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 Abstract 

In a complete information setting we show that the standard lottery – in which each 

lottery ticket is offered for the same price – is an optimal fundraising mechanism in 
the presence of strong asymmetries in the way bettors value the prize and the 
public good provided with the lottery proceeds. When participants are more 
homogeneous, it is optimal to offer discounts for the purchase of multiple tickets. 
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1. Introduction 

Lotteries are popular mechanisms for the provision of public goods and for charitable 

fundraising. Sales of lottery tickets generate revenue for the funding of a number of good 

causes including health, education, infrastructure development, environmental protection, 

sports, arts, and a variety of other programs. A recent study by Bloomberg using 2010 U.S. 

Census data reports that adults in the U.S. spend on average about $230 on lottery tickets 

per year.1 This suggests that even small changes in the way lottery games are operated 

might result in substantial changes in funding for charitable causes.   

The recent theoretical literature demonstrates that fundraising mechanisms in which a prize 

is awarded to one of the contributors – such as lotteries – are better at raising funds for 

public goods than voluntary contribution schemes. In an environment in which a finite 

number of identical consumers decide how much to contribute to a public good and how 

much to retain for private consumption, Morgan (2000) shows that a fixed prize raffle 

generates a higher level of public good contributions (net of the value of the prize) compared 

to voluntary donations. Goeree et al (2005) study the optimal design of fundraising 

mechanisms in the symmetric independent private value model. They demonstrate that in a 

setting in which the proceeds are used for the funding of a public good, the optimal 

mechanism is an all-pay auction; in this setting all-pay auctions outperform winner-pay 

auctions. More recently, Bos (2011) studies a complete information model and shows that 

lotteries generate more revenue than all-pay auctions when participants are sufficiently 

heterogeneous in the way they value the prize and the contributions to the public good.  

In this paper we derive the optimal fundraising mechanism in a setting in which the designer 

chooses a nonlinear pricing scheme so as to maximize the revenue from lottery ticket sales. 

We build on the recent theoretical advancements presented in Goeree et al (2005) and Bos 

(2011) along several dimensions. Similarly to Goeree et al (2005), in our model the designer 

chooses from a continuum of mechanisms, yet we allow for asymmetries between 

participants. We analyse a setting in which bettors can have different valuations for the prize 

and different marginal per capita returns associated with the provision of the public good. In 

that respect our analysis is conducted in the complete information framework presented in 

Bos (2011), yet we do not constrain the mechanism designer to the choice between the all-

pay auction and the lottery only. Instead, by varying the pricing scheme of lottery tickets, we 

consider a set of mechanisms in which the lottery and the all-pay auction arise as special 

cases. 

The choice of a pricing scheme determines the relationship between the individual 

contribution of a participant and the chance of winning the prize as is standard in the 

mechanism design literature. The main focus of the paper is on determining whether, and in 

which circumstances, discounts for the purchase of multiple lottery tickets increase lottery 

proceeds. We operationalize the idea of discounts by considering power functions as a form 

of nonlinear pricing. That is, the designer specifies the power function parameter thus 

choosing among a continuum of pricing schemes.  

                                                           
1
 Out of the 43 states currently operating lotteries, the highest spending per adult is in Massachusetts where 

residents spend on lottery tickets $861 per year, or 1.3% of their personal income; see 
http://www.bloomberg.com/video/popout/86793284/68.896 for further details. 

http://www.bloomberg.com/video/popout/86793284/68.896
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This representation is useful because, as we show, the so described lottery games are 

isomorphic to Tullock (1980) contests. This feature facilitates the analysis by allowing us to 

use the equilibrium existence and characterization results from the Tullock contest literature 

(see e.g. Nti, 1999). The main point of departure from the contest literature, however, is in 

viewing the contest parameter as an object of choice by the mechanism designer. 

Our main contribution is a closed form expression which links the valuations of participants 

to the parameter describing the revenue maximizing ticket pricing function. Solving this 

mechanism design problem, we provide conditions under which the lottery is optimal among 

a continuum of fundraising mechanisms. In particular we show that, when bettors are 

sufficiently asymmetric in the way they value the prize and the public good, lottery ticket 

sales without discounts are optimal. Discounts, however, increase revenue in the presence 

of smaller asymmetries.2  

2. The model 

We consider a scenario in which two participants 𝑖 = 1,2 choose the number of tickets 𝑥1 

and 𝑥2 that they purchase in a lottery. The value of the prize for participant 𝑖 is denoted by 

𝑣𝑖. The revenue from the lottery is used to provide a public good. We denote the per capita 

return of participant 𝑖 from the public good by 𝛿𝑖, where 0 < 𝛿𝑖 < 1. In this model the lottery 

designer chooses a function 𝑐(𝑥𝑖) which determines the total amount that bettor 𝑖 has to pay 

for a number of 𝑥𝑖 tickets. The expected payoff of bettor 𝑖 is thus given by 

𝑈𝑖(𝑥𝑖, 𝑥−𝑖) = 𝑣𝑖 ∙ 𝑃𝑖(𝑥𝑖, 𝑥−𝑖) − 𝑐(𝑥𝑖) + 𝛿𝑖[𝑐(𝑥𝑖) + 𝑐(𝑥−𝑖)] 

where  

𝑃𝑖(𝑥𝑖, 𝑥−𝑖) =
𝑥𝑖

𝑥𝑖 + 𝑥−𝑖
 

is the probability that participant 𝑖 wins the prize. The lottery designer seeks to determine the 

function 𝑐(𝑥𝑖) in such a way that the lottery revenue 𝑐(𝑥1
∗) + 𝑐(𝑥2

∗) is maximized given the 

number of tickets 𝑥1
∗ and 𝑥2

∗ purchased in the Cournot-Nash equilibrium of the lottery. We will 

consider ticket pricing functions of the type 𝑐(𝑥𝑖) = 𝑥𝑖
𝛼 . A value of 𝛼 = 1 is the default 

scenario in which each lottery ticket has the same price, and values 0 < 𝛼 < 1 describe 

cases in which discounts are offered for the purchase of multiple tickets.3 We first 

demonstrate that the presented setting is equivalent to a Tullock contest. Let us denote 

by 𝑦𝑖 = 𝑐(𝑥𝑖) the total expenditures on lottery tickets by bettor 𝑖 and by 𝑉𝑖 =
𝑣𝑖

1−𝛿𝑖
 the 

“adjusted valuation” of bettor 𝑖. This valuation adjustment takes into account that participants 

benefit from their own contribution to the public good and transforms the original game into 

an equivalent game in which participants do not benefit from the public good, but compete 

for a larger prize which equals the original prize scaled by the factor 
1

1−𝛿𝑖
. 

  

                                                           
2
 In the limit when all asymmetries disappear, it is known that the optimal mechanism is an all-pay auction 

(Goeree et al, 2005; Engers and McManus, 2007; Bos, 2011; Damianov and Peeters, 2012). 
3
 Values 𝛼 > 1, while theoretically possible, might not be implementable as they imply additional charges for 

the purchase of multiple tickets.  
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Lemma 1. The fundraising lottery is isomorphic to a Tullock contest in which players choose 

their expenditures on lottery tickets 𝑦1 and 𝑦2 and their payoff function is given by 

 𝜋𝑖(𝑦𝑖, 𝑦−𝑖) =
𝑦𝑖

𝑟

𝑦𝑖
𝑟 + 𝑦−𝑖

𝑟 ∙ 𝑉𝑖 − 𝑦𝑖 

where   𝑟 = 1
𝛼⁄  is the Tullock contest parameter. 

The proof is provided in the Appendix. The equilibria of the Tullock rent-seeking game have 

been studied by several authors (see, e.g. Perez-Castrillo and Verdier, 1992; Nti, 1999; and 

Fang, 2002). Nti (1999) derives a necessary and sufficient condition for the existence of a 

unique pure strategy Nash equilibrium.4 In the following analysis we will consider the cases 

for which this condition is satisfied. For the first order conditions we obtain 

     
𝜕𝜋𝑖(𝑦1, 𝑦2)

𝜕𝑦𝑖
=

𝑟𝑦𝑖
𝑟−1𝑦−𝑖

𝑟

(𝑦𝑖
𝑟 + 𝑦−𝑖

𝑟 )2
𝑉𝑖 − 1 = 0,   𝑖 = 1,2. 

Solving this system of equations we derive the equilibrium contribution levels 

𝑦1
∗ =

𝑟𝑉1
𝑟+1𝑉2

𝑟

(𝑉1
𝑟 + 𝑉2

𝑟)2
;   𝑦2

∗ =
𝑟𝑉1

𝑟𝑉2
𝑟+1

(𝑉1
𝑟 + 𝑉2

𝑟)2
 

The lottery designer chooses 𝑟 so that the lottery revenue 

       𝑅(𝑉1, 𝑉2, 𝑟) = 𝑦1
∗ + 𝑦2

∗ =
𝑟𝑉1

𝑟𝑉2
𝑟(𝑉1 + 𝑉2)

(𝑉1
𝑟 + 𝑉2

𝑟)2
 

is maximized. The first order condition is given by the equation  

 𝜕𝑅(𝑉1, 𝑉2, 𝑟)

𝜕𝑟
=

𝑉1
𝑟𝑉2

𝑟(𝑉1 + 𝑉2)

(𝑉1
𝑟 + 𝑉2

𝑟)3
[𝑉1

𝑟 + 𝑉2
𝑟 + 𝑟(𝑉1

𝑟 − 𝑉2
𝑟)(ln(𝑉2) − ln(𝑉1))] = 0 

 

 
(1) 

The optimal value of 𝑟 thus satisfies the equation 

 
    𝑟 =

𝑉1
𝑟 + 𝑉2

𝑟

(𝑉1
𝑟 − 𝑉2

𝑟)(ln(𝑉1) − ln(𝑉2))
 

 
(2) 

The following lemma shows that the lottery revenue function is concave in 𝑟 so that the 

solution to equation (2) indeed represents the global maximum. 

Lemma 2. The lottery revenue 𝑅(𝑉1, 𝑉2, 𝑟) is concave in the parameter 𝑟. 

The proof is provided in the Appendix. We can assume now without loss of generality that 

𝑉1 ≥ 𝑉2. Following Nti (1999) and Bos (2011) we define the level of asymmetry between the 

players by the ratio of their adjusted valuations 𝑎: = 𝑉1 𝑉2⁄ . The next statement summarizes 

our main result. 

  

                                                           
4
Nti (1999) shows that the Tullock contest has a unique pure strategy Nash equilibrium if and only if the 

adjusted valuations satisfy the inequality 𝑉1
𝑟 + 𝑉2

𝑟 > 𝑟 ∙ 𝑉2
𝑟 (see Proposition 3).   
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Proposition 1. The optimal value of 𝑟 depends only on the asymmetry level 𝑎 ≥ 1 and is 

given by the expression 

     𝑟 =
𝑙𝑛 (𝑧∗)

𝑙𝑛 (𝑎)
 

where 𝑧∗ ≈ 4.6805 is the unique solution to the equation 

𝑙 𝑛(𝑧) =
𝑧 + 1

𝑧 − 1
. 

The proof is provided in the Appendix. From Proposition 1 we can see that the optimal value 

of 𝛼 is linear in the level of asymmetry and is given by the equation  

    𝛼 =
1

𝑟
=

𝑙𝑛 (𝑎)

𝑙𝑛 (𝑧∗)
 

That is, for high levels of asymmetry, i.e. when  𝑎 > 𝑧∗, it is actually optimal to impose 

additional charges for the purchase of multiple tickets. In other words, the optimal 

mechanism for high asymmetry involves increasing rather than constant marginal price. As 

such a pricing scheme might not be easily implementable5 our result implies that discounts 

are not optimal for high levels of asymmetry. When 𝑎 = 𝑧∗ the standard case of linear pricing 

is optimal, and when 𝑎 < 𝑧∗, which occurs when bettors are more homogeneous, it is optimal 

to offer discounts on multiple tickets.  

3. Conclusion 

This note contributes to the mechanism design literature on charitable fundraising. We show 

that the standard lottery – in which each ticket is sold for the same price – is an optimal 

fundraising mechanism in the presence of strong asymmetries in the way participants value 

the prize and the public good. When participants are less asymmetric, it is optimal to offer 

discounts for the purchase of multiple tickets. This result might have implications for the 

potential of charitable organization to raise funds through lotteries in communities with 

varying degrees of income inequality. 

Appendix 

Proof of Lemma 1. As we denoted the spending of bettor 𝑖 by 𝑦𝑖 = 𝑐(𝑥𝑖) = 𝑥𝑖
𝛼, we can 

express the utility function of participant 𝑖 

 in terms of the lottery expenditures of both players and the parameter 𝑟 = 1
𝛼⁄  as follows   

                                                           
5
 In order to implement an increasing marginal pricing schedule, the lottery organizers must keep track of the 

participants’ identities and the number of tickets each participant has purchased. Otherwise buyers can 
purchase one ticket at a time effectively buying multiple tickets at a lower price.   

𝑈𝑖(𝑥𝑖 , 𝑥−𝑖) 
 

= 𝑣𝑖

𝑥𝑖

𝑥𝑖 + 𝑥−𝑖
− 𝑐(𝑥𝑖) + 𝛿𝑖[𝑐(𝑥𝑖) + 𝑐(𝑥−𝑖)] 

   

𝑈𝑖(𝑦𝑖 , 𝑦−𝑖) 
 

= (1 − 𝛿𝑖) [
𝑦𝑖

𝑟

𝑦1
𝑟 + 𝑦2

𝑟 ∙ 𝑉𝑖 − 𝑦𝑖] + 𝛿𝑖 ∙ 𝑦−𝑖 
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Note that the lottery payoff function is linearly increasing in the Tullock contest payoff 

function 𝜋𝑖(𝑦𝑖, 𝑦−𝑖). Because both functions have the same maximizers, the equilibria of the 

lottery game and the Tullock contest are identical. 

□ 

Proof of Lemma 2. Differentiating the expression presented in (1) with respect to 𝑟 yields 

𝜕2𝑅(𝑉1, 𝑉2, 𝑟)

𝜕𝑟2
= −

𝑉1
𝑟 ∙ 𝑉2

𝑟(ln(𝑉1) − ln(𝑉2))

(𝑉1
𝑟 + 𝑉2

𝑟)4
𝐷(𝑉1, 𝑉2, 𝑟) 

 

  
(3) 

where  

𝐷(𝑉1, 𝑉2, 𝑟) = 2𝑉1
2𝑟 − 2𝑉2

2𝑟 − 𝑟(𝑉1
2𝑟 + 𝑉2

2𝑟 − 4𝑉2
𝑟𝑉2

𝑟)(ln(𝑉1) − ln(𝑉2)) 

Using the expression for 𝑟 in (2) we obtain 

𝐷(𝑉1, 𝑉2, 𝑟) = 2𝑉1
2𝑟 − 2𝑉2

2𝑟 −
𝑉1

𝑟 + 𝑉2
𝑟

𝑉1
𝑟 − 𝑉2

𝑟 (𝑉1
2𝑟 + 𝑉2

2𝑟 − 4𝑉2
𝑟𝑉2

𝑟) ⇔ 

𝐷(𝑉1, 𝑉2, 𝑟) =
1

𝑉1
𝑟 − 𝑉2

𝑟 [2(𝑉1
𝑟 + 𝑉2

𝑟)(𝑉1
𝑟 − 𝑉2

𝑟)2 − (𝑉1
𝑟 + 𝑉2

𝑟)(𝑉1
2𝑟 + 𝑉2

2𝑟 − 4𝑉2
𝑟𝑉2

𝑟)] ⇔ 

𝐷(𝑉1, 𝑉2, 𝑟) =
(𝑉1

𝑟 + 𝑉2
𝑟)

𝑉1
𝑟 − 𝑉2

𝑟 [2(𝑉1
𝑟 − 𝑉2

𝑟)2 − (𝑉1
2𝑟 + 𝑉2

2𝑟 − 4𝑉2
𝑟𝑉2

𝑟)] ⇔ 

𝐷(𝑉1, 𝑉2, 𝑟) =
(𝑉1

𝑟 + 𝑉2
𝑟)

𝑉1
𝑟 − 𝑉2

𝑟 [2(𝑉1
𝑟 − 𝑉2

𝑟)2 − (𝑉1
2𝑟 + 𝑉2

2𝑟 − 4𝑉2
𝑟𝑉2

𝑟)] ⇔ 

𝐷(𝑉1, 𝑉2, 𝑟) =
(𝑉1

𝑟 + 𝑉2
𝑟)

𝑉1
𝑟 − 𝑉2

𝑟 (𝑉1
2𝑟 + 𝑉2

2𝑟) 

Substituting this expression for 𝐷(𝑉1, 𝑉2, 𝑟) in equation (3) we obtain 

𝜕2𝑅(𝑉1, 𝑉2, 𝑟)

𝜕𝑟2
= −

𝑉1
𝑟 ∙ 𝑉2

𝑟(𝑉1
𝑟 + 𝑉2

𝑟)(𝑉1
2𝑟 + 𝑉2

2𝑟)

(𝑉1
𝑟 + 𝑉2

𝑟)4
∙

(ln(𝑉1) − ln(𝑉2))

𝑉1
𝑟 − 𝑉2

𝑟 < 0. 

□ 

Proof of Proposition 1. Dividing the numerator and denominator of the right hand-side of 

equation (1) by 𝑉2
𝑟 we obtain 

𝑟 =
𝑎𝑟 + 1

(𝑎𝑟 − 1) ∙ ln (𝑎)
 

  
(4) 

 

Let us define 𝑧 ≔ 𝑎𝑟. We can express 𝑟 as 

𝑟 = ln (𝑧) ln (𝑎)⁄   (5) 

From equation (4) we obtain 

 = (1 − 𝛿𝑖) ∙ 𝜋𝑖(𝑦𝑖 , 𝑦−𝑖) + 𝛿𝑖 ∙ 𝑦−𝑖  
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ln (𝑧)

ln (𝑎)
=

𝑧 + 1

(𝑧 − 1)
∙

1

ln (𝑎)
 

Multiplying both sides by ln (𝑎) we obtain the value of 𝑧 reported in Proposition 1.  Equation 

(5) yields the desired result. □ 
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