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The evolutionary history of the Mycobacterium tuberculosis complex (MTBC)

has previously been studied by analysis of sequence diversity in extant strains,

but not addressed by direct examination of strain genotypes in archaeological

remains. Here, we use ancient DNA sequencing to type 11 single nucleotide

polymorphisms and two large sequence polymorphisms in the MTBC strains

present in 10 archaeological samples from skeletons from Britain and Europe

dating to the second–nineteenth centuries AD. The results enable us to assign

the strains to groupings and lineages recognized in the extant MTBC. We

show that at least during the eighteenth–nineteenth centuries AD, strains of

M. tuberculosis belonging to different genetic groups were present in Britain

at the same time, possibly even at a single location, and we present evidence

for a mixed infection in at least one individual. Our study shows that ancient

DNA typing applied to multiple samples can provide sufficiently detailed

information to contribute to both archaeological and evolutionary knowledge

of the history of tuberculosis.
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1. Introduction
Tuberculosis (TB) has caused millions of deaths throughout history and is still

a major burden in many parts of the world. Especially in the seventeenth–

nineteenth centuries AD, TB was highly prevalent throughout Europe, urbaniz-

ation facilitating spread of the disease in overcrowded environments [1]. The

improved living standards in the late nineteenth century AD led to a decline in

incidence rates and a further drop was achieved by the use of antibiotics in the

mid-twentieth century [1,2]. Since its re-emergence in the 1980s, however, TB

has once again become one of the leading infectious diseases, causing morbidity

and mortality in all parts of the world, with an estimated 1.4 million deaths

in 2011 [3].

TB is caused by the members of the Mycobacterium tuberculosis complex

(MTBC), with M. tuberculosis being the most common infecting species in

humans. The MTBC also comprises the human pathogens M. africanum and

M. canettii as well as the primarily animal infecting species M. bovis, M. microti,
M. pinnipedii and M. caprae, all of which have been identified as causative

agents of TB in humans [4–8]. The continuing appearance of antibiotic-resistant

MTBC strains has stimulated interest in the evolutionary history of TB, in particu-

lar the possible coevolution between MTBC lineages and human populations [9].

Modern genetic data indicate that the MTBC may have coexisted with humans for

at least 15 000 years [10–14], and archaeological evidence suggests that it has

afflicted humankind since the Neolithic [15–18]. Throughout the past two dec-

ades, studies of ancient DNA (aDNA) in archaeological remains have begun

to contribute to our understanding of the evolutionary history of the MTBC, sev-

eral publications reporting the presence of MTBC aDNA in human remains, and

some attempting to classify the infecting MTBC strains based on the identities of

various genetic markers [17–28].
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Table 1. Loci targeted in this study in order to classify ancient MTBC strains.

locus type locusa classification into references

SNP gyrA284 PGGs 1 – 3 [36]

katG1388

oxyR37 lineages I – IV and M. bovis [38]

oxyR285

rpoB2646

rpoB3243

leuB (3352929) SNP cluster groups 1 – 7 [39]

qcrB (2460626)

recN (1920118)

Rv0083 (92197)

Rv2802c (3111473)

LSP TbD1 ancient/modern M. tuberculosis [33]

pks15/1 Euro-American lineage [34,35]
aNumbers in parentheses denote the nucleotide position in H37Rv, as given in Filliol et al. [39].
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Several methods are used in clinical research to classify

MTBC isolates into groups of related strains, including

IS6110 restriction fragment length polymorphism (IS6110

RFLP) [29], mycobacterial interspersed repetitive unit-vari-

able number tandem repeat (MIRU-VNTR) typing [30,31],

spacer oligotyping (spoligotyping) [32], targeting of large

sequence polymorphisms (LSPs) [33–35] and typing of

single nucleotide polymorphisms (SNPs) [13,36–39]. RFLP

analysis of IS6110, MIRU-VNTR typing and spoligotyping

are less suitable for phylogenetic analyses as convergent evol-

ution may result in homoplasy of the targeted loci [40,41].

Spoligotyping has been applied in studies of ancient TB

[17–24] but its use has been questioned [42], not just because

of its limited phylogenetic value but also because of its meth-

odological problems when highly degraded aDNA is being

analysed. LSPs and SNPs are considered to be the most suit-

able markers for strain identification and phylogenetic

analysis, although they are not exempt from convergent

evolution [43,44]. Early sets of SNPs were discovered by ana-

lysing selected genes or comparing genome sequences from

only few strains, thereby not accessing a large part of the

global variation [45]. More recently, de novo sequencing of

89 genes in 108 strains from all parts of the world identified

488 SNPs and resulted in a detailed phylogeny of the MTBC

[46]. Whole genome comparison of 22 globally representa-

tive, mainly newly sequenced strains subsequently revealed

9037 unique SNPs and further resolved the phylogeny of

the MTBC [47], and 34 167 SNPs identified from 259 strains

have been used to study the coevolutionary history of

M. tuberculosis and prehistoric human populations [14].

Targeting such large sets of loci is not feasible in aDNA

studies if conventional PCR procedures are applied because

the amount of extract available for analysis is usually very

limited. These methodological constraints can be overcome

by next generation sequencing (NGS), which is now being

adopted in human aDNA studies and has recently been

applied to historic strains of plague [48], TB [49] and leprosy

[50]. However, NGS methods have their own limitations,

requiring relatively large amounts of aDNA, being computa-

tionally intensive, and suffering from missing data owing to
the absence of sequence reads covering particular SNPs, even

ones that can be typed in the same sample by conventional

PCR [49].

In this study, we show that an informative comparison of

MTBC strains in archaeological human bone and dental

samples is possible by conventional PCR of eleven SNPs and

two LSPs (table 1). These markers enable MTBC strains to be

classified into principal genetic groups (PGGs) 1–3 [36],

lineages I–IV and M. bovis [38], SNP cluster groups (SCGs)

1–7 [39], ‘modern’ M. tuberculosis [33] and the Euro-American

lineage of modern M. tuberculosis [34,35]. Five additional SNPs

[51] allow a more precise classification of strains of the

Euro-American lineage. We typed these markers in British

and other European archaeological bone and dental samples

from skeletons dated to the second–nineteenth centuries AD,

revealing historic variations in genotype identities.
2. Material and methods
Thirty-four bone and dental samples were selected based on the

positive outcomes of PCRs directed at the IS6110 and IS1081

insertion sequences [52], which are looked on as specific for the

MTBC group of bacteria. The samples come from skeletons

dated to the second–nineteenth centuries AD and most but not

all displayed lesions specific or non-specific for TB (electronic

supplementary material, table S1). We have previously reported

NGS and conventional SNP typing results for one of these

samples, St George’s Crypt 4006 [49].

Samples were taken under clean conditions by personnel wear-

ing forensic suits, hair nets, face masks and sterile gloves, and

stored in sterile plastic bags under dry conditions. Work was per-

formed at the University of Manchester and the Complutense

University of Madrid. The aDNA facility at the University of

Manchester comprises independent, physically isolated labora-

tories for extraction and PCR set-up, each with an ultrafiltered

air supply maintaining positive displacement pressure. DNA

extractions were prepared in a Class II biological safety cabinet,

and PCRs were set up in a laminar flow hood. Surfaces were ster-

ilized by UV irradiation and regularly cleaned with 5% bleach and

70% ethanol. All equipment was treated with DNA-Away (Mol-

ecular Bioproducts) and tubes, pipettes and aqueous solutions

http://rspb.royalsocietypublishing.org/


Table 2. Summary of SNP and LSP data.a —, no result obtained; n.d., not done; TbD12, deletion of TbD1 has occurred; D7 bp, 7 bp deletion in pks15/1 has
occurred.

sample ID sample date TbD1 pks15/1 PGG lineage SCG

Ashchurch 705b 129 – 317 calAD TbD12/TbD12 D7 bp/D7 bp 2/3/2 I or II/ – 3/3 or 4

Auldhame 43b 1280 – 1394 calAD TbD12/n.d. D7 bp/D7 bp 2/2 II/ – 5/5

Saint Amé 20 16th – 18th centuries AD – /n.d. – /D7 bp 3/3 not IV/not III 6/6

St George’s Crypt 4006b mid-19th century AD TbD12/TbD12 D7 bp/D7 bp 3/3 II/II 6/6

St George’s Crypt 5003 mid-19th century AD – /TbD12 D7 bp/ – – / – not IV/ – 6/ –

St Peter’s Church 1390b 1016 – 1155 calAD TbD12/n.d. D7 bp/D7bp 2/2 I or II/ – 3/3

St Peter’s Collegiate

Church 28

19th century AD TbD12/n.d. D7 bp/ – 3/ – I or II/ – 6/ –

St Peter’s Collegiate

Church 62b

19th century AD TbD12/TbD12 D7 bp/D7 bp 2/2 I or II/II 4/4

Whitefriars 657 18th – 19th centuries AD – /n.d. D7 bp/ – 2/3 I or II/ – 6/6

Whitefriars 10466b 18th – 19th centuries AD TbD12/n.d. – /D7 bp 2/2 I or II/ – 4/4
aResults listed as first/second extraction.
bSecond extraction performed in Madrid, except for TbD1.
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were UV irradiated (254 nm, 120 000 mJ cm22) for at least 10 min

before use. Personnel wore protective clothing at all times, includ-

ing forensic suits, face masks, hair nets, goggles and two pairs of

sterile gloves. Work in Madrid was also carried out in physically

separated laboratories for DNA extraction and PCR set-up, UV

irradiated both before and after use. Surfaces and laboratory

equipment were regularly cleaned with bleach. Personnel wore

disposable forensic suits, face masks, caps, glasses, shoe covers

and gloves. All reagents and consumables were DNase and

RNase free. All procedures were carried out in a laminar flow cabi-

net, UV irradiated and cleaned with bleach before use. DNA

extractions were accompanied by two blanks (extraction without

skeletal material) per five samples (Manchester) or one blank per

seven samples (Madrid). A set of 5–7 PCRs was always

accompanied by at least two PCR blanks (set up with water instead

of DNA extract).

Samples were prepared by removing approximately 1–2 mm

of the outer surface of the bone mechanically, followed by UV

irradiation (254 nm, 120 000 mJ cm– 2) for 2 � 5 min, with 1808
rotation between the two exposures, and subsequent crushing

of the bone into powder. Each tooth was cleaned externally by

placing it for 5 min in a small beaker containing 5% bleach, with-

out allowing bleach to enter the root canal. The tooth was then

dried with a paper towel, placed in a second beaker and rinsed

in Millipore water, again avoiding entry of water into the root

canal. After drying, a 37% phosphoric acid etching solution

was applied to the tooth surface, left for 1 min and wiped off.

The tooth was rinsed in Millipore water, dried for 10 min, and

dentine powder collected using a dental pick.

At least two extractions were prepared for each sample, using

250 mg of bone or 50–100 mg of dentine powder. Extractions at

Manchester used the method described by Bouwman & Brown

[53] and/or a protocol based on Rohland & Hofreiter [54] and

Rohland et al. [55], previously described by Bouwman et al. [49].

A subset of samples was re-extracted at Madrid using the latter

method only. PCRs were directed at up to 16 SNPs and two

LSPs (table 1; electronic supplementary material). PCRs were

set up in a final volume of 30 ml, comprising 3–5 ml of

DNA extract, 1� AmpliTaq Gold PCR Master Mix (Applied

Biosystems), 400 nM each primer and 1% BSA. Cycling conditions

were: 7 min at 958C; followed by 45 cycles of 1 min at x8C and

1 min at 948C; followed by 10 min at 728C, where x8C is the

primer-specific annealing temperature (electronic supplementary
material, table S2). For primers with an annealing temperature

less than or equal to 608C, a three-temperature PCR was set up,

with each annealing step at x8C followed by a 1 min extension at

728C. All PCR products were examined by electrophoresis in 2%

agarose gels, purified either from the gel or directly using Qiaquick

columns (Qiagen) and subsequently cloned into Escherichia coli
XL1-Blue competent cells (Agilent) using the CloneJet PCR cloning

kit (Fermentas). Colony PCR was performed in 20 ml comprising

1� Taq buffer (New England Biolabs), 200 nM each primer,

200 mM dNTPs and 0.625 units Taq DNA polymerase (New Eng-

land Biolabs), with cycling at: 958C for 3 min; 30 cycles of 30 s at

948C, 30 s at 608C, 1 min at 728C; 10 min at 728C. PCR products

were then sequenced (GATC Biotech, Cologne) and sequences

aligned with the M. tuberculosis H37Rv reference sequence using

GENEIOUS v. 6.0.3 (http://www.geneious.com/).

To compare our results with 21 extant MTBC strains, targeted

regions available from the six samples that provided unambigu-

ous typing results were concatenated and aligned with the

equivalent concatenated regions of the extant MTBC strains.

For Auldhame 43, this procedure was repeated for all available

sequences, including the four additional SNPs taken from

Abadia et al. [51]. Neighbour-joining trees were created using

MEGA v. 5.2.1 [56] and visualized with DENDROSCOPE v. 3.2.4 [57].
3. Results
We analysed 34 samples from 31 individuals from 22

archaeological sites and one pathological reference collection

(electronic supplementary material, table S1) for 11 SNPs and

two LSPs (table 1). We obtained data for ten samples from

seven archaeological sites (electronic supplementary material,

table S3), enabling us to classify the infecting MTBC strains

according to their SNP identities, the presence/absence of the

TbD1 locus, and/or the presence of deletions within pks15/1
(table 2). Six of the samples (Auldhame 43, Saint Amé 20,

St George’s Crypt 4006, St Peter’s Church 1390, St Peter’s

Collegiate Church 62, Whitefriars 10466) provided sufficient

information, reproducible with two independent extracts, to

assign the infecting strains to both their PGGs [36] and SCGs

[39]. Two other samples, St Peter’s Collegiate Church 28 and

http://www.geneious.com/
http://www.geneious.com/
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2 St Peter’s Church, Leicester, 1016–1155 calAD

3 Whitefriars, Norwich, eighteenth – nineteenth centuries AD

4 St Peter’s Collegiate Church, Wolverhampton, nineteenth century AD

5 Auldhame, 1280–1394 calAD

6 St George’s Crypt, Leeds, mid-nineteenth century AD

7 Saint Amé, Douai, sixteenth–eighteenth centuries AD
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Figure 1. Location of the sites for the 10 samples for which we report strain data. Circles, location of a strain belonging to PGG 2 and SCG 3; triangle, PGG 2 and
SCG 5 strains; squares, PGG 3 and SCG 6 strains; stars, sites for which both PGG 2 and PGG 3 as well as SCG 4 and SCG 6 strains were identified. Note that evidence
for an additional second strain belonging to PGG 3 was obtained for the sample from the individual from Ashchurch. (Online version in colour.)
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St George’s Crypt 5003, gave incomplete results that enabled a

PGG and/or SCG to be assigned from one extract but not con-

firmed with the second extract. Ambiguous results were

obtained with two additional samples. Whilst Whitefriars

657 was identified as containing a SCG 6 strain, the gyrA284

SNP was typed as a C in one extract and G in the other,

suggesting either PGG 2 or 3. With Ashchurch 705, clone

sequences from the first extract gave a mixture of C and G at

this position, and the qcrB SNP, which distinguishes SCG 3

from SCG 4, could be typed with only one of the two extracts

(electronic supplementary material, table S3).

The oxyR and rpoB PCRs used to assign strains to lineages

I–IV [38] were less successful owing to lack of reproducibility

and amplification of non-specific rpoB3243 targets. Nine of the

10 samples could be assigned to lineages I or II, but distinc-

tion between these lineages, which requires rpoB3243, was

only possible for Auldhame 43, St Peter’s Collegiate Church

62 and St George’s Crypt 4006, each of which was identified

as lineage II based on results with one or both extracts.

St George’s Crypt 5003 could only be identified as not lineage

IV. The pks15/1 PCR revealed a 7 bp deletion for each of the

10 samples, suggesting that the strains belong to the Euro-

American lineage, and amplification of the region flanking

TbD1 was achieved for eight samples, again indicating that

these are modern M. tuberculosis strains.

All but one of the 10 samples for which we obtained strain

data came from British excavation sites spanning the second–

nineteenth centuries AD, the one exception coming from

sixteenth–eighteenth centuries AD Douai in northern France

(figure 1). The relationships between these strains and

modern ones are depicted as a neighbour-joining tree in

figure 2a. Additional targeting of five of the SNPs reported by

Abadia et al. [51] was attempted with one extract of Auldhame

43, a member of SCG 5. Four SNPs were typed, enabling more
accurate resolution of the position of Auldhame 43 compared

to the extant MTBC strains (figure 2b).
4. Discussion
We obtained sufficient SNP and/or LSP data to classify the

M. tuberculosis strains present in 10 of the 34 bone and dental

samples that we studied. Our results clearly show that, at

least during the eighteenth–nineteenth centuries AD, strains

of M. tuberculosis belonging to different genetic groups were

present in Britain at the same time, possibly even at a single

location. Within this time period, we discovered PGG 2/SCG

4 strains in individuals at sites in Norwich, eastern England

(Whitefriars 10466), and Wolverhampton, central England (St

Peter’s Collegiate Church 62), and a PGG 3/SCG 6 strain at

Leeds, northern England (St George’s Crypt 4006). Strains of

both types might even have coexisted in the same local areas,

as a second Wolverhampton individual (St Peter’s Collegiate

Church 28) had a PGG 3/SCG 6 strain, and a second individual

from Norwich (Whitefriars 657) had a PGG 2/3/SCG 6 strain.

Both of these identifications are, however, tentative (at least

according to the strict technical regime that we adopted)

because they were not fully reproducible. Only one extract

from St Peter’s Collegiate Church 28 gave results, and the

PGG classification for Whitefriars 657 was ambiguous, PGG

2 being identified with the first extraction and PGG 3 with

the second.

One explanation of the ambiguous Whitefriars 657 result is

that this individual was co-infected with two strains of

M. tuberculosis, one strain belonging to PGG 2 and the other

to PGG 3. Based on the presence of a T at Rv0083, in both

extracts, the infecting strains could further be assigned to

SCG 6. However, SNP typing success with the second extract

http://rspb.royalsocietypublishing.org/
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Figure 2. (a) Neighbour-joining tree comparing the concatenated sequences of eight regions (478 bp—gyrA, katG, leuB, oxyR37, pks15/1, qcrB, rpoB2646 and
Rv0083) obtained from a total of six samples (Auldhame 43, Saint Amé 20, St Peter’s Church 1390, St Peter’s Collegiate Church 62, St George’s Crypt 4006
and Whitefriars 10466) with the equivalent regions of 21 extant MTBC strains. These extant MTBC strains are M. tuberculosis strains H37Rv (National Center
for Biotechnology Information reference sequence NC_000962.2), H37Ra (NC_009525.1), ATCC35801 str. Erdman (AP012340.1), CCDC5079 (NC_017523.1),
CCDC5180 (NC_017522.1), CDC1551 (NC_002755.2), CTRI2 (NC_017524.1), F11 (NC_009565.1), KZN605 (NC_018078.1), KZN1435 (NC_012943.1), KZN4207
(NC_016768.1), RGTB327 (NC_017026.1), RGTB423 (NC_017528.1), UT205 (NC_016934.1) and HN878 (CM001043.1) as well as M. bovis bacillus Calmette –
Guérin str. Mexico, (NC_016804.1), M. africanum GM041182 (NC_015758.1) and M. canettii CIPT140010059 (NC_015848.1). Further strain data from whole
genome shotgun sequencing projects was available from the Broad Institute (M. tuberculosis comparative sequencing project, Broad Institute of Harvard and
MIT (http://www.broadinstitute.org/)) for: M. tuberculosis C (GenBank accession number AAKR00000000), M. tuberculosis Haarlem (AASN00000000) and M. tuberculosis
W-148 (ACSX00000000.1). (b) Neighbour-joining tree comparing the concatenated sequences of 16 regions (1054 bp) obtained from Auldhame 43 with the equivalent
regions of the 21 extant MTBC strains listed in (a). Bootstrap values were weak for both trees, as expected due to the small character set.
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was limited (table 2; electronic supplementary material,

table S3), and for this reason we look on the individual from

Whitefriars (657) as having possible but not definite mixed

infection, i.e. TB caused by two different strains. A second,

more convincing example of mixed infection was presented

by the Roman sample Ashchurch 705. One of the extracts

of this sample gave both possible nucleotides for gyrA284

(C and G), indicating an infection with both PGG 2 and PGG

3 strains. Owing to the type of polymorphism, we exclude

the disparity as resulting from a miscoding lesion [58–60],

and there was no evidence of contamination (electronic sup-

plementary material). Mixed infection has been reported

with patients today, either as concurrent infections with mul-

tiple MTBC strains or as exogenous re-infections [61]. The

presence of a mixed infection in Ashchurch 705 also indicates

that both PGG 2 and PGG 3 strains coexisted in southwest

Britain during the second–fourth centuries AD. Since the

second extract for Ashchurch 705 revealed a PGG 2 strain

only, we assume that the SCG genotype obtained from both

extracts derived from this PGG 2 strain. However, we cannot

establish if the PGG 3 strain displayed the same SCG genotype

as the PGG 2 strain.

Filliol et al. [39] have suggested that, of the four SCGs 3–6,

SCG 3 preceded SCG 5 with the latter followed by SCG 4 and

SCG 6 appearing lastly. Although our sample size is small,

the results are consistent with this succession of SCG types.

The three oldest samples that yielded genotype data were
from skeleton 705 from Ashchurch (129–317 calAD) and St

Peter’s Church 1390 (1016–1155 calAD), both of whom had

strains belonging to PGG 2/SCG 3, and skeleton 43 from

Auldhame (1280–1394 calAD), which was identified as

PGG 2/SCG 5. The remaining six British samples, dated to

the eighteenth–nineteenth centuries AD, were from individ-

uals with either PGG 2/SCG 4 or PGG 3/SCG 6, with

skeleton 657 from Whitefriars possibly also harbouring a

PGG 2 strain. Additionally, a sixteenth–eighteenth century

AD individual from Douai, northern France (Saint Amé 20),

was shown to contain a PGG 3/SCG 6 strain.

The markers we typed do not distinguish the a and b sub-

groups of SCG 6. However, we have previously shown by NGS

genotyping that skeleton 4006 from St George’s Crypt had a

SCG 6b strain [49]. This is the same SCG as the MTBC reference

strain H37Rv [39], which was first isolated at the beginning of

the twentieth century from a North American patient [62]. Our

results therefore indicate that strains similar to H37Rv might

have been present in continental Europe in the sixteenth–

eighteenth centuries AD and geographically dispersed in

eighteenth–nineteenth centuries AD Britain.

Strains belonging to SCG 3b, 3c, 4 and 5 fall into PGG 2 as

they harbour a polymorphism at katG1388 but not gyrA284 [39].

By contrast, SCG 6 strains display polymorphisms at both

katG1388 and gyrA284 and are therefore classified as PGG 3

[39]. Further analyses will be necessary in order to identify

whether skeletons from Ashchurch (705) and St Peter’s

http://www.broadinstitute.org/
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Church (1390) indeed had strains belonging to SCG 3b or 3c as

suggested by the PGG 2 determination or if they had strains

belonging to subgroup SCG 3a which is primarily found

within PGG 1 [39], with possible exceptions [63]. PGGs 2 and

3 (and likewise their associated SCGs) are also known to com-

prise lineage II strains, as identified by a polymorphism at

rpoB3243 [38], and to lack the M. tuberculosis-specific deletion

TbD1 [33] as well as a 7 bp region within pks15/1 [34]. Deletion

of the 7 bp region was revealed for all 10 of our samples, with

eight of them also shown to lack TbD1, classifying them

as strains belonging to the Euro-American clade of modern

M. tuberculosis. While deletion of TbD1 has previously been

reported in an individual from Britain dating to approximately

2200 years BP [25], our results for Ashchurch 705 now addition-

ally disclose that the deletion of the 7 bp region within pks15/1
had already taken place by the second–fourth centuries AD

in Britain.

By typing four of the SNPs reported by Abadia et al. [51],

we showed that the infecting SCG 5 strain found in the skel-

eton of Auldhame 43 is a member of the group that is

ancestral to extant strains of the Latin-American Mediterra-

nean clade within the Euro-American lineage. The detection

of a SCG 5 strain at Auldhame (a coastal settlement east of

Edinburgh, Scotland) but a SCG 3 strain at Leicester only

about 100–200 years earlier raises the possibility that the

Auldhame strain was not introduced into the human popu-

lation in Scotland from southern parts of Britain but from

Scandinavia instead. The first archaeological evidence of TB

in Scotland [64] pre-dates Viking invasions in the late

eighth century AD and Scandinavian contact in subsequent

centuries [65], and stable isotope analysis of samples from

individuals from the Auldhame site has indicated that the

skeletal population itself is most likely composed of local

individuals [66]. Nevertheless, introduction of (new) TB

strains via this route is a possible scenario as the osteological

evidence suggests the presence of TB in Scandinavia during
the Iron Age (fifth–first centuries BC) as well as the medieval

period (1050–1536 AD) [1,67–69].
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