’s own morphological star

Figure 3. A colour–magnitude diagram of Stripe 82 galaxies, using Stripe
82 apparent model magnitudes. The red dashed line marks our separator
between red and blue galaxies.

and galaxy separator, TYPE = 3. We separate galaxies in the red
sequence from those in the blue cloud using the cut indicated in
Fig. 3, (g − r) = 1.4. We will use this sample of red and blue galax-
ies when testing the dependence of detection efficiency on apparent
colour and hence morphology.

2.4 PS1 Medium Deep data

When comparing our faint galaxy clustering to other measurements
we compare both to the literature data and to results from the much
deeper and more spatially homogeneous PS1 Medium Deep survey.
Foucaud et al. (in preparation) have produced their own stacks
of Medium Deep field 7 (MD07) using PS1 data and reduced
them using SEXTRACTOR (Bertin & Arnouts 1996). They measure
the Kron magnitudes of galaxies, using SEXTRACTOR MAG_AUTO,
and star/galaxy separate using a combined morphological and SED
fitting approach. They also adopt a mask to remove bright stars
and poorer quality data. After masking, MD07 has an area of
7 square degrees, much smaller than the SAS2 field. For more
details on these stacks see Jian et al. (2013) and Foucaud et al.
(in preparation).

3 A N G U L A R M A S K S A N D FA L S E PO S I T I V E S

3.1 Creating the mask

To create a set of random points suitable for measuring clustering
and to remove regions of low data quality we define a new set
of angular masks. These masks differ from IPP image masks in
that a single, unique mask covers the whole region of interest. In
IPP two overlapping skycells will have two different masks, one
for each skycell. As well as masks we produce variance maps and
coverage maps binned-up to the same resolution as our mask pixels.
We take variance maps, coverage maps and image masks at the
native pixel scale and compute their mean on a grid of 120002,
3.3 arcsec × 3.3 arcsec equal area pixels, which covers the whole
SAS2 area. As binned-up pixel boundaries do not align with the
IPP pixel boundaries, we assign pixels to their nearest binned-up
pixels. Our binned-up pixel grid has the same rotation as the IPP
pixels. For our coverage maps, we take the lowest value of any
IPP pixel in our binned-up pixels, to be conservative in our estimates
of low coverage areas. Our binned-up pixel size was chosen to
preserve the fine structure in the variance whilst still yielding a
mask of manageable size. Experimenting with different mask and
map pixels sizes, and different mask and map tessellations are left
for later work.

Only taking into account the variance recorded in the variance
maps would result in underestimating the noise, as we would be
ignoring the covariance. We therefore multiply variance values from
IPP variance maps with the sum of the elements of their associated
covariance pseudo-matrix (see Section 2.1). This is almost the same
as multiplying all of variance map values with a constant, as the rms
of this scaling factor, given in Section 2.1, is only around 0.5 per cent
across the SAS2 field. We carry this scaling out to allow easier
comparison to the work of Paper I, which works with uncorrelated
noise measurements. We also apply this scaling now as it could
become more important if the warping kernel were to change.

Where data from two skycells overlap we take data from the
skycell whose centre is closest to the overlapping data. We do this
for both the pixels and the object detections to ensure that the
catalogues, masks and maps are consistent.
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As well as defining the basic geometry of the survey, we also
use angular masks to avoid two other types of potential problem:
deblending and image artefacts.

3.2 Masks for bright stars

In common with a large amount of image reduction software
(see e.g. Bertin & Arnouts 1996), PSPHOT can split bright objects
and diffraction spikes into multiple detections. To avoid this, we
mask out regions around bright stars. To decide mask sizes we
use photometry from the The Fourth US Naval Observatory CCD
Astrograph Catalog (UCAC4) catalogue (Zacharias et al. 2013)
rather than PS1, since PS1 saturates at around rP1 < 15.0. We use
R-band photometry from the UCAC astrograph up to a bright limit
of R = 10.0, where the astrograph becomes saturated. To mask
even brighter objects we use V-band data from Hipparcos, FK6 and
Tycho-2. These data are already included in the UCAC4 catalogue.
Zacharias et al. (2013) state that the UCAC4 catalogue is a complete
catalogue of stars down to R < 16.

We identify likely candidates for false positives by identifying
objects in the rP1-band that are not in the iP1-band catalogue, with
a 0.5 arcsec matching radius. To eliminate objects that are not
detected in both bands due to image depth, we remove objects
with rP1 > 20.0. We assume that these candidate false positives
trace the spatial distribution of all false positives caused by bright
stars. Selecting the central, deeper region we count ‘false posi-
tive’ and UCAC4 pairs as a function of angular separation, FU(θ ),
as well as pairs of ‘false positive’ and random points uniformly
distributed across the area, FR(θ ). We calculate the ratio of these
pairs

NFU(θ )

NFR(θ )
= FU(θ )

FR(θ )

nR

nD
, (6)

where nD is the number of UCAC4 objects and nR is the number of
random points. This technique is very similar to a cross-correlation
function. We adopt this technique to map out the scale out to which
one finds false positives around bright stars. In Fig. 4 (top), we
plot the results as a function of UCAC4 R and V magnitudes. The
brightest bin contains only one V = 2.33 magnitude star. From Fig. 4
(top), we can see that brighter objects cause false positives out to a
larger spatial extent than fainter ones. We also see a relative deficit
of false positives at smaller separations. This is due to masked,
saturated regions closer into the bright object. Also note that false
positives are preferentially found near brighter objects all the way
down to the magnitude limit of R = 15.0. Whilst Fig. 4 (top) shows
one is 10 times more likely to find false positives at a separation of
3 arcsec from objects with 14 < R < 15, it does not imply that all
of these objects cause false positives and in real terms the number
of bright false positives is very small. To decide on the size of
mask to put on bright objects, as a function of R and V magnitudes,
we use the last crossing of the log 10(NFU(θ )/NFR(θ )) = 1.0 line
as a reference separation and increase this distance by 50 per cent.
The curve describing mask size is smooth across the V- to R-band
boundary, see Fig. 4 (bottom). We fit these sizes with a simple
power law, truncated such that mask size cannot be less than one
mask pixel (i.e. 3.3 arcsec),

rmask =
{

7.26(13.0 − m)1.65 if rmask ≥ 3.3

3.3 otherwise,
(7)

where rmask is the mask radius in arcseconds and m is the stellar
magnitude. We use this to mask down to R < 15 and V < 10.

Figure 4. Top: the correlation of false positive detections with bright stars
in the UCAC4 catalogue. The lines show the ratio of the number of false
to UCAC4 pairs to the number of false to random pairs as a function of R
and V magnitudes from the UCAC4 catalogue. Using two different bands
is necessary as the astrograph measuring R magnitudes saturates for very
bright stars. We see a clear correlation between false positives and UCAC4
sources. The level at which there are 10 times as many UCAC4 to false pairs
as random to false pairs is marked with a horizontal dashed line. Bottom:
the largest separation corresponding to this level for each bin, multiplied by
1.5. A fit to these points (blue curve) sets the size of the bright source mask
as a function of R and V magnitudes.

3.3 Masks for regions of low quality data

The second potential issue we combat with masks is that certain
regions of PS1 images have instrumental signatures (i.e. image
artefacts) caused by scattered light and electronic noise. This is
particularly noticeable in regions of low coverage where we do not
have sufficient numbers of exposures to remove these image defects
statistically, i.e. by median filtering or outlier rejection in the stack-
ing procedure. We therefore mask regions with a coverage of three
exposures or fewer. In the finished survey the area with coverage
this low should be very small. To estimate this value we took the
central area, 331.0 < α(deg) < 336.0 and −3.0 < δ(deg) < 3.0,
of our binned-up version of the coverage map and produced Fig. 5.
The central area of SAS2 should be representative of the finished
3π data and as such we can see from Fig. 5 only 4 per cent of the
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PS1: testing galaxy clustering with SAS2 753

Figure 5. A histogram of the lowest coverage values, i.e. fewest exposures
per stack pixel, in each of our binned-up coverage map pixels.

full survey area should be lost by this cut. Masked regions are ex-
panded by a one binned-up mask pixel border in order to exclude
from the catalogue objects with unreliable measurements caused by
being on the edge of the mask. This is similar to using cuts in the
IPP value PSF_QF_PERFECT, which quantifies the fraction of masked
or suspicious pixels in a source (for more details on these cuts see
Paper I).

3.4 The effects of masking

The source detections before and after applying the final mask are
shown in Fig. 6; the regions of fewer objects on the outskirts of
the masked field are not caused by depth variations but simply the
larger number of masked pixels caused by a lower coverage in these
areas. The grid like patterns are also caused by our masking of low
coverage regions; the grid pattern in coverage is caused by gaps
between individual chips on the detector. One can see from Fig. 6
how our angular mask removes peaks of false positives caused by
bright objects: peaks of false detections in the unmasked field are
removed in the masked field. Finally we mask, by hand, a square
region in SAS2 where the data reduction process failed, an issue
that will be rectified for the final survey.

A quantitative measure of how our mask removes false detections
was made by cross-matching the Stripe 82 and PS1 catalogues after
applying our SDSS Stripe 82 mask (see Section 2.3) to PS1 data
and the PS1 mask to Stripe 82 data. Fig. 7 shows the fraction of
unmatched objects to Stripe 82, for an ∼8 square degrees overlap
region and a matching radius of 1 arcsec, before and after applying
the masking and flags.

Fig. 7 shows a decrease in the fraction of false positives once flags
have been applied and masking conducted. In particular brighter
false positives associated with bright stars are almost entirely re-
moved. Some unmatched objects do remain, but at magnitudes
brighter than ∼21 these are mostly real objects missed by Stripe
82 or objects with proper motions. Fainter than this false positives
can be caused by the previously mentioned instrumental signatures.
Note that Paper I achieves similarly low numbers of false positives
by applying the PSF_QF_PERFECT flag; however, the use of this flag,
which depends on the number of masked or suspect pixels near a
source, can change the angular selection function. The approach
using masks presented here deals with these false positives in a way

that keeps track of this, which is more appropriate for clustering
studies.

4 STA R / G A L A X Y S E PA R AT I O N

4.1 Galaxy and stellar profiles

To describe our morphological approach to star galaxy separation,
we first review the basic properties of galaxies. Galaxies have light
profiles well fitted by the famous Sérsic functions (Sérsic 1963). For
a review see Graham & Driver (2005). In flux this can be expressed
as

F (R) = Feff exp

(
−bn

[
R

Reff

] 1
n

− 1

)
, (8)

where R is the distance to the centre, Feff is the flux at Reff and bn

is a scaling constant that depends on the index, n, defined such that
Reff is the half-light radius. A value of n = 1 and bn = 1.678 gives
an exponential profile, typical of the discs of spiral galaxies while
a value of n = 4 and bn = 7.669 gives the de Vaucouleurs profile
typical of elliptical galaxies (see de Vaucouleurs 1948; Graham &
Driver 2005). Due to the atmosphere and telescope optics galaxy
light profiles appear convolved by the PSF of the instrument and
the atmosphere. In the PS1 IPP stars are fitted with a PSF model of
the form

I = I0

1 + kz + z3.33/2
, (9)

where z = x2

2σ 2
x

+ y2

2σ 2
y

+ xyσxy, (10)

where I0 is the central intensity, x and y are the x-axis and y-axis
distances from the centre, k is a free parameter and σ x, σ y, σ xy are
free parameters that represent the x-axis width, the y-axis width and
a cross-term, respectively. During image reduction IPP fits the PSF
model parameters on a grid across each skycell. Between these grid
points parameters are interpolated to give a smoothly varying model
of the PSF. Typically PS1 PSFs, and indeed real PSFs in general,
have more extended wings than Gaussian PSFs of the same FWHM:
fig. 5 of Paper I gives a typical curve of growth for a PS1 PSF.

4.2 Synthetic objects

To develop and test morphological star/galaxy separation we gen-
erate synthetic sources with the profiles as described in Section 4.1.
To generate a synthetic star one needs to simply choose a magnitude
and a position and then evaluate the model. Generating a galaxy is
harder as several parameters must be chosen, namely: the position,
the bulge-to-disc ratio, the Sérsic index, the size, the ellipticity and
the orientation on the sky. The last of these is chosen at random.
As the clustering of the synthetic sources is not important here a
position is randomly assigned.

When choosing the Sérsic index we approximate the Universe as
being made up entirely of de Vaucouleurs profiles for elliptical type
galaxies and bulges, or exponential profiles for discs. This follows
the classic bi-modality in Sérsic index between elliptical galaxies
and discs. In reality galaxies follow a distribution of Sérsic indices,
with elliptical galaxies displaying a positive correlation between
luminosity and Sérsic index (see e.g. Ferrarese et al. 2006). For this
work, the galaxies that will be difficult to star/galaxy separate will
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754 D. J. Farrow et al.

Figure 6. Top: a plot of all detections in SAS2, binned into 0.3 square arcmin pixels. Bottom: the same plot after masking and applying the flags specified in
Section 2.2. We can see the circular star masks, the areas near the edge masked due to our cut on low coverage and the square area masked by hand where the
data reduction failed. Overdensities caused by stars are removed, the remaining darker regions are caused by variable image depth or genuine overdensities in
the object distribution.
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Figure 7. The fraction of unmatched objects as a function of magnitude,
error bars show Poisson noise. The improvement gained from applying the
flags and applying the masking is clear.

have small angular sizes, faint apparent magnitudes and are con-
volved with a PSF so we feel this approximation makes negligible
difference to our results. We also treat bulges in disc galaxies in the
same way as elliptical galaxies, which is a common approximation
adopted in the literature (Bertin & Arnouts 1996; Shen et al. 2003).

For the axis ratios of discs, we choose a random inclination angle,
i, distributed uniformly in cos (i) and assuming circular flat discs
with a thickness which is some fraction, t, of the radius we calculate
the apparent axis ratio, esky, using simple geometry as

esky = cos(i) + t sin(i). (11)

We take t = 0.1 for our disc height to radial scalelength ratio. The
resulting distribution is flat and a reasonable fit to the observations
in Padilla & Strauss (2008). For bulges we select a major to minor
axis ratio, e, between 0.3 and 1.0, corresponding to the classical
elliptical types of E0 to E7 (see e.g. Mo, van den Bosch & White
2010). Within this range, we select e from a truncated Gaussian
distribution of mean μ = 0.75 and variance of σ 2 = 0.1, which we
chose to give a reasonable fit to the data in fig. 4 of Padilla & Strauss
(2008).

For physical galaxy sizes, we use the empirically measured rela-
tion and its scatter given in equations 14, 15 and 16 of Shen et al.
(2003). We adopt parameters measured in Shen et al. (2003) for
galaxies separated into late and early types by Sérsic index (fig. 6
of that paper). It was reported in Dutton et al. (2011) that using the
Shen et al. (2003) measurements would result in discs too small by
a factor of around 1.4, due to not factoring in the effects of incli-
nation which decreases the size by the square root of the apparent
axis ratio. We therefore increase the size of our disc galaxies by
this factor. We also correct the empirical bulge size relation for
this effect, adopting a correction of 1.2, calculated from the typical
bulge ellipticity μ. For bulges and elliptical galaxies, we choose
not to extrapolate the relation from Shen et al. (2003) to fainter
magnitude bins than measured in that paper. Instead, we keep the
sizes of bulges and elliptical galaxies fixed fainter than Mr = −19;
this is motivated by observations that dwarf elliptical galaxies have
a nearly constant size regardless of magnitude (see e.g. Shen et al.
2003; Mo et al. 2010).

We now have a relation between physical size and absolute mag-
nitude, therefore we need a redshift and an absolute magnitude to

predict angular sizes. One could generate these using observed lu-
minosity functions and redshift distributions, but here we use data
from the mock catalogues produced for Merson et al. (2013) us-
ing the galaxy formation model presented in Bower et al. (2006).
Using these catalogues gives us the potential to extend this work
to generate synthetic images with realistic galaxy clustering. For
the purposes of this work, however, we use random angular posi-
tions. The model adopts a concordance cosmology of �m = 0.25,
�� = 0.75, �b = 0.045, h = 0.73; we use this cosmology for the
whole of this work. The galaxy formation model gives magnitudes
and redshift distributions in good agreement with observations at
low redshift (Bower et al. 2006). We split the total flux of the model
galaxy into a bulge component and a disc component by randomly
sampling bulge to total ratios from table 3 of Simard et al. (2011),
which gives an observational estimate of bulge to total ratios for
around a million SDSS galaxies. The measured magnitudes of the
synthetic galaxies are faded by the mean extinction of SAS2, 0.2
mag (Paper I).

Once we have the galaxy morphological properties, we evaluate
equation (8) on a pixel grid of a linear scale three times smaller than
the PS1 warped pixel scale of 0.25 arcsec before binning up. This
is to minimize the effect of gradients in the profile across pixels.
Pixels on the finer grid whose centres are closer than 0.1 arcsec to the
profile centre are further subdivided 3 by 3 to take into account the
steeper profile near the centre. If any of these subdivided fine pixels
are on the centre of a de Vaucouleurs profile, an analytic integral is
used to approximate the flux required, as de Vaucouleurs profiles
asymptote to infinity at zero. Stars, conversely, are evaluated directly
on to the native pixel scale as this is the scale at which the model
is measured. Galaxy profiles are convolved with the PSF using the
C-library FFTW (Frigo & Johnson 2005). The grid dimensions are
chosen to ensure that the finished, convolved galaxy image contains
more than 99.8 per cent of the flux. Stars are evaluated on a grid
of 36 arcsec by 36 arcsec which contains more than 99.9 per cent of
the flux for PS1 SAS2 PSFs.

Paper I shows that results from our synthetic stars agree with a
set of synthetic stars produced by IPP. It also uses our synthetic
objects to test PS1 depth and photometry. Interested readers can
refer to Paper I for basic results from the synthetic objects, such as
recovered versus input magnitude.

4.3 Morphological separator

The PS1 SAS2 rP1-band skycell 1315.028 was taken as an example
and 286 synthetic galaxies and 300 synthetic stars down to a limit of
rP1 ≤ 23.5 were inserted into it, created as described in Section 4.2.
This skycell was chosen as it has a PSF FWHM typical of SAS2.
The PS1 photometry code PSPHOT was run on this skycell and this
process was repeated 40 times yielding data from 11 440 synthetic
galaxies and 12 000 synthetic stars. Motivated by the often used star
and galaxy separator of a PSF magnitude minus an aperture-like
magnitude (e.g. Strauss et al. 2002), we show in Fig. 8 a histogram
of the PSPHOT measured Kron minus PSF magnitude for the synthetic
galaxies, the real sources in this skycell and for sources over the
whole of SAS2. The number of synthetic galaxies and stars is scaled
to the observed number of objects in each magnitude bin. We can
see from Fig. 8 that the synthetic stars and galaxies follow the
distribution of the real sources. This indicates that we are justified
in using Kron minus PSF magnitude as a star and galaxy separator.
We see that the synthetic stars follow a peaked, stellar locus whereas
the synthetic galaxies follow a more negative locus of extended
sources.
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756 D. J. Farrow et al.

Figure 8. Kron minus PSF rP1-band magnitudes for all synthetic objects (black), synthetic stars (green dashed) and synthetic galaxies (red dashed) placed
into the SAS2 skycell 1315.028, which has a PSF FWHM typical of SAS2 data. Also plotted are the real sources from that skycell (blue) and all sources in
SAS2 (grey shaded area), the latter is normalized to the area of skycell 1315.028. The vertical dashed line shows the position of the star and galaxy separation
cut, the dotted vertical line shows the position of the extreme Kron minus PSF magnitude cut.

We use our synthetic objects to define cuts in Kron minus
PSF magnitude (	kron-psf hereafter) that define samples of stars
or galaxies. We can also define a smallest allowed value of 	kron-psf

for galaxy samples, this removes objects with extremely negative
	kron-psf which are likely false positives. We place this extreme
	kron-psf cut at a value where only 0.5 per cent of synthetic galaxies
are to the left of this cut. Fig. 9 shows cuts in 	kron-psf that define
galaxy samples of a given completeness, these cuts were measured
from the histograms in Fig. 8. The cut defines a minimum 	kron-psf

for stars or a maximum value for galaxies. The dashed lines are fits
to the cuts using a second order polynomial of the form

rP1,raw − rPSF,raw =
2∑

i=0

ai(rP1,raw − 21)i . (12)

We use the 98 per cent cut to define galaxies throughout this work.
Table 1 gives the values of the coefficients of this equation for differ-
ent samples. For our adopted cut we again use our synthetic objects,
along with fits to the observed SAS2 bright star and galaxy number
counts (shown in Fig. 17), to predict completeness and stellar con-
tamination rates. In Fig. 10, the predicted galaxy completeness line
follows the 98 per cent line (solid, black), by construction, down to

Figure 9. Galaxy (filled points) and extreme Kron minus PSF cuts (black
circles) in the rP1, raw − rP1, PSF, raw versus rP1, raw plane, with colours indi-
cating their completeness as found by the simulations shown in Fig. 6. The
points are fitted with a second order polynomial (equation 12).
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Table 1. Coefficients for the star, galaxy and false positives separator.
Percentages represent the percentage of objects that would be included
in the sample. The upper or lower limit column defines the direction of
the cut, e.g. an upper limit indicates only taking values below the given
rP1, raw − rP1, PSF, raw line.

Sample a2 a1 a0 Upper or lower limit

98 per cent galaxies 0.018 0.120 −0.192 Upper
95 per cent galaxies 0.014 0.129 −0.261 Upper
90 per cent galaxies 0.007 0.129 −0.319 Upper
Extreme 	kron-psf − 0.417 −1.759 Lower

Figure 10. The probability of correctly classifying a source as a galaxy
using the 98 per cent cut (black) and the probability of misclassifying a star
as a galaxy (red solid), as predicted using our synthetic objects in Fig. 8.
The dotted line is for galaxies before the application of the extreme Kron
minus PSF cut. The dashed green line shows the target completeness of
98 per cent. Also plotted is the predicted amount of stellar contamination as
a fraction of the 98 per cent galaxy sample (red dashed), found from scaling
the probability of misclassifying a star with power-law fits to the bright end
of the observed star and galaxy number counts. The points with error bars
are estimates based on our comparison to the spectroscopic classifications
of VVDS sources, as explained in Section 3.3.2.

a faint magnitude limit. Near the end of this magnitude range the
completeness does drop very slightly and this suggests that our fits
with equation (12) cannot be used beyond a faint magnitude limit of
rP1, kron = 23.0. The dotted line in Fig. 10 shows the completeness
of the sample after applying the extreme 	kron-psf. This cut, again
by construction, has very little effect on the completeness of real
galaxies.

Fig. 10 also gives the probability of misclassifying a star as a
galaxy (solid red) and the predicted stellar contamination as a frac-
tion of the galaxy sample (dashed red). The latter were calculated
from our power-law fits to the observed SAS2 bright star and galaxy
number counts (Fig. 17). We see that stellar contamination stays be-
low 10 per cent for all magnitude ranges. In order to further test our
star/galaxy separator, we match our rP1-band data to the iP1and gP1-
bands and plot the colour–colour and colour–magnitude diagrams
for stars and galaxies classified via our 98 per cent cut in the rP1-
band. The diagrams in Fig. 11 follow those for SDSS objects seen
in Finlator et al. (2000). In Finlator et al. (2000), the shape of the
distribution of stars in these plots is explained as being driven by

different spectral types, with M dwarfs causing the upturn in the
colour–colour diagram and F and G disc stars along with fainter,
bluer halo stars causing the locus at gP1 − rP1 ∼ 0.4. We see no evi-
dence of these features in objects classified as galaxies, which give
further support to the effectiveness of our star and galaxy separator.

4.4 Comparison to VVDS spectroscopic star
and galaxy classification

As a further test of our star/galaxy separator, we compare to the spec-
tral classifications from the F22 field VIsible MultiObject Spectro-
graph (VIMOS) Very Large Telescope (VLT) Deep Survey (VVDS;
Le Fèvre et al. 2005), which we downloaded from the CeSAM
website.4 The VVDS survey is an IAB selected sample of objects.
Objects targeted for redshifts are purely selected on apparent IAB

magnitude to be 17.5 < IAB < 22.5, though the full photometric
catalogue is deeper than PS1 (McCracken et al. 2003; Le Fèvre et al.
2005). F22 and SAS2 overlap by 4 square degrees. We match the two
catalogues using a 1 arcsec matching radius. From the matched cat-
alogue, we select objects which have been targeted for spectroscopy
based on the value of the column ZFLAGS, taking ZFLAGS=99 to mean
that the object was not targeted. Following Ilbert et al. (2005), we
also use ZFLAGS to select objects with secure redshifts, by requiring
the last digit of ZFLAGS to be greater than or equal to 2. Objects with
these ZFLAGS are expected to have the correct redshift 80–99 per cent
of the time, depending on their value of ZFLAGS (Le Fèvre et al. 2005).

In Fig. 12, we show the fraction of objects in PS1 matched to
VVDS as a function of PS1 raw Kron magnitude. We do not correct
for the VVDS mask, which explains why the curve does not reach
unity. An IAB-band selected sample may have a different morpho-
logical mix than an r-band selected sample in the same magnitude
range. From Fig. 12 we see the fraction of objects targeted for spec-
troscopy drops brighter than around rP1, raw > 18.0 and fainter than
rP1, raw < 22.0: this is the region where the effects of the VVDS
IAB-band selection may become important and as such results from
these magnitude ranges may be unreliable. Also note from Fig. 12
the fraction of objects with secure redshifts decreases with magni-
tude, as one might expect.

A well-reported issue in VVDS is its bias against extended
sources. Whilst the targeting criteria is purely based on apparent
magnitude the program which allocates VIMOS slits to targets,
the Slit Positioning Optimization Code (Bottini et al. 2005), is bi-
ased against extended sources as they take up more space on the
x-axis of the spectrograph and so decrease the efficiency with which
spectra are taken (Bottini et al. 2005). When computing luminos-
ity functions Ilbert et al. (2005) corrected for this incompleteness
by weighting galaxies in a way proportional to their x-axis size on
VIMOS. We choose to weight galaxies depending on their 	kron-psf.
In magnitude and 	kron-psf bins, we measure the completeness as
the ratio of objects with good ZFLAGS to all objects matched between
PS1 and VVDS in the overlap region. The weight of each object is
then the inverse of the completeness of its magnitude and 	kron-psf

bin.
When comparing to VVDS there are three different cases to

consider. The first case is where the object is classed as a galaxy
in VVDS and PS1, we label weights for these objects as Wgg. The
second case is for an object classed as a galaxy in PS1 but has

4 http://www.lam.fr/cesam/?lang=en
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Figure 11. Colour–colour and colour–magnitude diagrams, using Kron magnitudes, of SAS2 objects falling on the star side and galaxy side of our chosen
star/galaxy separator (Section 4.3). The grey-scale bar gives the number of objects in each colour–magnitude bin. We see the characteristic stellar features
highlighted in Finlator et al. (2000), such as the upturn in the colour–colour diagram. In support of our classification we see no evidence of these features in
the galaxy sample.

Figure 12. The fraction of Pan-STARRS objects in VVDS as a function of
PS1 magnitude: for all VVDS sources (black), VVDS sources targeted for
spectroscopy (green dashed) and VVDS sources with good redshift flags as
described in the text (red dashed).

a VVDS stellar spectral classification, we label weights for these
objects as Wgs. The final case is an object classed as a star in PS1 but
with a galaxy spectra in VVDS, these objects are assigned weights
labelled Wsg. The completeness, Cm, and contamination, Cn, are

estimated using the following weighted sums

Cm = 
Wgg


Wgg + 
Wsg
, Cn = 
Wgs


Wgg
. (13)

We plot these estimates, along with jackknife errors from nine re-
samplings of the data, in Fig. 10. Estimates of stellar contamination
are slightly higher than the estimates based on synthetic images, but
this is only a small discrepancy given the size of the errors. Estimates
of completeness agree until around rP1 = 20 when it looks like our
synthetic source estimates are too optimistic. The spectroscopic
estimates suggest a completeness of around 91 per cent, as opposed
to the predicted 98 per cent.

There are several possible reasons for this difference. A major
cause of disagreement is likely to be misclassifications in the VVDS
sample. To calculate the fraction of objects in our sample which
could be misclassified by VVDS we use ZFLAGS. The value of ZFLAGS

has been related to the probability of having been assigned the
correct redshift, Pcorrect, by Le Fèvre et al. (2005). We assume this
is also the probability of being correctly classified as a star or
galaxy. Table 2 gives the different fractions of the full sample, FFull,
and sample with discrepant star/galaxy classification, FDisagree, that
have certain values of ZFLAGS. Table 2 also gives our estimate of
the fraction of objects in the full sample with incorrect VVDS
classification, FFull(1 − Pcorrect). Given that 9 per cent of the full
sample have discrepant classifications, 0.09FDisagree is the number
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Table 2. The second column gives the probability of a red-
shift measurement being correct for different ZFLAGS values,
taken from Le Fèvre et al. (2005). The third and fourth
columns give the fraction of the full sample and discrepant
sample that have certain ZFLAGS values. The final column
gives an estimate of the total fraction of PS1 objects with
incorrect VVDS estimates of redshift.

ZFLAGS Pcorrect FFull FDisagree FFull(1 − Pcorrect)

2 0.80 0.25 0.42 0.05
3 0.91 0.22 0.23 0.02

of objects in the discrepant sample with a certain ZFLAGS value as
a fraction of the total matched sample. Taking the minimum of
0.09FDisagree or FFull(1 − Pcorrect) for each ZFLAGS value in Table 2
and summing suggest that 6 per cent of our disagreement could be
down to misclassified VVDS objects. This would lead to a VVDS
misclassification-corrected estimate of completeness of 97 per cent,
consistent within random errors with our estimate from synthetic
sources.

Another potential explanation is that the synthetic galaxies may
be slightly too extended in their 	kron-psf values. Simplification of
modelling galaxies with de Vaucouleurs and exponential profiles,
adopting a mean extinction value for the galaxies, using redshifts
and magnitudes from GALFORM and only generating synthetic images
on one skycell could all contribute to this effect.

From Fig. 10 it appears that our classification is around
91–98 per cent accurate down to faint magnitudes depending
on how you estimate classification completeness. Brighter than
rP1, raw = 22.0 stellar contamination is below 6 per cent, increas-
ing to around 10 per cent at magnitudes fainter than this. The action
of stellar contamination, on smaller scales where the stars are uni-
formly distributed, is to dilute the clustering by (1 − f)2, where f
is the fraction of stars in the galaxy sample (e.g. Hudon & Lilly
1996; Roche & Eales 1999). We will revisit the effect of stellar
contamination in Section 6.3.

Classification contamination and completeness can influence
galaxy clustering measurements and as such work on star and galaxy
separation is ongoing. Classifications based on SED fits along with
star/galaxy separators calibrated on other data sets and other mor-
phological measurements will be available to help meet the future
PS1 science goals.

5 D E A L I N G W I T H VA R I A B L E D E P T H

The finished PS1 3π survey will have spatially variable image depth
for several reasons. These include spatially varying stack coverage
due to masking and greater or fewer visits to any piece of sky
(see Fig. 1), varying PSFs and varying sky brightness. To measure
reliable clustering, it is vital to measure the angular incompleteness,
otherwise fluctuations in galaxy density caused by changes in depth
would contaminate the clustering measurements. Once this angular
incompleteness is modelled we can deal with it by introducing the
same depth variations into the random distribution of points we use
to measure clustering, which we shall refer to from now on as our
‘random catalogue’.

We assume that the probability of detecting an object is only
dependent on the SNR. In order to make a simplified estimate of the
SNR we assume all sources have a Gaussian light distribution. For
the stacked data, most galaxies near the magnitude limit have small
angular sizes so this is a reasonable approximation (we further test
this later in this section). Using a PS1 PSF rather than a Gaussian

would simply scale our FWHM measurements to different values,
an effect that would be removed by the empirical calibration we
present later in this section. We define the ‘fiducial’ SNR as

SNR = F√
πd2

FWHMσ 2
, (14)

where dFWHM is the FWHM of the PSF in units of pixels, F is
the apparent flux of the source (without extinction correction) and
σ 2 is the variance according to the variance map. Whilst dFWHM is
measured for all PS1 detections, for this work we use the typical
FWHM of SAS2 of 0.94 arcsec. As SAS2 has fairly uniform seeing
this simplifies our work whilst not affecting our results. We use
our masks to extract σ 2 which results in the loss of some spatial
accuracy. This is unavoidable due to the otherwise prohibitively
slow process of retrieving the individual variance maps at the native
pixel scale.

To calibrate the relationship between our fiducial SNR measure-
ments and source recovery fraction we again make use of the overlap
region with Stripe 82. We use the Stripe 82 Petrosian magnitude to
calculate the fiducial SNR for all Stripe 82 galaxies and then match
to PS1 SAS2 and see what fraction is recovered. We plot these
fractions in Fig. 13 in different magnitude bins. The fact that over
different magnitude bins the fiducial SNR values have the same
detected fraction shows that this measurement can be used to as-
sess the probability of detection. We parametrize this curve with the
fitting formula

PDet(SNR) = a erf(b log10(SNR) + c), (15)

where a, b and c are constants with best-fitting values a = 0.962,
b = 2.446 and c = −1.361. The fact that a is not unity implies
there is always some fraction of Stripe 82 objects undetected by
PS1. We believe this fraction is caused by false positives in SDSS
Stripe 82 and visually inspecting a subset of these objects suggests
they are mainly caused by spurious detections in the wings of ex-
tended objects. So long as the number of false positives in Stripe
82 remains a constant fraction of the real objects this effect should
not bias our results, this seems to be the case as the curve is flat
for large values of fiducial SNR. As a sanity check we also add a
curve to Fig. 13 showing the detection efficiency estimated from
our synthetic galaxies, using the input synthetic object magnitude
corrected to Kron magnitude using a correction of 0.2 mag (ex-
plained in Section 2.1). Our estimate of detection efficiency from
synthetic objects shows a reasonable agreement with the real data
on the plot, though the synthetic galaxies seem to suggest that the
Stripe 82 comparisons slightly underestimate the depth at fiducial
SNR values of around 6 to 9. The differences could be due to mul-
tiple causes. For example, it could be Stripe 82 false positives or
slightly above average seeing in the skycell used in Section 4.3. As
these differences are only of the order of a few per cent we choose
to defer further careful studies to the analysis of the full 3π data set,
where a larger amount of deeper comparison data will be available.

We can see in Fig. 13 that a 5σ SNR implies a 20–30 per cent
detected fraction which is lower than the measurements in Paper I
of 50–60 per cent recovery of fake stars at that SNR, this is to
be expected as extended objects at these magnitudes have lower
surface brightness and therefore are harder to detect. None the less
this highlights the fact that where the curve of Fig. 13 is steep
small changes in the SNR can lead to large changes in detection
fraction. To avoid any problems caused by this we impose a default
lower limit on the fiducial SNR by excluding spatial regions where
SNR < 3.0. We experiment with different values of this parameter
in Section 6.2.
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Figure 13. The fraction of Stripe 82 objects detected as a function of fiducial SNR (equation 14). Overlap between magnitude bins implies the fiducial SNR
can be used as an estimator of the probability of source detection. The red line shows this quantity as measured from the synthetic galaxies added into real PS1
images and processed by the standard IPP. The dashed line shows the best-fitting relation of equation (15), the dotted line marks SNR = 5.0. Error bars are
from 100 bootstrap re-samplings.

Using our binned-up variance maps and equation (15) we can
produce a map of the magnitude at 50 per cent galaxy recovery,
shown in Fig. 14. Note we can produce these maps even in SAS2
regions without Stripe 82 overlap, as we only need Stripe 82 to
calibrate equation (15). One can clearly see the shallower regions
near the edges of the SAS2 field, along with patterns of deeper
regions in the central area caused by the overlapping pattern of input
exposures. Fig. 14 demonstrates that our technique produces maps
of depth to very high resolution, contrast this with the much lower
resolution depth maps produced using synthetic stars presented in
fig. 15 of Paper I. Reassuringly we see common features, including
the shallower edge region and the deeper diagonal feature.

We use the curve measured in Fig. 13 to correct our random cat-
alogue by making the chance of placing a random point of a certain
magnitude in any region equal to the detected fraction expected for
that region given the random point’s fiducial SNR. Magnitudes are
assigned to the random points from the observed galaxy counts, un-
corrected for extinction. As a first pass, we estimate these number
counts by fitting the bright end of the galaxy counts with a power
law (in Section 6.1 we show that we can use our method to yield
depth-corrected number counts, which we use to assign magnitudes
to the random points). After assigning magnitudes and deciding if
a random is detected, we extinction correct the random catalogue.
This technique results in a random catalogue with the same spatial
depth variation as the data.

We plot the depth-corrected density of galaxies in Fig. 15. To
produce this figure we binned the galaxies and detection efficiency
randoms on to the same grid and then divided the galaxy grid by

the random grid, normalizing by the ratio of the relative numbers
of galaxies and randoms. To eliminate noise from regions with very
few randoms, generally near the edge of the field, we white-out
pixels with fewer than five randoms. Comparing Fig. 6 (bottom) to
Fig. 15 we see that the overdensities caused by varying image depth
are removed. There are fewer objects in Fig. 15 than Fig. 6 (bottom)
as star/galaxy separation has removed the stars.

One key assumption of our depth correction method is that all
galaxies in our sample have the same detection efficiency properties
for the same fiducial SNR, i.e. that secondary parameters such as
morphology or colour are unimportant in determining how likely
objects are to be detected (consider equation 14). We argue that
for faint magnitudes galaxies predominantly have small angular
sizes and as such look similar to one another after being convolved
with the PSF. To further test this we plot, in Fig. 16, the detection
efficiency curves of our Stripe 82 red and blue samples of galaxies.
In Fig. 16 we see, for the same reasons as in Fig. 13, that the
curve does not reach unity. We also see that at brighter magnitudes
blue galaxies have a lower detection efficiency. As this effect is at
magnitudes far brighter than our detection limit we attribute this to
false positives in Stripe 82 falling on the blue side of our colour
cut. The agreement between the red and blue detection efficiency
curve at faint magnitudes in Fig. 16 suggests that an undetected
low surface brightness population of galaxies must either be split
equally between our two colour bins or represent a very small
fraction of our sample. This supports our assumption that at the
limiting magnitude of 3π data detection efficiency depends on a
single parameter, SNR. However, in small regions of the 3π survey
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PS1: testing galaxy clustering with SAS2 761

Figure 14. The rP1, raw magnitude corresponding to 50 per cent galaxy completeness as predicted by our fiducial SNR method. SAS2 is shallower near the
edges where there are fewer exposures, while the pattern of deeper areas across the central region is more representative of what we expect from the whole 3π
survey.

Figure 15. The number density of galaxies, binned by right ascension and declination and corrected for variable depth. We claim overdensities in this plot are
genuine, except those caused by Poisson noise in pixels nearer the edges of the field which have small numbers of galaxies.
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762 D. J. Farrow et al.

Figure 16. The detected fraction of Stripe 82 galaxies, separated into red
and blue by Stripe 82 colours. We see no evidence that red and blue galaxies
have different detection efficiency properties, despite the fact that their
morphology is expected to be different.

where the limiting magnitude may be much brighter, and galaxies
near this magnitude have larger angular sizes, the situation may be
more complicated.

Another important thing to note is that our method gives a mea-
surement of the clustering of only the detected galaxies. As our
faintest samples become incomplete towards faint magnitudes they
will, to some extent, be biased towards bright galaxies. To test how
much of an effect this is we utilize our random catalogues, mea-
suring the median magnitude of random samples before and after
degrading them for detection efficiency effects. In this paper, we
mainly use 0.5 mag bins, here the difference in median magnitudes
is less than 0.04 mag for the faintest sample of 22.5 < rP1 < 23.0,
and zero for samples brighter than around rP1 = 21.5. Our measure-
ments of clustering in these bins will not be significantly affected
by this small difference. In general, however, it is important to note
that this method assumes that the detected galaxies are an unbiased
sample of the full population, i.e. the method only corrects for the
spatial dependence of image depth. Care will have to be taken to not
apply this method where there is a large variation in completeness
across the apparent magnitude range of a sample.

6 R ESULTS AND TESTS FOR SYSTEMATICS

6.1 Number counts

We plot, in Fig. 17, the rP1-band differential number magnitude
counts of galaxies before and after our correction. A Kron to total
correction of 0.2 mag is applied to the galaxy counts, as explained in
Section 2.1. To generate the detection efficiency corrected number
counts in Fig. 17 we use our extinction corrected random catalogue,
from before and after the detection efficiency corrections, to predict
the fraction of galaxies detected as a function of extinction corrected
magnitude. We then correct the observed number counts by these
fractions. We see after the counts have been corrected the turnover
no longer occurs, and the counts continue to grow to very faint mag-
nitudes until we stop using our depth correction at rP1 = 23.7, where
the correction is very large (a factor of 70 at this magnitude). We see
that our number counts show reasonable agreement with the pub-
lished data of Huang et al. (2001), Yasuda et al. (2001), McCracken

Figure 17. Number counts in the rP1-band before (blue) and after (red)
the depth correction for galaxies, along with the number counts of objects
classed as stars by our adopted separator (green). We do not correct the stars,
or the galaxies fainter than rP1 = 23.7 for completeness. The dashed lines
are power-law fits to the number counts. Example r-band literature galaxy
counts have been included, as indicated in the legend. PS1 Kron magnitudes
have been corrected to total using our adopted correction of 0.2 mag.

et al. (2003) and Kashikawa et al. (2004). At the faintest magnitude
our number counts are slightly above the literature measurements,
both where our correction is and is not important. This could be
partially due to the 10 per cent false positives at these magnitudes
(see Fig. 7 and also Paper I). It could also be partially explained by
cosmic variance, as the literature measurements also disagree to a
similar extent at these magnitudes.

In Fig. 18, we show our measured, uncorrected number counts
for different bands. Each band was matched to the rP1-band, where
the star/galaxy classification was made. The galaxies show a power-
law trend in good agreement with previous measurements. The stars
show a shallower power-law trend. The turnover in the samples is
caused by the incompleteness and this turnover happens at brighter
magnitudes as we move towards redder bands. In redder bands,
the ratio of stars to galaxies increases, until the yP1-band where
we see more stars than galaxies at all magnitudes. As these are
the same objects as seen in Fig. 17; the main purpose of this plot
is to check if our rP1-band star/galaxy classification gives sensible
results for different bands. We leave detailed science analyses using
the number counts to later work.

6.2 Angular clustering

In this section, we present measurements of angular clustering. To
measure this clustering, we make use of the GPU code of Bard et al.
(2012). We use the Hamilton (1993) estimator, though our results
are unchanged if we use the Landy & Szalay (1993) estimator.
Error bars for all clustering measurements are from nine jackknife
re-samplings of the data. We use eight times as many random points
as data points throughout. On each clustering plot, we draw the same
dashed-black reference line, for easier comparisons between plots.

When measuring clustering an effect known as the integral con-
straint can artificially weaken clustering on scales comparable to
the area of the survey (e.g. Roche & Eales 1999). For SAS2 data,
over the scales we measure clustering, this has no effect on our
results, except in one case we will discuss later. For the MD07
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PS1: testing galaxy clustering with SAS2 763

Figure 18. The differential number magnitude counts for stars (green stars) and galaxies (open triangles) for different PS1 bands matched to the rP1-band, in
which the star and galaxy separation cut was applied (Section 4.3). The matching only limits the depth of the iP1-band, as this band is the only one deeper than
the rP1-band.
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Figure 19. Angular clustering of galaxies in PS1 (connected, open circles)
and in the same region of SDSS DR8 (star-shaped symbols), both measured
for this paper using the sample selection described in the text. This shows
good agreement between PS1 and SDSS DR8. The dashed black line is a
reference line included in all of our clustering plots. Different measurements
have been offset horizontally for clarity, the brightest galaxies are at the true
x-axis position for all of the measurements.

measurements however the smaller area results in the integral con-
straint being important on the scales we consider. We therefore
estimate the true clustering of the MD07 data on large scales by
fitting a power law between scales of 0.◦002 and 0.◦165 and then
use this fit to estimate the size of the integral constraint using the
standard formula (e.g. equation 9 of Roche & Eales 1999). As an ex-
ample, for our threshold sample rP1 < 23.0 the integral constraint is
80 per cent of the signal at the largest separations plotted, dropping
to 14 per cent by θ ≈ 0.◦1.

We begin by studying the regime where the spatially varying
depth correction has no effect. Fig. 19 shows the clustering of PS1
data compared the clustering of DR8 data over the same region,
which we measured from our galaxy sample (Section 2.3). We see
the well-reported effect of clustering being stronger in brighter ap-
parent magnitude bins. This result is caused by two effects. The
first is that fainter magnitude bins are projected over larger radial
distance ranges so incoherent clustering signals are summed to-
gether decreasing the clustering strength. The second cause is that
intrinsically fainter galaxies are less clustered, usually interpreted
as evidence that they lie in less massive dark matter haloes. This
latter effect is much smaller than the former as apparent magnitude
ranges relate to similar absolute magnitude ranges. We see good
agreement between the SDSS and PS1 measurements for these
ranges, an agreement much closer than the jackknife error bars as
the two data samples are from the same area of sky. We do see some
differences, but photometric errors scatter galaxies in and out of the
different magnitude bins and so the two samples can contain a sig-
nificant fraction of galaxies that are not in common. Overall, Fig. 19
acts as a detailed test to determine if PS1 is capable of measuring
the clustering of galaxies down to rP1 = 20.0. Fainter than this it
becomes more difficult to measure reliable clustering with SDSS
DR8 and as such we compare to measurements in the literature.

In Fig. 20, we compare our angular clustering measurements
from PS1 SAS2 to recent angular clustering measurements from
Wang, Brunner & Dolence (2013) from 8000 square degrees of
SDSS DR7 data. In Wang et al. (2013) careful studies are carried out
which suggest SDSS DR7 can measure clustering down to r = 21.0,

Figure 20. Angular clustering of galaxies over the full SAS2 area in PS1
(connected, open circles) and measurements from a much larger area of
SDSS DR7 (filled stars) from Wang et al. (2013). The dashed black line is
the same reference power law as in Fig. 19. Different measurements have
been offset horizontally for clarity, the brightest galaxies are at the true
x-axis position for all of the measurements. Different measurements have
been offset horizontally for clarity, with the brightest SDSS and PS1 samples
showing the position of the true angular bins.

Figure 21. Angular clustering of faint galaxies before (dashed lines with
points) and after (solid lines with points) applying our spatially varying
depth correction. The dashed black line is the same reference power law as
in Fig. 19. Different measurements have been offset horizontally for clarity.
The uncorrected clustering of the brightest galaxy sample is at the true x-axis
position for all of the measurements.

Fig. 20 demonstrates PS1 data show reasonable agreement with the
SDSS data. Naturally, differences arise due to sample variance in
the relatively small SAS2 field, but Fig. 20 is a promising indicator
that PS1 clustering measurements are capable of matching SDSS
depth. Fainter than rP1 = 21.0 the spatially varying depth will start
to become important.

To see the effects of our depth correction we plot, in Fig. 21,
the two-point angular correlation function of galaxies before and
after correcting the random catalogue for spatially varying depth.
At rP1 = 22.0 and 23.0, the edges of the brightest and faintest bins
in Fig. 21, the average completeness is only 80 and 50 per cent,
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PS1: testing galaxy clustering with SAS2 765

Figure 22. The angular correlation function of a random catalogue that
has detection efficiency corrections applied to it, in effect measuring the
clustering of the detection-weighted randoms relative to a uniform set of
randoms. This gives an estimate of the clustering signal introduced into
the data by spatially varying depth. The clustering here is much weaker
than the clustering of the galaxies, indeed for most magnitude bins there is
no clustering. The faintest magnitude range shows a clear clustering signal,
introduced by our modulation of the randoms to correct for spatially varying
incompleteness. The dashed black line is a reference power law added to all
of our clustering plots, the dotted line marks no clustering.

respectively. We see that without corrections, clustering in these
faint bins is enhanced by underdensities and overdensities caused
by the spatially varying incompleteness. After correction, the clus-
tering strength is decreased, with the effect being more marked for
the fainter bins where one would expect the depth to be most spa-
tially inhomogeneous. The strength of clustering in the fainter bins
has its largest correction at large scales. Magnitude ranges brighter
than rP1 < 22.0 seem to need very little correction, whereas the cor-
rection becomes larger for fainter bins. The SAS2 region is more
uniform than the full 3π data so the magnitudes at which the spatial
depth variation correction becomes important may differ for the full
3π survey.

As an alternate way of understanding our correction we measure
the angular correlation function of our spatial depth-corrected ran-
dom catalogue, relative to an uncorrected, spatially uniform random
catalogue. This gives us an estimate of the signal we remove from
the faint magnitude bins. We see in Fig. 22 that the clustering of
the bright randoms is consistent with no clustering signal. Bright
randoms have larger errors as there are fewer bright randoms. For
the faintest bin, where we see the strongest correction, the randoms
are clustered. This type of clustering signal is the effect of variable
depth on our measurements. We can infer that without correction
clustering is enhanced on all scales. This effect will be particularly
noticeable on larger scales where the intrinsic galaxy clustering is
weak, this is seen in Fig. 21.

Qualitatively, the correction appears to be doing a good job. To
carry out a quantitative test we find the variance value which corre-
sponds to some fiducial SNR at the faint edge of a magnitude bin,
and mask spatial regions in the randoms and data that have a variance
value higher than this. This limits our depth correction by removing
data and randoms with fiducial SNR lower than some limit. The
corrected clustering measurements for the range 22.0 < rP1 < 22.5
in Fig. 23(a) are robust to changes in the choice of the SNR limit,
with more conservative cuts in SNR being in agreement with the

Figure 23. Angular clustering for two different magnitude bins in subareas
satisfying different fiducial SNR cuts, as indicated in the key. The differ-
ent panels (a) and (b) show different magnitude ranges. We see that more
conservative estimates of the clustering are in agreement with measures
which use less deep data with a larger correction applied. For the brighter
magnitude bin, we also plot the clustering uncorrected for spatially varying
depth from a region where the depth is fairly uniform. The points for the
different curves have been artificially displaced along the x-axis for clearer
viewing, the top curve in the legend shows the true x-axis position for all
curves. The dotted line in panel (b) is the power law we use to roughly esti-
mate the effects of the integral constraint for this panel, which is necessary
as the subareas in the faintest magnitude bin can be very small. The dashed
black line is a reference power law added to all of our clustering plots.

more lenient cuts. To further emphasize this we plot the cluster-
ing of 22.0 < rP1 < 22.5 galaxies with and without spatial depth
corrections, in regions with SNR > 12.0 where the depth is fairly
uniform. We see from these curves that using the full SAS2 region
combined with a correction gives results in agreement with using a
smaller region of uniform depth.

We plot in Fig. 23(b) the same tests for the faintest magnitude
bin, 22.5 < rP1 < 23.0. The conservative SNR cuts in the faintest
magnitude bin restrict the area of the survey, and as such the in-
tegral constraint becomes important. We therefore correct cluster-
ing measurements in this plot for the integral constraint, using the
power-law fit plotted in grey. We do not show cuts more conserva-
tive than SNR > 9.0 as there are very little data beyond that cut in
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Figure 24. A comparison of our measurements to Hudon & Lilly (1996),
Roche & Eales (1999) and the PS1 MD07 measurements of Foucaud et al.
(in preparation), before (dashed) and after (solid) our depth correction. The
depth correction brings our results into closer agreement with the other
measurements, which are from deeper and more uniform surveys than the
PS1 SAS2 data. No attempt has been made to correct for the differences
between the Hudon & Lilly (1996) or Roche & Eales (1999) R-band filters
and our rP1-band filter. The dashed line is a reference power law added to
all of our clustering plots.

this magnitude range. Unfortunately, the results of this test are less
convincing, the different SNR cuts agree within error but there does
appear to be a systematic trend for more conservative SNR cuts to
measure a slightly weaker clustering signal on larger scales. This
could suggest that our correction is too small, though it could also be
caused by other problems at very faint magnitudes such as false pos-
itives. Remember that in this faintest magnitude bin our correction
is extremely large and the data are very incomplete. Completeness
is only around 50 per cent at rP1 = 23.0 (Paper I), so it is perhaps
not surprising that the method is less successful in this regime. For
science applications, we do not intend to apply corrections as large
as this. Instead, we would place a limit on the minimum SNR of
the data analysed and so would exclude the shallower areas of the
survey when constructing the faintest data sets. However, the fact
that our method is reasonably successful in this regime is a positive
indication that our method will work for more uniform data.

In Fig. 24, we compare our measurements of clustering to
those of Hudon & Lilly (1996), field ‘e’ of Roche & Eales
(1999) and Foucaud et al. (in preparation) for the magnitude range
19.0 < rP1 < 23.0. Note that the Roche & Eales (1999) sample
is for 18.5 < R < 23.0 measured in the Vega system, but despite
these small differences it is still a useful comparison. The ampli-
tudes of Hudon & Lilly (1996) and Roche & Eales (1999) have
been corrected for stellar contamination using their estimate of the
contamination fraction of f = 0.29 and 0.11, respectively. As intro-
duced in Section 4.4 this correction is boosting the amplitude by
(1 − f)−2 and is the same correction, which Hudon & Lilly (1996)
and Roche & Eales (1999) apply to their own results. We estimate
our contamination fraction, from the dashed red line in Fig. 10, to be
f = 0.07 for this sample and we correct our amplitude accordingly.
Foucaud et al. (in preparation) estimate their stellar contamination
to be f = 0.06, so we also correct their clustering measurements.

In Fig. 24, we see that our depth correction brings us closer to
the other measurements of clustering. On smaller scales, we show
reasonable agreement with the literature measurements of Hudon &

Lilly (1996) and Roche & Eales (1999). Within the errors we show
agreement with the MD07 clustering measurements of Foucaud
et al. (in preparation). Our correlation function is slightly higher
than the MD07 measurements on scales greater than 10−1.5 deg, and
slightly lower on scales less than this. However, these differences
are within the reasonably large error bars of the MD07 sample. The
scatter in the literature measurements is also large due to the small
size of the samples. As such current available comparison data in
the r-band are limited by sample variance, limiting our ability to
assess any remaining systematic errors. Another limitation of this
comparison is that, for this magnitude range, the median magnitude
of our incomplete sample of galaxies will be 0.16 mag brighter than
that of a complete sample. As explained, this occurs where the com-
pleteness of the galaxy sample shows significant variation across
the sample’s apparent magnitude range. This would lead to our
measurements having a slightly stronger clustering amplitude than
a complete sample, which could explain some of our disagreement
with the MD07 clustering measurements on larger scales. Despite
the limitations of this comparison plot, it is still impressive that in
the regime where the corrections are very large our method does a
qualitatively good job at recovering the clustering signal. We do not
intend our method to be applied to such incomplete data for science
applications.

In Fig. 25, we show the angular correlation function measure-
ments, using all the depth corrections described, down to rP1 = 22.5
in 0.5 mag steps where we expect the clustering to still be reli-
able from Fig. 23(a). The angular clustering results from the whole
of SDSS DR7 measured for Christodoulou, Eminian & Loveday
(2012), and measurements of the clustering of fainter galaxies from
PS1 MD07 from Foucaud et al. (in preparation) are also shown.
Again, our clustering measurements and those of Foucaud et al. (in
preparation) have been corrected for stellar contamination.

The bright measurements are consistent within errors with the
measurements made for Christodoulou et al. (2012). The fainter
bins have power-law shapes and lower amplitudes than the brighter
bins, and agree with the MD07 measurements. Fig. 25 is a positive
indication that PS1, combined with these depth corrections, can
measure clustering to fainter magnitudes than existing wide field
optical surveys.

6.3 Clustering of stars and false positives

As it is expected that some contamination of our galaxy sample will
occur due to stars and false positives, we estimate their effect on
clustering by measuring their correlation functions. We begin by
looking at stars; Fig. 26 gives the clustering of objects classified as
stars by our separator. We do not correct these objects for extinction
in this plot, as it is unclear that this would be appropriate. We have so
far assumed that stars are distributed fairly uniformly across SAS2,
and so simply affect the amplitude of the galaxy clustering. The
brighter stellar bins do indeed show a less scale dependent signal
than the galaxy samples, which is much weaker than the galaxy
clustering except on the largest scales.

Whilst we expect the clustering of stars to be weaker than that
of the galaxies, we do not necessarily expect the stars to be unclus-
tered. Stars appear in star clusters and gradients in stellar density
exist due to the structure of the Milky Way. Measurements of the
angular correlation function of stars have shown it to be flat and
non-zero on larger scales (e.g. Myers et al. 2006; Ross et al. 2011).
In Fig. 27(a), we compare the clustering of faint galaxies to that
of stars. We detect clustering in the stars which is weaker than the
galaxies on small scales but stronger than the galaxies on larger
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Figure 25. The lines and open points with error bars show the angular clustering of PS1 galaxies in the SAS2 region, for different magnitude ranges as
indicated by the legend. Clustering measurements from Christodoulou et al. (2012). For similar magnitude ranges from the full area of SDSS DR7 are plotted
as triangles. The stars with error bars are measurements of clustering from the MD07 fields for Foucaud et al. (in preparation). Error bars on our measurements
are estimated with nine jackknife re-samplings. The dashed line is a reference power law added to all of our clustering plots.

Figure 26. The angular correlation of objects not classed as galaxies by our
adopted star and galaxy separator, split by magnitude, as indicated by the
key. The dashed line is a reference power law added to all of our clustering
plots, the dotted line marks no clustering.

scales. As such one could argue that the small-scale clustering of
stars is caused by contamination of the stellar sample by galaxies,
whilst the large-scale clustering of stars cannot be attributed to the
galaxies. The clustering of stars in Fig. 27(a) is fairly insensitive to
detection efficiency corrections. In contrast, extinction correcting
the sample of stars enhances their clustering. This latter observa-
tion is concordant with the picture of stars having spatial density

variations caused by the structure of the Milky Way. This is be-
cause one would expect dust to be correlated with the Milky Way’s
structure, and as such extinction correcting the stars would act to
enhance spatial structure in the stellar sample. The enhancement of
clustering signal after extinction correction is the opposite of what
one would expect for galaxies. The flat angular correlation function
we measure on larger scales for stars is in accord with the shape
reported in the literature for brighter stellar samples (e.g. Myers
et al. 2006; Ross et al. 2011).

In Fig. 27(b), we compare the clustering of a fainter sample
of galaxies to that of stars. The clustering of stars in Fig. 27(b)
has a similar amplitude to that of the brighter stars; the galaxy
clustering is weaker, however, such that the stars and galaxies have
a similar amplitude of clustering on all scales. Again, we do not
believe the clustering in the star sample can be caused by galaxy
contamination alone. This is because the clustering of galaxies in
the stellar sample should be diluted by the stars in the sample and
the resultant correlation function should have a lower amplitude
than the galaxy sample. As in Fig. 27(a), extinction correcting the
stellar sample boosts its clustering, though the effect is smaller than
for the brighter magnitude bin. Detection efficiency corrections
also boost the clustering of the stellar sample in Fig. 27(b). The
likely cause of this is that the corrections are calibrated on galaxies
which are harder to detect at these magnitudes, because they are
extended. The combined effect of applying extinction corrections
and detection efficiency corrections greatly boosts the clustering.
This can be understood since their effect on the clustering will be
compounded by the fact that extinction corrections bring objects
with fainter observed magnitudes into the sample. These objects at
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Figure 27. (a) Measurements of the angular correlation function of stars
and galaxies. Dashed lines show the clustering of objects classed as stars, for
measurements with either extinction corrections (EXT), detection efficiency
corrections (DE) or both (DE+EXT) applied as indicated in the legend.
The solid lines show the clustering of galaxies, with detection efficiency
corrections and extinction corrections applied. (b) Same as panel (a) but
for a fainter magnitude range. The dotted line gives the power law used to
correct the clustering measurements in this panel for the integral constraint.

fainter magnitudes have a larger detection efficiency correction and,
since the detection efficiency corrections are based on galaxies, may
artificially boost the stellar clustering further.

Clearly, the clustering of stars and the effect of stellar contam-
ination on galaxy clustering measurements will have to be further
studied. For the full 3π survey, measurements of the distribution of
stars in the Milky Way could be used to attempt to model these ef-
fects. Cross-correlating galaxy samples with stellar samples is also
an important test we will carry out with the full 3π data, which
will allow us to further study the effects of misclassification and
stellar contamination. For this work, the clustering of stars and con-
tamination of the galaxy sample could be boosting the estimates
of the galaxy correlation function on large scales. This will be a
larger effect for the fainter galaxy samples where the large-scale
clustering of stars has a higher amplitude than that of the galaxies
and the stellar contamination fractions are larger. An expression
relating the true angular correlation function of galaxies, wgg, to the

measured correlation function, wmeasured, given the angular correla-
tion function of stars, wss, can be found in Myers et al. (2006),

wmeasured(θ ) = (1 − f )2wgg + f 2wss − ε(θ ), (16)

where ε(θ ) is a very small cross-term which is expected to be too
small to influence our results. Equation (16) was derived by Myers
et al. (2006) for the Landy & Szalay (1993) estimator, but the
Landy & Szalay (1993) give very similar (much smaller than the
error bars) results to the Hamilton (1993) estimator for our samples
so we can still use equation (16) to estimate the effect of stellar
contamination. On small scales where wss 	 wgg, equation (16)
reduces to the (1 − f)2 amplitude scaling we have used thus far. On
larger scales and for fainter galaxy samples the star clustering can be
stronger than the galaxy clustering. Using the measured clustering
of the extinction and detection efficiency corrected star samples we
can estimate the effect of stars on the galaxy clustering. We do this
by correcting the measured galaxy clustering using equation (16)
and comparing the result to using the simple (1 − f)2 correction we
adopted. The faintest bin, 22.5 < rP1 < 23.0, has a contamination
fraction of f = 0.1 (from Fig. 10) which leads to an enhancement
of the galaxy clustering signal by clustered, stellar contaminants
of 30 and 18 per cent at 0.◦7 and 0.◦3, respectively. For the brighter
magnitude bin of 22.0 < rP1 < 22.5, with f = 0.08, this drops to 6
and 3 per cent for 0.◦7 and 0.◦3, respectively. All of these differences
are smaller than the error bars, and as such adopting the (1 − f)2

for these data, instead of a more thorough modelling of stellar
contamination, does not affect our conclusions. For the full 3π

survey, where clustering on larger spatial scales will be measured
this issue will have to be revisited.

Fig. 28 gives the clustering of objects with extreme 	kron-psf,
removed by our cut in Fig. 8, split into three magnitude bins. These
objects are thought to be false positives. We see that, unfortunately,
these objects have a strong clustering signal. This signal is well
described by a power law that is steeper than the galaxy correlation
functions. This is as false positives tend to appear in clumps around
image artefacts and around real objects (see Paper I). Fortunately,
for magnitude bins brighter than rP1 = 21.0, false positives make

Figure 28. The angular correlation of objects cut by the extreme Kron
minus PSF magnitude threshold given in Table 1, split by magnitude (see
key). These objects are mostly false positives. Bins where one or more of
the jackknife regions have undefined clustering measurements, due to zero
data–random or random–random pairs at that separation, have been omitted.
The dashed line is a reference power law added to all of our clustering plots.
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up less than 1 per cent of the data (Fig. 7) and are likely to have
a negligible effect on clustering. For the fainter bins shown here,
rP1 > 21.0, clustering could be affected by the false positives which
can be as prevalent as 8−10 per cent of the sources. Remember that
Fig. 28 is measured from objects removed by our cut, false positives
that evade this cut and so contaminate the galaxy sample could have
different clustering. As we do not know if the false positives which
evade our extreme 	kron-psf have the same clustering as the objects
in Fig. 28, equation (16) cannot be used to estimate their effect on
clustering.

Improvements in the modelling of image artefacts will help ame-
liorate the problem of clustered false positives. Additionally, requir-
ing detections in multiple bands can also be effective in eliminating
false positives.

7 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented methods of star and galaxy separation, angular
masking and completeness corrections for PS1. Our star and galaxy
separation approach uses fake images to identify cuts in 	kron-psf

that yield galaxy samples. Our separator is 92–98 per cent complete
with less than around 10 per cent stellar contamination down to a
magnitude of rP1 < 23.0. However, SAS2 has uniform properties
so before applying this to the full 3π data we need to test and cali-
brate the star/galaxy separator for different seeing and background
noise. It is likely that the galaxy distribution in 	kron-psf will depend
on seeing. Changing the PSF of an image has a different effect on
the surface brightness of stars and galaxies and this will drive a
change in a galaxy’s measured PSF magnitude. Ultimately, a more
sophisticated star and galaxy separator with better completeness and
less contamination will need to be developed. Using the colours of
galaxies (e.g. Saglia et al. 2012) and other morphological measure-
ments, such as galaxy size, are promising avenues to achieve this
with PS1 data.

We present a method of generating angular masks for PS1 3π

data, using a statistical approach to define the size of masked regions
around bright stars. The relation between mask size and magnitude
may vary across the much larger 3π field and as such the relation
may need to be re-calibrated on the full data. We also presented
our binned-up variance maps, which we have used to develop a
method of correcting PS1 measurements for spatially varying depth.
A question left to address is what binning scale to choose for masks
and maps of the whole survey. One has to balance accuracy with the
computational costs of using large amounts of data. Ultimately, the
mask size will also depend on the science goals; Baryonic Acoustic
Oscillations measurements for example will be less sensitive to
small-scale systematics than galaxy formation studies using small-
scale clustering.

Some further questions related to our depth corrections will have
to be addressed in future work. First, we need to test how well our
SNR technique applies across a larger field with more variable PSFs
and depths. One way to calibrate and test our method for the full
survey is to utilize the 10 Medium Deep fields, which are scattered
across the sky. Using surveys in addition to Stripe 82, such as the
Medium Deep surveys, can also help remove the effects of false
positives from our measurements of the probability of detection
versus fiducial SNR. Additionally, our assumption that all galaxies
have the same detection efficiency properties will have to be further
explored, perhaps by studying clustering as a function of colour.
Our comparisons of detection efficiency for red and blue Stripe 82
galaxies are a positive indication that this is a valid assumption.
We can also gain more insight into our depth correction method

by utilizing our synthetic images to simulate more greatly varying
PSFs and backgrounds.

One important test of our method is excluding regions which fail
to meet some SNR requirement and testing if clustering measure-
ments from them agree with data with a less conservative cut. This
test was demonstrated in Fig. 23 for SAS2 data but will have to be
applied to the full 3π data. The application of this test to the full 3π

data may be more fruitful as the much larger area will decrease the
random errors on the measurement and make any systematics more
apparent. Ultimately, this SNR cut can be used as a free parameter
in our method, which can be varied to ensure that science results are
not sensitive to its value. It is also important when using this method
to choose magnitude limits which ensure the detected galaxies are
unbiased tracers of the full galaxy sample. This can be achieved by
using narrow magnitude bins or by only applying this correction to
fairly complete samples.

By applying our methods to a set of science verification data
we show that in the PS1 3π measurements of clustering show rea-
sonable agreement with the literature data down to a magnitude
of rP1 < 23.0. Though tests using regions with different fiducial
SNR limits, and the large size of correction needed at these faint
magnitudes, suggest perhaps a limit of rP1 < 22.5 is a more reliable
estimate of how faint we can use this method. These limits may
change as the PS1 survey matures. At bright magnitudes, we show
agreement with the published angular correlation function estimates
of Christodoulou et al. (2012) and Wang et al. (2013), fainter than
this our measurements show the decrease in amplitude expected.
Our fainter measurements agree, within error, with the measure-
ments of Hudon & Lilly (1996), Roche & Eales (1999) and with
Foucaud et al. (in preparation) for the threshold sample rP1 < 23.0.
Our magnitude bin samples also agree within error with Foucaud
et al. (in preparation) down to a limit of rP1 < 22.5. We also demon-
strate that our method yields sensible measurements of the number
counts of galaxies, with rP1-band counts, showing agreement with
published data.

One difficulty with the literature comparisons is the relative
deficit of faint r-band comparison data, especially from fields large
enough to test the scales where our correction is strongest. In places
large sample variance could be masking residual systematics caused
by the spatially varying depth. Future work will be able to further
test our depth correction technique in several ways. First, the exten-
sion of this work to different bands will allow a larger number of
the literature comparisons to be made. Additionally, combining the
data across multiple bands will allow us to test the depth correction
technique with more complex selection criteria, such as colour. Fi-
nally, using the full 3π data will greatly decrease the random errors
in the SAS2 measurements, making systematics more apparent.

Clustered false positives are a potential limitation to measuring
clustering, but these only affect the fainter magnitude bins and this
problem should be improved by future efforts in understanding the
instrumental signature of the PS1 camera. Additionally, matching
between bands, which will be necessary for photometric redshifts,
will go a long way in removing these false positives as image defects
are very unlikely to be located in the same place in multiple bands.

Further issues not covered in this work, but which will still have
to be considered when utilizing the full survey also include how
extinction corrections and stellar contamination affect the measured
clustering signal. Issues such as these are common to many large
galaxy surveys and there are approaches in the literature to deal
with them (e.g. Ross et al. 2012; Wang et al. 2013).

Once the 3π survey is complete we will apply these methods
to the full survey, which is due to be completed by around 2014
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January, with data reduction complete by mid-2014 (Magnier et al.
in preparation). If the techniques developed here are successfully
applied, the PS1 3π survey will be able to push forward our un-
derstanding of cosmology and galaxy formation. One particularly
exciting application will be to measure the integrated Sachs–Wolfe
effect by cross-correlating PS1 galaxies with cosmic microwave
background (CMB) data. The large area of 3π will be ideal for
minimizing sample variance and false positives will become less of
an issue as they are not correlated with the CMB.
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