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Abstract 

 

The paper presents and illustrates two areas of widespread abuse of statistics in social science 

research. The first is the use of techniques based on random sampling but with cases that are 

not random and often not even samples. The second is that even where the use of such 

techniques meets the assumptions for use, researchers are almost universally reporting the 

results incorrectly. Significance tests and confidence intervals cannot answer the kinds of 

analytical questions most researchers want to answer. Once their reporting is corrected, the 

use of these techniques will almost certainly cease completely. There is nothing to replace 

them with but there is no pressing need to replace them anyway. As this paper illustrates, 

removing the erroneous elements in the analysis is usually sufficient improvement (to enable 

readers to judge claims more fairly). Without them it is hoped that analysts will focus rather 

more on the meaning and limitations of their numeric results. 

 

 

Which kind of statistics is being abused? 

 

The term ‘statistics’ is an ambiguous one. It emerged from the collation and use of figures 

concerning the nation state from the seventeenth century onwards in the UK, and 

subsequently in the USA and elsewhere (Porter 1986). Such figures involved relatively 

simple analyses, and ‘political arithmetic’ was largely used to lay bare inefficiencies, 

inequalities and injustice (Gorard 2012). However, more recently and for many 

commentators the term has come to mean a set of techniques derived from sampling theory, 

and/or the products of those techniques. It is the abuse of such techniques that is the subject 

of this new paper. These techniques include the use of standard errors, confidence intervals 

and significance tests (both explicitly and disguised within more complex statistical 

modelling). They are supposedly used to help analysts to decide whether something that is 

found to be true of the sample achieved in a piece of research is also likely to be true of the 

known population from which that sample was drawn. All of these statistical techniques, 

including confidence intervals, are based on a modified form of an argument modus tollendo 

tollens. In formal logic, the argument of denying the consequent is as follows: 

 

If A is true then B is true 

B is not true 

Therefore, A is not true also 

 

This is a perfectly valid argument, and the conclusion must be true, as long as the premising 

statements are all definitive. If B is not true then it is certain that A is not true. However, as 

soon as tentativeness or probability enters the argument fails: 

 

If A is true then B is probably true also 
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B may not be true 

Therefore, A may not be true also 

 

This is not really a valid argument, and the truth of the conclusions is contingent on many 

factors beyond pure logic. Characteristic A may or may not be true. If it is true, characteristic 

B could be true as well, or not. The observation that B may (or may not) be true says almost 

precisely nothing about the truth of A. The first premise may be likened to the null hypothesis 

in statistical analysis, and the second to the evidence from the achieved research sample. The 

probabilistic argument is now contingent upon the frequency with which A and B are true 

together in reality, and on the accuracy of the research finding about the likelihood of B being 

true. Knowing both of these facts, it would be possible to draw a probabilistic conclusion 

about the likelihood of A being true (the desired research conclusion). But in reality, neither 

of these facts would be known. In fact, the main supposed objective of the analysis would be 

to help decide on the accuracy of the research finding that B may not be true. The analysis 

assumes from the outset something about that which it is supposed to be assessing. The 

misunderstanding caused by this assumption is widespread.  

 

 

Using sampling theory techniques in inappropriate contexts 

 

However, the most obvious abuse of sampling theory techniques is their use in situations for 

which they were not designed and for which they ought not to be used.  Data for a population 

cannot have a standard error, by definition. The standard error is defined as the standard 

deviation of a random sampling distribution, of samples drawn repeatedly from a population. 

It is used (but incorrectly, see below) to try and estimate the proximity of the sample mean to 

the population mean. When working with population data the population mean is known, 

therefore such an estimation is neither needed nor valid. Of course, the population data may 

be incomplete due to missing cases or missing values, but this is a cause of bias not a 

consequence of random sampling variation. Bias ought to be addressed in any analysis 

(although it rarely is addressed by those who use ‘statistics’ instead) but it cannot be 

addressed through significance tests and the like. None of the techniques of sampling theory 

statistics can or should be used with population data. When commentators like Goldstein 

(2008, p.396) advocate the use of confidence intervals with population based data, they are 

betraying ignorance of the meaning of confidence intervals (see below), misleading policy-

makers and other researchers, and harming those who will be affected by supposedly 

evidence-informed decisions.  

 

Exactly the same applies to samples other than the random samples on which sampling theory 

techniques such as significance tests are based (Fielding and Gilbert 2000). Opportunity, 

convenience, snowball samples and the like also do not have a standard error, by definition. 

Findings derived from such samples have no probabilistic uncertainty; they will just have 

bias. In the same way that findings from population data can be tentatively generalised to 

other cases not in the population, so findings from non-random samples can be generalised to 

other cases. But in both situations the generalisation can only be based on judgement, and 

how well the sampled cases match the non-sampled ones in terms of what it already known. 

In reality, the judgement is not a generalisation from the sample (or population) but a decision 

about what is already known about non-sampled cases and how well they match the sampled 

ones. None of this concerns random sampling variation. When researchers like Carr and 

Marzouq (2012), to take just one of many available examples, cite significance tests and p-

values derived from two complete classes of children in one primary school, they are making 
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a key analytical error. Their probabilities cannot mean anything in the context where only a 

convenience sample of a year group from one school is involved. Even if their results had 

been based on a random sample, the statistical population which such results could be 

generalised to does not exist outside the sample. Such abuse of statistical techniques simply 

has to cease. As with Goldstein’s use of confidence intervals for population data, such abuse 

of non-random samples leads to errors, wasted opportunities, vanishing breakthroughs, and 

unwarranted conclusions.  

 

The final situation for this first kind of abuse is when random samples are planned but not 

achieved. Strictly speaking an incomplete random sample is not a random sample at all. 

Rolling 1,000 unbiased dice to estimate the probability of gaining each outcome would be a 

(pseudo-)random process. Rolling the dice and then re-rolling any that showed a 6 would not 

lead to a good estimate of the probability of gaining each outcome. This is obvious. In the 

same way, selecting 1,000 cases by chance from a known population is very different from 

selecting 1,000 cases and then replacing 100 of these because they refused to participate. This 

means that in almost all real-life research situations, sampling theory statistical techniques are 

not relevant, do not mean anything and must not be used. In a sense, the paper could end at 

this point, because it would be rare for an analyst to be dealing with a complete random 

sample.    

 

 

Misunderstanding and misrepresenting the outputs of significance tests 

 

However, there is a second kind of widespread abuse of statistics that is even worse but 

somewhat harder to explain. This is because there is such a common misunderstanding of this 

form of analysis. Put simply, statistical analysis even when conducted appropriately and with 

all underlying assumptions met does not do what most analysts want and what many methods 

instructors portray that it does. The nature of the conditional probabilities involved is 

commonly and mistakenly reversed, whether through incompetence or intention to deceive.   

 

This confusion between the probabilities for a sample and a population is clear in the logic of 

significance testing and the quotation of p-values. As with the modus tollens argument above, 

a significance test assumes from the outset that what is being ‘tested’ is true for the 

population, and so calculates the probability of obtaining a specific value from the random 

sample achieved (Siegel 1956). Analysts then generally mistake this (pData|Hyp) as being the 

probability of what is being ‘tested’ also being true for the population, given the value 

obtained from the random sample achieved (pHyp|Data). These two probabilities are clearly 

very different, and neither can be safely inferred from the other. One may be small and the 

other large, or vice versa, or any combination in between (Gorard 2010). The p-value 

calculation depends on the initial assumption of a null hypothesis about what is true for the 

population. As soon as it is allowed that the null hypothesis may not be true, the calculation 

goes wrong. The actual computation for a significance test involves no real information about 

the population, and this means that the same sample from two very different populations 

would yield the same p-values. A sample mean of 50 would, quite absurdly, produce the 

same p-value if the population mean were 40, 50, 60 or 70 etc. This is because the population 

value is not known (else there would be no point on conducting the significance test), and the 

entire calculation is based only on the achieved sample value.  

 

To illustrate the common misunderstanding of this, consider a simplified situation. There is a 

bag, containing 100 well-shuffled balls of identical size, and the balls are known to be of only 
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two colours. A sample of 10 balls is selected at random from the bag. This sample contains 7 

red balls and 3 blue balls. The analytical question to be addressed is: how likely is it that this 

observed difference in the balance of the colours between the two samples is also true of the 

original 100 balls in each bag? The situation is clearly analogous to many analyses reported 

in social science research. The bag of balls is the population, from which a sample is selected 

randomly. A moment’s thought shows that it is not possible to say anything very much about 

the other 90 balls in the bag. The remaining 90 might all be red or all blue, or any share of red 

and blue in between. Yet the purpose of such a significance test analysis is to find out via 

sampling something about the balance of colours in the bag. Without knowing what is in the 

bag there is no way of assessing how improbable it is that the sample has ended up with 7 red 

balls. Once this impossibility is realised, the pointlessness of significance testing becomes 

clear.  

 

What a significance test does instead is to make an artificial assumption about what is in the 

bag. Here the null hypothesis might be that the bag contains 50 balls of each colour at the 

outset. Knowing this it becomes relatively easy to calculate the chances of picking 7 reds and 

3 blue in a random sample of 10. If this probability is small (traditionally less than 1 in 20, or 

0.05) it is customary to claim that this is evidence that the bag must have contained an 

unbalanced set of balls at the outset. This claim is obviously nonsense. The assumption of the 

null hypothesis tells us nothing about what is actually in the bag. For example, imagine that 

the bag started with 80 red balls and 20 blues. The sample is drawn as above, and contains 7 

reds. The significance test approach assumes that there are 50 reds in the bag and calculates a 

probability of getting 7 in a sample of 10. This probability will be clearly incorrect because 

the balls are less balanced in fact than the null assumption requires. Now imagine that the 

sample is still the same but that the bag had 80 blue balls and only 20 red originally. The 

significance test approach again assumes that there are 50 reds in each bag and calculates the 

same probability of getting 7 red from one and 5 from the other. This probability will also be 

clearly incorrect because the balls are less balanced than the null assumption requires. More 

absurdly, this second probability must be the same as the first one since they are both 

calculated in the same way on the same assumption. So the significance test would give 

exactly the same probability of having drawn 7 reds in a random sample from a bag of 80% 

reds as from a bag of 20% reds. This absurdity happens because the test takes no account of 

the actual proportion of each colour in the population. It cannot, since finding out that 

balance is supposed to be the purpose of the analysis. 

 

Of course the probability of getting 7 reds from a bag containing 80 reds is different, a priori, 

to the probability of getting 7 reds from a bag containing 20 reds. But the significance test is 

conducted post hoc. There is no way of telling what the remaining population is from the 

sample alone. To imagine otherwise, would be equivalent to deciding that rolling a 3 

followed by a 4 with a die showed that the die was biased (since the probability of that result 

is only 1/36, which is much less than 5% of course).  

 

For anyone who has spotted this misunderstanding, there is little doubt that their use of 

significance testing would cease (Falk and Greenbaum 1995). No one wants to know the 

probabilistic answer the tests actually provide (about the probability of the observed data 

given the assumption), and the test cannot provide the answer analysts really want (the 

probability of the assumption being true given the data observed). This conclusion is not new 

(Harlow et al. 1997). It has been known for a long time, perhaps since their earliest adoption, 

that significance tests do not work as hoped for, and may well be harmful because their 

results are so widely misinterpreted (Carver 1978). Yet unwary methods resources and 
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purported experts continue to peddle the fiction that p-values are, or are closely related to, the 

probability of the sample result being ‘true’, real or relevant. Relatively recent examples 

among many include the following in a textbook on social science methods: 

 

[Statistical significance is] ‘the likelihood that a real difference or relationship between 

two sets of data has been found’ (Somekh and Lewin 2005, p.224). 

 

And perhaps even more worrying is the ‘explanation’ (in relation to statistical modelling) 

given during the training of heavily selected UK national experts in rigorous evaluation: 

 

Significance of b4 indicates whether there is evidence of an interaction effect (Connolly 

2013, slide 5). 

 

Both of these explanations are the wrong way around. The ‘significance’ value is really the 

likelihood of finding a fake ‘difference’ or ‘effect’ if none actually exists. This is a very 

different value to the likelihood of there actually being a difference or effect. It is like saying 

the probability of being a professional footballer if a person is over six feet tall is the same as 

the probability of a person being over six feet tall if they are a footballer. The first of these 

values will be much, much smaller than the second. To confuse the two as the supposed 

experts above do is to make a very serious mistake. It is possible to convert one figure to the 

other using Bayes’ theorem, as long as the unconditional probabilities are already known 

(such as what proportion of people are footballers and what proportion are over six feet tall). 

But there would be no point in conducting a significance test in this situation since both 

conditional probabilities would be calculated precisely.  

 

 

Misunderstanding and misrepresenting confidence intervals 

 

Faced with increasing criticism of significance testing and its abuse, in 1999 the American 

Psychological Association (APA) set up a Task Force on Statistical Inference. This 

considered a ban on the reporting of such tests in all APA journals. Unfortunately, their final 

recommendation fell short of such a radical but useful step, and APA instead focused on 

moving beyond significance to a consideration of the ‘precision’ of any research findings. Its 

influential publication manual now states that:  

 

[Null hypothesis significance testing] is but a starting point and that additional 

reporting elements such as effect sizes, confidence intervals, and extensive description 

are needed (APA 2010, p. 33). 

 

This is a shame because confidence intervals use the same underlying logic as significance 

tests, share the same fatal flaws, and are at least as widely misunderstood. For example, 

talking about confidence intervals, Goldstein (2008, p.399) says of their use in value-added 

calculations: 

 

A confidence interval provides a range of values that, with a given probability – 

typically 0.95 – is estimated to contain the true value of the school score. 

 

Connolly (2007, p. 149) says that a 95% confidence interval shows that: 
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There is a 95 percent chance that the true population mean is within just under two 

standard errors of the same mean.  

 

Both of these statements are wrong. With population data, or where the true population value 

(such as its mean) was already known, there would be no need for confidence intervals (CIs). 

A CI is calculated only from the sample value, and no reference at all is made to the true 

population value (how could it be?). Instead of the above, a CI for a sample value means 

precisely this: 

 

If we assume that the value from a complete random sample is identical to the true 

population value, then the CIs of many repeated complete random samples of the same 

size would contain the population value for 95% (or selected interval) of these samples.  

 

This is why any reported CI for a specific sample is centred around the sample value. Of 

course, based on this correct definition (of how a CI is actually calculated) the technique is 

completely useless. It cannot be used to assess how close the sample value is to the unknown 

population value, because it is based on the assumption that the two are identical from the 

outset. As soon as it is allowed that the two might differ at all, then the calculation of the CI 

fails. If the sample mean is not at the precise centre of the normally distributed population (or 

sampling distribution) then it is not true that 95% of the population will lie within 1.96 

standard deviations from the sample mean. The absurdity of this kind of artificial calculation 

is perhaps even clearer when considering what happens in an example. Imagine that a sample 

mean was 50, and that this was drawn from a population with mean 60. The CI would have a 

particular range centred around 50. Now imagine that all else remains the same but that the 

population mean was actually 70. The CI would remain the same because the CI is unrelated 

to the actual population mean. This suggests that a CI based on an estimate of 50 for a real 

value of 60 would imply the same level of accuracy as for a real value of 70. In practice, and 

even when used as intended, CIs are pointless. Worse than this, because even purported 

authorities are explaining their interpretation incorrectly, they are being used to draw invalid 

inferences. Again, money and research effort are being wasted and those intended to benefit 

from research may be being harmed. Simply stating the number of cases underlying any 

sample value is sufficient and valid.  

 

 

What should happen instead? 

 

There is a tendency to want to cling to traditional statistics, not understanding them or even 

knowing that they do not makes sense, due to not being sure what to do instead. In general, 

the answer is that nothing should be done instead. Removal of the error is improvement 

enough. In the paper used as an example above (among countless others), Carr and Marzouq 

(2012) present a Table 1 (p.7) as below and textual discussion of these findings (p.6): 

 

As seen in Table 1 children endorsed all four of the achievement goals to similar 

degrees. However, the range of responses for both the mastery-approach and mastery 

avoidance scales were narrower than the performance scales and were focused at the 

top end of the scale. Correlations between goals (Table 1) are consistent with the 2 x 2 

framework where goals sharing a dimension (mastery/performance or 

approach/avoidance) are positively correlated while those not sharing a dimension are 

unrelated (Elliot & McGregor, 2001; Elliot & Murayama, 2008). Although this pattern 
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of correlation is evident in this sample the association between mastery approach and 

performance approach goals is smaller than expected, just approaching significance. 

 

Table 1: Descriptives and intercorrelations for achievement goal responses. 

Variable  M  SD  Min  Max  Range  1  2  3 

1. 

Performance 

Approach  

3.39  1.07  1.00  5.00  4.00  –   

2. 

Performance 

Avoidance  

3.58  .88  1.67  5.00  3.33  .69** –   

3. Mastery 

Approach  

4.51  .53  3.00  5.00  2.00  .20+  .10 –  

4. Mastery 

Avoidance  

3.92 .89  3.00  5.00  3.00  .13  .41**  .42** 

+p<0.06; *p<0.05; **p<0.001 (1-tailed). 

 

Clearly, much of this reporting is incorrect. With a convenience sample of 58 children from 

one school, Carr and Marzouq (2012) should not be discussing statistical ‘significance’ or 

quoting p-values. Therefore, parts of the report such as the gobbledegook at the foot of the 

table can be simply removed. In addition, the use of decimal places should be curtailed. It is 

unlikely that the reported means are really accurate to five one thousandths of a unit in a 

study measuring things as vague as ‘performance approach’ with only 58 cases. The result 

could look like this 

 

As seen in Table 1 children endorsed all four of the achievement goals to similar 

degrees. However, the range of responses for both the mastery-approach and mastery 

avoidance scales was narrower than the performance scales and focused at the top end 

of the scale. Correlations between goals (Table 1) are consistent with the 2 x 2 

framework where goals sharing a dimension (mastery/performance or 

approach/avoidance) are positively correlated while those not sharing a dimension are 

unrelated (Elliot & McGregor, 2001; Elliot & Murayama, 2008). Although this pattern 

of correlation is evident in this sample the association between mastery approach and 

performance approach goals is smaller than expected. 

 

Table 1: Descriptives and intercorrelations for achievement goal responses. 

Variable  M  SD  Min  Max  Range  1  2  3 

1. 

Performance 

Approach  

3.4  1.1  1.0  5.0  4.0     

2. 

Performance 

Avoidance  

3.6  0.9  1.7  5.00  3.3  +0.7   

3. Mastery 

Approach  

4.5  0.5 3.0  5.00  2.0  +0.2 +0.1  

4. Mastery 

Avoidance  

3.9 0.9  3.0  5.00  3.0  +0.1  +0.4  +0.4 

 

Nothing much has changed with the invalid p-values removed. If the findings of the paper 

were important (or not) before, they remain so now that they are reported without abusing 
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statistics. It is entirely possible that making the results simpler, and not misleading readers or 

even the researchers themselves with false probabilities, would encourage a greater emphasis 

on the analytical issues that really matter and on the substantive (or not) nature of the results. 

Key issues in this example appear to be whether the measures are measuring anything at all, 

whether they can measure it accurately, how they could be calibrated, what the bias might be 

in the sample, the nature of any non-response, and how any of these initial errors might 

propagate through ensuing calculations. The answers to these questions and others like them 

will help readers and researchers decide whether the results warrant the claim in the paper - 

that the researchers have tested ‘the 2 x 2 achievement goal model’ (p.6). Moving away from 

the convenient but invalid push-button approach to analysis might yield benefits beyond mere 

cessation of the abuse. It might introduce more transparency and judgement in reporting 

(Gorard 2006).  

 

 

Conclusion 

 

When an analyst is trying to decide on the substantive importance of an apparent research 

finding, they are faced with a number of alternative explanations. If they have used a random 

sample then one of these explanations is that the result is a fluke introduced by sampling 

variation. This is the explanation that significance testing, confidence intervals and associated 

statistical techniques are meant to address (but which they do not). However, this is only one 

explanation. Other methods-based explanations include design errors, bias in the sample, 

errors in measuring or recording data, researcher effects and so on. These other explanations 

ought to be considered and discussed whether the sample is a random one or not, or even if a 

population is involved. But the current abuse of significance testing seems to have replaced 

all other considerations. What should happen instead of the false logic of statistics is a greater 

focus on the meaning and authority of the evidence that analysts uncover, using transparent 

judgement to decide whether a difference is worth pursuing or whether a coefficient is worth 

retaining in a model. There are a number of simple techniques than can assist in making and 

portraying these judgements, including graphical displays, and a range of effect sizes from 

odds ratios to R
2
.     

 

Of course, none of the above is any kind of argument against measurement or the crucial role 

of numbers in social science research. This paper is rather an argument that researchers 

should take numbers more seriously, and think rather more carefully than at present about 

their meaning. Similarly, this is not an argument against the random selection of cases in a 

sample, or the random allocation of what is in effect population data to treatment groups in a 

trial design. Randomisation is the best protection against imbalance or bias in the sample or 

the groupings, both in terms of known characteristics that could be matched and in terms of 

the unknown characteristics that any attempted matching procedure is forced to neglect 

(Gorard 2013). But random sampling is used to minimise bias, not so that significance tests 

can be run. With a high quality random sample the best estimate of any equivalent value for 

the linked population will be the sample value. No amount of dredging with the sample data 

alone (as happens with standard errors, significance tests and CIs) can improve this estimate.  

 

Real people, their lives, well-being, health and education are affected by research evidence-

informed decisions in policy and practice. At present, these decisions are (unknown to policy-

makers and practitioners) overly influenced by a superstitious ritual that few seem to 

understand but many seem happy to follow and pass on to new researchers. This ritual was 

described by Rozeboom (1997, p.335) as: 



9 
 

 

Surely the most bone-headedly misguided procedure ever institutionalized in the rote 

training of science students.  

 

As illustrated above, the techniques of sampling theory statistics do not work as intended, and 

can give misleading results leading to vanishing breakthroughs and even harmful 

interventions. It is time for this wasteful and dangerous nonsense to cease. 
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