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Abstract: 11 

Linking hard rock coastal cliff erosion to environmental drivers is challenging, with weak 12 

relationships commonly observed in comparisons of marine and subaerial conditions to the 13 

timing and character of erosion. The aim of this paper is to bring together datasets to explore how 14 

best to represent conditions at the coast and to test relationships with erosion, which on this coast 15 

is primarily achieved via rockfalls. On the N. Yorkshire coast in the UK we compare a continuously 16 

monitored microseismic dataset, regionally monitored coastal environmental conditions, 17 

modelled at-cliff conditions and periodic high-resolution 3D monitoring of changes to the cliff face 18 

over a 2-year period.  19 

Cliff-top microseismic ground motions are generated by a range of offshore, nearshore and 20 

at-cliff sources. We consider such ground motions as proxies for those conditions that promote 21 

the occurrence of rockfalls and erosion. Both these data and modelled at-cliff water levels provide 22 

improved insight into conditions at, and wave energy transfer to, the cliff. The variability in 23 

microseismic, modelled and regionally-monitored environmental data derives statistically 24 
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significant relationships with increases in the occurrence of rockfalls. The results demonstrate a 25 

marine control on the total volume and size characteristics of rockfalls. The strongest 26 

relationships found are with rockfalls sourced from across the entire cliff, rather than just at the 27 

toe, indicating that the marine influence, albeit indirectly, extends above and beyond the area 28 

inundated. These results identify failure mechanisms driving erosion, where a range of processes 29 

unique to the coast trigger failure, but in a manner beyond purely wave action at the cliff toe. 30 

Greater erosion occurs at the cliff toe. However, comparing water level inundation 31 

frequency, microseismic energy transfer and erosion, we observe that heights up the cliff that 32 

correspond with water levels associated with low frequency, high energy storms, or more 33 

frequent inundation, do not experience increased erosion. Our results describe the relationship 34 

between inundation duration, energy transfer and erosion of hard rock cliffs, and illustrate the 35 

relative intensity of erosion response to variations in these conditions. Implicitly our data 36 

suggests that in future, cliffed rocky coasts may be relatively quick to respond to changes in 37 

environmental forcing.  38 

 39 

Key words: Rocky coast, Coastal erosion, Coastal cliff, Cliff ground motion, Rockfall, Wave energy.  40 
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1 Introduction  42 

 Few studies have attempted to quantify the controls on hard rock cliff erosion compared to 43 

cliffs of softer materials, likely due to comparatively slow response to environmental forcing and 44 

the difficulties of monitoring steep, hard rock cliffs. The development of high-resolution 45 

monitoring techniques, such as terrestrial and airborne laser scanning, has begun to address this 46 

(e.g. Sallenger et al., 2002; Lim et al., 2005; Rosser et al., 2005; Collins and Sitar, 2008; Young et al., 47 

2011a), though establishing links between observed erosion and concurrent environmental 48 

conditions remains problematic.  49 

 Monitoring demonstrates that coastal rock cliff erosion is in part a function of mass 50 

wasting via spalling, rockfalls (e.g. Lim et al., 2010), block falls and topples (e.g. Young et al., 51 

2011a). Failures from rock cliffs have been observed to be sourced from locations across the 52 

whole cliff face, and many actively eroding non-carbonate coastlines often lack a concave toe 53 

notch considered indicative of marine erosion (Pierre and Lahousse, 2006; Rosser et al., 2007; 54 

Young et al., 2009a). The propagation of rockfalls has been observed to facilitate the transmission 55 

of marine erosion up the cliff face over time (Rosser et al., 2013). Combined, these observations 56 

suggest a complex and variable interplay of geological and environmental controls on erosion. For 57 

example, whilst previous work has shown a close link between rockfall geometry and geology 58 

(Duperret et al., 2002; Kogure and Matsukura, 2010), analysis of the timing of rockfalls with 59 

energetic environmental conditions yields only poor correlations (Rosser et al., 2007; Lim et al., 60 

2010). Encouragingly, high-resolution studies of soft rock cliffs have had more success in linking 61 

the occurrence of failure to specific drivers, such as extreme wave runup (Sallenger et al., 2002; 62 

Collins and Sitar, 2008) and rainfall (Collins and Sitar, 2008; Young et al., 2009b; Brooks et al., 63 

2012). By implication either harder rock coasts do not respond rapidly to forcing, their response 64 

is lagged, or current monitoring data is incapable of capturing these relationships.  65 
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In the absence of data on conditions proximal to the coast, it has been common practise to 66 

approximate often far-field observations of marine and weather conditions, using numerical 67 

transformations or interpolations, as the basis for comparisons between erosion and its drivers 68 

(Ruggiero et al., 2001; Collins and Sitar, 2008; Young et al., 2009b). Transformations to estimate 69 

wave power propagation and dissipation have been used to estimate marine erosive capability 70 

(Stephenson and Kirk, 2000; Trenhaile and Kanyaya, 2007), and drive models of long-term 71 

(millennial-) coastal evolution (e.g. Trenhaile, 2000; 2011). The transformation or indeed the 72 

direct measurement of wave characteristics to explain short-term (< monthly) rock cliff erosion 73 

remains more problematic (Lim et al., 2010).  74 

There has been a significant amount of numerical work modelling the vertical distribution 75 

of wave erosion as a direct function of tidal and therefore wave inundation frequency (Sunamura, 76 

1975; 1977; Trenhaile and Layzell, 1981; Carr and Graff, 1982; Walkden and Hall, 2005; Walkden 77 

and Dickson, 2008). At sites of harder rock cliffs where notches commonly do not develop, the 78 

relationships between the vertical distribution of erosion, water level inundation frequency and 79 

wave attack remain poorly constrained.  80 

The challenges of obtaining relevant monitoring of coastal conditions has led to the use of 81 

monitored cliff-top microseismic ground motions as a proxy for environmental forcing, based 82 

upon the assumption that ground motion in part reflects the timing, magnitude and efficacy of 83 

forcing (Adams et al., 2002; 2005; Young et al., 2011b; 2012; 2013; Dickson and Pentney, 2012; 84 

Norman et al., 2013). Distinct microseismic frequencies describe particular types of conditions, 85 

although frequency band widths vary by location dependent on local marine and 86 

geomorphological characteristics. Wave impacts (e.g. Adams et al., 2002) and wind buffeting 87 

(Norman et al., 2013) at the cliff generate high frequency shaking; local waves in shallow 88 

nearshore waters generate ground motions of the same periods termed single frequency (SF) 89 

microseisms; and double frequency (DF) microseisms are generated in open sea as a function of 90 
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wave superimposition and produce increased amplitudes (Adams et al., 2005; Young et al., 2011b; 91 

2012; 2013; Norman et al., 2013). Energetic wave conditions during storms must be a key driver 92 

of rock cliff erosion (e.g. Trenhaile, 1987; Bray and Hooke, 1997; Anderson et al., 1999; Walkden 93 

and Hall, 2005), yet measuring their interaction with the cliff is problematic. Microseismics have 94 

been shown able to act as a relative measure of marine and storm energy transfer to a cliff, 95 

whereby ground motions can be used to examine relationships between storm characteristics, 96 

energy and erosion.  97 

Lim et al. (2011) explored the rate of seismic events recorded by a cliff-top geophone 98 

above a ground acceleration trigger threshold in relation to rockfall activity monitored at monthly 99 

intervals. No significant correlation was found between the number of seismic events and 100 

resultant aggregate rockfall volume. However, a positive correlation between the monthly number 101 

of seismic impacts and rockfalls occurring in the following month was observed, suggesting a 102 

lagged effect, which the authors suggested may be an artefact of the monitoring interval used. 103 

Using broadband seismometers over a 2-year period, Norman et al. (2013) derived the rate (µJ 104 

hour-1) of microseismic marine energy transfer, modulated by water level and wave climate, and 105 

identified the vertical distribution of energy to the coast during the tidal cycle under various 106 

conditions. This approach identified a notable difference in the timing of energy delivery as 107 

compared to monitored or modelled tide-only inundation durations (Carr and Graff, 1982; 108 

Trenhaile, 2000). The greatest rate of energy transfer, perhaps unsurprisingly, occurred during 109 

the highest storm waters - periods that combined high tides, storm surge and large waves with 110 

set-up. By implication, if the transfer of microseismic energy is suitable as a proxy for erosion, 111 

then peak energy transfer during storms will be dominant in defining when and where erosion 112 

occurs. The direct response of erosion to microseismic energy transfer and water level has 113 

however not been examined until now.  114 
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The aim of this paper is to explore how best to represent conditions at the coast,  115 

comparing microseismic motions, monitored far-field and modelled at-cliff conditions, and to use 116 

these datasets to examine controls on the occurrence of erosion via rockfalls. Using a 2-year 117 

monitoring dataset that includes 21 individual survey epochs of erosion data, relationships with 118 

rockfalls from both the inundated cliff toe (‘wet’), and the face above (‘dry’) are examined, to 119 

consider the mechanisms driving erosion.  120 

 121 

2. Study site 122 

We focus here upon a section of 55 m high near-vertical Lower Jurassic mudstone, shale, 123 

siltstone and sandstone cliff with an open northerly aspect on the east coast of N Yorkshire, UK 124 

(Fig. 1a, b). The study builds upon previous monitoring of rockfalls and erosion at this site (Rosser 125 

et al., 2007; 2013; Lim et al., 2010), which has a coast-parallel planar geometry c. 500 m from the 126 

nearest bay or headland. The wide (c. 250 m during mean low spring tide), low-gradient (< 1o) 127 

rock foreshore and macrotidal conditions (c. 6 m range during spring tides) (Fig. 1c) generate 128 

highly variable conditions at and near to the cliff, both through a single semi-diurnal tidal cycle, 129 

and between seasons when conditions are greatly exacerbated by storms in the North Sea.  130 

 131 

3 Methods 132 

3.1. Field data 133 

The following data were collected over c. 2-years (25 July 2008 – 28 June 2010); a period of 134 

sufficient length to capture a range of coincident tidal / weather conditions at this site:  135 

- Cliff microseismic motion in 3-axes, using a single 100 Hz Guralp 6-TD broadband seismometer, 136 

installed within the cliff-top glacial till deposits (Fig. 1c); 137 
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- Data from the nearest available tide gauge combining water level and residuals from modelled 138 

predictions (UK National Tide Gauge Network, Whitby [25 km south]). Hourly significant wave 139 

heights and onshore and offshore wind speeds were obtained from an offshore buoy and 140 

onshore weather station (CEFAS Wave Net, Teesside [20 km northwest from site]; UK Met 141 

Office, Loftus [3 km west from site]) were collated. We refer to these data as ‘distal’ in the 142 

following analysis.  143 

- 3D scans were captured during low tides at 4 – 8 week intervals using a Trimble GS200 144 

terrestrial laser scanner (TLS). The scanner ranging accuracy is 0.0015 m at 50 m. Data had a 145 

minimum point spacing of 0.125 m across the monitored cliff.  146 

 147 

3.2 Wave modelling 148 

To approximate conditions local to the cliff, monitored distal waves and tide data were 149 

modelled using a transformation based on Battjes and Stive (1985). This relatively simple 150 

approach was used because detailed bathymetry data was not freely available for the area 151 

between the buoy and the coast. The 30-minute data interval and single location of the offshore 152 

wave buoy data meant that the resolution of input data was not sufficient for more complex wave 153 

refraction models. Full details of the model are provided in Norman et al. (2013). The modelled 154 

locations of breaking and surf zones match field observations. In the absence of monitoring data of 155 

actual conditions the model output accuracy cannot be tested for this site. However, Battjes and 156 

Stive (1985) compared outputs from this model for a similar site on the eastern coast of the North 157 

Sea that experiences an analogous wave climate. They obtained a correlation coefficient of 0.98 158 

between modelled and measured RMS wave heights, with an RMS normalised error of 6%.  159 

 160 

3.3 Data processing and analysis methods 161 
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3.3.1 Rockfall and erosion data 162 

TLS data was processed to derive rockfall volumes from sequential scans, which included 163 

registering successive surveys, generating cliff-parallel surface elevation models and extracting 164 

change. An object-oriented classification of individual rockfalls was used to extract rockfall 165 

volumes (see: Lim et al. 2005; Rosser et al., 2005). Scans were sequentially registered with a root 166 

mean square error of ±0.1 m which, combined with the point spacing, meant that the minimum 167 

volume of rockfalls detectable was c. 0.00156 m3. Rockfall data was aggregated by survey epoch to 168 

describe rockfall location and failure geometry. For rockfalls in each epoch we calculate: total 169 

volume, mean volume, standard deviation (σ) of the volume and maximum volume, plus the total 170 

volumes within five rockfall size classes: class 1 < 0.01 m3; class 2 0.01 ≥ < 0.1 m3; class 3 0.1 ≥ < 1 171 

m3; class 4 1 ≥ < 10 m3; and, 5 ≥ 10 m3. In the analysis we hypothesize that the variability in 172 

environmental drivers and resulting erosion response will be manifest between these survey 173 

epochs.  174 

The elevation of the boundary between the wet and dry sections of the cliff was estimated 175 

by ‘stacking’ the maximum water heights over the 2-year monitoring period from modelled tides 176 

and waves, including set-up.  In the absence of a reasonable approximation for wave run-up and 177 

splash on these cliffs, the maximum wave height was doubled. Whilst the distinction between 178 

these two zones at fine-scale is arbitrary, here we seek only to derive a broad distinction between 179 

the cliff face exposed to direct wave action (the bottom c. 5 m), and that above (the upper c. 50 m). 180 

 181 

3.3.2 Seismic data 182 

Seismic data was processed to derive signal power and energy in three frequency bands 183 

that span the range of cliff top ground motions observed (50 – 0.1 Hz). These include: WI (12.5 – 184 

50 Hz), representative of wind acting at the cliff face; HT (1.1 – 50 Hz), used as a proxy for wave 185 

impacts on the cliff face during high spring tides or storm surges; and MS (1 – 0.1 Hz), which 186 
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describes microseisms generated both in the nearshore and at more distal locations within the 187 

North Sea. We subsampled these bands to five discrete frequencies: 0.022 s (WI), selected because 188 

WI and HT overlap and the HT signal is weakest at this frequency; 0.104 s (HT) selected because 189 

this frequency experiences the highest powers without overlapping with WI; and three 190 

frequencies for MS: 1 s (MS1) believed to represent a number of nearshore processes; 3 s (MS3) 191 

the most frequently occurring wave period monitored at the wave buoy; and 5 s (MS5) the mean 192 

wave period recorded at the wave buoy and also commonly is attributed to the peak amplitude in 193 

the double frequency microseism range (e.g. McNamara and Buland, 2004). To demonstrate which 194 

conditions dominate each of these frequencies, the signal power was regressed against the 195 

monitored and modelled marine and wind datasets. Signal power was used because the rate of 196 

energy transfer, rather than the total energy transferred, was found to provide greater detail and 197 

differentiation as to when, and therefore how, energy is transferred to the cliff. This helps to 198 

identify the processes generating the ground motions.  199 

To undertake analysis of the microseismic motion with the erosion data the mean, 200 

maximum and total (non-normalised for time) seismic energy of each survey epoch was 201 

calculated, for each frequency, as a proxy for the energy available to drive erosion. A degree of 202 

background noise in each of these frequencies may be included within these values (notably HT, 203 

discussed below). However, examination of spectrograms demonstrates that signal amplitude is 204 

generally dominated by fluctuations coincident with changes in environmental conditions (see 205 

Norman et al., 2013). 206 

 207 

3.3.3 Environmental data 208 

The monitored and modelled environmental data were re-sampled to the means, totals and 209 

extremes for each survey epoch where appropriate. The following variables were used in the 210 

analysis: tide height and residuals at the Whitby tide gauge; wave height at the offshore wave 211 
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buoy; modelled water surface elevation and inundation duration above the cliff toe combining 212 

tide, surge, wave and set-up heights; and wind velocity. Regression analysis to derive the 213 

coefficient of determination (r2 for simple regression models (one independent variable) and R2 214 

for the multiple regression models) was used to test for and describe the relationships between 215 

the concurrent environmental and microseismic conditions and erosion. Only the statistically 216 

significant relationships (p < 0.001) are presented.  217 

 218 

4. Results  219 

4.1 Marine and weather conditions  220 

4.1.1 Monitored and modelled environmental conditions 221 

The coast is storm-dominated during the winter months, with stronger winds, larger waves 222 

and larger tide residuals (Fig. 2a-c). The relatively limited fetch of the North Sea restricts wave 223 

height and period, although waves that have travelled over greater distances can enter the North 224 

Sea from the North Atlantic. More than 80% of significant wave heights monitored at the buoy are 225 

≤ 2 m, and maximum recorded wave height at the buoy was 6.45 m (Fig. 2c). The mean recorded 226 

wave period at the buoy is 5 s and maximum was 20 s. Longer wave periods occur in winter 227 

months (Fig. 2d). 228 

The intertidal zone extends across the 250 m wide foreshore (Fig. 1c). As the mean high 229 

neap water level is just below the cliff toe, only during high spring tides is any of the cliff face 230 

inundated during still water conditions (Fig. 1c). Modelled tide, surge, wave and set-up heights at 231 

the cliff have been combined to estimate total water level above the cliff toe (Fig. 2e). Maximum 232 

modelled water level reaches 2.9 m above the cliff toe, 1.4 m higher than tidal inundation alone. 233 

The resulting change in inundation is important in terms of not only the amount of time wave 234 

energy is transferred directly to the cliff, but also where on the cliff face this occurs. The modelled 235 



11 
 

combined water elevations (Fig. 2e) differ significantly to distal wave heights at the buoy (Fig. 2c) 236 

due to the transformation of waves through the shallow waters of the nearshore and foreshore. In 237 

the absence of monitored foreshore waves the modelled marine heights provide a useful estimate 238 

of the temporal variability of conditions at the cliff.   239 

  240 

4.1.2 Microseismc cliff ground motions 241 

The mean hourly signal power (spectrograms) (Fig. 3ai, bi) and energy observed within the 242 

WI and MS ground motion frequencies (Fig. 3aii, bii) reflect the variability of the monitored 243 

marine and wind conditions (Fig. 2a-c). More energetic wind (WI) (Fig. 3b) and wave (MS1, 3 & 5) 244 

conditions (Fig. 3a) occurred during autumn and winter months (October – March). HT 245 

frequencies are strongly modulated by tide height, and so vary ostensibly independently of season 246 

(Fig. 3b). Within the MS spectrogram the maximum wave period during the summer is 8 s and 247 

increases during winter (Fig. 3ai), indicating the occurrence of longer period swell waves 248 

generated by more stormy winter winds and waves (Fig. 2a-d). Highest powers in the microseism 249 

band also occur in winter, in the period range 3 – 8 s (Fig. 3ai). These are the most frequently 250 

occurring wave periods recorded at the buoy (Fig. 2d); however, this is also the period range of DF 251 

microseisms which have larger amplitudes, so the higher powers in this range likely reflects both 252 

sources. Of the 3 MS frequencies examined, the 5 s signal mean hourly power shows the most 253 

pronounced seasonal variation, as this period captures swell waves generated by distal storms 254 

(Fig. 3aii). 255 

  256 

4.1.3 Microseismic cliff motions as proxies for environmental conditions 257 

Regression analysis between the monitored and modelled environmental conditions and 258 

the ground motion frequencies was undertaken. Linear regression between wave characteristics 259 
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at the buoy, winds and modelled waves at the cliff toe were undertaken to determine whether the 260 

signals were related to winds or wave processes at the cliff, or more distally. The highest r2 values 261 

for the WI frequency are generated by onshore winds (r2 = 0.6) (Fig. 4). In contrast the HT and MS 262 

frequencies have higher r2 values with waves rather than winds (Fig. 4). The highest r2 value 263 

(0.21) for HT demonstrates that cliff toe waves are the most important (Fig. 4); however, the low 264 

r2 value indicates other factors are likely to contribute significantly to this signal. In the 265 

spectrogram for this frequency band (Fig. 3bi) there is a constant noise source that overlaps with 266 

this frequency, believed to be generated by an industrial pump 150 m from the seismometer. The 267 

r2 values for the three MS frequencies indicate that the MS signals relate best to waves at the buoy 268 

(Fig. 4); however, the r2 values decrease with increasing period (MS1 r2 = 0.67; MS3 r2 = 0.44; and 269 

MS5 r2 = 0.21). This indicates that as wave period increases, waves at the buoy contribute less to 270 

the microseismic signal at the cliff. As the 3 and 5 s MS periods sit within the DF microseism range, 271 

this may indicate that these signals are partially generated by DF mechanisms further offshore. 272 

To better constrain the nature of wind or wave conditions that generate each of the five 273 

frequency bands, multiple regression analysis considering monitored wind velocity (from all 274 

directions and onshore winds only), tide, waves at the buoy and modelled wave and set-up heights 275 

at the cliff, was undertaken. The combinations of variables that produced the highest statistically 276 

significant R2 values are presented (Tab. 1). Each of these produces a higher R2 value than the 277 

simple pair-wise regression models (Fig. 4). The WI model (R2 = 0.72) (Tab. 1) comprises onshore 278 

wind velocity, which the associated beta coefficients demonstrate make the greatest contribution 279 

in the model, and wave and set-up heights at the cliff, representing the overlap with the HT band. 280 

For the HT frequency adding set-up heights to the wave heights at the cliff increases the R2 value 281 

(0.53) (Tab. 1) from the model of wave heights alone (0.21) (Fig. 4). Wave set-up heights make the 282 

greatest contribution to HT (Tab. 1), indicating the importance of wave breaking at the cliff in 283 

generating this signal. Norman et al. (2013) observed that the HT signal was generated only 284 
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during high spring tides or surges that enabled large waves to impact directly against the cliff face. 285 

The significant variables and high R2 values of both the pair-wise (0.67) (Fig. 4) and multiple 286 

linear regression (0.80) models (Tab. 1) for the MS1 signal indicate that both marine conditions at 287 

the cliff and those more widely contribute to this signal. The significance of set-up at the cliff 288 

indicates 1 s signals are partially generated by processes associated with wave breaking, also 289 

observed by McCreery et al. (1993). As the minimum wave period recorded at the buoy was 2 s, 290 

the 1 s signal may therefore represent the superposition of 2 s waves or the local generation of 1 s 291 

wind waves landward of the buoy, supported by the increased significance of onshore winds in 292 

the MS1 model (Tab. 1). The significance of the addition of onshore winds to the MS3 model (R2 = 293 

0.58) (Tab. 1) and winds from all directions to the MS5 model (R2 = 0.27) (Tab. 1) may be used to 294 

infer the location of waves generating these microseisms as proximal to the coast, with the 3 s 295 

signal generated in the nearshore and the 5 s signal further afield.   296 

 297 

4.2 Rockfall characteristics 298 

Rockfalls occurred across the cliff face, with small failures occurring the most frequently in 299 

both wet and dry sections of the cliff (Fig. 5a). 31,987 rockfalls were observed during the 300 

monitoring period, ranging in volume from 0.00156 to 12.73 m3. Mean erosion rate across the 301 

whole cliff over the monitoring period, estimated by averaging total rockfall volume over the 302 

monitored area, is 0.024 m yr-1 (Tab. 2). The total volume of rockfalls, normalised by time (days), 303 

was typically greater in the dry zone, reflecting the larger surface area (Tab. 2, Fig. 6c), yet higher 304 

rates of erosion occurred in the wet zone (Tab. 2, Fig. 6b). Mean individual rockfall volume and 305 

standard deviation in volume were greater in the wet zone, with the exception of June – July 2009 306 

when the largest single failure observed occurred in the dry zone above (Tab. 2; Fig. 5a; Fig. 6a).  307 

There is a strong geological control on the character of individual rockfalls. Small rockfalls 308 

were released along bedding planes in the sandstone and siltstone (Fig. 5a). The greatest sum of 309 
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rockfall volumes was observed in the mudstone in the lower 20 m of the cliff face (Fig. 5a), the 310 

lowest 5 m of which is directly inundated by the sea. The wider joint spacing in the mudstone 311 

releases larger rockfalls. Above the mudstone, the exposed shale is friable, producing small rock 312 

fragments. There is apparently a clustering of rockfalls over successive months (see example in 313 

Fig. 5a and b). Subsequent rockfalls occur around the edges of scars of earlier failures, most 314 

evident in the shale and mudstones. 315 

The largest total volume of rockfalls per epoch, normalised by the number of days, occurs 316 

in winter months (October – February) (Fig. 6c), yet erosion rates (Fig. 6b) and individual rockfall 317 

characteristics (Fig. 6a) vary between survey epochs. This may in part be explained by the 318 

combination of factors necessary to prepare and then trigger rockfalls, defining their 319 

characteristics and timing. In addition, the monthly resolution of our data may mean that 320 

individual rockfalls may reflect multiple superimposed events. 321 

 322 

4.3 Observed environmental controls on rockfalls  323 

4.3.1 Monitored and transformed marine and weather variables  324 

The modelled water heights above the cliff toe demonstrate stronger significant 325 

relationships (r2) with rockfalls across the whole cliff face, and with more rockfall characteristics, 326 

than the distally monitored tide, wave and wind variables (Fig. 7). The modelled water heights 327 

allow the more energetic, stormy seas, and the resulting direct wave impacts upon the cliff, to be 328 

distinguished from those less energetic periods. The highest r2 values are for the mean water 329 

heights with mean rockfall volume (r2 = 0.53) and the total rockfall volume in size class 4 (r2 = 0.55) 330 

(Fig. 7). These results suggest that more energetic marine conditions at the cliff generate more 331 

rockfalls of larger volume. Regression with the inundation duration produces fewer, weaker r2 332 

values (0.21 – 0.36) suggesting that water height (incorporating tides, surge, waves and set-up) 333 

better represents the available marine energy at the cliff. Maximum tide height and residuals at 334 
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the tide gauge both relate to the mean rockfall volume (r2 = 0.27 and 0.49, respectively) and total 335 

volume in class size 4 (r2 = 0.23 and 0.35, respectively) (Fig. 7). Wind velocity and wave heights 336 

monitored at the buoy also have significant relationships with a range of rockfall measures (r2 = 337 

0.22 – 0.45), the highest r2 value occurring between total wave heights and total rockfall volume 338 

(r2 = 0.45). Whilst these relationships indicate the influence of these conditions on rockfall 339 

volumes, geological strength and structure are also key in determining failure volume (e.g. Lim et 340 

al., 2010). 341 

In the wet zone of the cliff, the distally-monitored mean tide height and maximum wind 342 

velocity also produce significant, albeit low, r2 values with rockfall variables (0.22 and 0.27 343 

respectively) (Fig. 7). Modelled mean water height above the cliff toe again produces significant r2 344 

values with total volume (0.30), maximum volume (0.26) and the total volume of rockfalls in size 345 

class 4 (0.27). The tide residuals at the gauge and wave heights at the buoy demonstrate an 346 

influence on a range of rockfall characteristics with the highest r2 values of 0.54 between 347 

maximum tidal residual and mean rockfall volume, and 0.38 between total wave buoy height and 348 

maximum rockfall volume. Interestingly, both the distal tide residuals and wave buoy heights are 349 

found to relate to the highest number of rockfall descriptors (Fig. 7). These results imply that tide 350 

residuals and wave heights monitored away from the cliff generate more energetic and hence 351 

erosive conditions at the coast more widely, and these are replicated at the cliff during high tides 352 

and surges. 353 

In the dry zone, the distal maximum and total wave heights at the buoy relate with total 354 

and mean rockfall volumes and with total rockfall volumes in class size 3, although significant r2 355 

values are low (r2 < 0.26) (Fig. 7). Total wind velocity also influences total rockfall volume (r2 = 356 

0.30) and mean rockfall volume (r2 = 0.37). The modelled combined water height above the cliff 357 

toe and inundation duration relate to more of the rockfall characteristics from across the dry zone 358 

and with the highest r2 values (r2 = 0.22 – 0.61). The total water height produces the highest r2 of 359 
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0.61 with mean rockfall volume, and along with the mean water height has relationships with the 360 

highest number of rockfall variables (Fig. 7). The water heights above the cliff toe describe high 361 

tide conditions with energetic waves where both set-up and storm surge may increase the at-cliff 362 

water level, facilitating increased wave energy transfer to the cliff face and coast (Norman et al., 363 

2013). These relationships indicate an indirect influence of marine conditions on rockfalls higher 364 

up the cliff face. Possible indirect marine influences are cliff shaking of the cliff rock mass (e.g. 365 

Adams et al., 2005), winds or spray that influence the exposed cliff face above more widely and act 366 

in tandem with energetic marine conditions, or potentially that marine erosion rapidly propagates 367 

up-cliff (e.g. Rosser et al., 2013). 368 

 369 

4.3.2 Microseismic variables 370 

Each of the microseismic frequency bands derive statistically significant relationships with 371 

rockfall characteristics from across the whole cliff (r2 = 0.20 – 0.53) (Fig. 8). Similar to the 372 

environmental variables, microseismic data produce significant r2 values with total, mean and 373 

standard deviation of rockfall volume, and notably with the total volume of rockfalls in class size 374 

4. HT, which has been shown to be a proxy for high-tide wave impacts at the cliff, produces the 375 

highest coefficient of determination of the microseismic variables (0.56) and relates to the most 376 

rockfall characteristics (Fig. 8), reflecting both rockfall size and yield.  377 

In the wet zone, HT produces significant, yet relatively low, r2 values with the maximum 378 

and total observed rockfall volume and the total volume of rockfalls in classes 2 and 4 (0.20 – 379 

0.29) (Fig. 8). WI and MS5 both relate to mean rockfall volume producing the highest r2 values 380 

(0.38 and 0.36, respectively), and with other measures of rockfall volume (r2 = 0.19 - 0.31). 381 

Relationships between HT and rockfalls within the wet zone indicate a direct influence of cliff face 382 

wave conditions on erosion. The significance of WI and MS5 suggests that, as measures of regional 383 
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storm conditions, these frequencies also relate to conditions at the cliff that bear some control on 384 

erosion.    385 

Rockfalls from the dry zone relate to microseismic variables known previously to 386 

represent marine conditions at or near to the cliff: HT and MS1 (Fig. 8), matching the results of the 387 

environmental variables regressions. Both HT and MS1 demonstrate an influence on a number of 388 

measures of rockfall volume, with both producing the highest r2 value with the total volume of 389 

rockfalls in class 4 (0.52 and 0.37, respectively). In addition, the maximum energy values observed 390 

in MS3 and MS5 relate to total volume in class 1 (r2 = 0.24 and 0.35, respectively). These results 391 

support those derived for the dry zone rockfalls and monitored and modelled environmental 392 

variables, suggesting that the whole cliff face, and not just the wet zone, responds over the time-393 

scale investigated here (months) to concurrent marine conditions.  394 

 395 

4.4 Water level, energy transfer and erosion 396 

Given the dependence of rockfalls and erosion upon marine conditions demonstrated, we 397 

explore the vertical distribution of material loss as a function of inundation duration and marine 398 

energy transfer (Fig. 9). This is achieved by integrating the monitored time-series data by water 399 

elevation. The relationships above indicate that water level above the cliff toe provides a better 400 

measure of the erosive marine energy than inundation duration (Fig. 7). Comparing inundation 401 

duration with the mean microseismic energy transfer across the frequency band 0.14 – 50 Hz 402 

(0.02 – 7s), which incorporates the frequencies of interest to this study, it is evident that whilst 403 

energy transfer increases, the duration of inundation decreases with increasing water level (Fig. 404 

9). Increased energy transfer occurs during large storms with peak water levels as a combined 405 

function of tides, surges, waves and set-up, but such peak water levels remain infrequent. During 406 

more frequently observed water levels, energy flux is reduced, whereby conditions include tide-407 

only water heights during calm seas, and more shallow water depths limit wave propagation to 408 
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the cliff toe. From our monitoring data, the greatest erosion depths occur within the wet zone, 409 

with up to 20% of the monitored width of cliff eroding to depths over 1 m, compared to 0.5 m in 410 

the dry zone (Fig. 9 and 10). Mean and max erosion depths in the wet zone are ~0.4 m and 2.7 m 411 

respectively, compared to ~0.2 m and 1.3 m in the dry zone (Fig. 9 and 10). The foci in erosion 412 

depth appears to correspond with the elevations of the most regularly observed inundation level 413 

during low energy conditions, and at the less frequent but increased water levels achieved during 414 

high energy conditions (Fig. 9). However, these depths occur across only 1% of the monitored cliff 415 

width and are not representative of depths across the whole site (Fig. 9). The cliff profiles from the 416 

start and end of the monitoring period demonstrate an absence of notching associated with either 417 

inundation duration or the most energetic water levels and the vertical distribution of erosion 418 

throughout the wet zone varies across the cliff width (Fig. 11).  419 

 420 

5 Discussion 421 

5.1 Environmental conditions at the cliff 422 

Microseismic cliff motions and modelled cliff face water heights incorporating tides, surges, 423 

waves and set-up, have been found to be useful measures of the marine conditions that interact 424 

directly with a cliff and result in erosion. Examination of these variables provides insight into the 425 

relative transfer of marine energy to the cliff, and how this varies through time. As the datasets 426 

considered here reflect the combined effects of tides, winds and waves and the transformation 427 

through shallow nearshore waters, they provide an improved measurement of conditions at the 428 

cliff as compared to distally monitored data.  429 

Using a relatively simple analysis to test a similarly logical and simple set of relationships, 430 

the strongest links have been observed between transformed marine variables and microseismic 431 

cliff motions and cliff rockfalls, rather than those using distally measured marine and weather 432 

data. The difficulty in relating environmental conditions to erosion may therefore be in part a 433 
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function of how and where such monitoring data is collected and analysed. Whilst we have been 434 

unable to test the accuracy of the modelled wave heights at the monitored cliff, the regressions 435 

with the microseismic ground motions and rockfalls indicate that the wave model estimates are 436 

reliable as relative measures of conditions at the cliff. The relationships between modelled marine 437 

conditions and rockfalls reflect observations elsewhere, where distally measured marine 438 

conditions that have been transformed to estimate conditions at the cliff have been found to relate 439 

to observed erosion (Ruggiero et al., 2001; Sallenger et al., 2002; Collins and Sitar, 2008).  The 440 

modelled water levels at the cliff toe produce slightly higher r2 values when regressed against 441 

rockfall volumes than the microseismic variables, which may suggest these variables can more 442 

clearly represent marine conditions that erode the cliff material.  443 

Young et al. (2013) questioned whether cliff microseismic motions can be used as proxies 444 

for marine energy transfer by, due to the potential overlap with signals generated by other 445 

seismic sources at the coast. Whilst there is evidence of signal overlap, both between 446 

characterised frequency bands and with local and distal noise sources, the regression analysis 447 

demonstrates a significant proportion of cliff top ground motion frequencies to be generated by 448 

local wind (WI), marine conditions (HT, MS1, MS3), and distal waves (MS5). These relationships 449 

have not previously been quantified, rather the generating processes have been identified using 450 

visual comparisons of time-series of ground motion and concurrent marine conditions (e.g. Adams 451 

et al., 2005; Young et al., 2011b; 2012; Norman et al., 2013). This approach is also important for 452 

determining signal source, particularly for those signals which are highly variable, such as tides. 453 

All five microseismic frequencies show statistically significant relationships with rockfall 454 

occurrence and characteristics. The marine microseismic frequencies HT and MS1, observed to be 455 

generated by waves breaking at the cliff have the strongest relationships with a greater number of 456 

rockfall characteristics. Comparing these relationships with those of Lim et al. (2011), it is evident 457 



20 
 

that the detail provided by analysis of specific frequencies holds benefits over and above velocity 458 

or acceleration trigger or threshold-based analysis across a wider bandwidth.  459 

Measuring a range of marine and wind processes operating over different spatial scales 460 

using one instrument at a cliff-top, rather than from the cliff face, foreshore or offshore is 461 

advantageous. Young et al. (2013) demonstrated that nearshore wave processes generate coastal 462 

microseismic motions on sandy shores, indicating that such approaches can be applied across a 463 

range of coastal settings. There are, however, limitations to this approach. First, microseismic 464 

monitoring requires minimal local background noise to guarantee a sufficient signal-to-noise ratio 465 

(McNamara and Buland, 2004). This study demonstrates that using individual frequencies that are 466 

less influenced by such noise can help address this problem. The variable attenuation of different 467 

ground motion frequencies (Lowrie, 1997) and the complex travel paths and seismic velocities 468 

renders such data as a relative rather than an absolute measure. In examining the signal sources 469 

and relationships with observed erosion, and whilst accepting microseismic data as a relative 470 

measurement, this has not been found to be problematic. Young et al. (2013) also observed that 471 

signal characteristics generated by the same processes at different coastlines can vary, making 472 

comparisons between multiple sites challenging. Wave energy, which acts as a catalyst to many 473 

coastal processes, is manifest in our monitoring data, so again is considered as a suitable proxy for 474 

these processes.   475 

 476 

5.2 Environmental controls on hard rock cliff failure 477 

The data show that as well as erosion of the toe, marine and atmospheric forcing at the 478 

coast have some influence on failures from the face. Importantly, even over the relatively short 479 

monitoring period considered here (2 years), the driver-erosion link is apparent, and may indicate 480 

the conditions that are significant as drivers of cliff erosion over the longer-term.  481 
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In the inundated zone, rockfall volumes relate to both environmental and microseismic 482 

conditions, reflecting the action of waves and storm surges at the cliff, but also more general 483 

widespread conditions. The absence of a notch at water levels associated with either inundation 484 

duration or peak microseismic energy transfer, and the variable distribution of erosion both up 485 

the cliff profile and along the monitored width, reflects the complex spatial distribution of 486 

rockfalls observed here, and other rock coasts (e.g. Teixeira, 2006; Rosser et al., 2007; 2013; 487 

Young et al., 2009a; Lim et al., 2010). The distribution of erosion within the wet zone likely 488 

reflects spatial and temporal variations in both wave energy focussing and cliff rock strength. The 489 

wave energy focus on the cliff depends on the effects of nearshore and foreshore bathymetry 490 

(Komar, 1998; Trenhaile, 2000; Trenhaile and Kanyaya, 2007; Ogawa et al., 2011). More locally to 491 

the cliff, foreshore roughness and cliff toe morphology determine where waves, surf, run-up and 492 

splash are concentrated. Variations in erosive effectiveness are also determined by local rock 493 

strength, and with an homogeneous cliff toe geology, such as at the study site, rock structure that 494 

can be exploited by hydraulic action during wave impact and removal of the fractured rock is key 495 

(Trenhaile 1987; Sunamura, 1992), and will also influence rockfall geometry and volume (e.g. 496 

Rosser et al., 2007). An increased inundation frequency is assumed to equate to increased erosion 497 

over time (e.g. Trenhaile, 2000; Walkden and Hall, 2005; Trenhaile, 2009; 2011; Ashton et al., 498 

2011), which may be applicable to cliffs in softer materials and less energetic environments; 499 

however, our data suggest that for hard rock cliffs it is the available energy that is important in 500 

defining the rate and net volume of erosion, which is not determined by inundation duration 501 

alone.  502 

The observed relationships indicate that these cliffs will respond to environmental 503 

changes. In demonstrating the erosive effectiveness of different marine energy scenarios, these 504 

results are useful for considering how hard rock cliffs may respond to future changes in sea level 505 

and wave climate. The results suggest that for hard rock coastal cliffs, models of inundation 506 
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duration may not adequately define the erosion response to increasing sea level and thus wave 507 

energy transfer.  508 

For both the marine and the microseismic variables considered, both the largest number 509 

and strongest relationships were obtained for rockfalls from the whole cliff face, combining both 510 

wet and dry zones. Erosion of the dry cliff face is typically attributed to: a) subaerial processes, 511 

unique to this relatively dry, essentially non-saline environment (Emery and Kuhn, 1982; 512 

Sallenger et al., 2002); b) time-dependent deformation and failure of the rockmass (Rosser et al, 513 

2007; Styles et al., 2011; Stock et al., 2012); or c) a combination of the two (Rosser et al., 2013). As 514 

wave-cut notches do not form at this site, we speculate that marine triggering of failures from the 515 

upper cliff face may also result from either microseismic cliff motion generated by waves, 516 

particularly during energetic storm conditions, or by rapid (i.e. over timescales shorter than the c. 517 

monthly monitoring period used here) up-cliff propagation of marine triggered rockfalls (e.g. 518 

Rosser et al., 2013). The latter process falls beneath the temporal resolution of our survey, yet the 519 

former is supported by the relationships between distal environmental variables and cliff ground 520 

motions with various measures of rockfall occurrence shown.  521 

Adams et al. (2005) proposed that the repeated flexure by marine-generated microseismic 522 

motions generate stresses sufficient to develop micro-fractures, decreasing the bulk rock mass 523 

strength. In a study of the effectiveness of this process on the cliffs studied here, Brain et al. 524 

(2014) suggested that the amplitudes of ground motion are insufficient to cause ongoing 525 

microcracking (i.e. ‘damage’). In the absence of this process, the correlations between the 526 

microseismic frequency bands and the rockfall characteristics across the whole cliff face shown 527 

here may imply that rather than causing damage, ground motions generated by marine and wind 528 

processes may play a role in the final release of rockfalls in previously-damaged sections of the 529 

cliff. This mechanism may help to explain the triggering of rockfalls from the upper parts of the 530 
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cliff, which may previously have been considered to be disconnected from marine processes at the 531 

cliff toe (e.g. Rosser et al., 2005).  532 

Whilst the r2 values generated in this study are statistically significant, they remain   533 

moderate (<0.6), which may partially be explained by the strong geological controls on rockfalls 534 

and erosion. The analysis of the data over the monitoring epochs (4 – 8 weeks) implies that 535 

observed failures may occur as a near-immediate response to forcing or as a lagged response 536 

within the time-scale of the sampling period. The temporal resolution of the rockfall dataset 537 

however does not enable us to distinguish the exact timing of rockfalls and the instantaneous 538 

conditions; at present we are only able to obtain a first-order assessment of the relative 539 

importance of the direct and indirect triggering of rockfalls and erosion. 540 

 541 

6 Conclusions  542 

Cliff-top microseismic motions and modelled cliff toe marine conditions have been found to 543 

provide a useful measure of conditions and processes at the cliff toe and a relative measure of 544 

energy transfer to the coast. In the absence of monitored foreshore wave data, the microseismic 545 

and modelled marine datasets have enabled examination of relationships between conditions at 546 

the cliff and erosion. Statistically significant relationships were obtained between marine and 547 

microseismic variables and rockfalls, indicating a complex control of marine and wind processes 548 

on hard rock coastal cliff erosion. Relationships between distally-monitored marine conditions 549 

and rockfalls demonstrate that more widespread stormy marine conditions are replicated at the 550 

coast when tides and surges enable the sea to reach the cliff. The strongest relationships were 551 

found with rockfalls from across the whole cliff face, rather than solely within the inundated wet 552 

zone. The marine influence on erosion therefore extends indirectly above the inundated zone. We 553 

hypothesise that in addition to acting as proxies for forcing, the microseismic cliff motions 554 
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themselves potentially hold some influence on the timing and nature of erosion in those cliff 555 

rockfalls otherwise preconditioned for release.  556 

Our results demonstrate, not surprisingly, a marine control on cliff toe erosion. Perhaps 557 

more surprisingly, the impact of conditions that vary over 2 years when aggregated over periods 558 

of one to two months can explain, to a certain degree, the variations in erosion via rockfalls. Whilst 559 

cliff toe marine conditions are found to relate to rockfalls from across the whole cliff face, within 560 

the wet zone the distribution of erosion is not determined by inundation duration or heights 561 

associated with maximum energy transfer. Instead, erosion of the hard rock cliff toe varies up-cliff 562 

and alongshore, which we attribute to variations in the local bathymetry and therefore waves, and 563 

the cliff rock mass strength. These results suggest that for hard rock cliffs the relationship 564 

between inundation duration, energy transfer and erosion of hard rock cliffs is more complex than 565 

indicated by tidal inundation models alone.  566 
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Figures and tables  687 

 688 

Figure 1: a & b) Study site 1.5 km west of the village of Staithes, on the North Yorkshire coast, UK. 689 

The foreshore platform extent at low spring tide is shown by the hatched area; c) Cliff and 690 

intertidal foreshore cross-profile, showing the seismometer position 20 m back from the vertical 691 

cliff face. The x-axis is defined from the cliff toe, which is at an elevation of 1.6 m OD. Tidal mean 692 

and extreme elevations are labelled as: HAT = highest astronomical tide; MHWS = mean high 693 

water spring; MHWN = mean high water neap; MLWN = mean low water neap; MLWS = mean low 694 

water spring; LAT = lowest astronomical tide. A simplified geological description illustrates the 695 

near-horizontally bedded structure of the cliff. 696 

 697 
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Figure 2: i) Monitored/modelled environmental variables over the 2-year monitoring period, and 700 

ii) maximum (shaded area top edge) and mean (shaded area lower edge) values per survey epoch. 701 

Note that the width of each epoch is bound by the TLS monitoring survey dates. a) Monitored 702 

wind velocity; b) Monitored tide residuals at the tide gauge; c) Monitored significant wave heights 703 

at the wave buoy; d) Monitored wave periods at the buoy; and e) Modelled water heights above 704 

the cliff toe incorporating tides, surges, waves and set-up. Gaps in the data are due to equipment 705 

failure. 706 

  707 
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 708 

 709 

Figure 3: a) i) Spectrogram of microseismic signal power, showing data captured between 710 

periods 10 s & 1 s. Horizontal dashed lines show the subsampled frequency bands MS1, MS3 and 711 

MS5. White areas show times where the instrument failed to record data. ii) Hourly mean signal 712 

energy in the MS1, MS3 and MS5 frequency bands. iii) Sum of the energy recorded in MS1, MS3 713 

and MS5 band within each survey epoch. b) i) Spectrogram of microseismic signal power, showing 714 
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data captured between periods 1 s & 0.02 s. Horizontal dashed lines show the subsampled 715 

frequency bands WI and HT. ii) Hourly mean signal energy in the WI and HT frequency bands. iii) 716 

Sum of the energy recorded in WI and HT, band within each survey epoch. Gaps in the data are 717 

due to equipment failure. 718 
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 720 

 721 

Figure 4: r2 values from simple linear regression models between the representative frequencies 722 

of each frequency band (WI = 0.022 s; HT = 0.104 s; MS1= 1 s, MS3 = 3 s and MS5 = 5 s) and wind 723 

velocity from all directions, onshore wind velocity, wave height at the buoy and wave height at the 724 

cliff.  725 
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 727 

 728 

Figure 5: a) Monitored rockfalls captured across the cliff face between 25 July 2008 to 28 June 729 

2010. Each rockfall scar is color-coded by survey period, overlaid upon a monochrome 730 

orthoimage of the cliff for context. The red line delimits the wet from the dry sections of the cliff 731 

face. A close-up of the green box from the centre of the cliff is presented in b) showing clustering 732 

of larger rockfalls that occurred in the first six epochs (numbered) of the monitoring period.  733 
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 735 

Figure 6: a) ‘Violin plot’ showing the range, probability density, mean, standard deviation and 736 

maximum of rockfall volumes per survey epoch from the wet (blue) and dry (orange) sections of 737 

the monitored cliff face. Note that the width of each subplot is delimited by survey epoch, not date. 738 

b) Erosion rate for each survey epoch (shaded area). The top edge of the shaded area is the 739 

erosion rate in the wet zone, and the lower edge the erosion rate in the dry zone. c) The top of the 740 

orange and blue colored bars show the total volume of rockfalls, standardised by day, during each 741 

survey epoch across the whole cliff face. The orange bars are the total volume standardised by day 742 

for the dry zone only, and the blue the wet zone only. Note that the width of each period (b and c) 743 

is bound by the monitoring survey dates (x-axis). 744 
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 745 

 746 

Figure 7: Statistically significant r2 values from regression analyses between distally monitored 747 

and transformed environmental variables with rockfalls from across: a) the whole cliff face; b) the 748 

wet zone; and c) the dry zone. Only statistically significant relationships are presented in colour.  749 
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 751 

 752 

Figure 8: Statistically significant r2 values from regression analyses between cliff-top 753 

microseismic variables with rockfalls from across: a) whole cliff face; b) the wet zone; and c) the 754 

dry zone. Only statistically significant relationships are presented in colour.  755 
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 758 

Figure 9: a) Colored profile shows the distribution of erosion depths with height up the cliff from 759 

0 to 5 m above the cliff toe, the ‘wet’ zone. Data is binned into 0.1 m vertical bins, colored 760 

according to the percentage of the monitored width of the cliff-face eroding to depth d (x-axis). 761 

The white dashed line shows the mean erosion depth. The left edge of the colored area denotes 762 

the maximum erosion depth. b) The mean hourly energy transfer across the frequency band 0.14 763 

– 50 Hz (0.02 – 7 s), modulated by still water level in 0.1 m vertical increments (hollow horizontal 764 

bars). Red horizontal bars (0.1 m vertical increments) show the relative frequency of inundation 765 

by combined tide, surge, wave and set-up. The solid black line shows the tidal inundation 766 

frequency.  767 
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 769 

 770 

Figure 10: Colored profile shows the distribution of erosion depths with height up the cliff from 5 771 

to 55 m above the cliff toe, the ‘dry’ zone. Data is binned into 0.1 m vertical bins, colored according 772 

to the percentage of the monitored width of the cliff-face eroding to depth d (x-axis). The white 773 

dashed line shows the mean erosion depth. The left edge of the colored area denotes the 774 

maximum erosion depth.  775 
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 777 

 778 

Figure 11: Change in cliff profile morphology over the monitoring period. Five profiles have been 779 

selected at 15 m intervals moving from left to right across the monitored width of cliff. The initial 780 

profile in July 2008 is in black, and the final profile in June 2010 is in grey. The x-axis shows 781 

distance from the cliff top position of each profile, with the major ticks at 5 m intervals. The 782 

dashed line delimits the wet and dry zones.  783 
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Table 1: The R2 values and regression beta coefficients from the multiple linear regression 786 

models that had the strongest (statistically significant) relationship with the representative 787 

frequencies of the three frequency bands (WI = 0.022 s; HT = 0.104 s; MS1= 1 s, MS3 = 3 s and MS5 788 

= 5 s). The beta coefficients are a standardised measure of the relative strength of each of the 789 

independent variables in the regression model in explaining the seismic signals’ frequency power. 790 

They are measured in standard deviations of the seismic power. 791 

 792 

Representative 
frequency 

R2 Significant  
variables 

Beta 
coefficients 

WI 0.72 Onshore wind 0.45 

  Cliff toe waves 0.25 

  Cliff toe set-up 0.41 
HT 0.53 Cliff toe waves 0.51 
  Cliff toe set-up 0.58 
MS1 0.80 Onshore wind 0.20 
  Cliff toe waves 0.29 
  Cliff toe set-up 0.68 
MS3 0.58 Onshore wind 0.13 
  Waves at buoy 0.67 
MS5 0.27 Wind from all  

directions  
0.26 

  Waves at buoy 0.35 

 793 
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Table 2: Rockfall statistics for the whole cliff, plus the wet and dry sections, over the 2-year 795 

monitoring period. 796 

 797 

Section of 
cliff 

Number 
of 
rockfalls 

Total 
volume 
(m3) 

Mean 
volume 
(m3) 

Standard 
deviation 
(m3) 

Maximum 
volume 
(m3) 

Minimum 
volume 
(m3) 

Annual 
retreat 
rate  
(m yr-1) 

Whole cliff 31,987 235.621 0.0180 0.163 12.732 0.00156 0.0243 
Wet zone 5,736 79.535 0.0409 0.249 8.139 0.00156 0.1076 
Dry zone 26,621 159.131 0.0128 0.130 12.732 0.00156 0.0178 

 798 


