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ABSTRACT 18 

Aim Southern temperate tree lines are found at low elevations compared with their Northern 19 

Hemisphere counterparts. They are also regarded as forming at warm temperatures, which 20 

has been attributed to taxon-specific limitations. Using New Zealand tree lines as an example, 21 

we assess whether these tree lines are anomalously warm compared with the global mean.  22 

Location New Zealand. 23 

Methods Soil and air temperatures were measured over two years at six New Zealand tree 24 

line sites, and compared with other local and global growing season temperature data. In New 25 

Zealand and other oceanic regions, the long, variable seasonal transitions make calculations 26 

of mean growing season temperatures highly sensitive to how the growing season is defined. 27 

We used both the conventional (wide) definition (from when mean weekly root-zone 28 

temperature exceeds 3.2 °C in spring, to when it first falls below 3.2 °C in autumn) and a 29 

narrow definition (the period during which temperatures are continuously above 3.2 °C). 30 

Application of these criteria leads to similar mean growing season temperatures in continental 31 

regions, but different ones in oceanic regions. We tested whether growing season 32 

temperatures differ between northern and southern temperate tree lines.  33 

Results New Zealand tree lines had a mean root-zone temperature during the wide growing 34 

season of 7.0 °C ± 0.4 SD, not significantly different from those at northern temperate tree 35 

lines. The mean temperature of the narrow growing season was 7.8 °C, warmer than tree lines 36 

elsewhere, but still within the range reported for temperate tree lines (7–8 °C).  37 

Main conclusions Whilst they are found at lower elevations, New Zealand tree lines form at 38 

temperatures similar to those at Northern Hemisphere temperate tree lines. Together with 39 

similar recent evidence from Chile, these results refute the previously postulated taxon-40 

specific limitation hypothesis, and suggest these southern temperate tree lines are not 41 
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climatically depressed, but are governed by the same thermal threshold as other tree lines 42 

worldwide.  43 

 44 

Keywords 45 
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limitation, temperate forests, temperature, timberline, tree line microclimate. 47 

 48 

INTRODUCTION 49 

The biophysical controls on the upper elevational limit of trees have been much debated and, 50 

although the exact mechanisms remain elusive, it is clear that at most tree lines thermal 51 

limitation to growth during the summer is critical (see e.g. Holtmeier & Broll, 2005; 52 

Holtmeier, 2009; Körner, 2012). At equivalent latitudes, summers in the Southern 53 

Hemisphere are less warm than those in the Northern Hemisphere owing to the oceanic 54 

influence on the relatively small landmasses, compared with the more intense heating of the 55 

large northern landmasses (Veblen et al., 1996; Körner, 1998; Han et al., 2012). Hence it is 56 

no surprise that at the same latitude, tree lines in the Southern Hemisphere form at lower 57 

elevations than in the Northern Hemisphere (Fig. 1). However, it has been suggested that they 58 

are also climatically depressed (form at warmer temperatures) compared with their northern 59 

counterparts (e.g. Wardle, 1998). In a global study of tree line temperatures that showed a 60 

remarkable convergence of growing season temperatures across biomes worldwide, south 61 

temperate tree lines in Chile and New Zealand were significantly warmer than the northern 62 

temperate tree lines and the global mean (Körner & Paulsen, 2004). To explain these results, 63 

it has been suggested that these warm southern tree lines, formed by the genus Nothofagus 64 

(the southern beeches; Nothofagaceae), are ‘taxon-specific’ boundaries that do not represent 65 

climatic tree lines (Körner & Paulsen, 2004; Hoch & Körner, 2012; Körner, 2012). Such a 66 
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taxon-specific limitation implies that the local flora either lacked the genetic potential or time 67 

to evolve cold-hardy alpine trees (Sakai et al., 1981; Wardle, 1998; Körner & Paulsen, 2004; 68 

Wardle, 2008).  69 

These explanations seem improbable. To take the New Zealand example, tree species 70 

in the tree line ecotone are not just from Nothofagus; at least 35 tree species (in 14 families 71 

and 17 genera; see Appendix S1 & S2 in Supporting Information) occur in the tree line 72 

ecotone and they share a common elevational limit at any given mountain site where they are 73 

present (Wardle, 2008). Close relatives to these species form high-elevation, cool-74 

temperature tree lines elsewhere (Wardle, 2008), and it is thus unlikely that the genetic 75 

potential is lacking. In addition, there has been at least 2.5 million years during which alpine 76 

tree lines have been present (Heenan & McGlone, 2013). On similarly young mountains, such 77 

as Mount Wilhelm (Papua New Guinea), locally evolved trees form tree lines with growing 78 

season temperatures close to or lower than the global norm (Körner, 2012). It is thus unlikely 79 

that the lack of suitable lineages or the recent formation of the alpine zone left insufficient 80 

time for the evolution of cool, high elevation tree species, at least in New Zealand.  81 

 Furthermore, in contrast to earlier results, recent studies have found growing season 82 

temperatures close to the global mean at two sites in Chile with Nothofagus tree lines (Hoch 83 

& Körner, 2012; A. Fajardo & F. Piper, Research Center of Patagonian Ecosystems, 84 

Coyhaique, Chile, unpublished) and at one site in New Zealand (Mark et al., 2008, 85 

recalculated in Körner, 2012). The discrepancy between the earlier and recent results 86 

challenges the representativeness of the earlier temperature records. A possible explanation 87 

for this discrepancy is that the earlier sites were not spatially representative of the regional 88 

tree line. Additionally, as interannual variation in temperature is a feature of most temperate 89 

locations, and this variability increases with elevation (Fig. 1 in Giorgi et al., 1997), tree line 90 

temperature datasets from a short period (e.g. one year) may not capture temperatures that are 91 
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representative of the long-term climate (Körner & Paulsen, 2004). Comparisons with longer 92 

term datasets or averaging multi-year data may allow assessment of the magnitude of such 93 

anomalies.  94 

 In this study we aim to establish whether New Zealand tree lines, as an example of 95 

southern temperate tree lines, are significantly warmer than the global range proposed 96 

elsewhere (Körner & Paulsen, 2004; Hoch & Körner, 2012; Körner, 2012), or whether they 97 

are close to the global norm, as suggested by recent findings at a single New Zealand site 98 

(Mark et al., 2008, as recalculated in Körner, 2012). We use soil and air temperatures 99 

recorded at six New Zealand tree line sites for over two years and compare these data with 100 

previously published temperature records from tree lines in New Zealand and globally. We 101 

discuss the representativeness of the previous and new temperature records and the 102 

appropriateness of the notion of taxon-specific limitations in the formation of temperate tree 103 

lines in the Southern Hemisphere.  104 

 105 

MATERIALS AND METHODS 106 

Site selection 107 

New Zealand tree lines are of two main forms: abrupt Nothofagus tree lines mostly in the 108 

eastern rain-shadow districts; and gradual or diffuse tree lines of diverse composition in 109 

oceanic, western districts. Tree line elevation varies from c. 1500 m in the North Island to 110 

c. 900 m close to the southern tip of the South Island (Wardle, 1985), similar declines in tree 111 

line elevation with latitude are found in the southern Andes (Fajardo et al., 2011). At similar 112 

latitudes in New Zealand, eastern abrupt tree lines are about 200 m higher than the strongly 113 

oceanic gradual tree lines on western coastal mountains (Fig. 1). 114 

Our six field sites span 10° of latitude. Four gradual mixed conifer–broad-leaved tree line 115 

sites (Mt Fox, Mikonui, Camp Creek and Kelly Creek) were located west of the Southern 116 



   6 
 

Alps in Westland (referred to below as ‘gradual tree line’ sites). One abrupt Nothofagus 117 

solandri var. cliffortioides (Hook.f.) Poole tree line site was located in the North Island and 118 

one in the South Island (‘abrupt tree line’ sites Kaweka and Rainbow, respectively; Fig. 2, 119 

Table 1). All sites faced from north-east to north-west and were moderately steep (20–40°). 120 

At the gradual tree lines, continuous snow cover is present for only about 2 weeks every year, 121 

whereas at the abrupt sites snow cover may last 1–2 months. A more detailed description of 122 

the sites and climatic conditions can be found in Cieraad & McGlone (2014). Tree lines at all 123 

locations represent the local natural climatic tree limit and have been largely free of 124 

anthropogenic disturbances (e.g. grazing, fire, forest clearance) (Wardle, 2008). 125 

Data collection 126 

We defined elevational tree line as the line connecting uppermost groups of trees > 3 m tall 127 

(following Körner & Paulsen, 2004). Although it has been suggested a 2 m cut-off may be 128 

more appropriate for a global comparison of tree lines (Holtmeier, 2009), we followed the 3 129 

m convention to maintain comparability with existing studies of temperatures at tree line. 130 

Along the tree line at each of the six field sites, three loggers were established on parallel 131 

ridges about 100 m horizontally apart. Tinytag Plus2 data loggers (precision ± 0·2 °C, 132 

Gemini, Chichester, UK) recorded air and soil temperatures hourly (Tair and Tsoil). The 133 

protocol for soil logger placement followed Körner & Paulsen (2004): loggers were buried 134 

with the temperature sensor 10 cm below the soil surface in a location screened throughout 135 

the day by the forest tree canopy. In addition, at one location at each field site, an air 136 

temperature logger (shielded from direct sunlight by an aerated white plastic screen) was 137 

fixed to a metal pole at 1.3 m above the ground surface (following standard New Zealand 138 

protocol; New Zealand Meteorological Service, 1973) and placed under the open canopy of 139 

gradual tree lines and in the immediately adjacent tussock grassland at abrupt tree lines. 140 
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 All data loggers were checked for stability and accuracy in an ice-water bath and at 141 

several higher temperatures prior to and after deployment, and the recorded temperatures 142 

adjusted accordingly (deviation from zero was < 0.25 °C for 95% of loggers; the highest 143 

anomaly was 0.6 °C). A post hoc verification of soil temperature data showed daily 144 

amplitudes lower than 5.5 °C, confirming that the loggers had remained under full shade 145 

(Körner & Paulsen, 2004). Measurements were obtained between November 2008 and May 146 

2011, and at least 2 years of continuous data were available for each site, except at the 147 

Kaweka site, where air temperature was only recorded for one year (Table 1). 148 

Data analyses 149 

The replicated soil temperature data at each site were condensed by averaging hourly 150 

readings from the three loggers. For soil and air temperatures from each site, daily Tmin, Tmax 151 

and the arithmetic Tmean were then calculated, as well as monthly and annual summaries.  152 

 Air temperatures at the six New Zealand sites (Cieraad & McGlone, 2014) were 153 

compared with data from tree line sites in major biomes around the world. The air 154 

temperature data were provided by: Robert Baxter (Durham University, Durham, UK), a co-155 

principal investigator of Arctic Biosphere–Atmosphere Coupling at multiple scales 156 

(ABACUS) project (boreal: Abisko field site, Sweden; data from 1 July 2007 to 4 September 157 

2009); Gerhard Wieser (Federal Research and Training Centre for Forests, Natural Hazards 158 

and Landscape, Vienna, Austria; northern temperate: Mt Patscherkoffel, Austria; data from 1 159 

January 2007 to 31 December 2010); Günter Hoch (University of Basel, Basel, Switzerland; 160 

tropics: Nevado Sajama, Bolivia; 24 August 1999 to 31 August 2000); Nick Pepin 161 

(University of Portsmouth, Portsmouth, UK; tropics: Kilimanjaro, Kenya; 1 October 2008 to 162 

9 September 2010); Lohengrin Cavieres (Universidad de Concepción, Concepción, Chile; 163 

southern temperate/mediterranean: Farellones, Chile; 23 October 2004 to 26 March 2005); 164 
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and the Australian Meteorological Bureau (http://www.bom.gov.au/climate/data; southern 165 

temperate/Mediterranean: Thredbo, Australia; 1 January 2001 to 31 December 2010).  166 

Growing season comparisons with global tree lines 167 

As air temperature data are available from only a few tree line sites, and the global study by 168 

Körner & Paulsen (2004) has set a strong precedent to use soil temperature for systematic and 169 

consistent comparisons of growing seasons at tree line, we use soil temperatures and follow 170 

Körner & Paulsen (2004) in defining the growing season as the main basis for comparison in 171 

this study. The growing season starts when the mean weekly soil temperature at 10 cm depth 172 

first exceeds 3.2 °C in spring, and ends when this falls below 3.2°C for the first time in 173 

autumn. This threshold soil temperature correlated with a concurrent weekly mean canopy air 174 

temperature of 0 °C, below which biological activity is minimal (Körner & Paulsen, 2004). 175 

The protocol included a case-by-case examination to prevent biologically unrealistic growing 176 

seasons (Jens Paulsen, University of Basel, Basel, Switzerland, pers. comm.). For example, 177 

the growing season could not start in the three mid-winter months (June–August, in the 178 

Southern Hemisphere).  179 

 Growing season calculations for the New Zealand sites were performed on the soil 180 

temperature measurements of the one year which spanned a full Southern Hemisphere 181 

growing season (July 2009 and June 2010). To assess whether that year was representative of 182 

the whole dataset (up to 2.5 years), we also condensed the soil temperature data for each site 183 

to a 365-day dataset by averaging any data obtained for the same day in multiple years 184 

(Körner & Paulsen, 2004). Growing season statistics for these averaged data are similar to 185 

those of year 2009–10, and are provided in Appendix S3 (Table S2). To further assess 186 

whether the data were representative of the long-term mean, we assessed the temperature 187 

anomalies during the study period. Almost all records included data from the entire period 188 

http://www.bom.gov.au/climate/data
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from 2009–2010 (Table 1). The first year in this study (2009) was slightly colder (−0.22 °C) 189 

than the long-term national mean (1971–2000, Mullan et al., 2010). Temperatures in the first 190 

6 months of 2010 were close to their respective long-term means, but owing to a warm 191 

August−December, the year 2010 was the fifth warmest on record (+0.53 °C; records began 192 

in 1909). 193 

 Körner & Paulsen (2004) report that a sensitivity test, in which a few doubtful days at 194 

the transition into or out of the growing season were either included or excluded, affected 195 

season means by less than 0.1 °C. However, our study shows that long, highly variable 196 

seasonal transitions at the oceanic New Zealand tree lines may affect seasonal means by up to 197 

1 °C depending on whether brief excursions of temperature below the threshold are included 198 

in its calculation. Without data on the actual local growing season (e.g. shoot extension, 199 

cambium activity), decisions to include or exclude such excursions are arbitrary. Yet in these 200 

oceanic climates these decisions will greatly affect the calculated seasonal mean, and 201 

therefore the comparison with global data.  202 

 We therefore report two calculations of growing season temperature: a ‘wide’ and a 203 

‘narrow’ growing season. First, the ‘wide’ calculation follows the Körner & Paulsen (2004) 204 

protocol described above. Second, we calculate the ‘narrow’ growing season mean, which 205 

only included that part of the year when mean daily temperatures continuously remained 206 

above the 3.2 °C threshold. The narrow growing season is thus shorter and warmer than the 207 

wide growing season. This measure represents the warmest growing season possible given 208 

the 3.2 °C threshold, and thus the warmest, most conservative, estimate for challenging the 209 

notion that the southern temperate tree lines are anomalously warm. Soil temperature data 210 

from previously documented tree line sites in New Zealand were provided by Alan Mark 211 

(Otago University, Dunedin, New Zealand; Mt Burns; see also Mark et al., 2008), Christian 212 
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Körner and Jens Paulsen (University of Basel, Basel, Switzerland; Mt Haast and Kaimanawa, 213 

Körner & Paulsen, 2004; Mt Burns, recalculated from Mark et al., 2008, Körner, 2012). The 214 

mean (narrow and wide, see below) growing season temperatures at these three Nothofagus 215 

sites were calculated using the protocols described below to enable direct comparison with 216 

the six tree line sites, including two formed by Nothofagus, of the current study.  217 

 One-sided t-tests (assuming unequal variance) were performed to test whether mean 218 

soil temperature in the narrow and wide growing season at New Zealand tree lines were 219 

significantly different than those at Northern Hemisphere temperate tree lines (Körner & 220 

Paulsen, 2004; Körner, 2012). Data analyses were performed in R 2.12.2 (R Development 221 

Core Team, 2011). 222 

RESULTS 223 

Mean annual air temperatures at the six tree line sites ranged from 5.5 to 6.3 °C. The mean 224 

monthly air temperatures ranged from 1.1 °C for the coldest month to 10.4 °C for the 225 

warmest month (Fig. 3). At the gradual tree lines, soils scarcely froze at 10 cm depth (up to a 226 

total of three nights at any site across all years), while those under an abrupt tree line canopy 227 

froze an average of 34 days per year, mainly in association with snow cover (Fig. 4). The 228 

temperature data from the six sites are discussed in more detail in Cieraad & McGlone (2014; 229 

see also Table S1 in Appendix S3).  230 

Growing season temperature  231 

Mean soil temperature during the growing season was calculated following Körner & Paulsen 232 

(2004) for comparison with global tree lines (the ‘wide’ growing season). Mean soil 233 

temperatures at the six New Zealand tree line sites in this study ranged from 6.6 to 7.8 °C 234 

(Table 2). Growing season length was shorter and mean soil temperature was warmer at 235 

abrupt (195 days, 7.6 °C) than at gradual (270 days, 6.8 °C) tree lines (Fig. 4). Growing 236 



   11 
 

season temperatures at the six sites in this study were colder than the two New Zealand sites 237 

(Mt Haast 8.2 °C and Kaimanawas 10.7 °C) reported by Körner & Paulsen (2004), and 238 

similar to the recalculated growing season at Mt Burns (6.7 °C, Mark et al. 2008, recalculated 239 

in Körner 2012). Calculations of the narrow and wide growing season for these sites with 240 

earlier data showed some inconsistencies and indicated problems with representativeness of 241 

the recorded periods, which are further detailed in the Discussion section. Based on these 242 

results, growing season temperature calculations for New Zealand reported below include the 243 

six sites described in this study and the recalculated Mt Haast site.  244 

The mean soil temperature for the wide growing season at New Zealand tree lines (n = 7, 245 

mean 7.0 °C ± 0.4 SD) was not significantly different from those at northern temperate tree 246 

lines (n = 15, 7.1 °C ± 0.5 SD) (t-test, d.f.Welch = 14, t = 0.21, Pone-tail = 0.42). If the more strict 247 

narrow growing season definition was applied, New Zealand’s tree lines (7.8 °C ± 0.4 SD) 248 

are significantly warmer than tree lines elsewhere (t-test, d.f. Welch = 15, t = −3.5, Pone-tail < 249 

0.01), but still within the range reported for temperate tree lines (7–8 °C). 250 

DISCUSSION 251 

The often-reported correlation of alpine tree line position with the mean air temperature 252 

isotherm of c. 10 °C in the warmest month holds for temperate regions (Körner, 2012), 253 

including New Zealand (mean across the six sites in this study: 10.4 °C, Fig. 3). Winter 254 

temperatures are highly variable between sites worldwide, but relatively warm in New 255 

Zealand and Australia compared with other temperate sites (Fig. 3). The Chilean tree line site 256 

presented here (formed by Kageneckia angustifolia, Rosaceae, at 33 °S, at 2200 m a.s.l.) was 257 

warmer than all other sites. This is attributed to the strong Mediterranean climate at the site 258 

(Piper et al., 2006), which may have resulted in a drought-induced climatically depressed tree 259 

line (A. Fajardo, Research Center of Patagonian Ecosystems, Coyhaique, Chile, pers. 260 

comm.), as shown for a Nothofagus mediterranean Chilean site (Fajardo et al., 2011). 261 
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 As mean growing season warmth based on soil temperatures are now available for 262 

many more tree line sites compared with air temperatures (e.g. 40 sites worldwide presented 263 

in Körner, 2012), we used this metric from seven New Zealand tree line sites (six recorded as 264 

part of this study and one previous record, see below) to compare growing season warmth. 265 

Using the wide growing season definition (Körner & Paulsen, 2004), mean growing season 266 

temperature at New Zealand tree lines was 7.0 °C ± 0.4 SD (individual sites were up to 1 °C 267 

colder, Fig. 4, Table 2). This puts New Zealand tree lines at the cool end of the reported mean 268 

temperature range for temperate tree lines worldwide (7–8 °C; Körner & Paulsen, 2004), and 269 

close to the global mean of 6.4 °C ± 0.7 SD (Körner, 2012). Similar mean soil temperatures 270 

for the growing season have recently been reported for Nothofagus pumilio tree lines in 271 

southern Chile (Hoch & Körner, 2012; Fajardo & Piper, in review). 272 

 Growing seasons at the eastern abrupt tree lines were approximately 6 months long, 273 

which is consistent with phenological data from such sites (e.g. Benecke & Havranek, 1980; 274 

Benecke et al., 1981). The more oceanic gradual tree lines in the west had growing seasons of 275 

almost 9 months, much longer than temperate seasons reported elsewhere (Körner, 2012). 276 

Although few phenological data are available to confirm this, there are indications that 277 

opportunistic growth of New Zealand’s evergreen tree line trees is possible during warmer 278 

spells for much of the year. For example, growth of Metrosideros umbellata (Myrtaceae) near 279 

the Camp Creek tree line occurred intermittently over an 8-month period (September–May, 280 

Payton, 1989), and a small subalpine tree (Olearia ilicifolia, Asteraceae) can continue 281 

growing through winter in the tree line ecotone (Haase, 1986).  282 

 Although using a single growing season definition is necessary when comparing 283 

multiple sites, care is required when applying these definitions and interpreting the resulting 284 

means (Gehrig-Fasel et al., 2008). The variability in season transitions at oceanic sites makes 285 
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it difficult to apply growing season concepts developed primarily for use in more continental 286 

northern temperate and boreal regions, which have much more clear-cut seasonal transitions. 287 

For example, the inclusion into the growing season calculation of (multiple) short excursions 288 

below the temperature threshold lowered the resulting growing season mean temperature at 289 

the six New Zealand sites by as much as 1 °C. A similar fall in mean temperature was found 290 

if 2 weeks of daily Tmean > 5 °C from late September were included into the growing season at 291 

the two earlier published New Zealand sites (rather than starting mid-October, Fig. 5 in 292 

Körner & Paulsen, 2004).  293 

 Because the application of the threshold temperature in these variable seasonal 294 

transitions is rather subjective, we also calculated the mean temperature over a growing 295 

season that was consistently warmer than the 3.2 °C threshold. By definition, the mean soil 296 

temperature of this ‘narrow’ growing season is warmer than the ‘wide’ growing season (see 297 

Materials and Methods). However, this mean narrow growing season temperature for the 298 

seven New Zealand sites (7.8 °C ± 0.4 SD) still sits within the range reported for Northern 299 

Hemisphere temperate tree lines (7–8 °C, Körner & Paulsen, 2004). Although we suspect that 300 

this narrow growing season underestimates the length of the actual growing season at these 301 

sites, the mean temperature at New Zealand tree line sites is in the range of previously 302 

reported northern temperate sites, and not anomalously warm. 303 

Körner & Paulsen (2004) suggest that by focusing on the spatial replication across tree lines 304 

around the world, they minimized ‘any bias introduced by local climatic peculiarities of a 305 

given year’. However, in the case of the three tree line locations in New Zealand and Chile, 306 

they may have been unlucky with their space-for-time approach. The two Chilean sites in 307 

Körner & Paulsen (2004) were at the same location, albeit different aspects in the same 308 

valley; thus the generalization of a warm tree line in the southern Andes was based on data 309 
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from one, pseudoreplicated, location, as pointed out by Fajardo et al. (2011). Moreover, it has 310 

been shown that the tree line at this exact location is strongly affected by drought, as well as 311 

temperature, and may represent a drought-depressed tree line (Fajardo et al., 2011), rather 312 

than being representative of temperate Andean tree lines.  313 

 Relatively short-term datasets, such as those described here (2–2.5 years) and 314 

elsewhere (1–3 years, Körner & Paulsen, 2004), may not accurately represent the long-term 315 

conditions at the given site because of interannual variability (Körner & Paulsen, 2004). The 316 

earlier record for the two New Zealand tree lines (Körner & Paulsen 2004; December 1998 – 317 

March 2000) included the warmest (1998) and second warmest (1999) years on record since 318 

1909; in central North Island 1998, 1999 and 2000 were 0.81, 0.72 and 0.30 °C warmer, 319 

respectively, than the 1971–2000 mean (Mullan et al., 2010). Inspection of their raw data 320 

showed that the use of only records from the calendar year 1999 in the calculated means of 321 

the sites resulted in a strong (warm) bias. If all records were included, by averaging each 322 

calendar day that was available for both 1999 and 2000 (January–March), the growing season 323 

temperature dropped by more than 1 °C for both sites. In addition, one could argue that the 324 

growing season may have started some 3 weeks earlier (see above). Taking these two factors 325 

into account, the recalculation from their raw hourly data yielded a growing season soil 326 

temperature of 7.1 °C for Mt Haast (cf. 8.2 °C, Körner & Paulsen 2004), and 8.6 °C for the 327 

Kaimanawa site (cf. 10.7 °C, Körner & Paulsen 2004); the latter still standing out from all 328 

other New Zealand sites as much warmer. As the diurnal temperature record indicates that the 329 

logger was correctly placed in full shade (Körner & Paulsen 2004), and there is no reason to 330 

suspect that the Kaimanawa tree line site has been lowered by disturbance, we suggest that 331 

this site may be affected by a local factor (e.g. nutrient limitation or drought).  332 
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 Our recalculations of the two growing season means for Mt Burns failed to reproduce 333 

the growing season means published either originally (Mark et al., 2008) or the recalculation 334 

presented in Körner (2012) (8.7 and 6.4 °C, respectively, compared with our recalculation 335 

based on the raw data of 7.1 °C). An assessment of the dataset shows that Mark et al. (2008) 336 

started the growing season when an hourly value crossed the 3.2 °C threshold, whereas in the 337 

original global and subsequent studies, a weekly mean temperature was the determining factor 338 

(our wide growing season, equivalent to Körner & Paulsen, 2004; Körner, 2012). While the 339 

reanalysis presented in Körner (2012) was based on a weekly threshold, it appears a 340 

correction to the hourly data of –2.17 °C compared with the original dataset was also applied. 341 

Although no reason for this correction was provided, we presume it was to account for 342 

possible calibration errors in the original dataset. Over the 3.5 year record (Mark et al., 2008), 343 

an absolute minimum soil temperature of 1.97 °C, which is unusually warm for tree lines in 344 

all but (sub-)tropical biomes (Körner & Paulsen, 2004) and may indicate calibration errors. 345 

However, since the accuracy of the data logger used in this study was never tested (Alan 346 

Mark, pers. comm.), the exact magnitude of such errors cannot be verified or corrected. 347 

Given the above uncertainties, we excluded the Kaimanawa and Mt Burns sites from the 348 

summary statistics for New Zealand tree line sites, but included the recalculated values from 349 

the Mt Haast site (Table 2). The 2009–10 growing season available in the current study 350 

covered a year with temperatures close to the long-term mean (see Materials and Methods), 351 

and calculations based on the one fully covered growing season provided similar results to 352 

data averaged for 2.5 years (see Table S2). This suggests that the records in this study are 353 

fairly representative of longer-term temperatures.  354 

 As southern temperate tree lines are not solely formed by Nothofagus species (e.g. see 355 

Appendix S2 for the long list of tree species that occur in the New Zealand tree line ecotone), 356 

the three locations in this biome used by Körner & Paulsen (2004) are not fully representative 357 
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of the New Zealand tree lines. The four gradual tree lines formed by diverse conifer–broad-358 

leaved forest included in this study are located at temperatures (6.8 °C ± 0.1) close to the 359 

global tree line norm (6.4 °C ± 0.7; Körner, 2012). These growing seasons are longer and 360 

their mean temperature cooler than their more continental Nothofagus counterparts (Table 2). 361 

As air temperatures at New Zealand and Australian tree lines are also similar (Fig. 3), the 362 

assumption that oceanic tree lines are lower as well as warmer than more continental sites at 363 

the same latitude (e.g. Leuschner, 1996; Han et al., 2012) does not hold. This is explained, at 364 

least partially, by the effect of the length of the growing season on the resulting temperature 365 

mean (Gehrig-Fasel et al., 2008; Cieraad, 2012). Moreover, the sensitivity of these means to 366 

the application of the thresholds (as described above) suggests that the growing season at 367 

oceanic and continental tree lines perhaps cannot be fully captured by this same metric 368 

(Cieraad, 2012). 369 

 In the light of the apparent problems of temporal and spatial representativeness of 370 

these earlier results and the growing number of recent findings of New Zealand and Chilean 371 

tree lines with temperatures close to the global norm (this study; Hoch & Körner, 2012; 372 

Fajardo & Piper, unpublished), we suggest that southern temperate tree lines are not caused 373 

by a taxon-specific limitation (Körner & Paulsen, 2004), but instead are influenced by the 374 

same thermal threshold as are other tree line sites worldwide.  375 

 The unassisted spread of the naturalized conifer Pinus contorta above abrupt New 376 

Zealand tree lines (Ledgard, 2001; Wardle, 2008) poses a challenge to our conclusion that 377 

New Zealand tree lines form at similar growing season temperatures to those elsewhere. 378 

Abrupt Nothofagus tree lines would be some 150 m higher if they reached the elevational 379 

limit of Pinus spp. While temperature records at the Pinus limit in New Zealand are not 380 

available, the mean growing season temperature of such sites is likely to be c. 0.9 °C lower 381 
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(assuming a standard lapse rate of 0.6 °C 100 m-1) and thus falls inside the variability range 382 

of the New Zealand tree line sites described here. This phenomenon has been taken as 383 

evidence that indigenous trees lack the capacity to grow at cool temperatures (Lee, 1998). 384 

However, the fact that these abrupt Nothofagus solandri var. cliffortioides tree lines tend to 385 

be tall (c. 6 m high) suggests that it is not growth limitation per se, but rather that they are 386 

prevented from extending higher by exposure-related stresses including photoinhibition, wind 387 

and drought (Wilson & Agnew, 1992; Smith et al., 2003; Bekker, 2005; Bader et al., 2007). 388 

Pinus contorta does not occur in the western Southern Alps and it is doubtful that it would 389 

have a similar advantage over indigenous trees in the much less stressed oceanic gradual 390 

conifer–broad-leaved tree lines there. Our general conclusion that New Zealand indigenous 391 

trees are capable of growing to the thermal limits that trees achieve elsewhere is therefore 392 

still valid.  393 

CONCLUSIONS 394 

Although lower in elevation than tree lines at similar latitudes in the Northern Hemisphere, 395 

New Zealand and Chilean temperate tree lines are not climatically depressed compared with 396 

their northern counterparts. Instead of being governed by taxon-specific limitations, these 397 

Southern Hemisphere temperate tree lines are influenced by similar thermal thresholds as are 398 

other tree line sites worldwide. While temperature is an important driver of tree line position 399 

globally, there is considerable variability at smaller spatial (regional and local) scales, which 400 

is affected by additional factors (such as drought, exposure and micro-topography; see e.g. 401 

Holtmeier, 2009; Fajardo et al., 2011; Körner, 2012). Nonetheless, at larger scales, the 402 

coincidence of mean temperature in the growing season at tree lines all around the world is 403 

suggestive of a common set of biological causes. Importantly, however, the exact 404 

mechanisms remain elusive (Körner, 2012). 405 

ACKNOWLEDGEMENTS 406 



   18 
 

We thank Christian Körner, Jens Paulsen, Alan Mark, Nick Pepin, Gerhard Wieser, Günter 407 

Hoch, Lohengrin Cavieres, Bob Baxter and the ABACUS project for their generous provision 408 

of tree line temperature data from around the world. We thank Sarah Richardson, Bill Lee 409 

and three anonymous referees for their comments on earlier versions of this paper. The 410 

Department of Conservation, New Zealand, gave permission to work at the field sites. 411 

Financial support for E.C. was provided by a Durham University Doctoral Fellowship. E.C. 412 

and M.S.M. were supported by core funding for crown research institutes from the New 413 

Zealand Ministry for Business, Innovation and Employment.  414 

 415 

  416 



   19 
 

REFERENCES 417 

Allan Herbarium (2000) Ngā Tipu o Aotearoa – New Zealand Plants.  Manaaki Whenua – 418 

Landcare Research Databases. Available at: http://nzflora.landcareresearch.co.nz/ 419 

(accessed July 2013).  420 

Bader, M.Y., van Geloof, I. & Rietkerk, M. (2007) High solar radiation hinders tree 421 

regeneration above the alpine treeline in northern Ecuador. Plant Ecology, 191, 33-45. 422 

Bekker, M. (2005) Positive feedback between tree establishment and patterns of subalpine 423 

forest advancement, Glacier National Park, Montana, USA. Arctic, Antarctic, and 424 

Alpine Research, 37, 97-107. 425 

Benecke, U. & Havranek, W.M. (1980) Phenological growth characteristics of trees with 426 

increasing altitude, Craigieburn Range, New Zealand. Mountain environments and 427 

subalpine tree growth. Proceedings of IUFRO Workshop, November 1979, 428 

Christchurch, New Zealand (ed. by U. Benecke and M.R. Davis), pp. 155-169. Forest 429 

Research Institute, New Zealand Forest Service Technical Paper 70, Christchurch, 430 

New Zealand. 431 

Benecke, U., Schulze, E.D., Matyssek, R. & Havranek, W.M. (1981) Environmental control 432 

of CO2 assimilation and leaf conductance in Larix decidua Mill. Oecologia, 50, 54-433 

61. 434 

Cieraad, E. (2012) Temperate oceanic treelines - low temperature effects on photosynthesis 435 

and growth. PhD Thesis, Durham University, Durham, UK,  436 

Cieraad, E. & McGlone, M.S. (2014) Thermal environment of New Zealand’s gradual and 437 

abrupt treeline ecotones. New Zealand Journal of Ecology, 38, 12-25. 438 

Fajardo, A., Piper, F. & Cavieres, L. (2011) Distinguishing local from global climate 439 

influences in the variation of carbon status with altitude in a tree line species. Global 440 

Ecology and Biogeography, 20, 307-318. 441 



   20 
 

Fajardo, A., Piper, F. & Hoch, G. (2013) Similar variation in carbon storage between 442 

deciduous and evergreen treeline species across elevational gradients. Annals of 443 

Botany, 112, 623-631. 444 

Gehrig-Fasel, J., Guisan, A. & Zimmermann, N.E. (2008) Evaluating thermal treeline 445 

indicators based on air and soil temperature using an air-to-soil temperature transfer 446 

model. Ecological Modelling, 213, 345-355. 447 

Giorgi, F., Hurrell, J.W., Marinucci, M.R. & Beniston, M. (1997) Elevation dependency of 448 

the surface climate change signal: a model study. Journal of Climate, 10, 288-297. 449 

Haase, P. (1986) Continuation of wood increment in Olearia ilicifolia during the winter of 450 

1984. New Zealand Journal of Botany, 24, 179-182. 451 

Han, F., Yao, Y., Dai, S., Wang, C., Sun, R., Xu, J. & Zhang, B. (2012) Mass elevation effect 452 

and its forcing on timberline altitude Journal of Geographical Science, 22, 609-616. 453 

Heenan, P.B. & McGlone, M.S. (2013) Evolution of New Zealand alpine and open-habitat 454 

plant species during the late Cenozoic. New Zealand Journal of Ecology, 37, 105–455 

113. 456 

Hoch, G. & Körner, C. (2012) Global patterns of mobile carbon stores in trees at the high 457 

elevation tree line. Global Ecology and Biogeography, 21, 861-871. 458 

Holtmeier, F.K. (2009) Mountain timberlines: ecology, patchiness, and dynamics, 2nd edn. 459 

Springer Verlag, New York. 460 

Holtmeier, F.K. & Broll, G. (2005) Sensitivity and response of northern hemisphere 461 

altitudinal and polar treelines to environmental change at landscape and local scales. 462 

Global Ecology and Biogeography, 14, 395-410. 463 

Körner, C. (1998) A re-assessment of high elevation treeline positions and their explanation. 464 

Oecologia, 115, 445-459. 465 



   21 
 

Körner, C. (2012) Alpine treelines: functional ecology of the global high elevation tree limits. 466 

Springer Verlag, Basel, Switzerland. 467 

Körner, C. & Paulsen, J. (2004) A world-wide study of high altitude treeline temperatures. 468 

Journal of Biogeography, 31, 713-732. 469 

Ledgard, N. (2001) The spread of lodgepole pine (Pinus contorta, Dougl.) in New Zealand. 470 

Forest Ecology and Management, 141, 43-57. 471 

Lee, W. (1998) The vegetation of New Zealand—functional, spatial and temporal gaps. 472 

Ecosystems, entomology and plants. The Royal Society of New Zealand Miscellaneous 473 

Series, 48, 91-101. 474 

Leuschner, C. (1996) Timberline and alpine vegetation on the tropical and warm-temperate 475 

oceanic islands of the world: elevation, structure and floristics. Vegetatio, 123, 193-476 

206. 477 

Mark, A.F., Porter, S., Piggott, J.J., Michel, P., Maegli, T. & Dickinson, K.J.M. (2008) 478 

Altitudinal patterns of vegetation, flora, life forms, and environments in the alpine 479 

zone of the Fiord Ecological Region, New Zealand. New Zealand Journal of Botany, 480 

46, 205-237. 481 

Mullan, A.B., Stuart, S.J., Hadfield, M.G., & Smith, M.J. (2010) Report on the review of 482 

NIWA’s ‘Seven-Station’ temperature series. NIWA Information Series, No. 78, 483 

National Institute for Water and Atmosphere Research, Wellington, New Zealand. 484 

New Zealand Meteorological Service (1973) Summaries of climatological observations to 485 

1970. New Zealand Meteorological Service Miscellaneous Publication, No. 143, 486 

Ministry of Transport, Wellington, New Zealand.  487 

Payton, I.J. (1989) Seasonal growth patterns of southern rata (Metrosideros umbellata), 488 

Camp Creek, Westland, New Zealand. New Zealand Journal of Botany, 27, 13-26. 489 



   22 
 

Piper, F.I., Cavieres, L.A., Reyes-Díaz, M. & Corcuera, L.J. (2006) Carbon sink limitation 490 

and frost tolerance control performance of the tree Kageneckia angustifolia D. Don 491 

(Rosaceae) at the treeline in central Chile. Plant Ecology, 185, 29-39. 492 

R Development Core Team (2011) R: a language and environment for statistical computing.  R 493 

Foundation for Statistical Computing, Vienna, Austria. Available at:  http://www.r-494 

project.org. 495 

Sakai, A., Paton, D.M. & Wardle, P. (1981) Freezing resistance of trees of the south 496 

temperate zone, especially subalpine species of Australasia. Ecology, 62, 563-570. 497 

Smith, W.K., Germino, M.J., Hancock, T.E. & Johnson, D.M. (2003) Another perspective on 498 

the altitudinal limits of alpine timberline. Tree Physiology, 23, 1101-1112. 499 

Veblen, T.T., Hill, S.R. & Read, J. (1996) Themes and concepts in the study of Nothofagus 500 

forests. The ecology and biogeography of Nothofagus forests (ed. by T.T. Veblen, 501 

S.R. Hill and J. Read), pp. 1-10. Yale University Press, New Haven, CT. 502 

Wardle, P. (1985) New Zealand timberlines 3. A synthesis. New Zealand Journal of Botany, 503 

23, 263-271. 504 

Wardle, P. (1998) Comparison of alpine timberlines in New Zealands and the Southern 505 

Andes. Royal Society of New Zealand Miscellaneous Publications, 48, 69-90. 506 

Wardle, P. (2008) New Zealand forest to alpine transitions in global context. Arctic, 507 

Antarctic, and Alpine Research, 40, 240-249. 508 

Wilson, J.B. & Agnew, A.D.Q. (1992) Positive feedback switches in plant communities. 509 

Advances in Ecological Research, 23, 263-336. 510 

SUPPORTING INFORMATION 511 

Additional Supporting Information may be found in the online version of this article: 512 

 513 
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Appendix S2 Woody taxa forming the tree line ecotone. 515 

Appendix S3 Summary of air and soil temperatures recorded (Table S1) and growing season 516 

(Table S2) for the six New Zealand tree line sites used in this study. 517 
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TABLES 

Table 1 Details of the tree line locations studied in New Zealand, and length of soil and air 

temperature records. Within region, sites are ordered by increasing latitude. Tree species 

indicated with * form only shrub-statured individuals (< 3 m tall) at that site. 

Tree line 
site name 

Long. 
(°E) 

Lat. 
(°S) 

Elevation 
(m a.s.l.) Main woody species in the ecotone1 Temperature recorded 

(d/m/y–d/m/y) 

Gradual      
Camp Creek 171.57 42.71 1160 Halocarpus biformis (Podocarpaceae),  

Libocedrus bidwillii (Cupressaceae), Olearia 
spp.2 (Asteraceae), Dracophyllum spp.3 

(Ericaceae) 

31/01/2009–27/04/2011 
Kelly Creek 171.58 42.78 1150 13/05/2009–28/04/2011 
Mikonui 170.87 43.06 1210 17/01/2009–20/03/2011 
Mt Fox 170.01 43.50 1185 06/01/2010–22/03/2011 
Abrupt      

Kaweka 176.36 39.29 1460 
Nothofagus solandri var. cliffortioides 
(Nothofagaceae), Phyllocladus alpinus* 
(Podocarpaceae) 

26/11/2008–06/06/2011 

Rainbow 172.86 41.89 1530 Nothofagus solandri var. cliffortioides 
(Nothofagaceae) 11/04/2009–09/04/2011 

1Plant names follow Allan Herbarium (2000) 
2Dracophyllum spp. comprises Dracophyllum longifolium and Dracophyllum traversii.  
3Olearia spp. comprises Olearia arborescens, Olearia avicenniifolia, Olearia colensoi, Olearia ilicifolia, Olearia lacunosa 
and Olearia paniculata.  
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Table 2 Means, extremes and sums of growing-season of 10 cm soil temperatures from nine 

New Zealand tree line sites (for details of the six sites in this study, see Table 1). Units are °C 

unless indicated.  

 

  Annual      
Growing season 
Narrow  
(warm) 

Growing season 
Wide 
(cold) 

Tree line site 
name 

Tmean 
(Tmedian) 

Extr 
Tmin

5 

Extr 
Tmax
6 

Warmest 
month 
Tmean 

GDD07 GDD58 
 

Tmean 
(Tmedian) 

Length 
(d) 

Tmean 
(Tmedian) 

Length 
(d) 

Mt Burns2,4 6.4 (6.5) 2.0 16.9 10.0 2307 721 7.6 (7.5) 262 7.1 (7.2) 298 
Mt Fox1 6.1 (5.9) 0.2 15.1 10.4 2235 692 7.5 (7.2) 245 7.1 (6.9) 274 
Mikonui1 5.5 (5.1) −0.2 14.0 10.2 2002 610 7.7 (7.5) 201 6.6 (6.5) 270 
Kelly Creek1 5.7 (5.4) 0.0 15.3 11.0 2090 695 8.2 (7.7) 189 6.8 (6.8) 268 
Camp Creek1 5.8 (5.3) 0.1 14.8 10.3 2106 655 8.1 (7.7) 189 6.8 (6.8) 268 
Mt Haast3 4.2 (3.8) 0.7 12.8 9.6 2058 567 7.1 (6.7) 265 6.9 (6.5) 278 
Rainbow1 4.6 (4.4) −0.9 13.9 10.5 1637 557 7.7 (7.7) 169 7.4 (7.5) 186 
Kaweka1 5.8 (5.3) 0.3 15.2 11.2 1929 656 8.0 (7.9) 192 7.8 (7.5) 204 
Kaimanawa3,4 8.1 (8.3) 1.2 16.0 12.7 2969 1216 8.6 (8.8) 336 8.6 (8.8) 336 
Mean 5.5 (5.2) 0.3 14.8 10.4 2046 644 7.8 (7.5) 207 7.0 (6.9) 250 
S.D. 0.7 (0.8) 0.8 1.2 0.5 204 61 0.4 (0.4) 35 0.4 (0.4) 38 
Range 2.2 (2.7) 2.9 4.1 1.6 670 164 0.8 (1.6) 96 1.2 (1.1) 92 
1 Sites measured as part of this study  
2 Values are recalculated from Mark et al. (2008) raw data, see Results and Discussion.  
3 Values are recalculated from Körner & Paulsen (2004) raw data, see Results and Discussion.  
4 Data are excluded from summary statistics at the bottom of the table because of probable calibration and placement errors, 
respectively, see Results and Discussion. 
5 Extreme minimum hourly temperature recorded 
6 Extreme maximum hourly temperature recorded 
7 Growing degree days with a base temperature of 0°C (sum of the daily Tmean above the base temperature) 
8 Growing degree days with a base temperature of 5°C (sum of the daily Tmean above the base temperature) 
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FIGURE LEGENDS 

Figure 1 Latitudinal trend of tree line elevation in the Northern and Southern Hemispheres. 

Northern Hemisphere data is from Körner & Paulsen (2004); Chile from Piper et al. (2006) 

and Fajardo et al. (2011, 2013); and New Zealand from Cieraad (2012). At the same latitude, 

southern temperate tree lines are at lower elevations than their more continental northern 

counterparts. At the same latitude in New Zealand (NZ), the highly oceanic gradual tree lines 

(open circles) form at lower elevations than abrupt tree lines (black circles).  

 

Figure 2 Location of New Zealand tree line study sites. White circles indicate gradual tree 

line sites; black circles indicate abrupt tree line sites. See Table 1 for site details. 

 

Figure 3 Mean monthly air temperature at the New Zealand tree line (grey shading shows 

minimum and maximum mean monthly temperature across the six locations in this study, 

with the solid line indicating the average) compared with different tree line sites around the 

world. See text for more details. Northern and Southern Hemisphere months (NH and SH, 

respectively) have been portrayed such that the growing season is in the middle of the graph. 

The Chilean tree line corresponds to a Kageneckia angustifolia tree line which is under strong 

mediterranean influence, and drought-depressed (Piper et al., 2006), as was the Chilean 

locality included in Körner & Paulsen (2004). The tree line at Thredbo (Australia) is 

approximately 60 m above the weather station – data have not been corrected, but could be c. 

0.4 °C colder than displayed, if a standard lapse rate of 0.6 °C per 100 m was applied.  

 

Figure 4 The annual course of soil (10 cm) temperature and growing season details at six 

New Zealand tree line sites. The growing season is defined by a 3.2 °C thermal threshold 

(white dashed line), either at first crossing of the threshold in spring and autumn (wide 
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growing season), or as a continuous period above the threshold (narrow growing season, see 

Materials and Methods). The length (in days; d) and mean temperature (°C) of the growing 

season are shown at the bottom of each graph (top is narrow growing season; bottom, wide 

growing season).  
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Appendix S1 Tree line ecotones of contrasting forms in New Zealand. Top (left and right): 
diffuse mixed conifer–broad-leaved tree line ecotone at Camp Creek, Westland; bottom: 
abrupt Nothofagus solandri var. cliffortioides tree line on the St Arnaud Range (left) and at 
Craigieburn (right). Images first appeared in Cieraad & McGlone (2014); they are reprinted 
here with permission from the New Zealand Journal of Ecology. 

  

  

Reference: Cieraad, E. & McGlone, M.S. (2014) Thermal environment of New Zealand’s 

gradual and abrupt treeline ecotones. New Zealand Journal of Ecology, 38, 12-25. 

© Landcare Research  
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Appendix S2 Woody taxa forming trees in the tree line ecotone in New Zealand 

  Family Genus Species 
Pinophyta Cupressaceae Libocedrus bidwillii 
(conifers) Podocarpaceae Halocarpus biformis 

  Podocarpus cunninghamii 
    Phyllocladus alpinus 
Magnoliophyta Araliaceae Pseudopanax colensoi 
(angiosperms)   crassifolius 

   linearis 

   simplex 

 Asteraceae Brachyglottis eleagnifolia 

  Olearia arborescens 

   avicenniifolia 

   colensoi 

   crosby-smithiana 

   ilicifolia 

   lacunosa 

   moschata 

   paniculata 

 Cornaceae Griselinia littoralis 

 Cunoniaceae Weinmannia racemosa 

 Elaeocarpaceae Aristotelia serrata 

 Ericaceae Archeria traversii 

  Dracophyllum fiordense 

   longifolium 

   scoparium 

   townsonii 

   traversii 

 Fabaceae Carmichaelia arborea 

   stevensonii 

 Malvaceae Hoheria glabrata 

   lyalli 

 Myrtaceae Leptospermum scoparium 

  Metrosideros umbellata 

  Neomyrtus pedunculata 

 Myrsinaceae Myrsine divaricata 

 Nothofagaceae Nothofagus fusca 

   menziesii 

   solandri var. cliffortioides 

 Onagraceae Fuchsia excorticata 

 Pittosporaceae Pittosporum colensoi 

   divaricatum 

   patulum 

   rigidum 



 Rubiaceae Coprosma tenuifolia 
  Winteraceae Pseudowintera colorata 

1Species listed are those observed by the authors, and/or by the late Peter Wardle, reaching a height of  > 3 m in 

the tree line ecotone, as well as those identified by various authors as occurring in timberline forests (Wardle 

1977, 1984, 1991; Wardle et al., 2001; Williams 1989, 1991). Grey shading indicates taxa that only infrequently 

reach tree line at a stature of > 3 m (Peter Wardle, pers. comm.). 
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Appendix S3 Summary of air and soil temperatures recorded (Table S1) and growing season 

(Table S2) for the six New Zealand tree line sites used in this study. 

 



Table S1 Summary of air and soil temperatures recorded at the six New Zealand tree line (TL) locations in this study. Soil temperatures were 

recorded under the tree line forest canopy. Air temperature was recorded in the open canopy (gradual tree line) or in the grassland within 10 m 

distance from the forest/tree line margin (abrupt tree line). For location details, see Table 1; for more detail about the study set-up and an in-

depth discussion of results, see Cieraad & McGlone (2014).  

 
Location (type) Annual Warmest months  Extremes Growing degree-days 

 
Avg. 
Tmean 

Avg. 
Tmin 

Avg. 
Tmax 

1 
month 
Tmean 

3 
months 
Tmean 

6 
months 
Tmean 

Coldest 
month 
Tmean 

Frost 
days 

Extr. 
Tmin 

Extr. 
Tmax 

GDD 
0 

GDD 
5 

GDD 
10 

Camp Creek (gradual)              
Soil 5.8 5.2 6.5 10.3 9.5 8.5 1.9 0 0.1 14.8 2106 655 49 
Air 5.8 2.5 10.7 10.7 9.9 8.6 1.6 103 -6.4 27.6 2139 769 146 
Kelly Creek (gradual)              
Soil 5.7 5.2 6.3 11.0 9.9 8.6 1.2 0 0.0 15.3 2090 695 66 
Air 6.1 2.7 11.5 11.6 10.3 8.9 1.7 96 -6.0 31.8 2242 833 186 
Mikonui (gradual)              
Soil 5.5 5.1 5.9 10.2 9.4 8.3 1.9 0 -0.2 14.0 2002 610 30 
Air 6.2 2.2 12.8 11.2 10.5 9.2 1.6 119 -6.3 34.2 2260 857 189 
Mt Fox (gradual)              
Soil 6.1 5.8 6.6 10.4 9.8 8.7 2.8 0 0.2 15.1 2235 692 41 
Air 6.3 2.6 12.0 10.9 10.4 9.2 1.9 108 -6.1 30.6 2334 892 190 
Kaweka (abrupt)              
Soil 5.3 4.8 5.8 11.2 9.7 8.3 0.8 0 0.0 15.2 1929 656 64 
Air 5.5 2.5 9.4 11.8 10.6 9.0 -0.2 126 -6.5 25.1 2077 844 174 
Rainbow (abrupt)  

            
Soil 4.5 4.0 5.1 10.5 9.4 8.1 0.0 34 -1.5 13.9 1488 543 32 
Air 5.6 1.7 11.4 12.7 11.0 9.6 0.1 145 -9.1 26.6 2145 925 233 
 



Table S2 Growing season summary for the six New Zealand tree line sites in this study, 

using a dataset based on growing season compared with averaged 365-day datasets. Any data 

obtained for the same day in multiple years (between 2008 and 2011, see Table 1) were 

averaged, before calculating the length and mean (median) temperature for the ‘wide’ 

growing season following Körner & Paulsen (2004), and the ‘narrow’ growing season (see 

Materials and Methods).  The 2009–10 growing season data is also presented in Table 2.  

 Growing season 

Narrow  

(warm) 

Growing season 

Wide 

(cold) 

 2009-‘10 growing 

season 

averaged  

365-day  

(2008-‘11) 

2009-‘10  

growing season 

averaged  

365-day  

(2008-‘11) 

Tree line site 

name 

Tmean 

(Tmedian) 

Length  Tmean 

(Tmedian) 

Length Tmean 

(Tmedian) 

Length Tmean 

(Tmedian) 

Length 

Mt Fox 7.5 (7.2) 245 7.8 (8.3) 236 7.1 (6.9) 274 6.9 (7.4) 292 

Mikonui 7.7 (7.5) 201 7.5 (7.9) 232 6.6 (6.5) 270 6.6 (7.3) 275 

Kelly Creek 8.2 (7.7) 189 7.9 (8.3) 242 6.8 (6.8) 268 7.0 (7.6) 265 

Camp Creek 8.1 (7.7) 189 7.8 (8.0) 245 6.8 (6.8) 268 6.8 (7.4) 279 

Rainbow 7.7 (7.7) 169 7.6 (7.9) 197 7.4 (7.5) 186 7.6 (7.9) 197 

Kaweka 8.0 (7.9) 192 7.9 (7.9) 218 7.8 (7.5) 204 7.1 (7.4) 245 
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