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Abstract 11 

Piggyback basins developed at the mountain fronts of collisional orogens can act as important, and 12 

transient, sediment stores along major river systems. It is not clear, however, how the storage and release 13 

of sediment in piggyback basins affects the sediment flux and evolution of downstream river reaches. Here 14 

we investigate the timing and volumes of sediment storage and release in the Dehra Dun, a piggyback basin 15 

developed along the Himalayan mountain front in northwestern India. Based on OSL dating, we show 16 

evidence for three major phases of aggradation in the dun, bracketed at ~41-33 ka, 34-21 ka, and 23-10 ka, 17 

each accompanied by progradation of sediment fans into the dun. Each of these phases was followed by 18 

backfilling and (apparently) rapid fan-head incision, leading to abandonment of the depositional unit and a 19 

basinward shift of the active depocentre. Excavation of dun sediment after the second and third phases of 20 

aggradation produced time-averaged sediment discharges that were ~1-2% of the modern suspended-21 

sediment discharges of the Ganga and Yamuna rivers that traverse the margins of the dun; this sediment is 22 

derived from catchment areas that together comprise 1.5% of the drainage area of these rivers. 23 

Comparison of the timing of dun storage and release with upstream and downstream records of incision 24 

and aggradation in the Ganga show that sediment storage in the dun generally coincides with periods of 25 

widespread hinterland aggradation but that late stages of dun aggradation, and especially times of dun 26 

sediment excavation, coincide with major periods of sediment export to the Ganga Basin. The dun thus acts 27 
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to amplify temporal variations in hinterland sediment supply or transport capacity. This conceptual model 28 

appears to explain morphological features of other major river systems along the Himalayan front, 29 

including the Gandak and Kosi Rivers, and may be important for understanding sediment flux variations in 30 

other collisional mountain belts. 31 

 32 

Keywords 33 

Himalayas, Ganga River basin, sediment transport, sediment storage, erosion, intermontane valley 34 

Page 2 of 49

FOR REVIEW PURPOSES ONLY

Basin Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Introduction 35 

Piggyback basins are ubiquitous features of foreland basin systems (Ori and Friend, 1984; DeCelles and 36 

Giles, 1996), and serve as links between hinterland areas of sediment production and foreland 37 

depocentres. While such basins may be essentially passive features that fill with sediment and then are 38 

buried as the fold and thrust belt migrates into the foreland (e.g., DeCelles and Horton, 2003), several 39 

studies have shown that piggyback basins may be highly dynamic environments on shorter time scales (103 40 

– 104 years), with repeated cycles of aggradation and incision (e.g., DeCelles et al., 1991; Hilley and 41 

Strecker, 2005). Temporary trapping and release of sediment in piggyback basins or other intermediate 42 

sediment stores is thus a critical control on long-term sediment efflux, not least because such storage can 43 

buffer the system against changes in external forcing conditions (Castelltort and van den Driessche, 2003). 44 

 45 

It has long been known that intermediate storage can account for a large proportion of the sediment 46 

produced in upstream parts of a catchment (e.g., Meade, 1982; Walling, 1983; Phillips, 1991; Blum and 47 

Törnqvist, 2000; Bloethe and Korup, 2013), but our understanding of the downstream impacts of sediment 48 

storage and release remains relatively limited. These impacts have been investigated in analogue 49 

experiments (e.g., Kim et al., 2006; Powell et al., 2012) and numerical simulations (Paola, 2000; Allen and 50 

Densmore, 2000; Carretier and Lucazeau, 2005), or at relatively small spatial scales (e.g., Lane and Richards, 51 

1997; Malmon et al., 2005; Lancaster and Casebeer, 2007), but field examples in large river systems are 52 

comparatively scarce (e.g., Clift, 2006). 53 

 54 

Here, we begin to address this problem by focusing on sediment storage and release along the Himalayan 55 

mountain front, portions of which are characterized by frontal piggyback basins or ‘duns’ along individual 56 

segments of the mountain front (Nakata, 1972; Raiverman, 1997; Powers et al., 1998; Thakur and Pandey, 57 

2004; Thakur et al., 2007). These duns are formed in response to marked along-strike variations in the 58 

geometry and distribution of slip on the Himalayan Frontal Thrust (HFT) system (Nakata, 1989; Yeats et al., 59 

1992; Wesnousky et al., 1999; Thakur, 2013). Some of the main Himalayan river systems – including the 60 

Yamuna, Ganga, and Gandak – flow across these duns before debouching into the foreland basin, whereas 61 
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others – including the Ghaghra, Karnali, and Kosi – flow directly into the foreland (Fig. 1). This region thus 62 

provides an opportunity to assess the rates and timing of sediment storage and evacuation from the duns, 63 

the role of duns in setting sediment supply to the foreland, and the effects of the presence or absence of a 64 

dun on the geomorphology of large Himalayan river systems. 65 

 66 

We focus initially on the Dehra Dun in northwestern India, which is traversed by two of the largest rivers of 67 

the Ganga Basin, the Yamuna and Ganga rivers. We use this example to examine the degree to which 68 

proximal piggyback basins can influence the timing and magnitude of sediment discharge in a large river 69 

system. Ray and Srivastava (2010) provided a comprehensive review of the evidence for aggradation and 70 

incision in the mountain hinterland of the Ganga Basin upstream of the Dehra dun, and linked this with 71 

downstream records of sediment accumulation and incision in the Ganga plain. Our work fills the gap 72 

between these regions, and allows us to evaluate the role of the dun in the Ganga sediment routing 73 

system. We combine new and published data on the geometry and age of sedimentary deposits in the dun 74 

into a conceptual model of dun evolution since ~40 ka. We use this model to estimate the volumes of 75 

sediment that have been stored and released over this time period, and to compare events in the dun with 76 

episodes of aggradation and incision that have been documented for the Ganga and Yamuna rivers in the 77 

hinterland (Ray and Srivastava, 2010) and foreland (e.g., Gibling et al., 2011; Roy et al., 2012). Finally, we 78 

evaluate the conceptual model against observations from the Gandak and Kosi Rivers, and show that 79 

fundamental differences in the foreland morphology and evolution of foreland rivers can be linked to the 80 

presence or absence of a dun sediment store. 81 

 82 

Study area 83 

Setting 84 

The development of duns along some, but not all, segments of the Himalayan mountain front (Fig. 1) has 85 

been linked to a number of different factors, including structures on the underlying Indian lithosphere 86 

(Yeats and Lillie, 1991; Raiverman et al., 1993) or lateral variations in orogenic wedge properties (Mugnier 87 

et al., 1999a, 1999b), leading to differences in the extent to which strands of the HFT have propagated into 88 
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the foreland. For example, Mugnier et al. (1999b) showed that thicker Siwalik deposits and a slightly 89 

steeper (2°) dip of the basal detachment would produce early propagation of the thrust front and thus 90 

large stable wedge-top or piggyback basins. They suggested that the Dehra and Chitwan duns might form 91 

via a similar mechanism. More generally, Leturmy et al. (2000) argued that erosion or deposition of the 92 

wedge could promote or suppress piggyback basin development, by controlling the timing and propagation 93 

of faulting into the foreland. Simpson (2010), in contrast, demonstrated that the strength of the basal 94 

detachment, and to a lesser extent the strength of the cover sequence, controls the sequence and 95 

propagation of deformation. A frictional (high-viscosity) detachment leads to regular propagation of the 96 

wedge and localization of deformation at the thrust front. A weak detachment, in contrast, leads to rapid 97 

propagation of slip into the foreland and formation of wedge-top basins, but activity on individual faults is 98 

episodic and deformation shifts frequently from the thrust front to structures in the hinterland. What is 99 

important for our purposes is that dun development is spatially limited along the Himalayan front, and 100 

affects only some of the major Himalayan rivers (Fig. 1). 101 

 102 

The Dehra Dun 103 

The Dehra Dun (Fig. 2), in Uttarakhand state, northern India, has developed in response to folding of the 104 

Mohand anticline over a ramp in the HFT, which has remained active into the Holocene (Wesnousky et al., 105 

1999). The anticline is an upright, asymmetric fold composed of Middle and Upper Siwalik sandstones and 106 

conglomerates of Miocene to Pleistocene age; the onset of folding and dun formation is constrained to 107 

after ~500 ka but before 220 ka (Thakur et al., 2007; Barnes et al., 2011). Accommodation generation in the 108 

dun is controlled by slip on both the HFT and the Main Boundary Thrust (MBT) (Fig. 2). 109 

 110 

The Yamuna and Ganga rivers traverse the lateral margins of the dun before entering the foreland, and set 111 

base level for the channels that drain the dun. Thus, any storage or erosion of sediments in the dun has a 112 

direct impact on the sediment discharge of the Yamuna and Ganga rivers at the HFT. A complex late-113 

Quaternary history of aggradation and erosion within the dun is recorded by sequences of fill terraces along 114 

both the Yamuna (Dutta et al., 2012) and Ganga (Sinha et al., 2010). The Yamuna terraces in the footwall of 115 
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the MBT (Fig. 2) record major phases of aggradation from >37 to 24 ka and >15 to 12 ka, each followed by 116 

incision and terrace abandonment, along with several minor aggradation and incision cycles within the 117 

Holocene (Dutta et al., 2012). The Ganga terraces span a shorter time period, but also record aggradation 118 

to ~11 ka followed by incision from 11-9.7 ka (Sinha et al., 2010). These records are matched by evidence 119 

from fill terraces at a number of upstream sites in the Ganga Basin, which broadly indicate phases of 120 

aggradation from ~49-25 ka and ~18-11 ka, with incision beginning soon after 11 ka (Srivastava et al., 2008; 121 

Ray and Srivastava, 2010). 122 

 123 

Sediment supply from the Ganga and Yamuna rivers at the Himalayan mountain front, or alternatively the 124 

hinterland erosion rates of these basins, has been quantified over several different time scales. Jha et al. 125 

(1988) used measurements of suspended sediment for a single year to estimate a present-day suspended 126 

sediment discharge for the Yamuna of 18 Mt/yr at Tajewala, just downstream of the HFT; assuming a solid 127 

grain density of 2650 kg/m3, this corresponds to a volumetric discharge of 6.8 Mm3/yr. Lupker et al. (2012) 128 

used cosmogenic radionuclide analysis of a bed sample from Paonta, within the dun, to estimate a total 129 

sediment discharge of 13±5 Mt/yr or 5.3 Mm3/yr. Values for the Ganga vary more widely. Reported 130 

present-day discharge estimates from suspended sediment measurements at Rishikesh or Haridwar are 13-131 

14 Mt/yr (Abbas and Subramian, 1984; Sinha et al., 2005; Chakrapani and Saini, 2009), and Wasson (2003) 132 

cited a value of 33 Mt/yr on the basis of Galy and France-Lanord (2001), but further supporting analysis is 133 

not available for this estimate. These correspond to volumetric discharges of ~5 Mm3/yr. In contrast, Vance 134 

et al. (2003) and Lupker et al. (2012) used cosmogenic radionuclides to derive longer-term Ganga sediment 135 

discharge estimates of 20-30 Mm3/yr (or 65-67 Mt/yr) and 52 Mm3/yr (or 139±37 Mt/yr), respectively. 136 

 137 

Sediment is also supplied to the dun, and thus to the Yamuna and Ganga rivers, by a set of catchments that 138 

drain the hanging wall of the MBT (Fig. 2), with a total area of about 503 km2 upstream of the MBT; this 139 

represents about 1.5% of the total catchment area of the Yamuna and Ganga upstream of the HFT (34,300 140 

km2). These dun catchments feed a set of coalescing stream-flow and debris-flow fans that have deposited 141 

a thick sequence of sediment, ranging from silts to cobble conglomerates, atop Upper Siwalik bedrock 142 
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(Singh et al., 2001). At the northern edge of the dun, Middle Siwalik rocks are folded and thrust over the fan 143 

deposits (Thakur et al., 2007), while the youngest generation of fan deposits have backfilled paleovalleys 144 

eroded into the hanging walls of the Santaugarh fault and the MBT (Fig 2). Nossin (1971) and Nakata (1972) 145 

mapped the sedimentary fill of the Dehra Dun, and classified it into several discrete fan and terrace units. 146 

Singh et al. (2001) extended this classification and identified three main depositional fans within the dun; 147 

from west to east, these are the Donga, Dehradun, and Bhogpur fans (Fig. 2) and we adopt this 148 

nomenclature here. 149 

 150 

 151 

Methods 152 

To assess sediment volumes and storage in the dun, we prepared geomorphic maps of the central Dehra 153 

Dun showing the major fan surfaces and fill terraces, using LISS-3 satellite images (23.5 m spatial resolution)  154 

from 2004 and the CGIAR-CSI Shuttle Radar Topography Mission version 4 digital elevation model (DEM), 155 

with a cell size of 90 m. False-colour composite images were prepared from the LISS-3 data, using near-156 

infrared, red, and green bands. Identification and correlation of different fan and terrace surfaces was done 157 

on the basis of the false-colour composite images, a Normal Difference Vegetation Index (NDVI) image 158 

created from the LISS-3 data, the DEM, and a gradient raster created from the DEM. We also obtained a 159 

total of 118 borehole logs from Uttar Pradesh Jal Nigam for locations within the dun in order to map the 160 

major lithological transitions and establish minimum fan deposit thicknesses. In addition, field data on 161 

elevations of the Quaternary surfaces and exposed Siwalik bedrock were collected using handheld GPS and 162 

1:50,000 Survey of India topographic maps. Stratigraphic logs were prepared to characterise the sub-163 

surface deposits of most of the mapped geomorphic surfaces. We collected six samples for optically-164 

stimulated luminescence (OSL) dating from beds of fine to very fine sand and coarse silt within the fan 165 

deposits (see Supplementary Material for methods and analytical procedures). These data were integrated 166 

with the geomorphic maps and with existing OSL dates (Singh et al., 2001; Thakur et al., 2007) to constrain 167 

the timing and geometry of major aggradational episodes in the dun. 168 

 169 
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To assess the contribution of dun sediment storage and evacuation to the Yamuna and Ganga Rivers, we 170 

estimated the volumes of the major depositional units, and of the material that was removed from each 171 

unit by incision. To do this, we correlated remnant depositional surfaces across the fans using elevation, 172 

surface morphology and image texture, vegetation, and available OSL age constraints. We then 173 

interpolated smooth surfaces across the correlated remnants using polynomial functions in ArcGIS. These 174 

surfaces were constrained to include the mapped remnants, and were truncated where they dipped  below 175 

older, higher topography (either bedrock or older depositional units); we also ensured that the interpolated 176 

surfaces were bounded by the MBT and by the present-day boundaries of the fans. By subtracting the 177 

interpolated surfaces from the present-day topography, we estimated the depth and spatial pattern of 178 

post-abandonment incision into each surface, which can be summed to yield the volume of sediment that 179 

was removed during abandonment. We compared the results of interpolations using third, fourth, and 180 

fifth-order polynomials, and found that the estimated volumes differed by ≤ 5%, so only results using 181 

fourth-order polynomial interpolations are reported below. We also checked our incision patterns against 182 

minimum sediment fill thicknesses from the borehole logs, to ensure that the estimates were geologically 183 

reasonable and did not exceed the present-day sediment thicknesses along the valley floors. The volume 184 

estimates assume that previous episodes of incision did not lower thalweg elevations in the dun below 185 

present-day elevations, and are thus minima; however, we lack any evidence of the depth of incision or 186 

clear subsurface distinctions between different depositional units, so at present this limitation cannot be 187 

addressed. Finally, we combined our volumes of sediment removal with the time constraints provided by 188 

the OSL dates to estimate average sediment discharges out of the dun. 189 

 190 

Results 191 

Geometry and timing of depositional units 192 

Because the detailed stratigraphy of the sedimentary fill in the Dehra Dun has been described by Singh et 193 

al. (2001), we focus here on the geometry and ages of the deposits. We concentrate on the most 194 

volumetrically important depositional units that comprise the Donga, Dehradun, and Bhogpur fans, and 195 

ignore both the younger, more spatially-restricted fill terrace deposits along streams in the dun (Nakata, 196 
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1972) and the older deposits in the hanging wall of the Santaugarh fault (the ‘Dissected Siwalik Hills’ of 197 

Singh et al., 2001), which clearly pre-date the formation of the present-day dun. From oldest to youngest, 198 

these key depositional units (Fig. 2) are here termed (1) the ‘isolated hills’ unit, which corresponds to the 199 

‘Pedimented Siwalik Hills’ geomorphic unit and depositional unit GD-I of Singh et al. (2001), and unit A of 200 

Thakur et al. (2007); (2) the ‘proximal fan’ unit, which corresponds to the Piedmont geomorphic unit and 201 

depositional unit GD-II of Singh et al. (2001), and unit B of Thakur et al. (2007); and (3) the ‘distal fan’ unit, 202 

which corresponds to depositional units GD-III and GD-IV of Singh et al. (2001), and unit C of Thakur et al. 203 

(2007). 204 

 205 

The isolated hills unit is composed of massive, clast- or matrix-supported pebble to boulder conglomerates 206 

(Singh et al., 2001). These deposits form rounded hills that reach elevations of 620-880 m that flank the 207 

major dun rivers (Sitla Rao, the Suarna River, and the Asan River) in the western and central parts of the 208 

dun (Fig. 2, 3). Exposure of this unit is limited to a narrow belt, 2-4 km wide, in the immediate footwall of 209 

the Santaugarh fault. The exposed thickness is at least 90 m, but the actual thickness of this unit is 210 

unknown. Singh et al. (2001) inferred a basal age of ~50 ka based on OSL ages of 40.3±3.9 and 38.3±9.4 ka 211 

near the base of this unit on the Dehradun fan, and also reported an age of 29.5±5.0 ka from the Donga 212 

fan, although its position is not certain. Thakur et al. (2007) reported OSL ages of 35.40±7.30 and 213 

33.57±4.73 ka from this unit, both from proximal parts of the Donga fan. Our sample IH/2 yields an age of 214 

41.3±1.2 ka from 2.8 m below the top of an exposure of isolated hills sediment on the east flank of the 215 

Suarna River valley (Fig. 2, Table 1). 216 

 217 

The proximal fan unit consists of massive, clast- or matrix-supported pebble to boulder conglomerates with 218 

some interbedded sand layers (Singh et al., 2001; Thakur et al., 2007). The unit underlies smooth, south-219 

dipping near-planar fan surfaces (Fig. 3A) that cover most of the proximal areas of the Donga, Dehradun, 220 

and Bhogpur fans (Fig. 2), and extend 5-10 km downstream of the Santaugarh fault (for the Donga and 221 

Dehradun fans) or the MBT (for the Bhogpur fan). These fan surfaces have typical surface slopes (averaged 222 

over 270 m windows) of 2-4 degrees, and appear to onlap onto deposits of the underlying isolated hills in 223 
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the footwall of the Santaugarh fault. Importantly, the surfaces and their underlying deposits can be traced 224 

continuously up to 1.5 km upstream of the Santaugarh fault along several of the major dun drainages, 225 

including the Koti Nadi (Fig. 3A) and the Suarna River. In the Santaugarh fault hanging wall, deposits of the 226 

proximal fan unit lie unconformably atop steeply-dipping to overturned Middle Siwalik sandstones (Thakur 227 

et al., 2007) and the isolated hills unit, but our observations show that there is no evidence of offset or 228 

deformation across the Santaugarh fault. Exposures along both the Koti Nadi and Suarna River indicate that 229 

proximal fan sediments were deposited in steep-walled paleovalleys that were incised at least 70-75 m into 230 

the underlying deposits of the isolated hills (Fig. 3B). The axes and orientations of these paleovalleys are 231 

slightly offset from those of the modern river drainage system, which means that their width cannot be 232 

observed directly. 233 

 234 

Thakur et al. (2007) obtained an OSL age of 20.5±1.8 ka from their unit B, and correlated this unit with an 235 

age of 29.4±1.7 ka from the west flank of the Suarna River valley (Singh et al., 2001), although the basis for 236 

this correlation is not clear. We obtained an OSL age of 21.2±1.3 ka from sample FS3.1 10 m below the fan 237 

surface near the Santaugarh fault, on the east flank of the Suarna River valley (Fig. 2, Table 1). 238 

 239 

The distal fan unit consists of well-bedded pebble to cobble conglomerates, with some discontinuous layers 240 

of sand and silt (Singh et al., 2001; Thakur et al., 2007). The unit underlies widespread, smooth, near-planar 241 

fan surfaces that occur south of, and appear to onlap against, surfaces of the proximal fan and isolated hills 242 

units. These surfaces form the southern, distal expanses of the Donga and Dehradun fans, with typical 243 

surface slopes (averaged over 270 m windows) of 0.2 to 1.1 degrees. Singh et al. (2001) reported OSL ages 244 

of 22.8±2.3 and 20.3±7.5 ka from near the base of this unit, and ages of 9.4±0.6 and 10.7±2.4 ka near the 245 

top, while Thakur et al. (2007) reported ages of 13.2±1.1 and 17.1±2.0 ka from the distal Donga fan. 246 

Likewise, we obtained an OSL age of 14.4±0.6 ka from sample FS2.2 on the west flank of the Sitla Rao, 5 m 247 

below the distal fan surface (Fig. 2, Table 1). Two other samples, collected from east of the Suarna River 248 

(Fig. 2), yielded OSL ages of 16.2±1.4 ka (sample LIS-TOP) and 13.8±0.9 ka (sample FS2.1) (Table 1). A final 249 

sample (FS1.1) yielded an OSL age of 33.8±3.2 ka from 3 m below the fan surface (Fig. 2, Table 1), which is 250 
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substantially older than any other reported age for the distal fan unit. Given its position near the southern 251 

limit of the dun depositional units, and the lack of a clear textural difference between the different units, it 252 

is possible that this sample was collected from an isolated distal exposure of the proximal fan unit, but at 253 

present we cannot resolve this apparent discrepancy. 254 

 255 

Erosional volume estimates 256 

Because the original depositional surface of the isolated hills unit is not preserved, we cannot estimate the 257 

volume of material that has been removed due to post-depositional incision. We therefore focus only on 258 

incision of the proximal and distal fan units. Incision of the proximal fan unit on the Donga fan (Fig. 4) has 259 

yielded 1900 Mm3 of sediment since abandonment of the surface, while incision on the Dehradun (Fig. 4) 260 

and Bhogpur fans has yielded 750 Mm3 and 720 Mm3, respectively. In total, these add up to 3300 Mm3 of 261 

sediment that has been evacuated from the dun by incision of the proximal fan unit. The distal fan unit is 262 

not exposed on the Bhogpur fan, but incision of the distal unit on the Donga and Dehradun fans has yielded 263 

1800 Mm3 since abandonment of the distal fan surface. Error estimates on these volumes are due largely to 264 

uncertainties in mapping the fan surface remnants, and are conservatively estimated at ±20% through 265 

exploration of different possible remnant configurations with various levels of certainty. 266 

 267 

Discussion 268 

Evolution of the dun fill 269 

We interpret the sedimentary units that were deposited in the Dehra Dun since ~41 ka in terms of a 270 

sequence of repeated episodes of fan deposition, backfilling, fan head incision, and basinward migration of 271 

the depocenter. Such an evolutionary sequence has been widely documented for experimental fans and 272 

fan deltas (Kim et al., 2006; Reitz and Jerolmack 2012; Powell et al., 2012), and may be triggered by both 273 

autogenic (e.g., Kim and Muto, 2007; Kim and Jerolmack, 2008; Clarke et al., 2010; Pepin et al., 2010) and 274 

allogenic (e.g., Davies and Korup, 2007; Duehnforth et al., 2008) mechanisms. In this model, the isolated 275 

hills unit represents the first phase of deposition, filling accommodation that was produced by slip on the 276 

Santaugarh fault and MBT and starting by at least 41 ka. The morphological expression of this unit indicates 277 
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that it has undergone widespread post-emplacement erosion, such that the original fan surface topography 278 

is not preserved. It is thus impossible to use dates on the isolated hills material to identify the precise time 279 

at which this depositional unit was abandoned and incised. Based on dates from the next-youngest unit, 280 

however, abandonment of the isolated hills depositional regime appears to have taken place by 29-30 ka, 281 

and occurred by incision of the isolated hills deposits near the sediment entry points into the basin and by a 282 

major basinward shift of the active locus of deposition. This shift was followed by widespread deposition of 283 

the proximal fan unit, which filled much of the available accommodation within the dun. As deposition 284 

progressed, the unit began to backfill toward, and eventually across, the Santaugarh fault, eventually 285 

leading to the deposition of >100 m of sediment in the hanging wall of the fault (Figs. 3B, 4). 286 

 287 

Abandonment of the proximal fan deposit appears to have occurred by incision at the fan heads and a 288 

second basinward shift of the depositional locus, leading to deposition of the distal fan unit. This shift took 289 

place between about 23 ka (the oldest age in the distal fan unit) and 20.5 ka (the youngest age in the 290 

proximal fan unit). Deposition of the distal fan unit may have eventually led to backfilling, but if so this did 291 

not extend as far north as during the deposition of the proximal fan unit, and no distal fan sediments were 292 

deposited in the Santaugarh fault hanging wall. The distal fan unit, in turn, was abandoned by about 10 ka, 293 

when the river network entered a major phase of incision that has carved the present-day topography and 294 

valley network. After 10 ka, there have been several minor episodes of aggradation and incision, leading to 295 

sequences of low Holocene fill terraces along some of the major dun rivers (Nakata, 1972; Singh et al., 296 

2001). These terraces, while well-developed along the Suarna and Sitla Rao, have treads that are within 5-297 

10 m of the modern river bed levels, and are thus likely to be volumetrically insignificant in comparison 298 

with the three major depositional units. 299 

 300 

Sediment fluxes 301 

Abandonment of the proximal fan unit led to evacuation of 3300 Mm3 of sediment, primarily via incision 302 

along the major dun rivers. This evacuation must have started at 20.5-23 ka. The duration of this incision 303 

episode is not known, but it must have been concluded well before the abandonment of the later distal fan 304 
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surface at 10 ka. We therefore take, as a conservative estimate, an incision duration of 13 kyr, noting that 305 

the true value may be several times shorter than that. This assumption yields a time-averaged sediment 306 

discharge from the proximal fan unit of 0.26 Mm3/yr. This discharge must have been added to the sediment 307 

loads of the Ganga and Yamuna rivers as they traversed the dun during this time period, because there is 308 

only limited accommodation available for sediment storage along the river corridors within the dun. 309 

Likewise, abandonment of the distal fan unit led to evacuation of 1820 Mm3 of sediment since 10 ka, 310 

directed into the Yamuna River only. This corresponds to a time-averaged sediment discharge of 0.18 311 

Mm3/yr over that time period.  312 

 313 

For comparison, these time-averaged sediment discharges from the dun represent 1-2% of the summed 314 

present-day suspended sediment discharge of the Ganga and Yamuna rivers, derived from 1.5% of the 315 

combined Ganga and Yamuna drainage area. Dun excavation thus represents an important sediment 316 

source for the Ganga and Yamuna rivers, with sediment yields comparable to the overall catchment-317 

averaged values. We stress that the time-averaged discharge values reported here almost certainly 318 

underestimate the true sediment discharge from the dun, because our depositional ages provide only 319 

maximum bounds on the duration of incision during abandonment of each depositional unit. For example, 320 

if incision and sediment evacuation were focused in the first few thousands of years following 321 

abandonment, then the ‘true’ time-averaged sediment discharge values could be many times higher than 322 

our conservative estimates. Also, our comparison with available present-day suspended sediment discharge 323 

values is made simply to provide some context for the time-averaged discharge values, and we do not know 324 

either (1) the corresponding total sediment discharge, including both bedload and suspended-load 325 

components, or (2) how that discharge has varied through the late Quaternary. 326 

 327 

  328 
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Comparisons to hinterland and foreland sedimentary records 329 

The short time scale over which the major depositional units in the Dehra Dun were emplaced, and our 330 

observation that there does not appear to be substantial slip on the Santaugarh fault during or after 331 

deposition of the proximal fan unit, both appear to rule out major changes in fault slip rate and 332 

accommodation generation as the underlying mechanism behind the abandonment of one unit and the 333 

onset of deposition of the next. It seems more likely that temporal variability in sediment storage and 334 

evacuation in the dun has been driven by some combination of autogenic processes and regional-scale 335 

climatic variability; the latter control has been argued convincingly for the Ganga basin hinterland (e.g., 336 

Juyal et al., 2009; Ray and Srivastava, 2010) and foreland (e.g., Gibling et al., 2005; Sinha and Sarkar, 2009; 337 

Roy et al., 2012). To understand the wider context of our results, we therefore compare and contrast our 338 

depositional unit chronology to the timing of valley filling and incision episodes in the Ganga basin, both 339 

upstream and downstream of the study area. 340 

 341 

Upstream of the dun, Ray and Srivastava (2010) compiled a number of published studies, along with new 342 

OSL dating, and argued for major phases of valley aggradation at 49-25 ka and 18-11 ka based on clustering 343 

of OSL ages in terrace fill deposits. They attributed these aggradational episodes to high sediment supply 344 

due to glacial-deglacial transitions. Widespread incision after 11 ka was linked by Ray and Srivastava (2010) 345 

to increased monsoon precipitation after 15 ka, peaking at 9 ka, combined with post-LGM sediment 346 

exhaustion. This inference was based on a number of lines of evidence for increasing monsoonal strength, 347 

and thus river discharge, after 15 ka, including sedimentary (Juyal et al., 2009) and geochemical (Galy et al., 348 

2008) records. Our results from the Dehra Dun, with aggradation at ~41-33, 34-21, and 23-10 ka, agree 349 

closely with this framework, indicating that the controls on sediment aggradation and incision in the 350 

hinterland of the Ganga catchment also set the response of the dun. Unsurprisingly, the dun thus forms an 351 

integral part of the Ganga catchment and responds near-synchronously with the hinterland, within the 352 

uncertainties of the age constraints, to large-scale climatic variations. Our results also broadly agree with 353 

the summary and interpretation of Pandey et al. (2014), who argued for multiple phases of alluvial 354 

aggradation in the dun between >40 and 10 ka. We disagree, however, with the conclusion by Pandey et al. 355 
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(2014) that fan aggradation had been continuous over this period, because of the clear geometrical 356 

distinction between different depositional units (Singh et al., 2001) – and we note that Pandey et al. (2014) 357 

also raised the possibility of intervening erosional episodes. Thus, while the age ranges of our aggradational 358 

episodes overlap in time, they represent spatially distinct aggradational events that have given rise to 359 

discrete depositional units. 360 

 361 

Downstream of the dun, Ray and Srivastava (2010) argued for two main pulses of sediment delivery to the 362 

foreland: one before 26 ka (seen also by Sinha et al., 2007), and a second at 13-6 ka. The second pulse was 363 

followed by incision to form the present-day Ganga channel, with the onset of incision varying from 13 to 7 364 

ka at different locations between the HFT and Kanpur. More recently, Roy et al. (2012) combined new 365 

stratigraphic observations in the central Ganga plains, about 300 km downstream of the HFT, with results 366 

from a number of existing studies, and suggested major accumulation phases at 30-23 ka and 16-11 ka, 367 

separated by episodes of incision. We compare these observations with our chronology below. 368 

 369 

The isolated hills depositional phase that began by 41 ka in the dun coincides with lowering of the 370 

floodplain in the Ganga plains (Roy et al., 2012) and declining precipitation around ~40 ka as modelled by 371 

Prell and Kutzbach (1987), but there is limited, if any, evidence for aggradation within the Ganga valley. 372 

Minor channel fills dated to 37 ka and levee deposits dated to 34 ka have been recorded (Roy et al., 2012), 373 

but these are volumetrically small. It may be that relatively weak flow through the river systems during 41-374 

33 ka, perhaps combined with high hinterland sediment supply (Ray and Srivastava, 2010), led to 375 

widespread deposition of sediment upstream of the HFT and in the dun, but was insufficient to transport 376 

large sediment volumes into the plains, leading to only minor and local aggradation during this period. This 377 

hypothesis would need to be tested with careful sedimentological analyses of transects extending from the 378 

dun into the northern foreland. We also note that Singh et al. (2001) interpreted many of the deposits in 379 

this phase as the result of debris-flow or other mass-flow processes, which would not require high water 380 

discharges in the river systems. 381 

 382 
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The second phase of major aggradation in the dun (34-21 ka) is represented by the development of the 383 

proximal fan unit, and overlaps with a period of widespread fluvial aggradation recorded downstream of 384 

the dun in the Ganga plains (Goodbred, 2003; Tandon et al., 2006; Sinha and Sarkar, 2009; Ray and 385 

Srivastava, 2010; Roy et al., 2012). Several of these studies have inferred the occurrence of high-intensity 386 

floods in the foreland (Goodbred, 2003), while others have interpreted high sediment flux from the 387 

Himalaya at this time (Taylor and Mitchell, 2000; Sharma and Owen, 1996). Given the wide extent of the 388 

proximal fan unit on the floor of the dun, it is possible that the dun at this stage was essentially full, leading 389 

to bypass of dun accommodation by the rivers that supply it and to high rates of sediment supply directly 390 

into the foreland. 391 

 392 

During the period from 28 to 16 ka, including the Last Glacial Maximum (LGM), deposition is recorded in 393 

the dun by emplacement of the lower part of the distal fan unit. Aggradation in the hinterland was limited 394 

during this period (Ray and Srivastava, 2010), perhaps due to limited sediment supply and glacial cover at 395 

high elevations (e.g., Rahaman et al., 2009); we do not know what fraction of the distal fan unit was 396 

emplaced during this time, but it may be that deposition occurred in the dun during this period because the 397 

dun catchment area drains only lower-elevation Lesser Himalayan areas and was never glaciated. LGM-age 398 

sediments are not found in the central Ganga plains upstream of Kanpur (Gibling et al., 2005; Sinha et al., 399 

2007); indeed, Roy et al. (2012) found no evidence for channel deposition in the Ganga valley between 25 400 

and 15 ka. This hiatus has been interpreted as resulting from relatively cold, arid LGM conditions 401 

(Goodbred, 2003), and it is possible that some combination of low rates of supply and low LGM river 402 

discharges may have led to relatively limited sediment transport into the foreland. In the early post-glacial 403 

period (16-11 ka), there is evidence for widespread deposition of the distal fan unit, perhaps driven by high 404 

rates of hinterland supply (Ray and Srivastava, 2010) along with extensive slope failures and hillslope 405 

sediment transport (Pratt et al., 2002). In the Ganga plains, major channel aggradation has been recorded 406 

between 15.1 to 11.7 ka (Srivastava et al., 2003; Gibling et al., 2005; Tandon et al., 2006; Roy et al., 2012), 407 

and has again been interpreted as being due to high rates of supply (Roy et al. 2012). We infer from this, 408 

and from the wide extent of the distal fan unit, that the dun may have been filled by the later stages of 409 
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deposition of the distal fan unit and was certainly bypassed during this period, again allowing high sediment 410 

discharge to the foreland. 411 

 412 

In sum, the dun may act to modulate climate-driven variations in sediment flux from the hinterland to the 413 

Ganga plains. Sediment appears to be sequestered during periods of low transport capacity and perhaps 414 

when the dun is underfilled, but dun aggradation is somewhat independent of hinterland sediment supply. 415 

In contrast, sediment is exported duinrg periods of high transport capacity and incision of the dun fill, and 416 

also during periods of high hinterland supply when the dun is filled and bypassed. Several of the times of 417 

widespread aggradation within the dun (~41-33 ka, 23-16 ka) coincide with periods of limited downstream 418 

deposition, and we infer that during these periods the dun may have acted as a partial, transient sediment 419 

trap, perhaps due to some combination of low river discharges or low rates of hinterland supply. Later, 420 

however, due to some combination of rising discharge and increasing hinterland supply, we infer that the 421 

dun ‘filled and spilled’, in concert with widespread downstream aggradation at 34-21 ka and 15-12 ka. 422 

 423 

Comparison to the Gandak River 424 

Our results from the Dehra Dun help to place constraints on the timing and magnitude of its contribution to 425 

sediment flux in the Ganga and Yamuna rivers. To what extent is this model applicable to other duns along 426 

the Himalayan front? To answer this question, we compare our results with observations from several 427 

other large Himalayan river systems, the Gandak and Kosi rivers. The Gandak River (also referred to as the 428 

Narayani River in southern Nepal) flows through the Chitwan Dun (Fig. 1), which has developed between 429 

strands of the MBT and Main Dun Thrust to the north and the HFT system to the south (Fig. 5). As in the 430 

Dehra Dun, the Chitwan Dun is impounded behind anticlinal ridges of Siwalik sediments developed above 431 

strands of the HFT (Lavé and Avouac, 2000, 2001). Estimates of the present-day suspended sediment 432 

discharge of the Gandak near Narayangarh, at the upstream entrance to the Chitwan Dun, are 105-110 433 

Mt/yr (Lavé and Avouac, 2001; Garzanti et al., 2007), while Lupker et al. (2012) used cosmogenic 434 

radionuclides to estimate total sediment discharge of 110-184 Mt/yr. At Tribeni, near the downstream end 435 

of the dun, Sinha and Friend (1994) estimated a suspended sediment discharge of 79 Mt/yr. These values 436 
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are equivalent to volumetric discharges of ~30-70 Mm3/yr. Note that the much larger sediment discharge 437 

estimates of 450-510 Mt/yr by Singh et al. (2008) are based on a mixing model, and may not be directly 438 

comparable. At present, the river occupies a wide, low-gradient meander belt across the Chitwan Dun and 439 

is not substantially incised into the dun floor, perhaps indicating that accommodation in the dun is nearly 440 

full. 441 

 442 

Within the Chitwan Dun, sediment from the Gandak and Rapti Rivers, and from smaller basins that drain 443 

the Main Dun Thrust hangingwall, has been deposited in a series of interfingering fans and fill terraces (Fig. 444 

5), which form extensive low-gradient depositional surfaces similar to those of the Dehra Dun (Kimura, 445 

1995, 1999). Kimura (1995) identified three main depositional units that could be correlated across multiple 446 

catchment-fan systems. While interpretation of his assignments is somewhat complicated by uncertainty in 447 

correlation between different lithostratigraphic units, the two youngest units broadly comprise (1) an older 448 

set of fan remnants (the Barakot and Belani deposits) with quasi-planar to slightly convex-up surfaces that 449 

range from ~180 to 300 m above the modern river beds, (2) a more extensive, younger set of planar fan 450 

remnants (the  Bishannagar and Kirtipur deposits) that are clearly inset into, and onlap, the older remnants, 451 

and form widespread near-planar surfaces, 10-70 m above the modern river beds (Fig. 5). 452 

 453 

No absolute ages are available for the Chitwan Dun fill deposits, although Kimura (1995) suggested ages of 454 

26-16 ka and <10 ka for the two youngest depositional units. On the basis of surface morphology, deposit 455 

geometry, and cross-cutting relationships between units, we tentatively correlate the older fan remnants 456 

(Barakot and Belani deposits) with the proximal fan unit in the Dehra Dun, and the younger fan remnants 457 

(Bishannagar and Kirtipur deposits) with the Dehra Dun distal fan unit. This does not, of course, imply that 458 

the depositional ages are similar in these two settings, only that the deposits occupy similar spatial settings 459 

and have similar geometrical relationships. This correlation must be tested with more careful mapping and 460 

dating of the Chitwan Dun fill. 461 

 462 
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If we accept the correlations of Kimura (1995) and apply the same techniques to determine incision depths 463 

and erosional volumes as we used in the Dehra Dun, then we find that incision of the older fan remnants 464 

has removed a volume of 6300 Mm3, while incision of the younger fan remnants has removed 2400 Mm3 465 

from the dun (Fig. 5). If we further assume that incision of the younger fan remnants began at around 10 466 

ka, as with the correlative deposits in the Dehra Dun, then this evacuation would imply a time-averaged 467 

sediment discharge of ~0.2 Mm3/yr, about 1% of the modern Gandak suspended sediment discharge. We 468 

stress, however, that the timing of deposition and incision in the Chitwan Dun remains unconstrained, and 469 

so such estimates must remain indicative. 470 

 471 

Downstream of the HFT, the Gandak has built a highly avulsive fan system in the foreland (Gupta, 1997). 472 

Sinha et al. (2014a) used resistivity surveys and limited borehole data to document two lithological units 473 

within the upper 100 m of the fan: a lower unit characterized by narrow but thick (>40 m) channel fills set 474 

into thick muds, and an upper unit that comprises thinner, laterally-stacked sand bodies separated by mud 475 

layers. Importantly, channel fills are discontinuous in both units, perhaps due to depositional hiatuses 476 

caused by episodic trapping of sediment in the dun (Sinha et al., 2014a). The observation that the dun 477 

appears to be nearly full at the present day may explain the high modern sediment discharge of the Gandak 478 

(e.g., Singh et al., 2008), and may be analogous to the bypass conditions inferred for the Dehra Dun at 34-479 

21 or 16-11 ka. 480 

 481 

Comparison to the Kosi River 482 

In contrast to the Yamuna, Ganga, and Gandak, the Kosi River debouches directly into the Ganga plain in 483 

eastern Nepal (Fig. 1, Fig. 6). Late Quaternary deformation appears to be focused on the HFT system at the 484 

mountain front (Lave and Avouac, 2001), and the lack of propagation into the foreland has resulted in an 485 

abrupt mountain front and a relatively short distance (as little as 5-8 km) between the HFT and MBT 486 

systems (Schelling, 1992; Lave and Avouac, 2001). The thrust sheet between the HFT and MBT is composed 487 

of relatively weak Middle and Lower Siwalik foreland basin rocks in the HFT hangingwall (Fig. 6), with local 488 

relief (measured over a 1 km radius to reflect typical hillslope lengths) of up to 1 km. Estimates of the 489 
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present-day suspended sediment discharge of the Kosi range from 95 Mt/yr and 43 Mt/yr at Barakhshetra 490 

and Baltara, respectively (Sinha and Friend, 1994; Sinha et al., 2005) to 175 Mt/yr (Lave and Avouac, 2001), 491 

while Gohain and Parkash (1990) reported a much higher value of 345 Mt/yr. Lupker et al. (2012) used 492 

cosmogenic radionuclides to estimate a longer-term total sediment discharge of 69-141 Mt/yr. Apart from 493 

the high estimate of Gohain and Parkash (1990), these values are equivalent to volumetric discharges of 494 

~30-70 Mm3/yr, broadly comparable to those of the Gandak (although derived from approximately twice 495 

the drainage area). 496 

 497 

Downstream of the HFT, the Kosi River has constructed a large, highly avulsive fan system (Chakraborty et 498 

al., 2010; Sinha et al., 2013), with evidence for rapid historical aggradation (Desai, 1982; Sinha et al., 499 

2014b). Subsurface investigation of the top ~100 m by Sinha et al. (2014a) reveals widespread multi-story 500 

sand bodies, 20-30 m thick, with thick gravel deposits in the proximal fan. Sinha et al. (2014a) interpreted 501 

this depositional architecture, along with the short avulsion timescale of the Kosi River (approx. 24 years), 502 

as being due to the lack of intermediate sediment storage upstream of the fan. This contrasts with the 503 

Gandak River, which, despite comparable present-day (Sinha et al., 2005) and late Holocene (Lupker et al., 504 

2012) sediment discharge and a higher suspended sediment yield, has built a fan with finer overall grain 505 

sizes and much more isolated channel bodies within the subsurface (Sinha et al., 2014a). These 506 

observations agree with our interpretation from the Dehra Dun and Chitwan Dun that proximal dun storage 507 

can ‘filter’ hinterland sediment supply, amplifying high discharge values but also acting as a transient 508 

sediment store during periods of low sediment discharge to the foreland. 509 

 510 

Conceptual model 511 

We summarise our results from all river systems in a conceptual model of temporal variations in sediment 512 

supply to the foreland in both the presence, and absence, of a dun (Fig. 7). Our key inference from the field 513 

observations is that intermediate dun sediment storage and release will act to modulate and amplify the 514 

sediment supply to the foreland. This may occur through changes in hinterland sediment supply, changes in 515 

transport capacity, or both. Sediment is sequestered in the dun during periods of low transport capacity 516 
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and either high or low hinterland supply, leading to underfilled conditions (Fig. 7A). Sediment is evacuated 517 

from the dun when either (1) transport capacity is high, resulting in incision of the dun fill, or (2) both 518 

hinterland supply and transport capacity are high, leading to filling of the dun and spilling of sediment into 519 

the foreland (Fig. 7B). In contrast, rivers without proximal storage are likely to be characterised by a more 520 

continuous, less temporally-variable sediment flux (Fig. 7C), leading perhaps to enhanced likelihood of 521 

‘stacking’ of channel units in the foreland. Rivers without duns may also be more prone to bed aggradation 522 

and subsequent avulsion, as in the modern Kosi River (Sinha, 2009; Chakraborty et al., 2010), although it is 523 

important to note that avulsion frequency is dependent on a number of other variables as well (e.g., Bryant 524 

et al., 1995; Mohrig et al., 2000; Wickert et al., 2013; Sinha et al., 2014b). It is also important to recall that 525 

large-scale behaviour and evolution of the major Himalayan river systems depends on a range of factors 526 

(e.g., Sinha et al., 2005), of which transient storage in a dun is but one example. Unravelling the relative 527 

importance of these factors will require enhanced understanding of sediment fluxes over different time 528 

scales, and careful study of the links between proximal and distal sediment stores along these rivers. 529 

 530 

This model highlights the importance of understanding the tectonic ‘template’, or spatial distribution and 531 

rates of rock uplift. This template is critical, not just because it helps to set erosion rates in the hinterland of 532 

the major river systems (e.g., Sinha et al., 2005; Scherler et al., 2014), but because the distribution of rock 533 

uplift at the mountain front dictates whether or not piggyback basins or other local depocentres are likely 534 

to form at the mountain front. Distributed tectonic activity also implies more spatially-distributed foreland 535 

subsidence, such that the rate of accommodation generation immediately adjacent to the mountain front is 536 

likely to be lower in the presence of a dun bounded by multiple active faults. While there has been some 537 

effort to understand Holocene rates of slip on structures associated with the HFT (e.g., Wesnousky et al., 538 

1999; Kumar et al., 2006; Sapkota et al., 2013), our results point to the need for better assessment of the 539 

full pattern of rock uplift along faults bounding the Himalayan duns. 540 

 541 

We have inferred the link between upstream sediment supply and downstream fluvial response using 542 

available stratigraphic and age data from the Ganga Basin. It would be useful to explore the possible 543 
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implications of episodic storage and release for spatial variations in specific sediment characteristics. For 544 

example, Granet  et al. (2007, 2010) used U-Th disequilibria to estimate transfer times of both suspended 545 

and bedload sediment in the Ganga and Gandak rivers. A natural question is whether river systems without 546 

a dun, such as the Kosi or Karnali, show evidence for more rapid transfer than those systems with abundant 547 

upstream storage. A more systematic study of these variations could help improve our large-scale 548 

understanding of sediment movement through the entire Ganga sediment routing system (e.g., Bloethe 549 

and Korup, 2013). 550 

 551 

Conclusions 552 

We investigate the timing and magnitude of sediment storage and evacuation from the Dehra Dun, a 553 

piggyback basin in northwestern India, in order to understand the effects of this time-varying sediment 554 

source on the downstream morphology of the major river systems that drain through the dun. The dun 555 

shows evidence for at least three phases of late Quaternary sedimentation, at ~41-33, 34-21, and 23-10 ka. 556 

During each of these phases, sediment fans built out into the dun, accompanied in at least the later stages 557 

by fill terrace deposition along the Ganga and Yamuna rivers. Each progradation phase was followed by fan-558 

head incision, abandonment of the active depositional lobes, and a basinward shift of the depocentre. The 559 

volumes of sediment released during these incision phases, when divided by the maximum time span 560 

available for incision, yield estimates of palaeo-sediment discharge that are 1-2% of the modern 561 

suspended-sediment loads of the Ganga and Yamuna rivers, from about 1.5% of the combined catchment 562 

areas of these rivers. Our results show that the dun fill is highly dynamic, with major changes in both 563 

volume and depocentre location on ~104 yr time scales. 564 

 565 

The early stages of at least two episodes of sediment storage in the dun appear to coincide with periods of 566 

upstream aggradation in the hinterland and partial depositional hiatuses in the Ganga plains, indicating that 567 

the dun may act as a partial, transient sediment trap. Later phases of dun aggradation, and subsequent 568 

excavation and evacuation of dun sediment, correspond to periods of widespread downstream 569 

aggradation. The dun may thus amplify climate-induced variations in sediment supply to the major river 570 
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systems. This model appears to explain some contrasting features of the Gandak and Kosi river systems in 571 

central Nepal; the presence of a dun along the Gandak has led to episodic storage and release of sediment 572 

upstream of the Himalayan mountain front and construction of a mud-rich fan in the Ganga plains. In 573 

contrast, the Kosi River debouches directly into the foreland, and the lack of upstream storage means that a 574 

more continuous supply of sediment has built a coarse-grained, highly avulsive fan characterised by stacked 575 

multi-story channel bodies. We infer from these examples that the tectonic framework at the mountain 576 

front – specifically, the way in which shortening is distributed across different faults – plays a critical role in 577 

determining downstream river morphology, stratigraphy, and evolution. 578 
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Figure Captions 821 

1. Location map showing major rivers (white) and duns along the Himalayan mountain front, India and 822 

Nepal. Heavy black lines show simplified trace of the Main Boundary Thrust (MBT) and Himalayan Frontal 823 

Thrust (HFT) fault systems, while light shaded areas highlight the region between the MBT and HFT where 824 

the major duns are developed. Barbs on faults mark the upthrown block. Faults simplified from Yeats et al. 825 

(1992) and Taylor and Yin (2009). White boxes show the locations of the three regions discussed here. 826 

 827 

2. A, Overview and geomorphic map of the Dehra Dun area, overlain on a hillshade image of the SRTM 828 

DEM. MBT, Main Boundary Thrust system; HFT, Himalayan Frontal Thrust system. Heavy white lines show 829 

the Ganga and Yamuna catchments, while white shaded areas indicate the Catchments that flow into the 830 

dun. Holocene terrace deposits are shown in pale yellow; those along the Yamuna River are taken from 831 

Dutta et al. (2012), while those along the Ganga River are taken from Sinha et al. (2010). DO, DD, and BP 832 

mark the Donga, Dehradun, and Bhogpur fans of Singh et al. (2001). B, Depositional units on the Donga and 833 

Dehradun fans.  Our analysis is focused on the isolated hills, proximal fan, and distal fan units. SF, 834 

Santaugarh fault. White circles mark OSL ages determined in this study, while grey circles mark ages 835 

published by Singh et al. (2001); sample positions, ages, and depths below surface are given in Table 1. Red 836 

dots mark locations of boreholes used to establish minimum fan deposit thicknesses. Eye symbols in 837 

hangingwall of Santaugarh fault show viewpoints of photos in Fig. 3. 838 

 839 

3. Relationships between depositional units near the headwaters of the Koti Nadi, in the hangingwall of the 840 

Santaugarh fault. See Fig. 2 for locations. A, Deposits of the isolated hills unit unconformably overlie Middle 841 

Siwalik rocks in the fault hangingwall; in turn, both of these units are unconformably draped by the 842 

proximal fan unit. View is to the west-southwest. The near-planar surface of the proximal fan unit is clearly 843 

visible, and can be traced continuously across the Santaugarh fault (out of the photo to the left) on the 844 

south bank of the Koti Nadi. B, spatial changes in sediment transport direction recorded in the walls of the 845 

Koti Nadi. View is to the east. Deposits of the proximal fan unit are separated from the underlying isolated 846 

hills unit by an angular uniformity that marks the margin of a paleovalley incised into the isolated hills unit. 847 
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Subsequently, the proximal fan unit was abandoned and incised, and the new valley trends more westerly 848 

(toward the camera). 849 

 850 

4. Estimated depth of incision into the proximal fan unit on the Donga (DO) and Dehradun (DD) fans. 851 

Orange areas show the mapped extents of the proximal fan unit that were used to interpolate the likely 852 

original depositional extent. Shading indicates the depth of incision, which reaches ~180 m near the 853 

headwaters of the major valleys, particularly the Suarna and Asan rivers, and tapers to 0 downstream. This 854 

is equivalent to the removal of 1900 Mm3 of sediment from the Donga fan and 750 Mm3 from the 855 

Dehradun fan since abandonment of the proximal fan unit. 856 

 857 

 858 

5. Overview of the Chitwan Dun area, overlain on a hillshade image of the SRTM DEM. The dun is formed 859 

between strands of the Main Boundary Thrust (MBT) and Main Dun Thrust (MDT) fault systems to the 860 

north, and the Himalayan Frontal Thrust (HFT) system to the south. Faults are simplified from Lave and 861 

Avouac (2001). The Gandak River enters the dun at Narayangarh and flows west-southwest across the dun, 862 

eventually crossing the HFT at Tribeni and flowing into the foreland. The Bishannagar-Kirtipur (yellow) and 863 

Barakot-Belani (orange) depositional units of Kimura (1995) are preserved along the northern margin of the 864 

dun, in the footwall of the MDT. Shading indicates the depth of incision into the more widespread 865 

Bishannagar-Kirtipur unit, which reaches ~70 m in the immediate fault footwall and tapers to the south. 866 

 867 

6. Overview of the Kosi River exit. Background is Landsat 7 ETM+ image with band combination 732. Faults 868 

are simplified from Lave and Avouac (2000, 2001). The Kosi flows across strands of the MBT and HFT and 869 

enters the foreland at Chatra. High sediment supply and frequent avulsions by the Kosi have constructed a 870 

broad sediment fan in the foreland; several south-draining palaeochannels are visible in the image. 871 

 872 

7. Conceptual model of sediment supply to the foreland in the presence (A, B) and absence (C) of a dun. 873 

Insets show hypothetical evolution of sediment discharge into (Qs in) and out of (Qs out) the dun in the face of 874 
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externally-imposed variations in climate and sediment supply. A, Mountain front evolution during times of 875 

sediment accumulation within the dun, such that Qs in > Qs out. This mismatch could arise due to some 876 

combination of low or increasing sediment supply from the hinterland, low transport capacity in the 877 

system, or both. Deformation is distributed between active faults on the upstream and downstream 878 

margins of the dun, leading to moderate rates of rock uplift and incision above individual structures. The 879 

dun provides accommodation for sediment from both local river systems and large-scale hinterland rivers. 880 

Fan deposition in the dun acts as a partial, transient sediment trap until the dun fills, at which point the dun 881 

can be bypassed and sediment discharge to the foreland Qs out may rise (inset). This phase represents 882 

aggradation in the dun observed during 41-33 and 23-16 ka. B, Mountain front evolution during times of 883 

sediment evacuation from the dun, such that Qs in < Qs out. The mismatch could arise due to some 884 

combination of high sediment supply from the hinterland, high or increasing transport capacity, or both. 885 

Fan incision and sediment evacuation from the dun is likely to cause an increase in Qs out (inset). This phase 886 

represents incision in the dun observed since 10 ka. C, Mountain front evolution in the absence of a dun. 887 

Deformation is concentrated at the thrust front, leading to rapid rock uplift of recycled, easily-erodible 888 

foreland basin deposits and high rates of sediment supply from the immediate fault hangingwall. The 889 

addition of this eroded material means that the sediment discharge to the foreland Qs out is greater than the 890 

sediment discharge delivered to the immediate hangingwall Qs in. The lack of intermediate storage leads to 891 

efficient export of sediment to the foreland, so that Qs out tracks Qs in closely (inset).892 

Page 35 of 49

FOR REVIEW PURPOSES ONLY

Basin Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 1. OSL samples and analytical results 893 

Sample 

(Lab code) 
Depo. unit Position 

Elev. 

(m) 

Depth 

(m)
a
 

U (ppm) Th (ppm) K (%) 

Moist. 

cont. 

(%) 

Equivalent dose De (Gy) 
Dose rate 

(Gy/ka)
 
 

Age (ka) 

Weighted 

mean 
Least 

Weighted 

mean 
Least 

FS2.1 
(LD1040) 

Distal fan 
30° 24′ 20.4" 
77° 56′ 55.5" 

790 4 2.23±0.02 15.3±0.15 2.91±0.03 3.44 59.68±3.96 45.26±3.41 4.33±0.05 13.8±0.9 10.5±0.8 

FS2.2 
(LD1041) 

Distal fan 
30° 26′ 41.9" 
77° 51′ 35.5" 

618 5 2.43±0.02 16±0.16 2.46±0.02 13.53 51.46±1.87 44.36±5.44 3.58±0.06 14.4±0.6 12.4±1.5 

LIS-TOP 
(LD1147) 

Distal fan 
30° 24′ 18.9” 
77° 56′ 56.8" 

789 2.8 3.3±0.03 18.1±0.18 3.02±0.03 1.27 80.72±6.82 72.23±7.62 4.99±0.06 16.2±1.4 14.5±1.5 

FS3.1 
(LD1042) 

Proximal fan 
30° 24′ 46.7” 
77° 57′ 35.3" 

855 10 1.89±0.02 16.4±0.16 2.21±0.02 18.16 65.71±3.62 66.36±3.8 3.10±0.06 21.2±1.3 21.4±1.3 

FS1.1 
(LD1039) 

Proximal fan 
30˚ 21′ 39.6" 
77˚ 56′ 28.6" 

606 3 4.56±0.05 21.4±0.21 2.65±0.03 14.38 150.87±14.2 128.9±15.4 4.47±0.08 33.8±3.2 28.8±3.5 

IH/2 
(LD1148) 

Isolated hills 
30° 24′ 46.2” 
77° 57′ 29.7" 

843 2.8 3.1±0.03 18.4±0.18 3.08±0.03 1.36 207.20±5.47 208.6±6.2 5.02±0.06 41.3±1.2 41.6±1.3 

 894 

a Depth below surface of depositional unit, in m 895 
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Fig. 6
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Fig. 1. Location map showing major rivers (white) and duns along the Himalayan mountain front, India 
and Nepal. Heavy black lines show simpli�ed traces of the Main Boundary Thrust (MBT) and Himalayan
Frontal Thrust (HFT) fault systems, while light shaded areas highlight the region between the MBT and
HFT where the major duns are developed. Barbs on faults mark the upthrown block. Faults are simpli�ed
from Yeats et al. (1992) and Taylor and Yin (2009). White boxes show the locations of the three regions
discussed here.
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Middle Siwalik Fm.

Isolated hills unit

Proximal fan unit

paleovalley
wall

modern �ow
direction

A

B

Proximal fan unit

Isolated hills unit

Koti  Nadi
Middle Siwalik Fm.

Koti Nadi

paleo�ow
direction

3. Relationships between depositional units near the headwaters of the Koti Nadi, in the hangingwall of the Santaugarh
fault. See Fig. 2 for locations. A, Deposits of the isolated hills unit unconformably overlie Middle Siwalik rocks in the fault
hangingwall; in turn, both of these units are unconformably overlain draped by the proximal fan unit. View is to the west-
southwest. The near-planar surface of the proximal fan unit is clearly visible, and can be traced continuously across the
Santaugarh fault (out of the photo to the left) on the south bank of the Koti Nadi. B, spatial changes in sediment transport
direction recorded in the walls of the Koti Nadi. View is to the east. Deposits of the proximal fan unit are separated from the
underlying isolated hills unit by an angular uniformity that marks the margin of a paleovalley incised into the isolated hills
unit. Subsequently, the proximal hills fan unit was abandoned and incised, and the new valley trends more westerly
(toward the camera).
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4. Estimated depth of incision into the proximal fan unit on the Donga (DO) and Dehradun (DD) fans. Orange areas
show the mapped extents of the proximal fan unit that were used to interpolate the likely original depositional extent.
Shading indicates the depth of incision, which reaches ~180 m near the headwaters of the major valleys, particularly
the Suarna and Asan rivers, and tapers to 0 downstream. This is equivalent to the removal of 1900 Mm3 of sediment
from the Donga fan and 750 Mm3 from the Dehradun fan since abandonment of the proximal fan unit.
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5. Overview of the Chitwan Dun area, overlain on a hillshade image of the SRTM DEM. The dun is formed between strands
of the Main Boundary Thrust (MBT) and Main Dun Thrust (MDT) fault systems to the north, and the Himalayan Frontal
Thrust (HFT) system to the south. Faults are simpli�ed from Lave and Avouac (2001). The Gandak River enters the dun at
Narayangarh and �ows west-southwest across the dun, eventually crossing the HFT at Tribeni and �owing into the foreland.
The Bishannagar-Kirtipur (yellow) and Barakot-Belani (orange) depositional units of Kimura (1995) are preserved along the
northern margin of the dun, in the footwall of the MDT. Shading indicates the depth of incision into the more widespread
Bishannagar-Kirtipur unit, which reaches ~70 m in the immediate fault footwall and tapers to the south.
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6. Overview of the Kosi River exit. Background is Landsat 7 ETM+ image from XXX, with band combination 732 . Faults are
simpli�ed from Lave and Avouac (2000, 2001). The Kosi �ows across strands of the MBT and HFT and enters the foreland
at Chatra. High sediment supply and frequent avulsions by the Kosi have constructed a broad sediment fan in the foreland;
several south-draining palaeochannels are visible in the image.
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7. Conceptual model of sediment supply to the foreland in the presence (A, B) and absence (C) of a dun. Insets show hypothetical evolution
of sediment discharge into (Qs in) and out of (Qs out) the dun in the face of externally-imposed variations in climate and sediment supply.
A, Mountain front evolution during times of sediment accumulation within the dun, such that Qs in > Qs out. This mismatch could arise due
to some combination of increasing sediment supply from the hinterland, decreasing transport capacity in the system, or both. Deformation
is distributed between active faults on the upstream and downstream margins of the dun, leading to moderate rates of rock uplift and
incision above individual structures. The dun provides accommodation for sediment from both local river systems and large-scale
hinterland rivers. Fan deposition in the dun acts as a partial, transient sediment trap until the dun �lls, at which point the dun can be
bypassed and sediment discharge to the foreland Qs out may rise (inset). This phase represents aggradation in the dun observed during
41-33 and 23-16 ka. B, Mountain front evolution during times of sediment evacuation from the dun, such that Qs in < Qs out. The mismatch
could arise due to some combination of decreasing sediment supply from the hinterland, increasing transport capacity, or both. Fan incision
and sediment evacuation from the dun is likely to cause an increase in Qs out (inset). This phase represents incision in the dun observed
since 10 ka . C, Mountain front evolution in the absence of a dun. Deformation is concentrated at the thrust front, leading to rapid rock uplift
of recycled, easily-erodible foreland basin deposits and high rates of sediment supply from the immediate fault hangingwall. The addition
of this eroded material means that the sediment discharge to the foreland Qs out is greater than the sediment discharge delivered to the
immediate hangingwall Qs in The lack of intermediate storage leads to e�cient e�ux of sediment to the foreland, so that Qs out tracks
Qs in closely (inset).
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Sediment storage and release from Himalayan piggyback basins and implications for downstream river 

morphology and evolution 

 

Supplementary Material 

 

Optically-stimulated luminescence dating: sampling and analytical details 

The sediment samples collected from depositional units in the Dehra Dun were dated using luminescence 

dating techniques. Samples were collected in plastic pipes and immediately sealed in black, lightproof 

plastic bags to prevent exposure to light. 

 

 In the laboratory, under subdued red light conditions, sample material from the middle part of the pipe 

was transferred to a beaker and treated with 1N HCl and 30% H2O2 to remove carbonate and organic 

matter, respectively. After treatment, the material was sieved to obtain the 90-125 µm size fraction 

(Aitken, 1985). Quartz grains (with an assumed density of 2.65 g/cm
3
) were extracted from this size fraction 

by density separation using sodium polytungstate solution. The extracted quartz grains were etched for 80 

minutes in 40% hydrofluoric acid (HF) to remove the outer layer from each grain, treated with HCl and 

washed in distilled water, and then re-sieved using a 200 mesh (75 µm)vsieve. The HF treatment also 

served to remove any feldspar contamination. The purity of the etched quartz and the lack of feldspar 

contamination was verified by infra-red stimulated luminescence (IRSL). The values obtained were low for 

all samples, suggesting negligible feldspar contamination (Suppl. Fig. S1).  

 

The etched quartz grains were then fixed into the centre of 10 mm diameter stainless steel discs to form a 

3 mm diameter monolayer, using silicon oil as the adhesive agent. Between 35 and 39 aliquots were 

prepared per sample, and the Single Aliquot Regeneration (SAR) protocol (Murray and Wintle, 2000) was 

used to determine the radiation energy received by the sample after its burial, also known as the 

equivalent dose (De). Optically Stimulated Luminescence (OSL) measurements were carried out on an 

automated Risø TL/DA 20 reader (Risø Laboratories, Denmark) equipped with a blue LED light source for 
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stimulation, using the following measurement settings: pre-heat 240°C, cut-heat 160°C, test dose ~15% of 

expected De, blue light stimulation 40 s and Hoya U-340 detection filters. 

 

In the SAR protocol, the same aliquot is subjected to a series of cycles of measurements and the resulting 

sensitivity changes (due to repeated heating during measurement cycles) were normalized by a test dose 

signal. We first measured the natural luminescence (Ln) using 240
o
C pre-heat and 40 s blue light 

stimulation at 125
o
C, followed by the test dose luminescence signal (Tn) using 160

o
C cut heat and 40 sec 

blue light stimulation at 125
o
C for sensitivity correction. Subsequently, the regenerated luminescence 

signals were generated by applying different irradiation doses (Lβ1, Lβ2, Lβ3, Lβ0 and Lβ1), along with the 

corresponding test dose signals. Estimates of De were achieved by comparing the natural luminescence 

signal with those induced by laboratory irradiation, and the regenerated growth curve for each sample was 

constructed using Duller’s Analyst software, using an exponential fit for De calculation. This was done using 

the test dose value normalized fast component of the OSL (initial integral of 0.8 s) and the regenerated 

signals. The shine down curves (OSL intensity plotted as a function of light stimulation) and representative 

regenerated growth curves for samples LD1039-LD1042, LD1147, and LD1148 are shown in Suppl. Fig. S2. 

The disc-to-disc scatter (5–10%) is typical of that observed in quartz OSL measurement (Smith et al., 1990). 

The quartz shine down curve shows how the luminescence emitted by the mineral grains evolves as the 

electrons in the traps are emptied, rapidly for the first few seconds and then at a decaying rate. The growth 

curve is used to determine the laboratory dose that regenerates a luminescence signal that matches the 

intensity of the natural luminescence signal in the sample. 

 

Additional aliquots were prepared for sample LD1039 to conduct a dose recovery test. The aliquots were 

first bleached (similar to natural bleaching) for 100 sec by blue LED stimulation and a known quantity 

(133.33 Gy) of dose was applied using the calibrated beta source (Sr/Yr
90

) in the instrument. The given dose 

was recovered using the SAR protocol. The dose recovery test was carried out at various pre-heat 

temperatures (200, 220, 240 and 260°C), showing that the recovered value is always within error limits and 

does not show any systematic changes with pre-heat temperatures, and hence documenting the thermal 

stability of the quartz signal (pre-heat plateau). The results of the dose recovery test for this sample are 
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shown in Suppl. Fig. S3. 

 

Our samples show a wide distribution of De values, perhaps due to partial bleaching during transportation. 

Thus, the abnormally high De values were omitted from subsequent calculations, and the De value was 

obtained from between 8 and 20 aliquots (out of 35-39 per sample). For the annual dose rate estimation, 

the concentrations of uranium, thorium and potassium in the samples were measured by XRF and the 

water content was determined by heating at 100
o
C.  No measurements for cosmic ray contribution were 

carried out. The ages were calculated using AGE (Grun, 2009), which uses the depth of the sample below 

the surface to determine the cosmic dose rate, assuming a sediment density of 2000 kg/m
3
 using a 

standard value of 150 µ Gy. The ages were calculated using the weighted mean of De divided by the dose 

rate value.  We argue that the weighted mean is a better estimate of age as it will depend upon the actual 

distribution of De values. However, we have provided the least De values and associated ages in Table 1. 
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Supplementary Figures 

 

Fig. S1. IRSL signal for samples LD1039 to LD1042. Low values of the IRSL signal suggest that feldspar 

contamination in the samples is negligible. 
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Fig. S2. Shine down curves (equivalent dose versus stimulation time, left panels) and regenerated growth 

curves (test dose normalized luminescence intensity versus laboratory beta dose, right panels) for 

equivalent dose determinations for samples LD1039 to LD1042, LD1147, and LD1148. 
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Fig. S3. Results of dose recovery test for sample LD1039. The applied beta dose (133.33 Gy) was 

successfully recovered using quartz SAR protocol. The test was carried out at various pre-heat 

temperatures (200, 220, 240, and 260°C), which shows the thermal stability of the quartz OSL signal and 

the suitability of the material for OSL dating. 
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