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Abstract

The effect of inertia on gravity-driven thin film free-surface flow over substrates containing
topography is considered. Flow is modelled using a depth-averaged form of the governing
Navier-Stokes equations and the discrete analogue of the coupled equations solved accurately
using an efficient full approximation storage (FAS) algorithm and a full multigrid (FMG) tech-
nique. The effect of inertia on free-surface disturbances induced by topographic features is
illustrated by considering examples of gravity-driven flow over and around peak, trench and oc-
clusion topography. Results are given which demonstrate how increasing Reynolds number can
significantly enhance the magnitude of free-surface disturbances induced, a feature which may
have important consequences for the wide range of coating processes which aim to maximise
free-surface planarity.
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1. Introduction1

The deposition of thin film coatings over substrates containing regions of micro-scale topog-2

raphy and occlusions forms an important component of many natural and scientific processes3

[1], in substrate cooling and heat transfer applications [2,3], and several precision manufacturing4

techniques. Examples of the latter can be found in the production of anti-reflective coatings,5

[4], flexible electronic components [5], and in displays and sensors [6], where thin liquid films6

flow over a distribution of functional topographical features such as light-emitting species on a7

screen. In industrial coating applications product functionality often depends critically on the8

coated film thickness distribution and this has stimulated much interest in recent years on un-9

derstanding the flow mechanisms controlling free-surface disturbances induced by topographic10

features.11

The present lack of reliable data is testament to the difficulties of studying such systems ex-12

perimentally, so numerical simulations are likely to be the most viable option in the foreseeable13

future. Most previous numerical studies of thin film flow over topography have been carried out14

using lubrication theory, an approach that has proven to be surprisingly accurate when com-15

pared against the scant experimental data that is currently available. However, the effects of16

inertia can also be influential in practical coating flows: recent studies of two-dimensional film17

flow over topography have shown how increasing inertia amplifies the free surface disturbances18

induced by topography [7,8] and can lead to free surface instabilities when the Reynolds number19

exceeds a critical value [9,10]. See also the analysis in [11] and [12] concerning resonance effects20

in viscous film flow over inclined wavy substrates.21

The focus of the present study is different to the above and analyses the interplay between22

inertial and topographical influences on three-dimensional free-surface disturbances induced23

by thin film flow over and around substrate topography. The approach adopted involves the24

efficient solution of a depth-averaged form of the governing Navier-Stokes equations [13]. Sec-25

tion 2 formulates the flow problems of interest while Section 3 outlines the numerical solution26
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method adopted. Results are presented in Section 4 for the influence of inertia on free-surface27

disturbances induced by flow over combinations of submerged peak and trench topographies28

and past a regular square occlusion. Conclusions are drawn in Section 5.29

2. Problem Formulation30

The problems of interest, shown schematically in Figure 1, are of gravity-driven film flow31

down a planar surface containing either a square submerged topography of height S0 (Figure32

1a) or occlusion (Figure 1b) of length LT (≪ LP ), width WT (≪ WP ), where LP and WP are33

length and width of the problem domain respectively. The liquid is assumed to be Newtonian34

and incompressible, with constant viscosity, µ, density, ρ, and surface tension σ. The chosen35

Cartesian streamwise, X, spanwise, Y , and normal, Z, coordinates are as indicated and the36

solution domain is bounded from below by the inclined surface S(X, Y ) and from above at time37

T by the free-surface F (X, Y, T ). The film thickness, H(X, Y, T ), at any point in the (X, Y )38

plane is given by H = F − S and the resulting laminar flow is described by the Navier-Stokes39

and continuity equations, namely:40

ρ

(

∂U

∂T
+U · ∇U

)

= −∇P +∇ · T + ρG, (1)

41

∇ ·U = 0, (2)

where U = (U, V,W ) and P are the fluid velocity and pressure, respectively;42

T = µ
(

∇U + (∇U )T
)

is the viscous stress tensor and G = g0 (sin θ, 0,− cos θ) is the ac-43

celeration due to gravity where g0 is the standard gravity constant.44

Taking the reference length-scale in all directions to be the asymptotic, or fully devel-45

oped, film thickness, H0, and scaling the velocities by the free-surface (maximum) velocity,46

U0 = ρg0H
2
0 sin θ/2µ apropos the classic Nusselt solution [14], pressure (stress tensor) by47

P0 = µU0/H0, and time by T0 = H0/U0, equations (1) and (2) can be rewritten in non-48

dimensional form as:49

Re

(

∂u

∂t
+ u · ∇u

)

= −∇p+∇ · τ + Stg, (3)

50

∇ · u = 0, (4)

where u = (u, v, w), τ and g = G/g0 are the dimensionless velocity, viscous stress tensor and51

gravity component, respectively; Re = ρU0H0/µ is the Reynolds number and St = 2/ sin θ the52

Stokes number.53

The problem is closed by imposing the required no-slip, inflow/outflow, kinematic, free-54

surface normal and tangential stress boundary conditions, namely:55

u|z=s = 0, (5)
56

u|x=0,lp;y=0,wp
= (z (2− z) , 0, 0) , (6)

57

∂f

∂t
+ u|z=f

∂f

∂x
+ v|z=f

∂f

∂y
− w|z=f = 0, (7)

58

−p+ (τ |z=f · nf ) · nf =
κ

Ca
, (8)

59

(τ |z=f · nf ) · tf = 0, (9)
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where Ca = µU0/σ is the capillary number, x, y, z, lp, wp, s, h, f correspond to their dimensional60

counterparts, nf =
(

−∂f
∂x
,−∂f

∂y
, 1
)

·

[

(

∂f
∂x

)2
+
(

∂f
∂y

)2

+ 1

]−1/2

is the unit normal vector pointing61

outward from the free surface, tf is the unit vector tangential to the free surface and κ = −∇·nf62

is the free-surface curvature.63

For the occlusion problem, Figure 1b, the liquid meets the occlusion at a static contact line64

with a resulting static contact angle, θS, formed at the free-surface in a plane normal to the65

occlusion boundary. Following [15], this condition together with a no-slip boundary condition66

at the boundary of the occlusion Γ are imposed via67

∇h|(x,y)∈Γ · nΓ = tan
(

θS −
π

2

)

, (10)

68

u|(x,y,z)∈Γ = 0, (11)

where nΓ is the outward pointing normal to the occlusion.69

2.1. Mathematical formulation70

Since the mathematical details are described in detail in [13], only a very brief overview is71

provided. A process of depth-averaging is used by adopting a long-wave approximation that72

ε = H0/L0 ≪ 1, where L0 = H0/ (6Ca)
1/3 is the characteristic in-plane capillary length scale.73

The required friction and dissipation terms are obtained by assuming the self-similar velocity74

profiles:75

u = 3ū
(

ξ − 1/2ξ2
)

, v = 3v̄
(

ξ − 1/2ξ2
)

, (12)

where ξ = (z − s) /h. Then the depth-averaged form (DAF) of the momentum equations (3)76

and the continuity equation (4) for the unknown averaged velocities ū (x, y, t) = 1
h

∫ f

s
u dz,77

v̄ (x, y, t) = 1
h

∫ f

s
v dz and the film thickness h (x, y, t) respectively are:78

εRe

[

∂ū

∂t
−

ū

5h

∂h

∂t
+

6

5

(

ū
∂ū

∂x
+ v̄

∂ū

∂y

)]

=
∂

∂x

[

ε3

Ca
∇2f − 2εf cot θ

]

−
3ū

h2
+ 2, (13)

79

εRe

[

∂v̄

∂t
−

v̄

5h

∂h

∂t
+

6

5

(

ū
∂v̄

∂x
+ v̄

∂v̄

∂y

)]

=
∂

∂y

[

ε3

Ca
∇2f − 2εf cot θ

]

−
3v̄

h2
, (14)

80

∂h

∂t
+

∂

∂x
(hū) +

∂

∂y
(hv̄) = 0. (15)

Problems are closed using averaged forms for the outflow/inflow conditions and the assump-81

tion of fully developed flow both upstream and downstream, namely:82

ū|x=0 = 2/3, v̄|x=0 =
∂ū

∂x
|x=lp =

∂v̄

∂x
|x=lp =

∂ū

∂y
|y=0,wp

=
∂v̄

∂y
|y=0,wp

= 0, (16)

83

h|x=0 = 1,
∂h

∂x
|x=lp =

∂h

∂y
|y=0,wp

= 0. (17)

In addition the occlusion problem requires the static contact line and no-slip conditions84

ε∇h|(x,y)∈Γ · nΓ = tan
(

θS −
π

2

)

, ū|(x,y)∈Γ = v̄|(x,y)∈Γ = 0. (18)
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2.2. Topography Definition85

Attention is restricted to flows involving simple, well-defined square peak, trench and occlu-86

sion topographies. Since, for submerged peak and trench topography, their profile appears as87

a function in the governing equations, it is not possible to consider completely sharp features.88

Following previous studies [16], the peak and trench topographies are specified via arctangent89

functions defined as follows:90

s (x∗, y∗) =
s0

4 tan−1 lt
2δ
tan−1 wt

2δ

[

tan−1

(

x∗ + lt/2

δ

)

− tan−1

(

x∗ − lt/2

δ

)]

91

×

[

tan−1

(

y∗ + wt/2

δ

)

− tan−1

(

y∗ − wt/2

δ

)]

, (19)

where s0 is the dimensionless depth (s0 < 0) or height (s0 > 0), with lt, wt and δ the non-92

dimensional streamwise length, spanwise width and steepness factor, respectively. The coordi-93

nate system (x∗, y∗) = (x− xt, y − yt) has its origin at the centre of the topography, (xt, yt).94

3. Method of Solution95

Since the method of solution is based on that described in detail in [13], only a brief outline96

is given below.97

3.1. Spatial Discretisation98

Equations (13) to (15), incorporating appropriate friction and dispersion terms, are solved99

subject to the applicable boundary conditions on a rectangular computational domain, (x, y) ∈100

Ω = (0, lp) × (0, wp), subdivided using a regular spatially staggered mesh arrangement of cells101

having sides of length ∆x and width ∆y. The unknown variables, film thickness, h, and102

the velocity components, ū, v̄, are located at cell centres, (i, j), and cell faces, (i+ 1/2, j),103

(i, j + 1/2), respectively. Solving the momentum equations (13) and (14) at cell faces with the104

convection and time derivative terms grouped together to simplify their numerical treatment,105

and omitting for the sake of convenience the overbar denoting velocity averaging, results in the106

following second-order accurate (in space) finite difference scheme:107

εRe

(

∂u

∂t
−

u

5h

∂h

∂t
+

6

5
F [u]

)

i+1/2,j
108

−
ε3

Ca

(

fi+1,j+1 − 2fi+1,j + fi+1,j−1 − fi,j+1 + 2fi,j − fi,j−1

∆x∆y2
109

+
fi+2,j − 3fi+1,j + 3fi,j − fi−1,j

∆x3

)

+ 2ε cot θ
fi+1,j − fi,j

∆x
+

3ui+1/2,j

h2
i+1/2,j

− 2 = 0, (20)

110

εRe

(

∂v

∂t
−

v

5h

∂h

∂t
+

6

5
F [v]

)

i,j+1/2
111

−
ε3

Ca

(

fi+1,j+1 − 2fi,j+1 + fi−1,j+1 − fi+1,j + 2fi,j − fi−1,j

∆x2∆y
112

+
fi,j+2 − 3fi,j+1 + 3fi,j − fi,j−1

∆y3

)

+ 2ε cot θ
fi,j+1 − fi,j

∆y
+

3vi,j+1/2

h2
i,j+1/2

= 0, (21)

113

∂hi,j

∂t
+

hi+1/2,jui+1/2,j − hi−1/2,jui−1/2,j

∆x
+

hi,j+1/2vi,j+1/2 − hi,j−1/2vi,j−1/2

∆y
= 0, (22)
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where F [ω] = u∂ω
∂x
+v ∂ω

∂y
is the convective operator and the following terms are interpolated from114

neighbouring nodes: hi±1/2,j = (hi±1,j + hi,j) /2, hi,j±1/2 = (hi,j±1 + hi,j) /2. The convective115

operator F [ω] is discretized using a second-order accurate total variation diminishing (TVD)116

scheme [17].117

3.2. Temporal Discretisation118

The associated time discretisation includes the use of an explicit and second-order accurate119

in time predictor and a semi-implicit β-method [17] solution stages. For β = 1/2 the method120

reduces to the second order accurate in time, but conditionally stable Crank-Nicolson scheme,121

whereas β = 1 leads to the fully implicit first order accurate in time unconditionally stable Laa-122

sonen method. The automatic adaptive time-stepping procedure adopted employs an estimate123

of the local truncation error (LTE) obtained from the difference between an explicit predic-124

tor stage and the current solution stage to optimise the size of time steps and thus minimise125

computational waste.126

3.3. Multigrid Solver127

The discretized equations are solved using a multigrid strategy with a combined Full Ap-128

proximation Storage (FAS) and full multigrid (FMG) technique, where errors on a partic-129

ular computational grid are reduced by employing a hierarchy of successively finer grids,130

G0, . . . , Gk, . . . , GK , where G0 denotes the coarsest and GK the finest grid level. The FMG131

solution process consists of performing a fixed number of FAS V-cycles on intermediate grid132

levels Gk ∈ [G1, ..., Gk−1] (usually 1-3 V cycles) and up to 10 V cycles on the finest grid level GK .133

Due to the staggered nature of the discretization involved, the relaxation methodology adopted134

employs a lexicographic box smoothing Gauss-Seidel scheme. Dirichlet boundary conditions135

are assigned as exact values at the boundary points, whereas Neumann boundary conditions136

are implemented by employing ghost nodes at the edge of the computational domain.137

4. Results138

Results are provided which briefly explore the effect of Reynolds number on the resultant139

free surface disturbance for gravity-driven thin film flow over an inclined substrate with θ = π
6
,140

θS = π
2
and ε = 0.1, which results in Ca = ε3/6 = 0.000167. For three-dimensional flow, the141

two-dimensional flow domain has lp = wp = 80 and the topography has lt = wt = 1.0 and is142

centred at (xt, yt) = (30, 40), while for two-dimensional flow, the one-dimensional flow domain143

has lp = 80, lt = 1.0 and xt = 40; in all cases δ = 0.001. The multigrid algorithm employs a144

coarsest grid level G0 with n0
x = n0

y = 64 (n0
x = 64 in one-dimension) and a finest grid level G4

145

with n4
x = n4

y = 1024 (G5 with n5
x = 2048 in one-dimension) uniformly spaced cells. Steady-146

state solutions are generated by solving the time-dependent equations (20) to (22) staring from147

an initially flat free surface, f = 1, with velocities u = 2
3
h2, v = 0 (commensurate with Re = 0)148

at t = 0. At each time step sufficient multigrid V-cycles are performed to reduce residuals on149

the finest mesh level to below 10−6.150

Figure 2 shows the effect of inertia on the flow over a spanwise (i.e. one-dimensional) peak151

topography. The free-surface disturbance is characterised by an upstream depression followed152

by a large amplification over the peak topography. Increasing Re in this case leads to an153

enhancement in the magnitude of the free-surface peak from f = 1.14 for Re = 5 to f = 1.16154

for Re = 50, with a similar increase in magnitude in the corresponding upstream free-surface155

depression. Figure 3 considers inertial flow over a two-dimensional localised peak topography156

which leads to a three-dimensional free-surface disturbance. In this case increasing Re from 5157

to 50 leads to a similar enhancement and widening of the free-surface disturbance, where the158

5



characteristic capillary ridge and downstream surge reported for flow over a trench topography159

[15] have been replaced by two small free-surface depressions. These features are shown more160

clearly in the streamwise and spanwise free-surface profiles for 5 ≤ Re ≤ 50 shown in Figure161

4. Note that the downstream free-surface depressions shown in Figure 4(a) only occur in162

three-dimensional flows and result from spanwise flow away from the streamwise topography163

centreline.164

For low Reynolds number flows [18] suggested that linear superposition of the free-surface165

responses to elementary topographies can reliably construct the response for more complex and166

realistic topography patterns. Figure 5 considers the effect of inertia and submerged topography167

magnitude |s0| on the superposition of free-surface disturbances. It shows streamwise free-168

surface profiles through the centre of the topography for three-dimensional flow over submerged169

peak and trench topographies with |s0| = 0.1 and 0.25 and Re = 5 and 50. Also shown are170

the superposed profiles that result by adding together the individual profiles for the peak171

and trench topographies; the profiles are scaled by depth/height of the topography as f ∗ =172

(f − 1) /|s0|. Note that linear responses to topography profiles would result in completely flat173

superposed profiles. For the smaller amplitude topography cases, with |s0| = 0.1, increasing174

Re from 5 to 50 leads to the peak of the superposed profile increasing from 8% to 18% of the175

average magnitude of the individual free-surface disturbance profiles. For |s0| = 0.25, these176

values increase further to 19% and 45% respectively. This data clearly shows that the free-177

surface response to submerged topography becomes, as expected, increasingly non-linear as Re178

is increased.179

The final figures, 6 and 7, consider the effect of replacing the submerged square peak/trench180

topography by a corresponding square occlusion that is much taller than the characteristic film181

thickness. In this case, increasing Re from 5 to 50 leads to a doubling of the free-surface182

disturbance upstream of the occlusion with the result that the local film thickness is increased183

from h = 1.09 for Re = 5 to h = 1.20 for Re = 50. Inertia also has an impact on the degree184

of film thinning downstream of the occlusion: increasing Re from 5 to 50 increases the degree185

of film thinning from approximately h = 0.98 to h = 0.93. As noted by [2] knowledge of such186

localised film thickness variations is very important in, for example, cooling applications since187

they can have a major impact on the achievable heat transfer rates into cooling films.188

5. Conclusions189

In addition to its well-known influence on free-surface stability, this paper has shown that190

inertia can cause amplification and enhancement of free-surface disturbances that result from191

flow over and around surface topography. The precise form of the disturbance is affected by the192

nature of the topography (spanwise or localised, submerged or occlusion). Increasing inertia193

causes the free-surface response to submerged topography to become non-linear and can cause194

significant local variations in film thickness in the vicinity of localised occlusions. The ability195

to predict and control both of these features is beneficial in coating applications where the goal196

is often that of ensuring predictable product properties by accurate control of film thickness197

variations within coated films.198
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Figure 1: Schematic of gravity-driven film flow over topography: (a) over a square submerged peak and (b)
past an occlusion.
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Figure 2: Effect of Re on the free-surface profile for flow over a spanwise peak topography, s0 = 0.25.
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Figure 3: Free-surface plot for flow over a two-dimensional localised square peak topography with s0 = 0.25:
(a) Re= 5; (b) Re= 50.
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Figure 4: Effect of Re on (a) the streamwise and (b) the spanwise free-surface profile along the centre-lines
through a localised peak topography, s0 = 0.25.
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Figure 5: Superposition of streamwise centre-line free-surface profiles for flow over localised trench and peak
topographies having equal but opposite depth/height, |s0| = 0.1 (left) and 0.25 (right): Re = 5 (top) and 50
(bottom).
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Figure 6: Free-surface plot for flow around a two-dimensional localised square occlusion: (a) Re= 5; (b) Re=
50.
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Figure 7: Effect of Re on (a) the streamwise and (b) the spanwise free-surface profile along the centre-lines
through a localised square occlusion.
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