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Abstract. The unprecedented global efforts for malaria elimination in the past decade have resulted in altered vectorial
systems, vector behaviors, and bionomics. These changes combined with increasingly evident heterogeneities in malaria
transmission require innovative vector control strategies in addition to the established practices of long-lasting insecticidal
nets and indoor residual spraying. Integrated vector management will require focal and tailored vector control to achieve
malaria elimination. This switch of emphasis from universal coverage to universal coverage plus additional interventions
will be reliant on improved entomological monitoring and evaluation. In 2010, the National Institutes for Allergies and
Infectious Diseases (NIAID) established a network of malaria research centers termed ICEMRs (International Centers
for Excellence in Malaria Research) expressly to develop this evidence base in diverse malaria endemic settings. In this
article, we contrast the differing ecology and transmission settings across the ICEMR study locations. In South America,
Africa, and Asia, vector biologists are already dealing with many of the issues of pushing to elimination such as highly
focal transmission, proportionate increase in the importance of outdoor and crepuscular biting, vector species complexity,
and “sub patent” vector transmission.

INTRODUCTION larly where vectors are primarily endophagic (indoor biting),
endophilic (indoor resting), and anthropophilic.®

As such, the goal of global malaria elimination will require
additional interventions and improvements in both the appli-
cation of current control measures and entomological monitor-
ing.” The single biggest threat to sustainable malaria control is
insecticide resistance, which has reached alarmingly high levels
in some vector populations of Africa, India, and China (M. L.
Quifiones and others, unpublished data).? Second, there are
indications of local adaptation in vector biting behavior, possi-
bly in response to reliance on LLINs and IRS.*>*? Whether
this reflects a lack of vector ingress because of physical bar-
riers, that is, mosquito-proof houses, adaptation of endophagic
vectors to exophagy (outdoor feeding), or selection on pheno-
typic plasticity, is unknown.'® It has been hypothesized that
in some areas endophagic populations may have been elimi-
nated, leaving the inadequately controlled exophagic popula-
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The unprecedented global efforts for malaria elimination in
the past decade have resulted in the reduction of malaria cases
in several settings,' but also in dramatic increases in resistance
to pyrethroids and other insecticides,” changes in the relative
importance of outdoor (residual) malaria transmission, and
major shifts in biting time, for example, Anopheles farauti in
the Solomon Islands® and Anopheles funestus in Benin and
Senegal.*® Together these new trends have already resulted in
quantifiable changes in human-vector interactions in several
endemic areas, and threaten to jeopardize future gains. Long-
lasting insecticidal nets (LLINs) and indoor residual spraying
(IRS) and have been the mainstays of malaria control and
have had a major impact on reducing global malaria, particu-
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disappeared.” Similarly, a switch from endophily to exophily
(outdoor resting) has been documented in areas under intense
IRS (R. Sloof, unpublished data)."*'> The third major issue is
the recognition that transmission is both focal and heteroge-
neous and that we urgently need to incorporate, for example,
ecological context of mosquito foraging behavior and vector
diversity into our transmission models to improve predictive
accuracy.'®!” Fourth, the use of LLINs at high coverage,
although extremely effective overall, can alter species compo-
sition, which could change transmission patterns and possibly
the entomological inoculation rate (EIR) because of different
vectorial capacities, biting times, and behaviors, for example, a
decrease in Anopheles gambiae and a concurrent increase in
the relative proportion of Anopheles arabiensis.>'®"

Vectorial systems vary dramatically across regions and
countries,”*?? and this variation will be reflected in how
well malaria transmission responds to control. A suggested
benchmark for adequate vector control is the decrease and
maintenance of EIR below 1, together with epidemiological
measures of malaria in humans.> Achieving EIRs of < 1 is
especially challenging in those endemic areas where the cur-
rent approach of IRS and/or LLINS may not be adequate to
cover changing transmission scenarios.

The United States’ National Institutes of Health funded
10 International Centers of Excellence in Malaria Research
(ICEMR) in 2010 with a series of common aims including a
concerted effort to closely link epidemiology and transmission
metrics with vector biology. One of the unique features of the
ICEMR program is the focus on longitudinal surveillance sites
in diverse epidemiological settings across the globe (Figure 1).
Each ICEMR uses similar approaches and metrics to quantify
transmission. The strengths of this approach are our ability to
incorporate seasonal and multiyear variation in routine ento-
mological monitoring that can quantify temporal changes in
insecticide susceptibility, EIR, vector species composition, and

the effects of epidemiology interventions. Such data, when
incorporated into malaria transmission models, should increase
accuracy and predictive power.

The objective of this article is to provide an introduction
to the broad-sense ecology of vectors in the 10 major geo-
graphic regions covered by the ICEMR projects and to dis-
cuss how similarities and contrasts between the areas will
build to a comprehensive view of malaria transmission glob-
ally. We are not intending to provide a detailed historical
review of transmission ecology in each setting, and as a con-
sequence the extant literature has been sampled broadly but
with only limited depth. Vector biologists from each ICEMR
selected references that they believed to be the most perti-
nent to the objective of this article.

ENTOMOLOGICAL METRICS AT ICEMR SITES

Across the ICEMR sites, there is diversity in vector spe-
cies and their contributions to malaria transmission of, prin-
cipally, Plasmodium falciparum and Plasmodium vivax are
variable. Although challenging, this is also an extraordinary
opportunity to identify commonalities that may lead to new
integrated approaches to control and eliminate malaria.
Investigations in the 10 major regions are described in brief
below, with summary vector biology data (Table 1) together
with a corresponding figure of the 33 individual sites geo-
graphically located (Figure 1). The wide range of primary
vector species, and putative new vectors that several [ICEMR
studies have detected, is illustrated in Figure 2.

Africa. The four ICEMRs in Africa (Malawi, west Africa,
southern Africa, and east Africa; Figure 1) are near exclusively
P. falciparum transmission settings where malaria is vectored
by one or more of the four major African vectors (An. gambiae
s.s., Anopheles coluzzii, An. arabiensis, and An. funestus s.s.)
(Figure 2). Vector control is reliant on LLINs, IRS, or some

FiGure 1. Location of the 33 field sites across 10 International Centers of Excellence in Malaria Research (ICEMR) (in red). The field sites

(yellow circles) are numbered consecutively and are described in Table 1.
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FIGURE 2. Anopheline malaria vector species across the 10 ICEMRs. New potential vector species, detected in these or affiliated studies,
are depicted in purple. In Macha, Zambia, there is not yet conclusive evidence implicating Anopheles coustani s.l. or Anopheles squamosus as

vectors.

combination of the two (Table 1). In west and east Africa,
vectors are primarily endophagic and endophilic (but see An.
arabiensis, Table 1), implying that nets should be highly effec-
tive, assuming high levels of local coverage. For two of the
higher transmission sites in southern Africa, An. funestus is
similarly expected to be endophagic and endophilic. Although
not yet reported for all the African sites, EIRs are, with the
exception of the high transmission site in Tororo, Uganda
(annual PfEIR ~125; Table 1), moderate relative to earlier
studies.! A major concern for these ICEMRs is how vectors
will respond to the massive rollout of LLINs in sub-Saharan
Africa. Already, some populations of An. gambiae s.s., such as
those in Guinea, have shifted from primarily endophagic
biting to primarily exophagic'®; whereas in other situations,
such as the highlands of Kenya, endophilic An. gambiae have
been dramatically reduced, with low transmission maintained
by An. arabiensis and novel anopheline species that are pri-
marily exophilic and bite early in the evening when people
are generally unprotected.'

East Africa ICEMR. Comparing three transmission sites
(low, moderate, and extremely high; Table 1) from this
Uganda-based ICEMR, only at the low site, Jinja, there was a
suggestion of a reduction in An. gambiae s.s. and a concurrent
increase in the abundance of An. arabiensis compared with
previous findings.>>® The study site in Jinja is peri-urban,
and it is possible that the predominance of An. arabiensis
reflects its adaptation to this disrupted environment as has
been observed in west Africa.?’*

Malawi ICEMR. This ICEMR is undertaking studies of
Plasmodium transmission and malaria risk and prevention in
various environments of southern Malawi, particularly in the
districts of Blantyre, Chikwawa, and Thyolo (Figure 1).>*!
Study sites differ considerably, ranging from predominantly
rural lowlands in Chikwawa where transmission is intense
and essentially year-round, to the rural highlands of Thyolo
with moderate seasonal transmission, to sites in and around

urban Blantyre City, with apparently lower-level, heteroge-
neous infection (Table 1). Until the ICEMR-supported
research began, little had been published about Anopheles
vectors in Malawi. One of the first studies by Spiers and
others™ undertaken in Chikwawa reported that the predomi-
nant vectors were An. arabiensis and An. funestus s.s.,
although An. gambiae s.s. was also present in this Shire River
valley area. Other work on filariasis vectors by Merelo-Lobo
and others™ also found these three species, with An. funestus
being the most abundant. However, little is known about the
relative abundance and role of Anopheles species in relation
to malaria patterns from Malawi.

Vector ecology and infection studies are now underway as
part of two ICEMR-supported projects involving a) health
facility-identified, case—control comparisons of urban/peri-urban
households in/around Blantyre City and b) cross-sectional,
household visit-based sampling across districts of Chikwawa,
Thyolo, and Blantyre. In all of these settings, Prokopack-style
aspirators and Centers for Disease Control and Prevention
(CDC) light traps are being used to test for the presence of
indoor adult mosquitoes that are identified by microscopy and
confirmed by polymerase chain reaction (PCR) (Table 1). In
rural settings, An. funestus s.s. is most abundant, with fewer
An. arabiensis and rare Anopheles quadriannulatus. In urban/
peri-urban Blantyre, year-round aspiration of 511 households
during April 2012 through March 2014 showed that 64% of
houses had mosquitoes, with Culex spp. representing 98.7%
of the sample (M. Wilson, personal communication). Very few
Anopheles spp. (12 males, 29 females) were found. Neverthe-
less, more Anopheles were captured in households of cases
(42%) than of controls (1.9%). In this urban setting, it
remains very difficult to find many Anopheles using aspiration
and light traps.

Public health efforts to reduce vector-human contact have
used widespread distribution of LLINs and focused use of
IRS** Nationwide distribution of free LLINs has been
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enhanced since 2012 when ownership was at only 58% of
households, and now all children born in health facilities
receive an LLIN, as do pregnant women when they first visit
an antenatal care clinic. Similarly, a free LLIN is now given to
each child at her/his first Expanded Program on Immunization
(EPI) visit. From 2008 through 2012, more than 6 million
LLINs were distributed in Malawi.>* However, Plasmodium
infection measured by PCR among children under 5 years of
age was still 43% overall, and 60.5% in the lowest wealth
quintile. The scale-up plan for 2012-2015 aims to achieve one
LLIN for every two people in each household.**

Other control efforts using IRS are coordinated by the
Malawi government, but this program is not nationwide, instead
focusing on seven districts of particularly high disease burden:
Karonga and Nkhata Bay (northern region), Nkhotakota and
Salima (central region), and Mangochi, Chikwawa, and Nsanje
(southern region). The 2012 MIS survey indicated that less
than 10% of Malawi households had received IRS within the
preceding 12 months, suggesting that this form of vector con-
trol is relatively less important.®*

Effectiveness of interventions to reduce vector—-human con-
tact depends on where, when, and on whom competent
Anopheles are feeding, but again little is known about this
in Malawi. Recent work in northern Malawi (Karonga) has
shown that An. funestus and Anopheles rivulorum were mostly
found indoors, but none were infected with either P. falciparum
or P vivax.® A new An. funestus-like species was also mostly
collected indoors, but mainly had fed on animals and also was
uninfected. Other studies from countries that border Malawi
support the general pattern that both An. funestus and An.
arabiensis predominantly feed indoors and on people. Investi-
gations in southeastern Zambia (~500 km west of southern
Malawi) have shown that An. funestus and An. quadriannulatus
were captured both indoors and outdoors, but nearly all were
found to have fed indoors, reinforcing the importance of LLIN
use.*® More generally, this pattern of An. gambiae complex and
An. funestus group predominantly biting humans indoors at
night seems to be common in eastern Africa.*’

West African ICEMR. Three malaria endemic countries:
Mali, Senegal, and The Gambia, comprise the focus of this
ICEMR (Figure 1). Across this broad geographical area vector
populations and malaria transmission differ in their complexity.
The site types (riverine: Gambissara, Dangassa; urban: Medina
Fall, and rice irrigation: Dioro) were chosen in part to explore
differences in length of transmission season, EIR (from ~5
to 51 bites/month; Table 1), and status of malaria control.®®
Anopheles gambiae and An. arabiensis are the major vectors in
all the three countries (Figure 2). However, other anopheline
vectors are encountered such as An. funestus and Anopheles
pharoensis inland and Anopheles melas on the coast>** In
The Gambia and Mali sites, as in the other African ICEMR
localities (Figure 1), An. gambiae is mainly endophagic,
although since the inception of this study, it has been collected
feeding outdoors 45-50% of the time (M. Coulibaly, personal
communication), similar to the change in behavior documented
on Bioko Island, Equatorial Guinea.® Anopheles arabiensis is
primarily exophagic except in the urban site of Medina Fall
where it feeds both indoors and outdoors (Table 1).

Overall malaria transmission is seasonal and coincident with
the rainy season. The peaks of transmission occur toward the
end of the rains when mosquito densities are waning.*® Never-
theless, transmission is perennial in some areas where irrigated

rice cultivation maintains anopheline breeding during the dry
season.** The urban site of Medina Fall (Senegal) showed the
lowest transmission level. The current large-scale vector control
strategies in use in Mali, The Gambia, and Senegal are LLINs
and IRS. Although the LLINs distribution is country wide at
all the three sites through campaigns and routine antenatal
consultation and EPI, IRS has been implemented only in
targeted areas in the respective countries. None of the west
African ICEMR study sites has received IRS to date, but insec-
ticide resistance is widespread.

Southern Africa ICEMR. In Macha, Choma District,
southern Zambia (Figure 1), there is marked spatial and
temporal heterogeneity in the foraging behavior of the
main vector An. arabiensis and previously undocumented
high anthropophily in secondary vectors Anopheles coustani
s.l. and Anopheles squamosus (Figure 2).**" Choma Dis-
trict has the potential to become a malaria-free zone, in part
because the formerly primary vector, An. funestus s.s., was
locally eradicated in 2004, possibly by a drought.*® Even
though the Macha population of An. arabiensis is highly
anthropophilic with foraging times that extend from dusk
until dawn with a greater tendency for exophagy (Table 1),
no specimens have been detected positive for Plasmodium
since 2006 and transmission in the district remains very low
(D. Norris, personal communication).*®** Despite the low
overall risk, it should be recognized that individual and
household risk is very unevenly distributed and spatially
clustered, and most importantly, this heterogeneity may be
further exacerbated by anti-vector interventions and multiple
host feeding by the vector.'®

In contrast, both endophagic An. funestus s.s. and An.
gambiae s.s. are responsible for very high levels of trans-
mission despite reported coverage of 1.73 LLINs per person
(2012) and greater than 90% coverage with IRS (2011) in
Nchelenge District, northern Zambia (S. Das, unpublished
data).>® The inability to achieve control here is likely due to
high levels of insecticide resistance to dichlorodiphenyltri-
chloroethane and deltamethrin and an inability to apply
effective control measures to the vector populations that are
physically difficult to access or may reside in transient house-
holds (D. Norris, unpublished data), a condition further lim-
ited by resources.”’ In Nchelenge District, the two vector
species exhibit enormous temporal and spatial heterogeneity,
which is hypothesized to exacerbate the observed perennial
year-round transmission (S. Das and D. E. Norris, unpublished
data) (Table 1). High rates of feeding on multiple human
hosts in a single gonotrophic cycle (S. Das and D. E. Norris,
unpublished data) and human movement into malaria risk
zones are seen as added challenges to control in this area
(K. M. Searle and W. J. Moss, unpublished data).

The third site for this ICEMR is Mutasa, eastern Zimbabwe
(Figure 1), where resurgent malaria occurs seasonally and
An. funestus s.s. appears to be the only significant vector.
Although current loss of vector control here is likely due
largely to insecticide resistance of An. funestus s.s. (M. Coetzee,
and others, unpublished data), historically An. gambiae s.s. was
the primary vector in this region.”® This change in primary
vectors may be attributed to gaps in malaria control because
of economic constraints that allowed mainly endophagic An.
funestus s.s. to invade from nearby Mozambique or emerge
from unknown refugia. Insecticides used subsequent to this
event, to which the An. funestus s.s. population were likely
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already resistant, would have helped this invasive vector popu-
lation to fully establish and thrive.

Latin America. In marked contrast to the African ICEMR
sites, most malaria in Latin America is caused by P. vivax
(~70%), except for relatively uncommon hot spots such as
Haiti, Guyana, and gold-mining areas across the Amazon,
where P. falciparum case numbers are higher than the aver-
age ~30%." In the vast area of the basin drained by the
Amazon and its tributaries, Anopheles darlingi is the main
vector,’>>® but, as is evident in the Latin American study
sites, several other vector species contribute to transmission,
and much less is known about their ecologies and entomologi-
cal metrics (Table 1). Many vector species in the neotropics
are exophagic and exophilic (Table 1), with the notable excep-
tions of An. darlingi, Anopheles albimanus, and Anopheles
nuneztovari (see the summary below for Latin American
ICEMR), which display endo/exophagy depending on host
availability and environmental characteristics.” Therefore,
control by IRS has been a mainstay for many years, and,
partly for reasons of logistics and distribution, the use of
LLINs has spread more slowly in Latin America than Africa,
Asia, or the southwest Pacific.”>>>*® An unresolved issue is the
relatively high use of IRS combined with very low levels of
insecticide resistance (M. Quinones, personal communication).

Amazonian ICEMR. There are very few reports in Latin
America where An. darlingi is no longer the dominant malaria
vector, for example, Suriname.> Infrequent, extensive flooding
that coincided with the beginning of the interventions in
Suriname likely contributed to the local collapse of An.
darlingi>® Anopheles darlingi is the predominant vector in
study sites near Iquitos, Peru, and near Acre, western Brazil,
in this ICEMR. In these localities An. darlingi is the main
vector, the most abundant, highly seasonal, exo- and endo-
phagic, and nearly exclusively exophilic (M. Moreno and others,
unpublished data) (Table 1).

Despite Ministry of Health and international (e.g., Control
de la Malaria en las Zonas Fronterizas de la Region Andina:
Un Enfoque Comunitario [PAMAFRO]) efforts to distribute
LLINs in Brazil and Peru from 2006 to 2011, unimpregnated
net use remains common in some localities, although an inte-
grated approach of LLINs combined with IRS has been
recommended.”®*™ Many populations of Amazonian An.
darlingi, including those in our study sites (M. Moreno and
others, unpublished data) display multimodal biting times.*’
A crepuscular peak (~19-21 hours) is common, well before
most people retire for the evening reducing the potential
impact of LLINs.®! Major issues in Peru are the correlation
of deforestation with significantly high human biting rates
along highways®? and in riverine settlements (W. Lainhart,
unpublished data), and hyperendemic malaria hot spots related
to occupational travel % In western Amazonian Brazil, defor-
estation linked to agricultural settlements and gold mining is of
primary concern.®® In study sites in Madre de Dios region,
southern Peru, An. darlingi was not common, and both
Anopheles rangeli and Anopheles benarrochi B were detected
infected with P. vivax for the first time in this region (Table 1,
Figure 2), but sample size was so small that the actual role
of these species in transmission could not be evaluated
(M. Moreno and J. E. Conn, unpublished data). These data
suggest that elimination efforts might be concentrated more
usefully on the detection and rapid treatment of occupa-
tional malaria transmission hot spots. Initial blood meal data

(M. Moreno and J. E. Conn, unpublished data) from barrier
screens support previous findings from eastern Amazonian
Brazil that An. darlingi feeds opportunistically, and strongly
suggest that host availability is the prime driver of blood meal
preference.®® It remains to be seen how best to exploit these
new findings to improve vector control in this region.

Latin American ICEMR. Latin American countries in
the Centro Latino Americano de Investigacion en Malaria
(CLAIM) include Guatemala, Panama, Colombia, and north-
western Peru.> In this broad area, the most important regional
vectors are An. darlingi, An. nuneztovari sl, and An.
albimanus (Table 1, Figure 1).*' Nevertheless, in one field site
in the Pacific region, Tumaco (Figures 1 and 2, Table 1), the
species Anopheles calderoni was found infected with P. vivax
(M. L. Quifiones, unpublished data). It was also infected with
P. falciparum in specimens from a palm-oil plantation in the
same region. These data infer that An. calderoni may be rela-
tively important in local transmission, and ecological and bio-
logical investigation in addition to control efforts should be
increased. There are many critical information gaps for these
species, such as lack of data on vector ecology, vector compe-
tence, and effects of environmental change on vectors.>* The
most common malaria control methods have been IRS, LLINs,
and early detection, diagnosis, and treatment.”®> Regrettably, for
LLINs, there have been basically no evaluations of the poten-
tial suppression of vector populations, vector behavioral
changes, transmission level, or location.>* Behavioral changes
toward increased exo- and endophagy in the northern part of
the geographical range of An. albimanus (Mexico and Panama)
may have been induced by early adoption of IRS.? Overall,
the predominant behavior among these species is exophagy
and exophily (Table 1); however, in several localities in the
Amazon, An. darlingi is mainly endophagic and An. albimanus
displays considerable plasticity, exhibiting both behaviors,
depending on host availability and locality.*"*> Broadly distrib-
uted across northern South America, An. nuneztovari is more
exophagic in the Amazon (where it may be Anopheles goeldii)
and more endophagic in Colombia and western Venezuela.*®®
As such, decisions on the most appropriate intervention(s)
differs across its geographic range necessitating more locally
tailored control than that seen in Africa.%®

New findings of a cross-sectional study using human-landing
catch (HLC) in 70 localities in western Colombia (Cordoba,
Narino, and Valle), where most transmission occurs, found
that An. albimanus and An. nuneztovari together constituted
approximately 80% of the 12,052 adult mosquitoes collected
and identified, and these were the only two species positive
for Plasmodium by enzyme-linked immunosorbent assay
(ELISA). Furthermore, 35% of these adults were endophagic.
Of all An. albimanus collected, ~22% were endophagic,
compared with ~45% endophagic An. nuneztovari (M. L.
Quifiones, unpublished data). A survey of breeding sites
found that most positive water bodies were either fish
ponds or small reservoirs for domestic use; 70% of all larvae
were An. nuneztovari. At least where An. nuneztovari is most
abundant and endophagic, continued use of LLINs combined
with focal application of larvicides might be the most effective
tools, even though malaria elimination in the near term may
be difficult to achieve.

South Asia ICEMR. Entomological results from this
ICEMR have implicated Anopheles stephensi, collected
during 85 nights from multiple urban and rural localities
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in Goa, western coastal India, as a vector of P. falciparum
(Figures 1 and 2). Panaji City, within Goa, had an EIR of
18.1 compared with an overall EIR of 2.35 for all of Goa
(Table 1).” In this city, An. stephensi is endophagic, but
rests outdoors. Most An. stephensi (N = 55) were actively
biting between 03:00 and 06:00, although there were sea-
sonal differences. Both Anopheles fluviatilis (N = 75) and
Anopheles culicifacies (N = 32) were collected biting humans
but neither species was positive for Plasmodium. Mosquito
control in and around Goa relies on larval suppression using
fish and larvicides (Table 1).

In Wardha (central India) and Ranchi (eastern India)
(Figure 1), An. culicifacies and An. fluviatilis are exophagic
and exophilic. Here, IRS is the only vector control, and
transmission is perennial with peaks during the rainy season.
In Ranchi, An. culicifacies transmits year long, with peaks
during the rainy season, and An. fluviatilis transmits primar-
ily during February and March. In Assam state, northeastern
India, the vectors are Anopheles baimai and Anopheles
minimus. This is an atypical part of India in which four
Plasmodium species circulate and are transmitted (Table 1).
Malaria is also perennial here. To date, EIRs have not been
determined for the localities in Wardha, Ranchi, or Assam.

India ICEMR. Urban and rural sites with contrasting trans-
mission dynamics are the main focus of this ICEMR. In urban
Chennai, India, a consistent hot and humid climate supports
stable, low level transmission of predominantly P vivax
malaria by a single vector species, An. stephensi (Figure 1,
Table 1). Malaria control in Chennai follows strategies
adopted by the Urban Malaria Scheme of the national pro-
gram of India wherein vector control is based on antilarval
measures such as the use of abate (temephos), application of
Bacillus thuringiensis israelensis formulations, and, to a certain
extent, larvivorous fish, Gambusia affinis. Despite a reduction
in malaria prevalence® the disease persists, possibly due to
rapid urbanization, regular reintroduction, large numbers of
breeding sites, a submicroscopic and/or asymptomatic parasite
load, and the difficulty of targeting dormant stages of P. vivax.
Mosquito control tends to be restricted to application of larval
insecticides, targeting known breeding habitats of An. stephensi
such as wells, overhead tanks, and other water storage con-
tainers. Use of interventions against the adult vectors within
domestic dwellings, such as LLINs or IRS, is minimal. The
reasons for the lack of adult mosquito control are varied
but include the extremely dense and complex nature of the
housing within urban slum settings (it is logistically challeng-
ing to access every house), discomfort in using nets in the hot
and humid conditions, low transmission rates (there are many
challenges at the household level above and beyond occa-
sional infection with generally nonlethal P. vivax), and very
low density of adult populations of An. stephensi. Indeed,
determining where and when local transmission occurs is very
difficult. The adult vectors are highly zoophagic (human blood
index [HBI] = 0.028) and almost exclusively found in cattle
sheds (Table 1). However, these biting and resting behaviors
create the potential for novel control strategies targeting the
more limited focal sites (i.e., cattle sheds) with tools such as
toxic sugar baits, or possibly treating cattle and other livestock
directly with insecticides or antihelminthics. Nonetheless, given
that the majority of adult malaria vectors are not feeding on
humans or resting in domestic dwellings, such focal interven-
tions targeting zoophagic and exophilic behavior could have

a dramatic impact on local transmission, which appears to be
almost a secondary foraging “spillover” phenomenon.

Vector control practices in forested tribal areas such as
Raurkela, follow more established approaches with intensive
IRS and LLIN programs. The perennial vector in these rural
settings is An. culicifacies, which tends to be zoophagic and
exophilic. The most common sibling species, B, is refractory
to P vivax.**’® The primary vector responsible for peak
P. falciparum transmission is An. fluviatilis. This species is
restricted to breeding in slow-moving fresh water that occurs
post-monsoon, and so exhibits highly seasonal dynamics. The
predominant sibling species, S, is an efficient vector, with
previous studies showing it to be highly anthropophagic and
endophagic, with a HBI up to 0.90.”""> Recent results may
suggest a shift in An. fluviatilis (M. B. Thomas, unpublished
data) feeding behavior, mirroring changes observed else-
where in response to wide-scale use of IRS and LLINs.*"*74

Studies suggest that An. fluviatilis has shifted from resting
within human dwellings to semi-enclosed animal sheds.”
This apparent behavioral change is actually species replace-
ment; the S type now comprises only 20% of the 2013-2014
population and the zoophagic and exophilic sibling species T,
now comprises the majority. This replacement might be due
to increased comparative fitness of T during control measures
(i.e., some form of competitive replacement), or it could be
that S is simply disproportionately affected by interventions
with T, feeding in cattle sheds, unaffected by IRS and LLINS,
and remaining at similar absolute levels but showing a relative
increase. These patterns (including the challenges in inter-
pretation) again mirror those reported elsewhere.®’>7*

Southeast Asia ICEMR. The China-Myanmar and Thai—
Myanmar border regions have been the geographical empha-
sis of this project (Figure 1). The Government of China has
set a goal of malaria elimination by 2020, and Thailand is
pursuing spatially progressive elimination and has a national
goal to eliminate malaria from 80% of the country by 2020.7°
However, high malaria incidence in neighboring Myanmar and
cross-border human movement present major challenges for
malaria elimination in China and Thailand.! Therefore, under-
standing vectorial systems and developing site-appropriate
transmission control methods in the border regions are crucial.

The study sites on either side of the China-Myanmar border
area are separated by less than 10 km but have significantly
different vectorial systems. In the Chinese sites (around
Nabang town in Yingjiang County, Yunnan Province), the
major malaria vectors in the 2010-2012 survey by CDC light
traps were An. minimus, Anopheles sinensis, and Anopheles
maculatus (Figure 2). Anopheles minimus and An. maculatus
are endophagic and anthropophilic whereas An. sinensis is
generally exophagic (Table 1).” Anopheline density was
highly variable among sites and between seasons. Peak mos-
quito density was in May, during the rainy malaria trans-
mission season. Molecular taxonomy of a subsample of An.
minimus s.l. found that the only member of this complex pres-
ent was An. minimus s.s. Moreover, of the anophelines exam-
ined, only An. minimus was detected infected with P. vivax,
albeit only one positive individual out of 1,500 tested (0.07%).
Blood meal analysis of a modest sample size (N = 104)
revealed that humans were the main host (82.6%), followed
by cattle, pigs, and dogs.”” Mixed blood meals of human/pig
and human/cow were detected at low frequency (0.9% each).
In the Myanmar study sites near Laza Town, Kachin Special
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Zone, CDC light trap collections in 2013-2014 found An.
minimus was predominant, constituting 89% of anophelines
collected despite high anopheline species diversity (20 species
collected). The sporozoite rate of An. minimus (1.8%) in Laza
Town, Myanmar, was considerably higher than in Nabang
Town on the Chinese side.

It is important to note that malaria vector species composi-
tion varied significantly by mosquito collection methods.
For example, larval mosquito collection in the same study
sites in Myanmar found that the four most abundant vectors
were An. sinensis, Anopheles barbirostris, An. minimus, and
Anopheles splendidus (G. Yan, unpublished data) rather than
An. minimus. Larval and adult survivorship in life table stud-
ies found differential survival because of local climate condi-
tions as well as land use and land cover variation (G. Yan,
unpublished data). In any predictive model for malaria, the
environmental variables that effect anopheline survivorship
need to be measured and incorporated.'” On the Thai-
Myanmar border area, the main vectors are An. minimus,
An. maculatus, and Anopheles annularis. All three species
rest indoors and outdoors, so LLINs should exert some con-
trol on the former portion of their populations.

Southwest Pacific ICEMR. The geographic foci of the
southwest Pacific ICEMR are the Madang and East Sepik
Provinces in Papua New Guinea as well as Central and West-
ern Provinces in the Solomon Islands. Current vector control
in Papua New Guinea and the Solomon Islands relies on
LLINs with limited use of IRS in the Solomon Islands.” The
main malaria vectors across the region are members of the
An. punctulatus group: An. punctulatus s.s., An. koliensis,
and the An. farauti complex, which consists of eight cryptic
species (Figure 1), and the diversity of these species varies
across sites.”” 3! Two of the primary vectors in the southwest
Pacific, An. koliensis and An. punctulatus, which were endo-
phagic and more anthropophic than An. farauti, were dra-
matically reduced by IRS, and An. koliensis may have
disappeared from the Solomon Islands.”®> In Papua New
Guinea, two other species in the An. farauti group are
important vectors: Anopheles hinesorum and An. farauti 4,
with An. farauti 6 and An. farauti 8 considered to be minor
vectors with circumsporozoite antigen detected by ELISA.%?
Other minor malaria vectors in Papua New Guinea are,
either uncommon or with a limited geographical distribu-
tion, Anopheles longirostris, Anopheles bancroftii, Anopheles
subpictus, and Anopheles karwari8"®* Collections made by
HLC in Papua New Guinea found An. farauti s.s. was the
predominant species in Mirap village whereas An. punctulatus
was the most common species found in the inland villages of
Yauatong and Wasab in the East Sepik Province. The minor
vector, An. longirostris, had a relatively high population den-
sity in Wasab village. In the Solomon Islands, the only species
caught biting humans at significant densities in Central Prov-
ince was An. farauti s.s.

In Papua New Guinea, the populations of An. punctulatus
and An. farauti were mostly zoophilic, late night biting, and
exophilic but exhibited both exophagic and endophagic bit-
ing habits.®® Recent data from the Central Province of the
Solomon Islands reported An. farauti as highly anthropophagic
with more than 90% of blood meals on humans (Table 1).%
Both the timing of night biting behavior (from late to early)
and location (from indoors/outdoors to predominantly out-
doors) of An. farauti in the Solomon Islands shifted in response

to selective pressure to avoid insecticides following IRS
decades ago and these behavioral changes have persisted.’
Physiological resistance to insecticides has not been found
yet in Papua New Guinea or the Solomon Islands, with
the temporal biting shift to earlier possibly providing a
behavioral resistance mechanism to minimize exposure of
this vector to insecticides.® This change in blood-feeding
behavior has appeared independently on multiple islands
in this archipelago, suggesting that LLINS and IRS will have
a limited impact on malaria transmission for this important
regional vector.®® Elimination may require the use of supple-
mental and complementary interventions to be implemented
with LLINs.

LESSONS LEARNED FROM VECTOR BIOLOGY
ACROSS ICEMRS

Collection methods. The wide range of trap types and/or
control methods favored by each ICEMR is a result of project-
specific research questions, trap type collector bias, and contro-
versy surrounding the HLC method because of a perceived
infectivity risk to collectors (see Gimnig and others®”). Further-
more, HLC is expensive and labor intensive. In several of the
ICEMR sites, CDC traps combined with either pyrethroid
spray catch or aspiration have replaced or supplemented HLC
(Table 1). A recent study in the three east Africa ICEMR sites
revealed statistically comparable EIRs for CDC compared
with HLC such that the former can safely and effectively
replace the latter.”> On the other hand, the Amazonian
ICEMR found that HLC resulted in significantly higher num-
bers of An. darlingi compared with Shannon traps and CDC
traps, although the number of infected mosquitoes was so low
that EIRs could not be compared (M. Moreno and others,
unpublished data).

An important outcome of the ICEMR vector biology stud-
ies is a new push to standardize monitoring across sites by
the use of barrier screens, recently developed in Indonesia
and the south Pacific.>* Advantages of this method include
simplicity of construction and use of local material, collection
of high numbers of both nulliparous and parous anophelines,
collection of infected anophelines (to date only evidence
from Iquitos; M. Moreno and others, unpublished data), no
bias related to feeding preference (humans and animals are
not involved as attractants), and physical integrity of speci-
mens collected. The Amazonian, Latin American, southeast
Asia, southern Africa, and southwest Pacific ICEMRs are
currently testing these traps for effectiveness in collecting
resting and host-seeking anophelines across the diverse set-
tings, habitat types, and vector species.

New putative malaria vectors. Using standard incrimination
criteria (presence of infected, correctly identified anthropo-
philic vectors concurrent with malaria transmission), evidence
of new or potential vector species has been collected in four of
the 10 ICEMRs (Figure 2). Although EIRs have been deter-
mined only for An. calderoni in Colombia, they are in progress
for An. rangeli and An. benarrochi B in southern Peru, and will
be calculated, pending vector confirmation, for the additional
species and sites (i.e., An. subpictus in Goa, possibly An.
coustani sl. and An. squamosus in Macha).*>™*" In Western
Province, Solomon Islands, Anopheles lungae is the most com-
mon anopheline collected by HLC in several villages. How-
ever, incrimination as a potential vector of human malaria
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awaits confirmation of the presence of sporozoites by PCR or
ELISA.®'%2 How these and other putative new vectors will
respond to changes in LLIN use or climate change is being
actively addressed in the Amazonian ICEMR.®®

Value of longitudinal surveillance sites to malaria elimina-
tion. Highlights of the value of these sites thus far include
the following:

1. No detectable or very reduced transmission in Choma and
Macha, Zambia*®*’; Villa de Buen Pastor, near Iquitos,
Peru; Madre de Dios, Peru; and Granada and Remansinho,**
western Brazil.

2. Change in the proportion of endophagic to exophagic
An. gambiae in The Gambia and Mali sites.

3. Species replacement of An. gambiae s.s. by An. funestus
s.s. in Mutasa, Zimbabwe and species replacement of
An. fluviatilis S by An. fluviatilis T in Raurkela, India.

4. Temporal biting shift in An. farauti from multiple islands
in southwest Pacific archipelago.5>3°

5. Several new putative vector species (see above); evidence
for the role of An. stephensi in transmission in Goa, India
(first EIRs), and An. minimus in Yingjiang, China, and
Laza, Myanmar; An. hinesorum, An. farauti 4, An. farauti
6, and An. farauti 8 in Papua New Guinea.®?

6. Confirmation of the effectiveness of the barrier trap from
studies in the southwest Pacific to collect unbiased sam-
ples of outdoor resting mosquitoes (see above).5*

7. Significant contribution to malaria transmission by An.
albimanus and An. nuneztovari s.s. in 70 localities in
western Colombia.

8. Evidence from blood meal analysis near Iquitos, Peru, that
An. darlingi is more locally opportunistic than anthropophilic.

Each of these discoveries contributes to more accurate
EIR values and provides feedback to parallel epidemiologi-
cal and parasitological studies ongoing in the ICEMR sites.

Management of outdoor (residual) transmission. Overall,
malaria vector control in the ICEMR study sites is reliant on
the two insecticide-based interventions for which there exists
a strong, primarily Africa-derived evidence-base: LLINs
and IRS.3>° However, the ICEMR sites reveal a variety
of transmission scenarios that will require a more tailored
approach that can be monitored and modified rapidly as the
need arises. Where endophagy remains dominant and vectors
are resistant to pyrethroids, the deployment of attractive toxic
sugar baits (ATSB) indoors in combination with LLINS, is
one possibility’"** although indoor ATSBs may be temporally
unsustainable (S. Lindsay, personal communication). Reduc-
tion of crepuscular human-vector contact outside houses
might be accomplished by the use of ATSB outdoors, as this
intervention was predicted to be especially effective against
An. arabiensis, which is primarily exophilic.”! Furthermore, if
these exophilic populations are also mainly zoophilic, treating
nearby animal hosts as suggested for An. fluviatilis, in India,
as mentioned above, could be an effective part of an inte-
grated vector control plan.”*** Additional important options
to prevent outdoor transmission in the context of integrated
control include larviciding, as used in the ICEMR urban sites
of Tumaco, Goa, Chennai, and Nadiad (Table 1), and envi-
ronmental management.”>*® More broadly, new interventions
could include transgenic mosquitoes, sterile male releases, or
cost-effective consumer products.

CONCLUSIONS

Data from the ICEMRs clearly illustrate that malaria
transmission and vectors are highly spatially and temporally
heterogeneous. In addition, behaviors exhibited by many
vector species involved are diverse, and although they can
be broadly categorized as endophagic, exophagic, endophilic,
and exophilic, most vectors exhibit a mix of behaviors (e.g.,
some “outdoor feeding” vectors will occasionally blood feed
indoors). Local behavioral adaptations will require new com-
binations of sampling, surveillance, and control tools. For
example, at one location a program may have to address the
control of multiple species, but also the control of a single
species that can present multiple behaviors.
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