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1 Introduction

Recent cosmological observations have concreted the notion of the dark sector: some unknown
substance or new gravitational physics is currently dominating the gravitational dynamics
of the universe [1, 2]. There are no shortage of theories which have been constructed in an
attempt to describe these observations (see [3, 4] for reviews).

Given the recent deluge of data [5–11] and upcoming experiments [12–14], it is of
paramount importance that the understanding of dark sector theories is optimised for con-
frontation with observations. As such, it is becoming clear that some framework should be
constructed which is capable of confronting entire classes of theories with data, and an in-
dustry has begun to construct different flavours of such a formalism [15–27]. Whatever the
formalism is, it is important that it allows observations to be transcribed into well defined
and meaningful statements about the allowed properties of the dark sector.

The aim of this paper is to present a leap forwards in the development of a model
independent framework which can cover as much of the “known theory space” as possible. We
do this by bringing together the effective field theory (EFT) approach to linear cosmological
perturbations with the formalism for constructing the equations of state for perturbations.
The former approach [28–31] is well suited for incorporating complicated theories, whereas
the latter [32–35] is optimized for comparing theories to data.

The “holy grail” would be to provide a parameterization that covered all of Horndeski’s
theory [36–38], since that is the most general single-scalar field theory with second order
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field equations. In this paper we provide the penultimate step in such an endeavour: our
calculations and results are applicable to almost all of Horndeski’s theory, although the
formalism can be straightforwardly extended. Our emphasis is torn between theoretical
generality and usability — we provide a simple scheme for modifying numerical codes, such
as CAMB [39], which will allow observational spectra to be extracted from very complicated
models with a minimum of effort. This is entirely due to the way that the equations of
state for perturbations work: they modify the fluid equations with terms which are already
evolved. We never explicitly have to evolve the scalar fields equation of motion.

We begin this paper by describing a framework in which non-minimally coupled theories
may be decomposed into background terms, perturbations, and an effective fluid description
in section 2. Next, the EFT approach is introduced in section 3. The equations of state
for perturbations in the EFT model under consideration are developed in section 4, and
the envisaged implementation of these results in a numerical code is laid out in section 5.
We conclude by discussing the benefits and drawbacks of this approach as well as future
prospects in section 6. Appendix A describes our conventions in detail, while appendix B
provides complete explicit formulae for the equations of state.

2 Dynamics of the dark sector

We will be studying non-minimally coupled dark sector1 theories. In this section we will lay
down the basic framework, field equations, and associated conservation equations for dealing
with a dark sector which is non-minimally coupled to gravity. We begin by laying everything
out in tensorial notation with very general statements, before specializing to the context of
cosmology. In subsequent sections we write down the relevant equations in component form.

2.1 General case

We organise the gravitational action into the general form

S =

∫
d4x
√
−g

[
m2

P

2
ΩR− Lm − Ld

]
, (2.1)

where Ω is the coupling function, Lm is the matter Lagrangian, and Ld is the dark Lagrangian,
containing all dark sector fields. We chose to work in a conformal frame where there is no dark
sector coupling to matter (for scalar field theories, this is the Jordan frame). This precludes
the description of models that violate the weak equivalence principle, such as models with
different couplings to matter and dark matter, within this framework. After varying the
action with respect to the metric, the gravitational field equations are

m2
PΩGµν =

[
Tµν + Uµν

]
−m2

P(gµν�−∇µ∇ν)Ω. (2.2)

The matter and dark sector energy-momentum tensors (EMT) are defined respectively as

Tµν ≡ 2√
−g

δ

δgµν
(
√
−g Lm), Uµν ≡ 2√

−g
δ

δgµν
(
√
−g Ld). (2.3)

We now proceed by manipulating these general objects and defining various quantities so
as to elucidate the effective fluid nature of the dark sector theory and how non-minimal
couplings can be brought into the language of the fluid description.

1By “dark sector”, we mean dark energy and modified gravity; dark matter is assumed to be included in
the matter Lagrangian.
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We define a gross dark EMT Uµν to include the dark sector EMT and the contribution
from the derivatives of the coupling function. The definition is

Uµν ≡ Uµν −m2
P(gµν�−∇µ∇ν)Ω, (2.4)

and the gravitational field equations (2.2) become

m2
PΩGµν = Tµν + Uµν . (2.5)

The components of Uµν become the “effective” energy density and pressure of the dark sector.
After taking into account the Bianchi identity ∇µGµν = 0 and the conservation of energy for
the matter sector ∇µTµν = 0 (which follows from the choice of frame), it follows from (2.5)
that the conservation equation in terms of the gross dark EMT is given by

∇µUµν = m2
PG

µ
ν∇µΩ. (2.6)

The perturbed gravitational field equations are obtained from (2.5) as

m2
PΩδGµν = δTµν + δUµν −m2

PG
µ
νδΩ. (2.7)

As was the case on the background, it is insightful to combine the δUµν and GµνδΩ contri-
butions in the perturbed field equation (2.7) into the gross perturbed dark EMT, δUµν , which
we define as

δUµν ≡ δUµν −m2
PG

µ
νδΩ. (2.8)

This yields

m2
PΩδGµν = δTµν + δUµν (2.9)

for the perturbed field equation.
The price we pay for this clean perturbed field equation is that the conservation equa-

tion for the gross perturbed dark EMT becomes somewhat complicated. Expanding the
conservation equation (2.6) to linear order in perturbations and making use of the perturbed
field equation (2.9) yields

∇µδUµν = (δTµν + δUµν)
1

Ω
∇µΩ + 2Uµ[αδΓ

α
ν]µ, (2.10)

where δΓαµν = gαβ(∇(µδgν)β− 1
2∇βδgµν) is the perturbation to the connection symbols from

metric perturbations. We see that the equations of motion for the gross perturbed dark EMT
are sourced by not only themselves and metric perturbations, but also by “normal” matter
perturbations. Note that the equations of motion for “normal matter” remain unchanged,
however.

2.2 Cosmology

We wish to apply the above equations to a cosmological context.2 On a background compat-
ible with Friedmann-Robertson-Walker (FRW) symmetries (isotropy and homogeneity), the
background gross dark EMT can be written as

Uµν = (ρ+ P )uµuν + Pδµν , (2.11)

2In order to avoid cluttering this section with our choice of conventions, we refer the reader to appendix A.
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where ρ and P are the energy density and pressure of the dark sector fluid, and uµ is
the fluid four-velocity (fluid variables without labels are fluid variables of the dark fluid).
The components of the gross perturbed dark EMT δUµν can be parameterized in a fluids
language as

δUµν = (δρ+ δP )uµuν + δPδµν + (ρ+ P )(vµuν + uµvν) + PΠµ
ν . (2.12)

We will refer to δρ, vµ, δP and Πµ
ν as the perturbed energy, velocity field, perturbed pressure

and anisotropic stress of the dark sector fluid: these are the perturbed fluid variables of
the dark sector. If the dark sector contains only a single scalar field (without higher time
derivatives), then there will only be two scalar components contained in these perturbed
fluid variables, corresponding to the field and its time derivative. We later present relations
between the perturbed fluid variables and the scalar field, as derived from an effective field
theory action.

Using (2.11), the background conservation equation (2.6) yields the coupled fluid equa-
tion

ρ̇ = −3H(ρ+ P ) + 3Ω̇
m2

P

a2
(H2 + k0), (2.13)

where H ≡ ȧ/a is the Hubble expansion, k0 is the spatial curvature, and overdots represent
derivatives with respect to conformal time. For scalar perturbations in the synchronous gauge
in momentum space, the coupled perturbed fluid equations (2.10) become

δ̇ = −(1 + w)

(
1

2
ḣ+ k2θ

)
− 3HwΥ +

Ω̇

Ω

(
δ +

δρm
ρ

)
, (2.14a)

θ̇ = −H(1− 3w)θ − ẇ

1 + w
θ +

w

1 + w

(
δ + Υ− 2

(
1

3
− k0
k2

)
Π

)
+

Ω̇

Ω

(
θ +

ρm + Pm

ρ+ P
θm

)
,

(2.14b)

where w = P/ρ is the dark sector “equation of state” and

wΥ ≡ δP/ρ− wδ. (2.15)

Note that for dark energy with constant equation of state, wΥ is the entropy perturbation
wΓ of the dark sector fluid. Also note that these perturbed fluid equations are explicitly
sourced by the perturbed matter fluid variables, due to the terms proportional to Ω̇. Finally,
it is evident that this formulation cannot cope with models which cross the “phantom divide”
of w = −1, and thus we require w > −1 for this formalism to make sense.

3 Effective field theory model

The perturbed fluid equations (2.14) are not closed, since we have not yet specified the form
of the wΥ or anisotropic stress Π perturbations. For a given single scalar dark energy model,
it should be possible to relate both of these perturbations to the scalar field perturbation and
its time derivative. In the following sections, we obtain the precise forms of these equations
of state for perturbations from an effective field theory (EFT) action. In this section, we
briefly summarise the EFT action we employ for coupled scalar field models.
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Based on the Effective Field Theory of Inflation formalism [40], the Effective Field
Theory of Dark Energy [28, 29] has been used to describe perturbations in general single-
scalar field models of dark energy. The action consists of three terms that determine the
background evolution of the cosmology, and further operators that only contribute to the
perturbative behavior of the scalar field. It has been demonstrated [28, 30, 31] that only three
perturbative operators are required to completely describe perturbations in the most general
single-scalar field theory with second order equations of motion, known as “Horndeski’s
Theory” [36] and recently rediscovered as “Generalized Galileons” [37, 38]. Therefore, it
is of interest to describe this action within the current formalism. However, the final term
(with coefficient M̄2

2 in [31]) significantly complicates the analysis we wish to perform, and
thus we leave it for future work. The model without this term is sufficient to describe non-
minimally coupled Kinetic Gravity Braiding models [41, 42] (corresponding to the first two
terms of Horndeski’s theory, and a specialized combination of the second two).

The action in unitary gauge and conformal time3 is given by

S =

∫
d4x
√
−g
{
m2

P

2
Ω(τ)R+ Λ(τ)− c(τ)a(τ)2δg00 +

M4
2 (τ)

2
(a(τ)2δg00)2

− M̄3
1 (τ)

2
a(τ)2δg00δKi

i − Lm
}
. (3.1)

The non-minimal coupling is implemented by the function Ω(τ). The functions Λ(τ) and
c(τ) along with Ω(τ) are responsible for the dark sector’s contribution to the evolution of
the background, and the functions M4

2 (τ) and M̄3
1 (τ) modify the evolution of linearized

perturbations. The Stückelberg trick is used to restore gauge invariance in this action,
introducing a scalar field π. The relevant diffeomorphism is τ → τ+π/a, where we introduce
the scalefactor for later convenience.4

The gravitational field equations are given by (2.2). The Λ(τ) and c(τ) terms are the
sole contributors to Uµν on the background. They are then combined with the derivatives
of the coupling function Ω to yield the gross energy-momentum tensor Uµν . Parameterizing
the components of Uµν as (2.11), the effective density and pressure of the dark sector fluid
are [28, 29]

ρ = 2c− Λ−
m2

P

a2
3HΩ̇ , P = Λ +

m2
P

a2
(Ω̈ +HΩ̇) . (3.2)

Solving these for c and Λ yield

c =
ρ+ P

2
−
m2

P

2a2

(
Ω̈− 2HΩ̇

)
, Λ = P −

m2
P

a2

(
Ω̈ +HΩ̇

)
. (3.3)

The gravitational field equations (2.5) and conservation equation (2.6) respectively become

H2 =
a2

3m2
PΩ

(ρm + ρ)− k0 , (3.4a)

6Ḣ = − a2

m2
PΩ

(ρm + ρ+ 3Pm + 3P ) , (3.4b)

ρ̇ = −3H(ρ+ P ) +
3m2

PΩ̇

a2
(H2 + k0) . (3.4c)

3We are unaware of any work using the EFT of Inflation formalism that uses conformal time; the formalism
is much more straightforward in physical time, but applies just as well in conformal time.

4The formalism we are pursuing here is invariant under field redefinitions, as it works with physical quan-
tities rather than with fields. Thus, it it helpful to use the most straightforward definition.
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The perturbed EMT for the action (3.1) can be computed directly, and have been
checked against previously derived results transformed from physical to conformal time (see,
e.g., the appendices of [28]). We present the components of the perturbed field equations for
different operators in the EFT, giving the gross perturbed dark EMT δUµν in momentum
space (note the inclusion of mode functions, see appendix A).

• The perturbed EMT for operators Ω, c and Λ is given by

δU0
0 ⊃

[
−ρ̇π

a
− 2c

π̇

a

]
Y +

m2
P

a2
Ω̇

[(
k2 + 3(2H2 + k0 − Ḣ)

)
π

a
+ 3H π̇

a
+

1

2
ḣ

]
Y,

(3.5a)

δU0
i ⊃ k

[
(ρ+ P )

π

a
+
m2

P

a2
Ω̇
π̇

a

]
Yi, (3.5b)

δU ij ⊃
[
Ṗ
π

a
+ (ρ+ P )

π̇

a

]
δijY +

m2
P

a2
Ω̇

[
1

2
(ḣ+ 6η̇) + k2

π

a

]
Y i

j

+
m2

P

a2
Ω̇

[((
3H2 + k0

)
+

2

3
k2
)
π

a
+

(
H+

Ω̈

Ω̇

)
π̇

a
+
π̈

a
+

1

3
ḣ

]
δijY. (3.5c)

• The perturbed EMT for the operator M4
2 is given by

δU0
0 ⊃ −4M4

2

π̇

a
Y, (3.6a)

δU0
i ⊃ 0, (3.6b)

δU ij ⊃ 0. (3.6c)

• The perturbed EMT for the operator M̄3
1 is given by

δU0
0 ⊃ M̄3

1

[
ḣ

2a
+

1

a2
(
3H2 − 3Ḣ+ k2

)
π + 3

H
a2
π̇

]
Y, (3.7a)

δU0
i ⊃ M̄3

1

π̇

a2
kYi, (3.7b)

δU ij ⊃
1

a
(3H+ ∂τ )

[
M̄3

1

π̇

a

]
δijY. (3.7c)

Now that we know the form of the dark EMT, we can read off the expressions for the
perturbed fluid variables δρ, δP , Π and θ. This yields the following.

δρ = ρ̇
1

a
π +

2c

a
π̇ −

m2
P

a2
Ω̇

[
1

a

(
k2 + 3[2H2 + k0 − Ḣ]

)
π +H3

a
π̇ +

1

2
ḣ

]
+ 4M4

2

π̇

a
− M̄3

1

[
1

a2
(
3H2 − 3Ḣ+ k2

)
π + 3

H
a2
π̇ +

1

2a
ḣ

]
(3.8a)

(ρ+ P )θ = (ρ+ P )
1

a
π +

m2
P

a2
Ω̇

1

a
π̇ + M̄3

1

1

a2
π̇ (3.8b)
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δP = Ṗ
1

a
π + (ρ+ P )

1

a
π̇ +

1

a
(3H+ ∂τ )

[
M̄3

1

π̇

a

]
+
m2

P

a2
Ω̇

[
1

a

(
3H2 + k0 +

2

3
k2
)
π +

1

a

(
H+

Ω̈

Ω̇

)
π̇ +

1

a
π̈ +

1

3
ḣ

]
(3.8c)

PΠ =
m2

P

a2
Ω̇

1

2
(ḣ+ 6η̇) +

m2
P

a2
Ω̇k2

1

a
π (3.8d)

These formulae prescribe the explicit way in which the field variables and coefficients from the
EFT action combine to modify each component of the perturbed gravitational field equations.

4 The equations of state for perturbations

We now move on to providing the equations of state for perturbations for these coupled
scalar field theories. The key thing to realize is that the perturbed fluid equations (2.14) are
not closed until both wΥ and the anisotropic stress Π are specified as functions of fluid and
metric components which already have evolution equations (δ, θ, ḣ and η). In this section we
show how this can be done. The first step in the calculation is to write the dark perturbed
fluid variables (3.8) as

δ +A14ḣ
θ

δP −A34ḣ

Π−A44(ḣ+ 6η̇)

 =


A11 A12 0
A21 A22 0
A31 A32 A33

A41 0 0


 π
π̇
π̈

 . (4.1)

The [AIJ] are the components of what we call the “activation matrix”, and can all be calcu-
lated in terms of the coefficients in the effective action (they may also depend on wavenum-
ber); they are given explicitly in appendix B.1. For models that are more general than what
we are considering here, there may be more non-zero components, as well as more metric
perturbations appearing in the column vector on the left-hand-side. However, note that A13

and A23 will always be zero for single-scalar field models with second order equations of
motion. In the model under consideration, it transpires that only A11, A31 and A41 have
wavenumber dependence.

The next step is to solve for π and π̇ in terms of δ and θ (and any metric perturbations).
We begin with the following subexpression of the activation matrix (4.1):(

δ +A14ḣ
θ

)
=

(
A11 A12

A21 A22

)(
π
π̇

)
. (4.2)

This can be easily inverted to give

π =
A22(δ +A14ḣ)−A12θ

D
, (4.3a)

π̇ =
A11θ −A21(δ +A14ḣ)

D
, (4.3b)

where we defined

D ≡ A11A22 −A12A21. (4.4)

– 7 –
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The denominator here should not vanish. We give the explicit form of the denominator as a
function of terms in the effective action in (B.8).

We now need an expression for π̈. Unfortunately, it’s not as straightforward as just
taking the time derivative of the expression for π̇, as this would introduce δ̇ and θ̇ into the
expression for δP . Using the equations of motion to eliminate δ̇ and θ̇ would in turn introduce
δP (because of the dependence of wΥ on δP ), resulting in a circular definition. Instead, note
from (2.14) that the combination δ̇+ 3H(1 +w)θ̇ is independent of wΥ, and thus δP . Thus,
we wish to obtain two expressions for π̈, and take the appropriate linear combination of them
to precisely give this combination of the fluid derivatives. Taking the time derivative of (4.2)
provides (

δ̇ + Ȧ14ḣ+A14ḧ

θ̇

)
=

(
Ȧ11 Ȧ12

Ȧ21 Ȧ22

)(
π
π̇

)
+

(
A11 A12

A21 A22

)(
π̇
π̈

)
. (4.5)

In order to obtain the desired combination, (4.5) should be contracted with the row vector
[1, 3H(1 + w)]. The resulting equation can be solved for π̈, and yields

π̈ =
1

E

(
δ̇ + 3H(1 + w)θ̇ + Ȧ14ḣ+A14ḧ−Fπ − Gπ̇

)
(4.6)

where we defined the expression appearing in the denominator as

E ≡ A12 + 3H(1 + w)A22 (4.7)

and the expressions appearing in the numerator as

F ≡ Ȧ11 + 3H(1 + w)Ȧ21 , (4.8a)

G ≡ A11 + Ȧ12 + 3H(1 + w)(A21 + Ȧ22) . (4.8b)

We now have expressions for π, π̇ and π̈ in terms of perturbed fluid and metric variables:
these are (4.3a), (4.3b) and (4.6) respectively. Inserting these expressions into the relevant
slots in (4.1) yields the following (schematic) expressions.

δP = J1δ + J2θ + J3ḣ+ J4ḧ+ J5[δ̇ + 3H(1 + w)θ̇] (4.9a)

Π = K1δ +K2θ +K3ḣ+K4η̇ (4.9b)

These are our equations of state for perturbations. The coefficients Ji and Ki are defined
in terms of the AIJ in appendix B.3. In the following section, we combine these equations
with the Einstein equations to demonstrate how these equations of state can be numerically
evolved.

5 Computational steps

We envisage the implementation of these equations in software such as CAMB [39]. In this
section, we detail how we think such an implementation might work.

In the scalar sector, the metric perturbation η, the matter sector δm and θm, and the
dark sector δ and θ are known. The matter sector behavior should be unchanged. We assume
that all quantities that depend only on the background are known, or can be computed as
necessary.

– 8 –
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The perturbed Einstein equations (in synchronous gauge, as used in CAMB) are as follows.

m2
PΩ

a2

[
−Hḣ+ 2k2η − 6k0η

]
= −δρm − δρ (5.1a)

m2
PΩ

a2

[
2k2η̇ − k0(ḣ+ 6η̇)

]
= (ρm + Pm)k2θm + (ρ+ P )k2θ (5.1b)

m2
PΩ

a2

[
2

3
k2η − 1

3
ḧ− 2

3
Hḣ− 2ηk0

]
= δPm + δP (5.1c)

m2
P

a2
Ω

[
k2η −H(ḣ+ 6η̇)− 1

2
(ḧ+ 6η̈)

]
= PmΠm + PΠ (5.1d)

Recall that all fluid variables without labels are those for the dark sector. From the first of
these equations, we can compute ḣ. The second equation then supplies η̇.

In order to proceed, we should now evaluate the denominators D and E , and the numer-
ators F and G. Expressions for these are all given in appendix B.2. Using these quantities,
we can evaluate π and π̇ from (4.3a) and (4.3b).

Next, we can compute the anisotropic shear stress Π. From the results of the previous
section, it is given by (4.9b), although it may be easier to implement in terms of π using the
expression from (B.6). Among other things, this provides the driving term in (5.1d) above.

We can now compute

δ̇ + 3H(1 + w)θ̇ (5.2)

which is also given in appendix B.2. The explicit expression for δP can be written in terms
of these various quantities as

δP = A34ḣ+A31π +A32π̇ +
A33

E
(
δ̇ + 3H(1 + w)θ̇ + Ȧ14ḣ+A14ḧ−Fπ − Gπ̇

)
. (5.3)

Unfortunately, we do not yet know ḧ. For the moment, it makes sense to compute the
quantity

∆P ≡ δP − A33

E
A14ḧ . (5.4)

We now use (5.1c); some simple rearrangements provide

ḧ =

(
2

3
k2η − 2

3
Hḣ− 2ηk0 −

a2

m2
PΩ

(δPm + ∆P )

)/(
a2

m2
PΩ

A33A14

E
+

1

3

)
. (5.5)

It can be shown that the quantity in the denominator here is always positive. From here, it
is now straightforward to construct δP .

We are now in a position to calculate

wΥ =
δP

ρ
− wδ , (5.6)

which is the final quantity that needed to be computed. Now we have everything needed to
evolve the dark sector fluid equations (2.14).
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6 Discussion

The formalism presented here suggests a way in which the dynamics of perturbations in
reasonably complicated scalar field theories can be implemented in software such as CAMB.
There are a number of benefits to this approach, as well as some drawbacks.

The primary benefit of this approach is that the formalism is both general and self-
contained. The action (3.1) that we started from is very general in that it contains most of the
generality included in Horndeski’s action, and can furthermore be extended to the full theory.
At the same time, the implementation of the equations of motion needs to modify only a small
handful of equations in CAMB, as it already includes a simple quintessence implementation
with constant equation of state. The computation of all the necessary coefficients for the
formalism described here is slightly tedious, but not complicated.

A second benefit to this formalism is that the quantities that are evolved in this formal-
ism are physical quantities that appear in the EMT for dark energy. Thus, the evolution of
physical quantities is straightforward to extract from the formalism, as is the meaning of the
objects being evolved. Previous efforts to directly implement the equations of motion for the
π field ran into difficulties associated with the meaning of the π field as a time displacement
for the background scalar field, which is not a particularly meaningful physical quantity.
Our formalism is also independent of redefinitions of the π field, and so further removes any
ambiguity associated with scalar fields.

An interesting point that may be considered a benefit or a drawback depending on your
point of view is that the background evolution of the model must be precomputed in order to
construct the various functions of time appearing in the action, as well as their derivatives.
While this requires solving the background evolution of specific models, it also allows general
phenomenological models to be described, for example, by choosing various functional forms
for the coefficients. As a side note, we refer the reader to [31], which relates all of the
coefficients appearing in the EFT action to functions appearing in Horndeski’s action.

A further interesting point is that we have developed this formalism in conformal time
using synchronous gauge. This is primarily motivated by the use of these choices in CAMB,
although other choices could of course be made. It may be interesting to investigate what
the equations of state look like in a gauge-invariant formulation, in order to make more sense
of the structures involved.

One of the drawbacks of this approach is that we cannot consider models which cross (or
even touch) the “phantom divide” of w = −1. Doing so causes a number of denominators to
become zero, which is clearly problematic. Although it is possible for models not to display
instabilities in this regime, the description in terms of an effective fluid breaks down for
such cases.

The other drawback to this approach is that we are ignoring the effects of kinetic mixing.
In a number of models, including non-minimally coupled models and kinetic gravity braiding
models [41, 42], the scalar degrees of freedom in the metric are kinetically mixed with the
scalar field. To isolate the physical scalar degree of freedom requires the diagonalisation of
the kinetic matrix, which allows the speed of sound to be calculated appropriately. The
formalism described here simply lumps all of the kinetic mixing terms into the dark sector
effective density and velocity field perturbations. As such, it is difficult to extract the speed of
sound from this formalism, and one needs to remember that the scalar metric perturbations
are not completely nondynamical. Nonetheless, the evolution equations presented here are
exactly equivalent to the original equations of motion. We also note that the equations
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of motion in terms of the original scalar field can be used to obtain such properties in a
complementary manner to this approach.

We believe that this formalism will be useful for comparing models to observational
data. In particular, we hope to develop a tool by which theorists can rapidly compute
CMB and weak lensing spectra (and other perturbative effects) of models, without having to
understand the intricacies of modifying CAMB. The next step in this direction will be to expand
these results to describe the full Horndeski theory, before diving into the computational realm.
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A Conventions

A.1 Metric

We write the background FRW metric using conformal time as

ds2 = a(τ)2
[
−dτ2 + g̃ijdx

idxj
]
, (A.1)

where g̃ij is a three-dimensional spatial metric with no time dependence, such that the
Riemann tensor of this spatial metric is given by

R̃ijkl = k0 (g̃ikg̃jl − g̃ilg̃jk) , (A.2)

where k0 is the curvature constant (we reserve k for wavenumber, and use K for the trace
of the extrinsic curvature tensor). We use overdots to denote derivatives with respect to
conformal time.

We consider perturbations in synchronous gauge. The metric with perturbations is
written as

ds2 = a(τ)2
[
−dτ2 + (g̃ij + hij)dx

idxj
]
. (A.3)

The metric perturbation hij decomposes into two scalar components as

hij =
h

3
g̃ij +

(
∇̃i∇̃j −

g̃ij
3
g̃kl∇̃k∇̃l

)
η̃ (A.4)

where ∇̃ is the covariant derivative associated with the spatial metric. Evidently, g̃ijhij = h.

A.2 Momentum space

We follow the conventions of Kodama and Sasaki [43]. For each wavevector ~k, define Y~k(x
i)

to be a solution of the equation

∇̃2Y~k = −k2Y~k. (A.5)
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From now onwards, we suppress the ~k dependence of Y . Taking derivatives of Y , we define
vector and tensor mode functions as

Yi = −k−1∇̃iY , Yij = k−2∇̃i∇̃jY +
1

3
g̃ijY. (A.6)

We raise and lower indices on Yi and Yij with the spatial metric only. This ensures that Y ,
Yi, and Yij are independent of time, no matter the position of their indices.

In synchronous gauge, the metric perturbation decomposes as

hij(~x, t) =

∫
d3k

[
h(~k, t)

3
Y g̃ij + k2η̃(~k, t)Yij

]
. (A.7)

Following Ma and Bertschinger [44], we define η by

η̃(~k, t) = − 1

k2
[h(~k, t) + 6η(~k, t)]. (A.8)

Using this definition, the metric perturbation in synchronous gauge becomes

hij =

∫
d3k

[
h

3
Y g̃ij − (h+ 6η)Yij

]
. (A.9)

In the limit of no spatial curvature, the mode function Y = exp(i~k · ~x) yields Ma and
Bertschinger’s eq. (4) from [44].

A.3 Energy-momentum tensors

On an FRW background, the background EMT for any sector can be written as

Tµν = Pδµν + (P + ρ)uµuν (A.10)

where uµ is the velocity vector of the fluid, uµ = (1/a, 0, 0, 0), and P and ρ are the background
pressure and energy density. Quantities that belong to the matter sector are given a subscript

m, while quantities associated with the dark sector have no subscripts.
Again following Kodama and Sasaki, we describe scalar perturbations of the EMT in

momentum space using the following general decomposition (we use this decomposition for
both the matter and dark sectors).

δT 0
0 = −δρY (A.11)

δT 0
i = ρ(1 + w)vYi (A.12)

δT ij = δPY δij + PΠY i
j (A.13)

Note that indices on the modefunctions have been raised only with the spatial metric. We
can convert v into the θ variable of Ma and Bertschinger by θ = kv. Similarly, Ma and
Bertshinger’s σ variable for the anisotropic shear stress is related to Π by σ = 2Πw/3(1+w).
We find it more convenient to work with θ = v/k = θMB/k

2, which we use throughout the
rest of this document. Note that we use δ = δρ/ρ as the fractional density perturbation.

B Explicit forms of coefficients

In this appendix, we present the explicit expressions for coefficients appearing in our formulae
that we kept largely hidden in the main body of the paper.

– 12 –



J
C
A
P
0
3
(
2
0
1
4
)
0
1
7

B.1 Mapping from the effective action to activation matrix

We begin by presenting the components of the activation matrix (4.1) in terms of the quanti-
ties derived from the effective action (3.8). Note that the inverse powers of the scalefactor are
largely due to using conformal time. Common elements to a number of these quantities are

B = m2
P

Ω̇

a
+ M̄3

1 , (B.1)

C = m2
P

Ω̇

a2
. (B.2)

The perturbed density is given by

δ = A11π +A12π̇ −A14ḣ, (B.3a)

where the activation matrix components are given by

A11 = −1

ρ

[
3
H
a

(ρ+ P ) +
B
a2

(
k2 + 3(H2 − Ḣ)

)]
, (B.3b)

A12 =
1

aρ

[
2c+ 4M4

2 −
3HB
a

]
, (B.3c)

A14 =
B

2aρ
. (B.3d)

The velocity divergence field is given by

θ = A21π +A22π̇, (B.4a)

where the relevant activation matrix components are

A21 =
1

a
, (B.4b)

A22 =
B

a2(ρ+ P )
. (B.4c)

The perturbed pressure is

δP = A31π +A32π̇ +A33π̈ +A34ḣ, (B.5a)

with

A31 =
Ṗ

a
+
C
a

[
3H2 + k0 +

2

3
k2
]
, (B.5b)

A32 =
ρ+ 2P − Λ

a
+

1

a2

[
(M̄3

1 )· + 2HM̄3
1

]
, (B.5c)

A33 =
B
a2
, (B.5d)

A34 =
C
3
. (B.5e)
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Here we denoted (M̄3
1 )· ≡ ∂τM̄3

1 . Finally, the anisotropic stress is

Π = A41π +A44(ḣ+ 6η̇), (B.6a)

with

A41 =
C
Pa

k2, (B.6b)

A44 =
C

2P
. (B.6c)

B.2 Frequently used expressions

We now show how the explicit expressions for the AIJ, which we gave as functions of terms
in the effective action in (B.3 – B.6), combine to yield some of the commonly appearing
expressions in the coefficients in δP and Π.

We begin with explicit expressions that appear in denominators, D and E , defined
in (4.4) and (4.7) respectively. We find

E =
2

aρ
(c+ 2M4

2 ), (B.7)

−a2ρD = aρE +
B2

a2ρ(1 + w)

(
k2 + 3(H2 − Ḣ)

)
. (B.8)

These expressions appear in the denominators of π, π̇ and π̈, and as such, must be nonvanish-
ing. In particular, since it is known from analysing the EFT construction that the stability
of the theory requires c+ 2M4

2 > 0, we expect both of these expressions to be positive.
We now move on to the explicit expressions for the terms F and G, defined in (4.8), as

well as Ȧ14, which appear in numerators. These are by far the most complicated expressions
we have to deal with. Beginning with G, we break it up into

G ⊃ A11 + 3H(1 + w)A21 =
B
a2ρ

(
3(Ḣ − H2)− k2

)
, (B.9a)

G ⊃ Ȧ12 + 3H(1 + w)Ȧ22 =
2

aρ

(
ċ+ 2(M4

2 )· −
(
ρ̇

ρ
+H

)
(c+ 2M4

2 )

)
− 3B
a2ρ

(
Ḣ+

Hẇ
1 + w

)
, (B.9b)

so that G is the sum of (B.9a) and (B.9b). We also have

F ≡ Ȧ11 + 3H(1 + w)Ȧ21 = − B
a2ρ

(
ρ̇

ρ
+ 2H

)(
3(Ḣ − H2)− k2

)
+

1

a2ρ

(
m2

PΩ̈

a
−
m2

PHΩ̇

a
+ (M̄3

1 )·

)(
3(Ḣ − H2)− k2

)
+
B
a2ρ

(
3Ḧ − 6HḢ

)
− 3

a
[Hẇ + Ḣ(1 + w)] , (B.10)

and

Ȧ14 =
1

2aρ

[
m2

P

a

(
Ω̈ +HΩ̇

)
+ (M̄3

1 )· + 2HM̄3
1 +
B
ρ

(
3Hwρ− Ω̇

Ω
[ρ+ ρm]

)]
. (B.11)
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Finally, by combining (2.14a) and (2.14b) we obtain

δ̇ + 3H(1 + w)θ̇ = −(1 + w)

(
1

2
ḣ+ k2θ

)
− 3H2(1 + w)(1− 3w)θ − 3Hẇθ

+ 3Hw
(
δ − 2

3
Π +

2k0
k2

Π

)
+

Ω̇

Ω

(
δ +

δρm
ρ

)
+ 3H(1 + w)

Ω̇

Ω

(
θ +

ρm + Pm

ρ(1 + w)
θm

)
. (B.12)

B.3 Complete expressions

For completeness’ sake, here we include the full expressions for Π and δP . They can be
written schematically as

δP = J1δ + J2θ + J3ḣ+ J4ḧ+ J5[δ̇ + 3H(1 + w)θ̇] (B.13)

Π = K1δ +K2θ +K3ḣ+K4η̇. (B.14)

This is before rearranging the space-space trace equation to obtain ḧ. Note that the term
with coefficient J5 can be expressed in terms of δ, θ and Π, but it seems unnecessary to insert
the explicit expression (B.12) that displays no dependence on AIJ apart from that implicitly
included in Π.

We find that the coefficients Ji are given in terms of the AIJ as

J1 =

(
A31 −

A33F
E

)
A22

D
−
(
A32 −

A33G
E

)
A21

D
, (B.15a)

J2 =

(
A32 −

A33G
E

)
A11

D
−
(
A31 −

A33F
E

)
A12

D
, (B.15b)

J3 = A34 +
A33Ȧ14

E
+

(
A31 −

A33F
E

)
A22A14

D
−
(
A32 −

A33G
E

)
A21A14

D
, (B.15c)

J4 =
A33A14

E
, (B.15d)

J5 =
A33

E
. (B.15e)

Similarly, the coefficients Ki are given by

K1 =
A41A22

D
, (B.16a)

K2 = −A41A12

D
, (B.16b)

K3 =
A41A22A14

D
+A44 , (B.16c)

K4 = 6A44 . (B.16d)
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