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The planar bistable device [Tsakonas et al., Appl. Phys. Lett., 2007, 90, 111913] is known to have two distinct classes of stable
equilibria: the diagonal and rotated solutions. We model this device within the two-dimensional Landau-de Gennes theory, with a
surface potential and without any external fields. We systematically compute a special class of transition pathways, referred to as
minimum energy pathways, between the stable equilibria that provide new information about how the equilibria are connected in
the Landau-de Gennes free energy landscape. These transition pathways exhibit an intermediate transition state, which is a saddle
point of the Landau-de Gennes free energy. We numerically compute the structural details of the transition states, the optimal
transition pathways and the free energy barriers between the equilibria, as a function of the surface anchoring strength. For
strong anchoring, the transition pathways are mediated by defects whereas we get defect-free transition pathways for moderate
and weak anchoring. In the weak anchoring limit, we recover a cusp catastrophe situation for which the rotated state acts as a
transition state connecting two different diagonal states.

1 Introduction

Nematic liquid crystals are complex anisotropic liquids with
long-range orientational ordering1. Nematics in confinement
present a whole host of new theoretical and applications-
oriented questions focussed on the complex inter-relationship
between material properties, geometry, temperature, boundary
effects and external fields in equilibrium and non-equilibrium
phenomena. From a modelling point of view, we have new
and challenging questions on pattern formation, defects, inter-
facial phenomena and rheology. From a technological point
of view, nematics in micron-scale or nano-scale geometries
open new doors for optical and display applications, and more
recently novel biological insight2,3.

We re-visit the planar bistable device first reported by
Tsakonas and his co-workers4. The planar bistable device
has been well-studied in the liquid crystal community in re-
cent years4–8, partly because of its geometrical simplicity and
partly because of its rich modelling landscape. It typically
comprises a periodic array of shallow square or rectangular
wells filled with nematic liquid crystalline material. The well
surfaces are treated to induce tangent or planar boundary con-
ditions so that the nematic molecules, in contact with the well
surfaces, are constrained to be tangent to the well surfaces.
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Tsakonas et al.4 adopt a two-dimensional Landau-de Gennes
modelling approach and focus on planar nematic equilibria
on the bottom square or rectangular well cross-section, on
the grounds that non-planar three-dimensional equilibria are
energetically expensive for shallow three-dimensional wells
and hence, not physically relevant. They compute local min-
imizers of a two-dimensional Landau-de Gennes energy on a
square or a rectangle with tangent boundary conditions and
obtain two distinct classes of optically contrasting nematic
equilibria: the diagonal solutions and the rotated solutions and
their modelling results are supported by parallel experimental
work. The tangent boundary conditions naturally create a mis-
match in molecular alignments or defects at the square ver-
tices. As the name suggests, the nematic molecules roughly
align along the square diagonal for the diagonal solution. The
rotated solutions have a more distorted profile as simulations
and optical data suggest that the molecules rotate by about 180
degrees between a pair of parallel square edges. There are two
diagonal solutions, one for each square diagonal, and four ro-
tated solutions, related to each other by a 90 degree rotation.
Luo et al.5 build on the work in4 and carefully study the de-
pendence of the diagonal and rotated solutions on the surface
anchoring strength, denoted by a surface anchoring coefficient
W . In particular, they find that the rotated solutions only ex-
ist above a certain critical anchoring strength and the critical
anchoring strongly depends on the material parameters and
temperature.

Here we take the modelling work further by a systematic
numerical investigation of the free energy pathways of the
planar bistable device within the framework of the Landau-

1–9 | 1



deGennes theory. This is a significant forward step since we
not only recover the free energy minimizing states but also
compute structural and energetic information about the tran-
sient states connecting pairs of distinct free energy minima.
As we vary the surface anchoring strength, we find three dis-
tinct regimes: the strong anchoring, moderate anchoring and
weak anchoring regimes. In the strong anchoring limit, we
recover the familiar diagonal and rotated solutions as local
free energy minimizers. As noted in4,5, there are two differ-
ent diagonal solutions and four distinct rotated solutions. We
compute the transition pathways between the different stable
solutions. In particular, we focus on the so-called minimum
energy pathways, where every point on such a pathway is an
energy minimum in all but a single distinguished direction in
the phase space. There are a number of interesting findings to
highlight here. Firstly, each minimum energy pathway is fea-
tured by a transition state, which is a saddle-point, an unstable
critical point of the Landau-de Gennes energy. We identify
the transition states as being local free energy maxima along a
minimum energy pathway connecting free energy minima. In
the strong anchoring limit, the transition states exhibit ±1/2
defects along the square edges. There may be multiple mini-
mum energy pathways between a pair of distinct minima and
these transition pathways can contain different number of de-
fects. We interpret the optimal transition pathway as being the
minimum energy pathway with the smallest free energy bar-
rier and the least energetically expensive transition state. It is
noteworthy that we do not find a direct minimum energy path-
way between pairs of diagonal solutions or pairs of rotated
solutions and all minimum energy pathways connect diagonal
and rotated solutions. In the moderate anchoring regime, the
transition pathways are not mediated by defects but are rather
mediated by localized anchoring breaking along the edges,
which induces a global transition between diagonal and ro-
tated solutions. In the weak anchoring regime, the rotated so-
lutions cease to be locally stable (consistent with the numer-
ical findings in5) but do exist as transition states connecting
the diagonal solutions. In particular, the numerical methods
in4,5 cannot capture the persistence of rotated solutions, as non
energy-minimizing solutions, in the weak anchoring regime.

We make some remarks on the novelty and importance of
our approach. The transition states are not stable but they may
be experimentally observable. Indeed the transition states in
the strong anchoring limit are reminiscent of recent experi-
mental observations of metastable states with point defects
in shallow nematic chambers9. Further, our numerical re-
sults demonstrate a subtle dependence of the optimal transi-
tion pathways on the anchoring strength. In the strong anchor-
ing limit, the optimal transition pathway is almost independent
of the anchoring strength whereas the free energy barrier de-
creases monotonically with anchoring strength in the moder-
ate and weak anchoring regimes. Switching mechanisms rely

on a complex interplay between anchoring strength, material
properties and external fields and one could use our numerical
methods to compute and analyze optimal switching pathways
in the presence of external fields.

The paper is organized as follows. In Section 2, we re-
view the Landau-de Gennes theory for nematic liquid crys-
tals. In Section 3, we compute the Landau-de Gennes free
energy minimizers and in Section 4, we compute the transi-
tion states and the transition pathways between free energy
minima, focussing on three different anchoring regimes. We
conclude in Section 5 with future perspectives. The compu-
tational methodologies used in this paper are described in the
appendix.

2 Computational Model

Following the paradigm in4,5, we model the planar bistable
device within the two-dimensional Landau-de Gennes theory.
In Landau-de Gennes theory, all the microscopic details about
molecular shape and interactions are averaged out, and the ne-
matic state is described by an macroscopic order parameter,
Q. We take the computational domain, Ω, to be a square in
the (x,y)-plane, which defines the bottom surface of the well,

Ω =
{
(x,y) ∈ R2 : 0≤ x,y≤ L

}
, (1)

where L denotes the system size. As in5, for two dimensions,
the Q tensor can be represented by a symmetric traceless 2×2
matrix,

Q =

[
Q11 Q12
Q12 −Q11

]
= s(2n⊗n− I), (2)

where n is the director or the distinguished direction of molec-
ular alignment and s is a scalar order parameter that measures
the degree of orientational ordering about n.

We work with a simple form of the Landau-de Gennes en-
ergy as given below, with no external fields.

Ψ =
∫

Ω

[
−αTrQ2− B

3
TrQ3 +

C
4
(TrQ2)2

]
dA (3)

+
∫

Ω

κel

2
|∇Q|2dA+

∫
∂A

W |(Q11,Q12)−q|2da.

The first integral is the bulk free energy that drives the
nematic-isotropic transition as a function of the tempera-
ture1,10. The coefficient α is the re-scaled temperature; we
work with temperatures below the critical nematic supercool-
ing temperature and hence, α > 0; the coefficients B,C are
positive material-dependent constants. For a two-dimensional
Q as in (2), trQ3 = 0, and the bulk free energy simplifies to
the familiar Ginzburg-Landau potential5. The second term is
the one-constant elastic energy and κel > 0 is an elastic con-
stant; there are more general quadratic elastic energy densities
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but we believe that the one-constant energy density suffices
for qualitative purposes. The third term is a Durand-Nobili
surface anchoring energy11 that enforces the preferred tangen-
tial anchoring on the square edges, with anchoring strength W ,
reference configuration q and boundary element da. There are
multiple choices for the surface energy (see5 for comparisons
between three potential candidates for the tangent surface en-
ergy) but the Durand-Nobili energy has the desired numerical
stability properties for all relevant ranges of W .

To reduce the number of input parameters in the model,
we now rewrite the free energy functional in its dimension-
less form. Substituting Eq. (2) into (3) and defining x̃ = x/L,
Ψ̃ = CΨ/α2L2, κ̃el = κel/αL2, Q̃2 = CQ2/α , W̃ = W/αL,
we obtain

Ψ̃ =
∫

Ã
(Q̃2

11 + Q̃2
12−1)2dÃ

+
∫

Ã
κ̃el
[
|∇̃Q̃11|2 + |∇̃Q̃12|2

]
dÃ (4)

+
∫

∂ Ã
W̃ |(Q̃11, Q̃12)− q̃|2dã.

Here, there are only two input parameters: the dimensionless
elastic constant κ̃el and the dimensionless surface anchoring
strength W̃ . We drop the tildes in the subsequent text and all
results are to be interpreted in terms of the dimensionless vari-
ables.

We need to prescribe a suitable form for the reference con-
figuration, q, that enforces the tangent boundary conditions
on the edges. Following the formulation in Luo et al.5, we
set q(x,y) = s(x,y)(cos2θ(x,y),sin2θ(x,y)), where θ(0,y) =
θ(1,y) = π/2, θ(x,0) = θ(x,1) = 0, and s(t,0) = s(t,1) =
s(0, t) = s(1, t) = f (t). The scalar s has to vanish at the ver-
tices with strong tangent anchoring, because of the mismatch
in θ at the vertices. Hence, we define

f (t) =


t/d, 0≤ t ≤ d,
1, d ≤ t ≤ 1−d,
(1− t)/d 1−d ≤ t ≤ 1,

with d chosen to be 3
√

κel . In the liquid crystal literature,√
κel is known to be typically proportional to defect core

sizes1,10 and hence, we take f to be approximately unity ev-
erywhere (a minimum of the bulk free energy) except for small
neighbourhoods around the square vertices, where we expect
to see defects.

We can use standard methods from calculus of variations to
derive the Neumann boundary conditions on the edges (from

(a) (b)

(f)(e)

(c) (d)

Fig. 1 Local free energy minima for a square device for
W ≥ 1.4×10−3. There are two classes of configurations: (a-b)
diagonal and (c-f) rotated states. Each double arrow indicates the
two minima are connected by a single transition state, thus
visualising the connectivity of the free energy landscape.

the Durand-Nobili surface energy in Eq. (4)),

∂Qαβ

∂x
= −W

κel
(Qαβ −qαβ ) on x = 1,

∂Qαβ

∂x
= +

W
κel

(Qαβ −qαβ ) on x = 0,

∂Qαβ

∂y
= −W

κel
(Qαβ −qαβ ) on y = 1,

∂Qαβ

∂y
= +

W
κel

(Qαβ −qαβ ) on y = 0.

We use Greek indices to denote the components of the Q-
tensor, Qαβ = Q11 and Q12 above.

The numerical methods for the computation of the free en-
ergy minima, transition states and minimum energy pathways
are described in the appendix.

3 Minimum Free Energy States

We first study the minimum free energy morphologies of the
system as the surface anchoring W is varied. This is similar
to the work reported in5 where the authors use continuation
methods to compute stable equilibria of this system as W is
varied. Throughout this paper, we fix the value of the dimen-
sionless elastic constant κel = 4× 10−4 (for typical values of
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(a) (b)

Fig. 2 Minimum free energy diagonal configurations in a square
device for W < 1.4×10−3. The double arrow indicates that the two
minima are connected by a single transition state.

the elastic constant and Landau-de Gennes bulk potential pa-
rameters, this describes a micron-scale well) and use a square
lattice with 150×150 grid points.

In agreement with previous studies 5,9,12, we find that for
large anchoring strengths i.e. for W ≥ 1.4× 10−3, there are
two classes of minima, namely diagonal and rotated states.
We check the stability of the solutions by numerical computa-
tions of the Hessian of the Landau-de Gennes energy and its
eigenvalues at a given solution, as is standard for numerical
stability analysis. Due to the system symmetry, there are two
equivalent diagonal states and four equivalent rotated states.
These states are shown in Fig. 1.

For weak anchoring, W < 1.4×10−3, the rotated states are
no longer stable minima. This is consistent with the bifurca-
tion diagram in5 where the authors do not find rotated solu-
tions for small W . However, the rotated solutions do survive
as transition states in the free energy landscape for weak an-
choring, connecting the stable diagonal solutions. This is fur-
ther explained in the next section and the two stable minima
(diagonal states) are shown in Fig. 2.

Each double arrow in Figs. 1 and 2 indicates that there exists
at least one transition pathway between the connected minima
and we discuss the transition pathways in the next section.

4 Transition Pathways

Previous studies have been limited to free energy minima in
the planar bistable device4,5. In this paper we systematically
compute the transition states, transition pathways and optimal
transition pathways as a function of the surface anchoring pa-
rameter W . To the best of our knowledge, this has not been
reported elsewhere in the literature.

We distinguish three separate regimes depending on the val-
ues of W : (i) strong anchoring regime, (ii) moderate anchoring
regime and (iii) weak anchoring regime.

Regime I: Strong anchoring regime - The first regime is
the strong anchoring limit, which we find to occur for W ≥
6.5×10−3. The optimal transition pathways are independent
of W in this regime whilst they are sensitive to W for weaker
anchoring. The computations in this regime are in fact very

(a) (b) (c)

(f)(e)(d)

(g)(g) (h) (i)

Fig. 3 Possible transition pathways between rotated and diagonal
states in the strong anchoring limit, W ≥ 6.5×10−3. The transitions
are mediated by a −1/2 defect, a +1/2 defect, and a pair of ±1/2
defects respectively in panels (a-c), (d-f), and (g-i).

similar to the Dirichlet case considered in12 where Q is fixed
to be q on the square edges.

We first make a few comments about the vertex defects in
the diagonal and rotated solutions, both of which are local free
energy minima in this regime. There are two types of point de-
fects in these solutions: (i) splay defects wherein the director
splays outward from the vertex and (ii) bend defects, for which
the director bends between a pair of intersecting edges.

For a diagonal solution, there are two diagonally opposite
splay defects and two diagonally opposite bend defects and
for a rotated solution, the two splay defects are connected by
an edge, as are the two bend defects. For a rotated to diagonal
transition, we need two defect transformations along an edge:
a bend to splay defect transformation and a splay to bend de-
fect transformation via director rotation. We obtain at least
three different transition pathways between a rotated and a di-
agonal solution, as illustrated in Figure 3 below, all of which
are mediated by motion of point defects.

The first mechanism, as shown in Fig. 3(a-c), is mediated by
a −1/2 defect. The defect is created near the top left corner,
propagates towards the bottom left corner and subsequently
settles there to yield a bend defect. The numerical results sug-
gest that the singular bend behaviour at the top left corner of
the initial rotated solution is propelled into the square interior
leading to the creation of a −1/2 defect. As the −1/2 defect
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 (color online) The order parameter plots, s(x,y), for the
transition pathways shown in Fig. 3. s→ 0 at the defect locations
and s→ 1 elsewhere. The transitions are mediated by a −1/2
defect, a +1/2 defect, and a pair of ±1/2 defects respectively in
panels (a-c), (d-f), and (g-i).

propagates downwards, it rotates simultaneously and induces
a global director rotation within the square domain. Finally,
the point defect settles at the bottom left corner to become a
bend defect and the system relaxes into a diagonal solution.
The second mechanism, Fig. 3(d-f), is dominated by a +1/2
defect created near the bottom left corner. The rotated solu-
tion has a splay defect at the bottom left corner; this defect is
propelled into the square interior, it moves upwards along the
square edge and whilst moving, rotates and induces a global
director rotation. It finally settles at the top left corner as a
splay defect and the system relaxes into a diagonal solution.
These two mechanisms have identical free energy profiles, as
shown in Figure 5. Further analysis using our numerical meth-
ods also shows that there can be other transition pathways with
higher free energy barriers. We interpret the optimal transi-
tion pathway as being the minimum energy pathway with the
smallest barrier and the least energetically expensive transition
state. An example of a transition pathway with a higher free
energy barrier is shown in Fig. 3 (g-i), where the pathway is
mediated by the creation and propagation of a pair of±1/2 de-
fects. We also note that the transition pathways between other
rotated and diagonal states can be related by symmetry to the
specific example shown in Fig. 3. In Fig. 4, we plot the order
parameter along the transition pathways, as shown in Fig. 3.
The defects at the four corners, along with the bulk ±1/2 de-
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Fig. 5 (a) The free energy profiles for the three transition
mechanisms discussed in Fig. 3. The −1/2 and +1/2 defect
mechanisms have degenerate free energy profiles, while the ±1/2
defect pair mechanism has a considerably higher free energy barrier.
(b) The free energy profiles along the optimal transition pathway for
different values of the surface anchoring strength W .

fects (mediating the transitions), are clearly identified by small

order i.e. by small values for s such s =
√

Q2
11 +Q2

12→ 0 near
the defects.

The free energy profiles for the three transition mechanisms
discussed in Fig. 3 are shown in Fig. 5(a). The x-axis corre-
sponds to the “normalised path length” between configuration
m along the pathway and the initial rotated state,

sm =
1
N

[
m

∑
n=0

∑
αβ

∑
i j

∣∣∣(Qi j
αβ

)n+1− (Qi j
αβ

)n
∣∣∣2]1/2

. (5)

The normalization constant N is chosen such that the total path
length between the rotated and diagonal states is 1. For the
first two mechanisms described above, the profiles are virtu-
ally indistinguishable and the maxima in the free energy pro-
files correspond to the saddle points (transition states) in the
free energy landscape of the system. The transition state con-
figurations are depicted in Figs. 3(b), (e), and (h). It is worth
noting that we do not find any direct pathway between two
diagonal or two rotated states. A transition between two di-
agonal states or two rotated states is always composed of a
sequence of rotated-diagonal transitions.

Regime II: Moderate Anchoring - We label the range 1.4×
10−3 ≤ W < 6.5× 10−3 as the medium anchoring regime.
There are three key features of this regime: (i) the diagonal
and rotated solutions survive as local free energy minima, (ii)
the free energy barrier (along minimum energy pathways) de-
creases monotonically with W and (iii) the optimal transition
pathways do not feature defects.

This regime is further divided into two sub-regimes (a)
2.4× 10−3 ≤ W < 6.5× 10−3 and (b) 1.4× 10−3 ≤ W <
2.4× 10−3. For case (a), the transition from a rotated to a
diagonal solution is due to a “sequential” director rotation on
one side of the square device, without any transient defects.
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Two competing transition pathways in the medium anchoring
regime, 2.4×10−3 ≤W < 6.5×10−3. The molecules rotate
clockwise in the first mechanism (a-c). The director rotation sweeps
upward. In the second mechanism (d-f), the rotation is also
clockwise, but it starts from the top left corner and propagates
downward.

Heuristically, it is energetically preferable to break the tan-
gential anchoring along a square edge leading to director rota-
tion along an edge as opposed to the creation of±1/2 defects.
As in the strong anchoring regime, we find that there are two
mechanisms with degenerate free energy profiles (including
the free energy barrier).

In the first mechanism, the director starts to rotate clockwise
from the bottom left corner, breaking the tangential anchor-
ing along the left vertical edge. The rotation then propagates
upwards, as shown in Fig. 6(a-c) and this rotation suffices to
transform the splay defect at the bottom left corner into a bend
defect and conversely, the bend defect at the top left corner
into a splay defect. The final state is a diagonal solution. The
second mechanism is shown in Fig. 6(d-f). The director rotates
clockwise from the top left corner and the sweeping motion
propagates downwards, inducing a global director rotation and
a transition from a rotated solution to a diagonal solution. The
configurations in panels (b) and (e) correspond to the transi-
tion states and the two mechanisms have identical free energy
profiles.

For weaker anchoring, for 1.4× 10−3 ≤W < 2.4× 10−3,
the penalty for breaking tangential anchoring is weak and the
rotated to diagonal transition follows from a “global” director
rotation along the left vertical edge. As shown in Fig. 7(a-d),
the director rotates simultaneously along the entire length of
the left vertical edge and this rotation induces a global director
distortion within the square, leading to a rotated to diagonal
transition.

Regime III: Weak Anchoring - As the surface anchoring
strength W further decreases, for W < 1.4×10−3, the rotated

solutions are no longer stable. The disappearance of the ro-
tated states correspond to cusp catastrophes13, where typically
a minimum and two transition states coalesce to a single point.
This point, reminiscent of the rotated state (as such, there are
four of them), is a saddle point (transition state) between the
two stable diagonal solutions. The transition state in panel
Fig. 8 (c) resembles a rotated solution, with a uniform director
profile in the square interior accompanied by two transition
layers near the vertical edges. The corresponding free energy
profile can be seen from Fig. 5(b) for W = 1.0× 10−3. In
this regime, the minimum energy pathways may therefore be
represented by the diagram in Fig. 2 where the double arrow
represents four equivalent transition pathways.

The movies for all the possible transition pathways de-
scribed above are available as supporting information.

5 Conclusions

We have systematically studied the free energy landscape of
a multistable nematic liquid crystal device as we vary the
strength of the surface anchoring potential. Previous work fo-
cuses on the free energy minima and we take this work further
by computing transition states, transition pathways and opti-
mal transition pathways between minima, along with the free
energy barriers.

We have classified the system behaviour into three cate-
gories, according to surface anchoring strength and qualita-
tive properties of transition pathways. In the strong anchor-
ing regime, W ≥ 6.5× 10−3, we obtain two distinct classes
of free energy minima: diagonal and rotated solutions, as ex-
pected from previous work. The optimal transition pathways
and the corresponding transition states feature either a +1/2
or a −1/2 defect, localized near an edge. It is worth noting
that these transition states bear strong resemblance to exper-
imental observations of states with internal defects reported
in9, suggesting possible metastability of transition states. Fur-
ther, there are multiple transition pathways between free en-
ergy minima, which can be mediated by multiple defects but
with higher free energy barriers than the optimal pathways.

The existence of a transition state or a saddle point-type
critical point of the Landau-de Gennes energy (4), connect-
ing the stable diagonal and rotated solutions in the strong an-
choring regime, can be theoretically justified from the cele-
brated Mountain Pass Theorem14. In the limit of infinite an-
choring, one can define a topological classification scheme
for two-dimensional director fields (see15 for a similar three-
dimensional topological classification), for which the diagonal
and rotated solutions belong to different topological sectors.
This can also be seen more intuitively from the arrangement
of the splay and bend point defects in the diagonal and rotated
solutions respectively. The Mountain Pass Theorem guaran-
tees the existence of at least one critical point of the Landau-de
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(a) (b) (c) (d)

Fig. 7 The minimum energy transition pathway between a rotated and a diagonal state in the medium anchoring regime,
1.4×10−3 ≤W < 2.4×10−3. Panel (b) corresponds to the transition state along this pathway.

(e)(d)(c)(b)(a)

Fig. 8 One of four equivalent optimal transition pathways between two diagonal states in the very weak anchoring regime, W < 1.4×10−3.
Panel (c) corresponds to the transition state, which is reminiscent of a rotated state.

Gennes energy connecting the topologically distinct diagonal
and rotated solutions. In our framework, Mountain Pass so-
lutions correspond to transition states along optimal transition
pathways.

In the moderate anchoring regime, for W < 6.5×10−3, we
do not observe any defect along the optimal transition path-
ways. The rotated-to-diagonal transition is driven by clock-
wise director rotation (and anti-clockwise for the opposite
diagonal-to-rotated transition) localized along an edge. For
2.4× 10−3 ≤ W < 6.5× 10−3, the rotation starts from one
corner and propagates to another corner, along an edge. For
weaker anchoring strengths (W < 2.4× 0−3), it is preferable
for the director to rotate along an entire edge, since the energy
penalty for violating tangent anchoring is relatively weak.

For W < 1.4×10−3, we capture the cusp catastrophe events
as the rotated states become unstable and act as transition
states for the transition pathways connecting two stable diag-
onal solutions. This was previously not noted in the literature.

We note that the same effect i.e. loss of stability of the
rotated solutions, can also be achieved by continuously de-
creasing the square size whilst maintaining strong anchoring
on the square edges. In16, the authors study the critical points
of the two-dimensional Landau-de Gennes energy as a func-
tion of the square size, with strong anchoring on the edges.
For micron-sized wells, they recover the diagonal and rotated
solutions as we do. For a critical well size, the rotated so-
lutions lose stability (but exist as non-minimizing solutions)
whilst the diagonal solutions retain stability. For nano-scale
wells, there is a unique critical point, referred to as the order-
reconstruction solution, by analogy with similar findings in6.

For moderate and weak anchoring, the height of the free en-
ergy barrier decreases monotonically with W whilst the height
of the free energy barrier is independent of W in the strong
anchoring regime. Secondly, the configurations of the transi-
tion states and the free energy barriers depend strongly on the
anchoring strength, for moderate and weak anchoring. These
results can therefore be exploited to fine-tune the desirable sur-
face properties i.e. use an anchoring strength that yields the
optimal free energy barrier for device applications. For exam-
ple, a very low barrier compromises the stability of the mini-
mum free energy configurations and the device performance.
A very high barrier is an impedance to realistic switching, ne-
cessitating large power input or strong external electric fields.

We will now discuss how the dimensionless free energy can
be converted to SI unit (Joules). Note that the free energy de-
fined in Eq.(4) is in two dimensions (i.e. free energy per unit
thickness), while all practical experiments are, of course, in
three dimensions. As such, we need to account for the thick-
ness of the device, ∆z, such that Ψ = (α2L2∆z/C)Ψ̃, where
Ψ̃ is the dimensionless free energy defined in Eq. (4). The
parameters α and C are experimentally measurable quanti-
ties. As an example, for the common liquid crystal mate-
rial MBBA17, the characteristic bulk constants are of order
α ∼ 4.2× 102 J/m3 and C ∼ 3.5× 103 J/m3. To estimate α ,
we have assumed that the temperature is 1◦ below the critical
nematic transition temperature (∼ 46◦C ). From Fig. 5, the
typical free energy barrier in dimensionless units is of order
10−3. Assuming the thickness of the device is 1 micron and
the area of the device is (100 micron)2, the typical free energy
barrier in SI unit is therefore of order 5.1× 10−16 J. This is,
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of course, much larger than kbT ∼ 4.4×10−21J. On the other
hand, if the device dimension can be miniaturized to 1 micron
x 1 micron x 100 nm, then the typical free energy barrier be-
comes of order 5.1× 10−21 J, comparable to kbT . The free
energy barriers for other materials and device dimensions can
be computed in an analogous way.

Our methods can be extended to three dimensions and to in-
clude external fields. For example, we could use similar meth-
ods to study transition pathways in three-dimensional set-ups,
as studied in6, where the authors employ a three-dimensional
Landau-de Gennes modelling approach and find a new biaxial
order-reconstruction pattern for shallow nano-scale rectangu-
lar wells with strong anchoring. We speculate that the biaxial
order-reconstruction pattern loses stability for larger wells but
exists as a transition state connecting diagonal and rotated so-
lutions for large micron-scale wells with strong anchoring.

Similarly, we can use these numerical methods to describe
more complex geometries and boundary conditions, for ex-
ample the Zenithally Bistable Device studied in18. They are
also compatible with other simulation techniques tailored to
the dynamics of liquid crystalline systems or generally com-
plex fluids problems (such as finite element, lattice Boltzmann
method, etc). These numerical methods promise to be a valu-
able design or optimization tool, allowing us to obtain a de-
tailed picture of the free energy pathways of a complex sys-
tem, and subsequently how the pathways evolves as the sys-
tem parameters are varied.

6 Appendix: Computational Techniques

Here we summarise the most salient features of the computa-
tional techniques. A more detailed description and implemen-
tation of the methods can be found in12.

6.1 Discretization of the Free Energy Functional

We discretize the Landau-de Gennes free energy on a square
grid. Specific stencils are needed to approximate the deriva-
tives and it is important that they are at least second order ac-
curate. We have used

|∇Qi j
αβ
|2 =

[
(Q(i+1) j

αβ
−Qi j

αβ
)2 +(Q(i−1) j

αβ
−Qi j

αβ
)2
]

2(∆x)2

+

[
(Qi( j+1)

αβ
−Qi j

αβ
)2 +(Qi( j−1)

αβ
−Qi j

αβ
)2
]

2(∆y)2 ,

where the superscripts i and j label the lattice points in two
dimensions. We have used a 150x150 grid based on the re-
sults of Luo et al.5, where they carried out convergence tests
on the energy-minimizing solutions in the Landau-de Gennes
framework.

Minimum Free Energy States - The first step in a survey
of the free energy landscape is to compute the majority, if
not all, of the possible minima in the system. We follow a
stochastic approach, where each step consists of a trial move
followed by an energy minimization. It is identical to a basin-
hopping algorithm19,20 at infinite temperature, such that every
minimum state found is recorded. The simplest trial move
consists of random perturbations of the lattice field values,
(Q′)i j

αβ
= Qi j

αβ
+ ξ Θ. Here ξ is a random number between

-1.0 and 1.0, and Θ is the amplitude of the perturbation, which
we usually take to be Θ = 0.5. The energy minimization
is carried out using the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) algorithm21,22. In this paper, we
typically take 500 (basin-hopping) steps to sample the minima
of the system.

6.2 Transition States and Minimum Energy Pathways

Given the minimum free energy states, we numerically com-
pute the transition states (saddle points in the free energy
landscapes) using a combination of the doubly-nudged elas-
tic band (DNEB) method23,24 and the hybrid eigenvector-
following technique25. Transition states are special saddle
points or critical points in the free energy landscapes where
the energy gradients are zero in all eigendirections and one
of the eigenvalues of the Hessian is negative. This is to be
contrasted to minima, where the gradients are zero and the
eigenvalues are positive in all eigendirections.

The DNEB method is a double-ended search algorithm for
finding transition states and minimum energy pathways be-
tween any two pair of minima. Minimum energy pathways
have an important feature such that every point on such a path-
way is a minimum in all but a single distinguished direction in
the phase space. As a consequence, a maximum along the
minimum energy pathway corresponds to a transition state.

In DNEB, a set of images, {Γ1,Γ2, . . . ,ΓN}, are placed be-
tween the two endpoints (minima), Γ0 and Γ(N+1). The sym-
bol Γ represents all the degrees of freedom in the system, i.e.
{Qi j

αβ
}. We typically use 30 images, and they are initialised

by taking a linear interpolation between the two endpoints.
The images are relaxed using Landau-de Gennes energy

gradients that include contributions from two components.
The first contribution, g, comes from the derivatives of the free
energy functional with respect to the lattice degrees of free-
dom, dΨ/dQi j

αβ
. The second contribution is a spring force, g̃,

which is required to keep the images roughly equidistant. The
following spring potential is applied on every image

V α
spring =

k
2
(
(sα,−)2− (sα,+)2) . (6)

sα,− and sα,+ are respectively the distances to the left and right
images, (sα,±)2 = |Γα±1−Γα |2. The coefficient k is the spring
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constant.
Using the true and spring gradients, without any projection,

often results in two issues26,27: (i) corner-cutting, where im-
ages are pulled away from the minimum energy path; and (ii)
sliding-down problems, where images slide down from barrier
regions. In DNEB, we use two projections. First, we only re-
tain the components of the true gradient that are perpendicular
to the unit tangent vector τ̂α ,

gα

⊥ = gα − (gα · τ̂α)τ̂α . (7)

Secondly, the following component of the spring constant gra-
dient is retained,

g̃α
DNEB = k(sα,+− sα,−)τ̂α + g̃α

⊥− (g̃α

⊥ · ĝ
α

⊥)g̃
α

⊥, (8)

where g̃α

⊥ = g̃α − (g̃α · τ̂α)τ̂α . The unit tangent τ̂ is defined as
in27. As a convergence criterion, we stop the DNEB run when
the root mean square of the gradients as defined in Eqs. (7)
and (8) in the manuscript is < 10−9, which in our experience
is more than enough to ensure the calculations have converged.

A maximum in the DNEB path corresponds to a transition
state candidate, which we then refine by applying the hybrid
eigenvector-following technique. We use a Rayleigh-Ritz ap-
proach25, based on gradients of the Landau-de Gennes energy,
to compute the transition states since this method is more effi-
cient for large systems.

Once the transition states are found, small displacements
are applied in the two downhill directions. Energy minimiza-
tions are again carried out using the LBFGS algorithm21,22.
Given a minima - transition state - minima triplet, this run
yields the transition pathway for this triplet and the corre-
sponding free energy barrier. We check that this pathway is
consistent with the one obtained from DNEB calculations.
The free energy barriers could be interpreted as the free en-
ergy differences between the transition state and the free en-
ergy minima. There are typically multiple transition pathways
between a pair of free energy minima. The optimal pathway
is the pathway with the smallest free energy barrier.
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