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Abstract:

We explore the Papadodimas-Raju prescription for reconstructing the region behind the

horizon of one-sided black holes in AdS/CFT in the case of the RP2 geon - a simple,

analytic example of a single-sided, asymptotically AdS3 black hole, which corresponds to a

pure CFT state that thermalizes at late times. We show that in this specific example, the

mirror operators involved in the reconstruction of the interior have a particularly simple

form: the mirror of a single trace operator at late times is just the corresponding single

trace operator at early times. We use some explicit examples to explore how changes in

the state modify the geometry inside the horizon.
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1. Introduction and summary

There has recently been considerable renewed interest in the issues of principle raised by

black hole evaporation and the information loss problem, initiated by the firewall argument

[1,2] (see also [3,4]), which uses insights from quantum information theory to sharpen the

tension between the existence of a smooth horizon and unitarity of the evaporation process

(for a useful review, see [5]). An important contribution to these developments was the

proposal of Papadodimas and Raju (henceforth PR) [6–8] of a concrete recipe for the

reconstruction of the region behind the horizon of one-sided black holes - dual to some

pure state |Ψ〉 - from the point of view of the dual CFT. Their prescription is based on

identifying a set of operators in the CFT - called “mirror operators” - which are entangled

with the degrees of freedom corresponding to fields outside the horizon at late times in
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a way analogous to the entanglement between the two boundaries of an eternal black

hole [9].1 These operators commute with operators describing the black hole exterior inside

all low-point correlation functions, but not exactly - an essential feature that allows the

implementation of black hole complementarity consistently with local effective field theory

in the bulk. In the PR proposal, local bulk fields are reconstructed from generalized free

field operators in the boundary CFT and their mirrors in the same way as the interior of the

eternal black hole can be described in terms of the operators on the two boundaries [12–17].

The PR construction assumes that there is a smooth horizon, and that the description

of the region behind the horizon is essentially the same as in the eternal black hole. A key

question is, for which states in the dual CFT is such an assumption appropriate. PR argue

that the prescription applies to “equilibrium” states, i.e. states that look thermal from the

point of view of a small subset of observables A used to probe the system. In our case,

the condition is that correlators of operators in A should be indistingushable from thermal

correlators, up to corrections exponentially suppressed in the entropy of the thermal state:

〈Ψ|Ap|Ψ〉 = Tr(ρthAp) +O(e−c Sρ) , ∀Ap ∈ A (1.1)

where ρth is a thermal density matrix and c is an order one constant.2 Given an equilibrium

state, PR define the mirror operator ÕΨ of an operator O ∈ A to be an operator satisfying

ÕΨ|Ψ〉 = e−βH/2O†eβH/2|Ψ〉, (1.2)

[ÕΨ, Ap]|Ψ〉 = 0, (1.3)

where Ap is any operator in A and the subscript on ÕΨ emphasizes the fact that the mirror

operator depends on the reference state |Ψ〉. PR showed that a solution to these equations

always exists, provided that no combination of operators in A annihilates |Ψ〉, which is

usually the case if the algebra A is small and the state |Ψ〉 is sufficiently complicated.

States in the CFT generated by acting on an equilibrium state |Ψ〉 with a CFT operator

are supposed to correspond to some bulk excitation on top of the geometry dual to |Ψ〉.
To the extent that such out-of-equilibrium states can be detected by the observables in A,

the PR construction can be easily modified to account for these situations [8].

The PR proposal has been the subject of some controversy: [2,18] constructed examples

of states satisfying the equilibrium condition which can also be realized as excitations of an-

other equilibrium state, thus questioning the well-posedness of the construction. Important

issues of principle are also raised by the state-dependence of the mirror operators [2,18]. In

addition, the definition of the mirror operators is indirect, so it is difficult to gain intuition

into their nature in a generic pure state. It may be enlightening to explore these issues in

the context of an explicit example, where the mirror operators have a simple interpretation.

In this paper we study the simplest example of a one-sided black hole spacetime, the

RP2 geon, which is obtained by a quotient of the BTZ black hole [19]. An advantage of

1See also [10] and the ER=EPR proposal [11] of a connection between entanglement and the geometry

of the eternal black hole.
2More generally, one would have a similar condition with an appropriate ensemble density matrix re-

placing ρth, for example the microcanonical ensemble.
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this example is that the dual CFT state is explicitly known [9]. The bulk geometry has a

smooth horizon and, as we will see, if we take A to consist of correlation functions of local

operators at late times, then the equilibrium condition (1.1) is satisfied.

Our first aim is to explicitly identify PR’s mirror operators for this case. We argue

that, given a late-time local operator O(t, φ), the corresponding local operator O(−t, φ+π)

acting at early times satisfies the requirements (1.2) - (1.3) for a mirror operator, so long

as t > t∗, the scrambling time for the bulk black hole. Thus, the mirror operators can be

identified, at least at leading order in the central charge, with simple local operators in

the CFT. We note that as in the eternal black hole, it is natural to think of the state as

specified on the t = 0 surface in the bulk, so these early-time operators can be thought of

as precursor operators in the sense of [20,21].

We also study some simple examples of changes to the geon state generated by unitary

transformations that do not affect the equilibrium condition (1.1). If we assume that the

resulting states are dual to geometries with a smooth horizon, there is a corresponding

change in the boundary conditions inside the horizon in the bulk. This illustrates how the

change in state can be interpreted as a modification of the geometry behind the horizon.

This paper is organised as follows. In section 2, we review the geometry of the RP2

geon space-time as a quotient of BTZ and argue, using holographic computations, that

the dual state satisfies (1.1) with respect to late-time correlation functions. In section 3,

we review the path integral construction of the state dual to the geon following [9], and

use this to discuss the entanglement structure and high-energy support of the geon state

from a CFT perspective. In section 4, we review the construction of local bulk operators

in BTZ and introduce a smeared version thereof. We then extend this construction to

bulk fields in the geon spacetime, and use it to support our identification of the mirror

operators. Finally, in section 5, we discuss some examples of unitary rotations of the geon

state. Several technical details are collected in the appendices.

2. The RP2 geon geometry

In three dimensions, the absence of local gravitational degrees of freedom implies that the

metric for a vacuum solution is locally AdS3. A number of physically interesting examples

can be constructed as quotients of global AdS3, including the BTZ black hole [22,23], and

a rich family of single-sided black holes [24–26], of which we will focus on the RP2 geon as

the simplest example [19].

2.1 Definition

It is convenient to describe AdS3 in embedding coordinates, as a hyperboloid −T 2
1 − T 2

2 +

X2
1 +X2

2 = −`2 in R2,2, with metric

ds2 = −dT 2
1 − dT 2

2 + dX2
1 + dX2

2 . (2.1)

In these coordinates, the SO(2, 2) ' SL(2,R) × SL(2,R) isometries of AdS3 are realised

as Poincaré boosts in the Ti, Xi coordinates. Global AdS3 is the universal covering space

obtained by unwrapping the angular coordinate in the T1, T2 plane to take all real values.
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The non-rotating BTZ black hole is obtained by restricting to the region T 2
1 > X2

1 , where

the Killing vector

ξ = X1∂T1 + T1∂X1 (2.2)

is spacelike, and quotienting by the discrete isometry group Γγ ' Z generated by γ =

e2πr+ξ/`. This quotient preserves a U(1)×U(1) subgroup of the original isometries, gener-

ated by ξ and

χ = X2∂T2 + T2∂X2 . (2.3)

These isometries are manifest in adapted coordinates, defined by

T1 =
r`

r+
cosh(

r+φ

`
) , X1 =

r`

r+
sinh(

r+φ

`
), (2.4)

T2 = `

√
r2

r2
+

− 1 sinh(
r+t

`2
) , X2 = `

√
r2

r2
+

− 1 cosh(
r+t

`2
), (2.5)

in terms of which ξ = `
r+
∂φ, χ = `2

r+
∂t. In these coordinates, the metric reads

ds2 = −
r2 − r2

+

`2
dt2 +

`2

r2 − r2
+

dr2 + r2dφ2 (2.6)

and the quotient generated by γ acts as φ ∼ φ + 2π. This is the BTZ black hole [22, 23],

of inverse temperature β = 2π`2/r+ and entropy SBH = πr+/2G. The quotient generates

the full, maximally extended BTZ spacetime depicted in figure 1 below, which has two

asymptotically AdS3 regions. The adapted coordinates above cover just the exterior region

on one side (region I) of the black hole. There are related coordinates which cover each of

the other patches3; note that the time coordinate t runs in opposite directions in the two

asymptotic regions.

I

II

III

IV

Figure 1: The Penrose diagram for the eternal BTZ spacetime, indicating the direction of

χ = ∂t in each region.

3In regions II, III, IV, one again defines coordinates (t, r, φ) that cover each of the respective patches

only. The relation between T1, X1 and r, φ is the same as (2.4), only the relation between T2, X2 and t, r

changes: for region II, we need to exchange the formulae for T2 ↔ X2 in (2.5), in region III, we simply

change the sign T2 → −T2, X2 → −X2, and in region IV we both change the sign and interchange T2, X2.

The metric always takes the form (2.6). The sign change T2 → −T2, X2 → −X2 can be implemented by

the analytic continuation t → t + iβ/2. Note that the Penrose diagram effectively captures the conformal

dynamics in the T2, X2 plane.
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It is easy to extend this analysis to generate geometries with a global event horizon and

a single asymptotically AdS3 region, by considering more complicated quotient groups [25].

Here we will consider the simplest example, the RP2 geon [19], which is constructed by

taking a further quotient by the Z2 action generated by J̃ = J ◦ eπr+ξ/`, where J is the

simple reflection

J : X2 → −X2. (2.7)

Since J̃2 = γ, this generates a Z2 action on the BTZ spacetime, where we have already

quotiented by Γγ . In the BTZ coordinates of (2.6), J̃ maps a point at coordinates (t, φ)

in region I to one at (−t, φ + π) in region III, and acts within regions II, IV to identify

(t, φ) ∼ (−t, φ+ π). Pictorially, this identifies points in figure 1 by a reflection around the

vertical axis, accompanied by a rotation by π in the circle direction, which is suppressed in

the picture. The Penrose diagram of the geon is thus as shown in figure 2. The φ rotation

makes the spacetime smooth on the dashed axis on the left of this picture; the quotient by

J̃ has no fixed points in the spacetime.

The resulting spacetime is not orientable; the spatial slices have topology RP2 minus a

point, whence the name. However, in contexts where AdS3 is obtained by dimensional re-

duction from some higher-dimensional theory, one can construct an orientable spacetime in

the higher-dimensional theory by combining (2.7) with an orientation-reversing involution

of the internal space [19].

IIII

Figure 2: The construction of the geon spacetime as a quotient of BTZ. There is a time-

translation symmetry that acts only in the exterior region, which is indicated by the arrow.

In [9], the quotient of BTZ by J was also considered, which identifies X2 → −X2, but

without the additional shift in φ. Unlike the geon, this quotient does have a fixed point at

X2 = 0 (t = 0 in regions II, IV) and the resulting space-time - which we will imaginatively

denote as the “J quotient of BTZ”- has an orbifold singularity along this line. Nevertheless,

it still represents a perfectly well-behaved, analytic single-sided black hole, whose Penrose

diagram is again given by the left figure 2, the dashed vertical line now representing the

singularity. Region I of this spacetime, defined for r > r+, is indistinguishable from its

geon counterpart.

2.2 Thermality of the RP2 geon

Since the geon spacetime only has one boundary, the dual CFT state is expected to be

pure; the presence of a smooth horizon in the bulk indicates this state should thermalise.
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This picture is corroborated by the fact that the geon space-time is not stationary - it does

not admit a globally defined timelike Killing vector - and thus the dual state cannot be

thermal at all times. In this subsection, we show that the geon state becomes thermal at

late times, when probed by correlation functions of CFT operators dual to local bulk fields.

Since the exterior geometry of the geon is precisely the same as that of BTZ, the

holographic calculation of one-point functions of boundary operators (at leading order in

the central charge) will give exactly the same answer as in BTZ. Thus, they will be thermal

at all times. The departure from thermality is however reflected in the two- and higher-

point functions of boundary operators, as the boundary-to-boundary propagator will be

modified by the change in the bulk geometry inside the horizon.

Let us first consider the two-point function of free (scalar) fields propagating in the geon

geometry, corresponding via the AdS/CFT dictionary to generalized free field operators in

the dual large N CFT, whose correlation functions factorise [27]. Since the geon space-time

is obtained from BTZ by an involution, the bulk two-point function of free fields in the

geon can be obtained from the one in BTZ by summing over the two images in BTZ of a

given point in the geon,

〈Φ(x)Φ(x′)〉geon = 〈Φ(x)Φ(x′)〉BTZ + 〈Φ(x)Φ(J̃(x′))〉BTZ . (2.8)

For points that lie on the geon asymptotic boundary, the first term corresponds to the

correlator of two operators inserted on the same BTZ boundary, while the second term

receives contributions from operators inserted on the two opposite boundaries of BTZ. The

analyticity of the geon and BTZ spacetimes allows us to apply a geodesic approximation

to calculate these boundary to boundary propagators for sufficiently heavy fields; the main

contributions to the correlators on the RHS of (2.8) are well approximated by the geodesic

length in the bulk, as depicted in figure 3. Explicit expressions for both correlators can

be found in [28]. The first contribution will be the same as the thermal BTZ two-point

function, while the second contribution is sensitive to the non-thermal nature of the state.

Near t = 0, the second contribution in (2.8), although smaller than the first, is not sup-

pressed relative to it by any factor of the central charge, just by the difference in geodesic

lengths [28], and thus the resulting total two-point function is not thermal.

t

t'
-t'

Figure 3: The geodesics contributing to the two-point function of two operators on the

same boundary (red), and for operators on different boundaries (blue) in BTZ.

If we consider the equal-time two-point function at increasing t, the first contribution

〈Φ(x)Φ(x′)〉BTZ is time-independent by the time-translation invariance of BTZ, but the
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contribution from 〈Φ(x)Φ(J̃(x′))〉BTZ decreases with time. The relevant bulk geodesic for

evaluating 〈Φ(x)Φ(J̃(x′))〉BTZ is the one considered in the entanglement entropy calcula-

tion of [29], where is was found that the length of this geodesic increases linearly in time

as L ∼ t/β, so the contribution to the two-point function decreases as

〈Φ(x)Φ(J̃x′)〉BTZ ∼ e−∆′t/β, (2.9)

where ∆′ is proportional to the mass of the bulk field in AdS units. Thus, at times large

compared to the scrambling time [30,31]

t∗ =
β

2π
lnSBH (2.10)

the contribution from the geodesic that passes inside the horizon is exponentially suppressed

in the black hole entropy SBH . Its contribution is thus smaller than than that from

subleading bulk saddles we have neglected in our analysis, so at a time of this order we

can say that the holographic two-point function has thermalised.

We can easily extend the argument to perturbatively include interactions in the bulk.

As in [8], we only consider n-point correlation functions of operators dual to supergravity

fields, with n finite. Thus, the bulk backreaction can be neglected and the calculation is

well approximated by quantum field theory on the geon geometry as a fixed background.

Perturbative correlation functions in the bulk can be calculated by analytic continuation

from the Euclidean geon spacetime. As in [32], this yields an expression for the Lorentzian

correlation functions, in which the interaction vertices are integrated only over the region

outside the horizon, r > r+.

(a) (b)

Figure 4: Contributing bulk diagrams to the boundary three-point function. The interac-

tion vertex is to be integrated only in the region outside the horizon.

The propagators connecting these vertices receive contributions both from paths that

do not pass through the identification, and from paths that do, as in (2.8). The perturbative

contributions to the correlation functions can then be decomposed into contributions as

in figure 4a, where no propagator passes through the identification, and those where one

or more propagators does pass through the identification, as in figure 4b. The former

diagrams give a thermal result, while the latter give a non-thermal contribution, so we

would like to show that they are suppressed at late times. If we take the external points at
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late times on the boundary, the integration over the location of the interaction vertices has

support mainly at late times, because the propagator in the exterior region 〈Φ(t)Φ(t′)〉 is

exponentially suppressed at large t−t′ due to dissipation. But for vertices at late times, the

propagator through the identification 〈Φ(x)Φ(J̃(x′))〉 is exponentially small by (2.9). Thus

the contribution from diagrams as in figure 4b is small at late times, and the correlation

functions will be dominated by the thermal contributions from the diagrams in figure 4a.

Thus, if we consider the set of observables A consisting of correlation functions of

operators O dual to bulk supergravity fields (up to some finite order) at times t > t∗, the

holographic calculation indicates that the state dual to the geon satisfies the equilibrium

condition (1.1). It is therefore a suitable candidate for applying the PR prescription.

3. Path integral construction of the geon state

The discussion in the previous section was entirely from the holographic point of view;

however, one of the advantages of the geon is that there exists an explicit CFT path

integral construction of the dual state, which we review in this section. We also discuss

the implications of this construction for the structure of the geon state.

In [9], the CFT state dual to the BTZ black hole was identified using a Euclidean path

integral construction. The initial data defining the black hole on a time slice t = 0 can be

obtained by a path integral over half of the Euclidean BTZ black hole, which yields the

corresponding state. The Euclidean black hole is a solid torus, so half the boundary is a

cylinder: the product of a circle of length 2π parametrised by φ and of an interval of length

β/2 parametrised by the Euclidean time, τ . The dual state is the so-called thermofield

double state

|Ψ〉TFD =
∑
i

e−βEi/2|i〉1|i〉2, (3.1)

which belongs to the double copy of the CFT Hilbert space. In the above, |i〉1,2 are energy

eigenstates of energy Ei in the first/second copy of the CFT.

This construction can be generalised to any BTZ quotient with a surface of time-

reversal symmetry, since any such quotient will have a corresponding Euclidean spacetime

continuation. The resulting state can again be identified by a path integral over half the

boundary of the Euclidean space [33–35]; for the RP2 geon, it was obtained already in [9].

The quotient by J̃ acts on the Euclidean black hole by identifying (τ, φ) ∼ (β/2−τ, φ+π).4

Thus, the boundary of the Euclidean continuation of the geon is a Klein bottle. Half the

boundary is a Möbius strip: starting from the cylinder of length β/2 in the eternal black

hole case, the two halves of the cylinder are identified, with the surface at τ = β/4 identified

with itself under a π rotation. The CFT state dual to the t = 0 initial data surface in the

geon is thus given by the Euclidean path integral over the Möbius strip. This gives for the

geon state

|Ψg〉 = e−βH/4|C〉, (3.2)

4This can be seen either directly from writing J̃ in the analytically continued BTZ coordinates, or by

noting that in the Lorentzian spacetime it identifies (t, φ) in region I with (−t, φ+π) in region III, and that

the BTZ coordinates in region III are related to those in region I by the analytic continuation t→ t+ iβ/2.
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where |C〉 is the cross-cap state defined by the identification under φ ∼ φ+ π of the CFT

fields at τ = 0.

3.1 Entanglement structure

We would first like to use this expression for the geon state to understand its entanglement

structure, which will be essential for the identification of the mirror operators in section 4.3.

The geon state (3.2) exhibits entanglement between different degrees of freedom in a single

copy of the CFT, in contrast to the entanglement between two copies of the CFT present

in the thermofield double state (3.1). This is the structure one would expect generically

for states dual to a single-exterior black hole.

The cross-cap state |C〉 is an entangled state between left- and right-moving modes.

If we consider for example the free boson CFT, this state can be constructed explicitly. In

terms of the modes jn of the holomorphically conserved current J = i∂X and j̄n of the

anti-holomorphic current J̄ = i∂̄X , the crosscap state can be shown to satisy (see e.g. [36])

(jn + (−1)nj̄−n)|C〉 = 0. (3.3)

The solution is

|C〉 = exp

(
−
∞∑
k=1

(−1)k

k
j−k j̄−k

)
|0〉, (3.4)

which shows perfect entanglement between the left- and the right-movers in the CFT.

Alternatively, one can write this state as

|C〉 =
∑
~m

|~m〉 ⊗ |Uc ~m〉, (3.5)

where

|~m〉 = |m1,m2, . . .〉 =

∞∏
k=1

1

mk!

(
j−k√
k

)mk
|0〉, (3.6)

and Uc is an anti-unitary operator, whose action on the current modes is Uc jn U
−1
c =

−(−1)njn. In more general CFTs, the cross-cap state satisfies

(Ln − (−1)nL̄−n)|C〉 = 0, (3.7)

where Ln, L̄n are the Virasoro generators, so it again involves entanglement between left

and right-movers. In particular, L0|C〉 = L̄0|C〉. However, the Virasoro algebra is not

spectrum generating, so this condition cannot be directly solved to simply write the state

as in (3.4). An expression for the crosscap state in terms of the so-called Ishibashi states

is explicitly known in rational CFTs (see e.g. [36]).

In the free boson CFT, it is possible to show, using (3.3), that simple operators con-

structed from J, J̄ and the vertex operators Vα satisfy

φ†
h,h̄

(t, φ)|C〉 = φ̄h̄,h(−t, φ+ π)|C〉, (3.8)

where h, h̄ represent the left/right conformal weights of the operator φh,h̄ and φ̄h̄,h is an

operator of the same dimension but of opposite spin to φh,h̄, obtained (in this particular
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case) by the replacement jn ↔ j̄n. Given the geometrical construction of the crosscap

state, it is natural to assume that the above property generalizes to arbitrary operators in

general CFTs5; all CFTs of interest will contain an operator φ̄h̄,h.

It is then easy to derive a similar relation for the geon state (3.2). Letting φ(t, φ) =

eβH/4O(t, φ)e−βH/4 in (3.8), where O(t, φ) is some local operator in the CFT, we find that

on the geon state

e−βH/2O†(t, φ) eβH/2|Ψg〉 = Ō(−t, φ+ π)|Ψg〉 (3.9)

Note that the above relation takes the same form as PR’s conjugacy condition (1.2), with

Ō(−t, φ+π) playing the role of the mirror operator6. Interestingly, when the CFT2 has an

AdS3 gravity dual and O(t, φ) is a generalized free field dual to a free scalar in the bulk,

then the condition (3.9) is precisely what one obtains for the Hartle-Hawking like state [37]

upon quantizing the bulk field, as we review in section 4.3. Our arguments above indicate

that this relation continues to hold at all orders in 1/N , where N is the parametrically

large central charge of the CFT.

If O(t, φ) is a generalised free field operator in a large N CFT, then its Fourier modes

Oω,m are expected to obey a harmonic oscillator algebra at leading order in 1/N . In this

case, (3.9) can be solved for the part of |Ψg〉 that is sensitive to the action of the operator

O, obtaining [19]

|Ψg〉 ∼
∏
ω,m

exp
(
αω,m (−1)mO†ω,mO

†
ω,−m

)
|0〉, (3.10)

where |0〉 is the analogue of the Rindler/Schwarzschild vacuum for the geon, satisfying

Oω,m|0〉 = 0, ∀ω > 0 and α−1
ω,m = 2Gβ(ω,m) sinhβω/2. This expression again displays the

maximal entanglement between left- and right-movers, now valid in any CFT at large N .

As explained in [37], one can introduce a basis of wavepacket operators localised in time

and space to turn (3.10) into an expression that exhibits maximal entanglement between

an operator localized at time t and position φ and one localized at time −t and position

φ + π. Tracing over the early-time modes, one obtains a thermal density matrix for the

operators localized at late times. This gives a purely CFT derivation, at least in a large

N CFT, of the late-time thermality of the geon state from the point of view of generalized

free field operators.

3.2 Support of the geon state at high energies

We can also use the path integral expression for the geon state to characterise its support

in an energy basis. The first interesting observation is that its support is not concentrated

at a given energy. This makes our example different from many discussions of pure states

in AdS/CFT, which focus on energy eigenstates. As noted in [18], the latter are in fact

not well-approximated by a thermal ensemble as in (1.1), but rather by the microcanonical

ensemble. The geon state, by contrast, is by construction well-approximated by a thermal

ensemble for the late-time observables in A.

5In appendix A, we give an argument for its correctness in rational CFTs.
6Note that in order for Ō(−t, φ + π) to be the mirror operator to O(t, φ), it also needs to satisfy the

commutation condition (1.3). We discuss when this is fulfilled in section 4.3
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More concretely, we will show that the geon state has a Cardy-like growth of the

spectral density with energy. This is clear for the free boson CFT from the expression

(3.5): the cross-cap state has equal support on all states with equal left and right-moving

quantum numbers, and the number of such states grows exponentially with energy.

For a general CFT, we can derive a similar exponential growth at high energies by

an exchange of two descriptions of the Euclidean geometry, analogous to the modular

transformation of the torus in the thermal case.7 The cross-cap condition (3.7) implies

that the cross-cap state is a sum over states with equal left- and right-moving energy

(L0 = L̄0), so we can write it as

|C〉 =
∑
i,mi

Ci,mi |i,mi〉L|i,mi〉R, (3.11)

where for each i, |i,mi〉L, (|i,mi〉R) is a basis of the left-moving (right-moving) states with

L0 = L̄0 = Ei/2 (so that the state |i〉L|i〉R has energy E = L0 + L̄0 = Ei). We can choose

the basis such that the cross-cap state is diagonal, but the relative size of the contribution

from different states is not fixed by (3.7). Then, for the geon

|Ψg〉 =
∑
i,mi

e−βEi/4Ci,mi |i,mi〉L|i,mi〉R. (3.12)

To determine the behaviour of the coefficients Ci,mi , consider the CFT partition function

on the Klein bottle, which is obtained by sewing together two Möbius strips, and is given

by

ZK = 〈ΘC|e−βH/2|C〉 =
∑
E

e−βE/2dC(Ei). (3.13)

Here Θ is the CPT operator (for details, see [36]), and we defined the density of the support

of the cross-cap state in energy,

dC(Ei) =
∑
mi

|Ci,mi |2. (3.14)

This is analogous to the density of states factor in the usual expression for the partition

function on the torus.

The Klein bottle can be represented as a rectangle in the (τ, φ) plane, of height β/2

and width 2π, with a periodic identification φ ∼ φ+ 2π for τ 6= {0, β/2}, and the cross-cap

identification φ ∼ φ+ π at τ = {0, β/2}. One can alternatively represent the Klein bottle

as a rectangle in the (τ, φ) plane of height β and width π, with the periodic identification

τ ∼ τ + β, and (τ, 0) ∼ (−τ, π). This is an alternative fundamental region for the same

identifications. The two are illustrated in figure 5.

In this alternative picture, consider interchanging the interpretation of (τ, φ), so that

φ = τ ′ becomes the Euclidean time coordinate. After a conformal transformation, we

obtain a rectangular region in the (τ ′, φ′) plane of height 2π2/β and width 2π, with the

7We thank Alex Maloney for discussion on this point.
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Figure 5: The Klein bottle can be thought of as the quotient of a rectangular torus by

the Z2 action (τ, φ) ∼ (−τ, φ + π). There are two natural fundamental regions for this

identifications. In (a), we have a representation as the propagation between two cross-caps.

In (b), we have the alternative representation with an orientation-reversing identification

of the two sides.

identifications φ′ ∼ φ′ + 2π, (0, φ′) ∼ (2π2/β,−φ′). In this description, the Klein bottle

partition function is

ZK = Tr(e
− 2π2H

β P ), (3.15)

where P is the parity operator implementing the reversal of φ′.

This alternative description allows us to derive an analogue of the Cardy formula for

the high-energy behaviour of the support dC(E). Consider high temperatures, so β � 1.

In (3.15), the lowest-energy state will dominate in the trace, and thus

ZK ≈ e−
2π2E0
β ≈ e

2π2c
12β , (3.16)

assuming the ground state is parity invariant. This implies that the high energy asymptotics

of dC(E) will be given by a Cardy-like formula,

dC(E) ∼ eπ
√
cE
3 . (3.17)

There is a factor of two difference here from the usual Cardy formula for a finite-temperature

CFT, where the degeneracy d(E) ∼ e2π
√
cE
3 . Thus, while the growth of the degeneracy at

large temperatures/energies is qualitatively similar, the growth for the geon state is slower

than for the thermal ensemble.

This might seem surprising, but it is actually necessary for the relation between the

average energy and β for the geon state to agree with that in the thermal ensemble: the

factor of 2 slower growth in the support cancels with the fact that the partition function

(3.13) involves e−βE/2 rather than the e−βE in the thermal partition function, so

〈Ψg|H|Ψg〉 = −2∂βZK =
π2c

3β2
(3.18)

in agreement with the thermal result and also with the mass of the geon black hole as

a function of β, which is given by the BTZ formula. At late times, the geon black hole

– 12 –



satisfies the first law with the same temperature, energy and entropy as the BTZ black

hole; the entropy is given by the cross-sectional area of the horizon in the bulk at late

times, which is the same as in BTZ.

The entropy of the thermal ensemble approximating the geon state at late times pro-

vides the usual notion of coarse-grained entropy for this state. One can also associate to

the geon state a different notion of entropy, by considering the dimension of the space of

energy eigenstates on which it has significant support. The slower growth (3.17) of the

support at large energies implies this will be half of the thermal entropy, matching the area

of the horizon at t = 0, which is half of that at t 6= 0. This is also the area of the horizon

in the Euclidean section, which was similarly related to an entropy in [34]. This mismatch

between the two notions of entropy is not a contradiction: the geon is far from thermality

at t = 0, as discussed in section 2.2, and thus thermodynamic notions of entropy are not

applicable at this time. Since it has a geometrical realisation, it would be interesting to

better understand the role of this alternative notion of entropy.

3.3 Other boundary states

The path integral construction reviewed above can be used to construct other pure CFT

states with a simple, analytic gravitational dual. For example, the state dual to the J

quotient of BTZ that we discussed at the end of section 2.1 is obtained by evolving a

Cardy boundary state |B〉 by β/4 in Euclidean time [9]

|ΨB〉 = e−βH/4|B〉. (3.19)

The reflection (2.7) imposes a Neumann boundary condition on the fields. In the free boson

CFT for example, the boundary state at t = 0 satisfies

(jn + j̄−n)|B〉 = 0, (3.20)

with solution (see e.g. [36])

|B〉 = exp

(
−
∞∑
k=1

1

k
j−k j̄−k

)
|0〉 =

∑
~m

|~m〉 ⊗ |Ub ~m〉, (3.21)

where Ub is an anti-unitary operator that satisfies Ub jn Ub
−1 = −jn, and we have again used

the notation defined in (3.6). Thus, the Cardy boundary state differs from the crosscap

state by a relative phase rotation between left-movers and right-movers.

Since |B〉 is defined via the identification t ∼ −t, similar arguments to those we used

for the geon show that |ΨB〉 satisfies a relation directly analogous to (3.9)

e−βH/2 Ō†(−t, φ) eβH/2|ΨB〉 = O(t, φ)|ΨB〉. (3.22)

When O is a generalised free field operator, this relation is again the same as that satisfied

by the analogue of the Hartle-Hawking state of the one-sided black hole dual to (3.19).
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4. Mirror operators in the RP2 geon geometry

In this section, we discuss the reconstruction of bulk operators in the RP2 geon in terms

of boundary ones. We start by reviewing the construction of local bulk operators in BTZ

in terms of smeared integrals of generalized free field operators. There is a well-known

technical problem in this construction (see e.g. [38]), which is that when the bulk point

approaches the horizon of the black hole, the integral over boundary operators spreads over

all boundary times. Since later, in the geon case, we need to restrict to the algebra of late-

time observables, this problem must be dealt with. We do this by considering wavepackets

of bulk excitations, which we show are approximately localized in time from the boundary

point of view.

We then turn to the geon, and give an expression for the smeared bulk field operators

inside the horizon. We use it to show that mirror operators in this case are just early-time

local operators. This argument is most easily made in the high-frequency limit, where it

reduces to a simple ray-tracing construction.

4.1 Local and smeared bulk operators in BTZ

The construction of bulk operators outside a black hole’s horizon in terms of CFT data has

been investigated for some time, starting with the pioneering work of [12–14]. There is a

well-developed proposal for operators in pure AdS [15,16] and BTZ [17], where a local bulk

operator is constructed in terms of boundary operators in a compact region, at the price of

complexifying the boundary. The authors of [6] take a somewhat different approach, more

in the spirit of the original work in [12], working in momentum space and reconstructing

bulk momentum modes in terms of boundary momentum modes.

For an eternal black hole (in our case, BTZ), the proposal is that the bulk field at a

point outside the horizon (in region I) can be reconstructed as [6]

ΦI(t, φ, r) =
∑
m∈Z

1

(2π)2

∫
ω>0

dω
[
Oω,m ϕω,m(t, r, φ) +O†ω,m ϕ?ω,m(t, r, φ)

]
, (4.1)

where Oω,m are the Fourier modes of the corresponding CFT operator on the asymptotic

boundary of the right exterior region

Oω,m =

∫
dtdφ eiωt−imφO(t, φ) (4.2)

and ϕω,m is a plane wave basis of normalizable solutions to the scalar field equation in BTZ

2ϕω,m = M2ϕω,m , ϕω,m(t, r, φ) = e−iωt+imφfω,m(r). (4.3)

The explicit expression for fω,m(r) is given in appendix B. It satisfies

fω,m(r) = f?ω,m(r) , fω,m(r) = fω,−m(r) (4.4)

and as r → ∞ it behaves as fω,m ∼ r−∆. For a point inside the black hole (r < r+), by

contrast, the proposed reconstruction involves operators on both boundaries,

ΦII(t, φ, r) =
∑
m

1

(2π)2

∫
ω>0

dω
[
Oω,m χ(+)

ω,m(t, r, φ) + Õ†ω,m χ(−)
ω,m(t, r, φ) + h.c.

]
(4.5)
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where Õω,m are the Fourier modes of the operator corresponding to Φ in the CFT on the

left asymptotic boundary, which are defined with the opposite signs to take into account

the different direction of the time-translation on the left boundary,

Õω,m =

∫
dtdφ e−iωt+imφ Õ(t, φ) (4.6)

h.c. denotes the hermitian conjugate, and

χ(±)
ω,m(t, φ, r) = e−iωt+imφg(∓)

ω,m(r) (4.7)

are two linearly independent plane wave mode solutions in region II. This basis of solutions

is chosen so that as r → r+

g(±)
ω,m ∼ e±iωr? , r? =

`2

2r+
ln

∣∣∣∣r − r+

r + r+

∣∣∣∣ (4.8)

where r?, defined above, is the tortoise radial coordinate. Thus, our chosen mode functions

consist of a “left-moving” mode solution χ
(+)
ω,m, which enters region II from region I, and

a “right-moving” mode solution χ
(−)
ω,m, which enters region II from region III. It is not

hard to check, using the explicit expressions given in appendix8 B, that g
(±)
ω,m are complex

conjugates of each other, and moreover that g
(±)
ω,m = g

(±)
ω,−m.

For generic points outside or inside the horizon, it is possible to invert the Fourier

transform defining Oω,m to rewrite the expression for Φ(t, φ, r) in terms of an integral over

O(t′, φ′), as in [15,16]. For example, the field in region I can be written as

ΦI(t, r, φ) =

∫
dt′dφ′K(t− t′, r, φ− φ′)O(t′, φ′), (4.9)

where the integration kernel K(t − t′, r, φ − φ′) is the Fourier transform of fω,m(r) with

respect to ω,m

K(t− t′, r, φ− φ′) =
∑
m

2

(2π)2

∫
ω>0

dω cos
[
ω(t− t′)−m(φ− φ′)

]
fω,m(r). (4.10)

When the bulk point of interest is close to the boundary, K(t − t′, r, φ − φ′) has support

over a range of boundary times ∆t′ of order `2/r, centered at t. However, as we approach

the horizon, this integral delocalises, spreading over all boundary times. In Fourier space,

this delocalization is represented by a divergence in the integrand9 as ω → 0. Similarly, as

emphasized in [38], the sum over momenta m is divergent in any black hole background,

and needs to be regularized. These issues can be addressed by considering wave packets,

rather than point localised bulk field operators. For our purposes, approximate boundary

localization of the bulk observables is necessary, since in the geon the algebra of observables

is restricted to boundary operators supported at t > t∗.

8The functions g
(±)
ω,m are related to the functions f

(±)
ω,m defined in appendix B by a simple rescaling.

9Nevertheless, as shown in [6], this divergence does not affect physical correlators of the operators in

question.
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We therefore consider the relation between a bulk wave packet built from the field

operator Φ(t, φ, r) and boundary wave packets built from the operators O(t, φ). Note that

we will only be smearing in the t, φ directions; the dependence of the bulk modes on the r

direction is determined dynamically by the equations of motion.

We construct wave packets in a standard way (see e.g. [39]), by defining

ξ̃ω0t0(ω) =

{
1√
ε
eiωt0 for ω ∈ (ω0 − 1

2 ε, ω0 + 1
2 ε),

0 otherwise.
(4.11)

These wavepackets are centered about ω0 with width10 ε. The Fourier transforms

ξω0t0(t) =
1

2π

∫
dω e−iωt ξ̃ω0,t0(ω) (4.12)

(whose explicit expression we will not need) are cardinal sinus functions supported about t0
with width 2πε−1. We will generally consider ε of order one, but take large ω0, t0. We can

similarly introduce wavepackets localized in momentum space around m0, with an angular

central position φ0

η̃m0,φ0(m) =

{
1√
ε
e−imφ0 for m ∈ (m0 − 1

2 ε,m0 + 1
2 ε),

0 otherwise.
(4.13)

For simplicity, we have taken the smearing in momentum and frequency to be the same,

but it is easy to have them different. We can now smear the bulk field operator Φ(t, r, φ),

by convolving with ξω0,t0(t) and ηm0,φ0(φ). It is useful to first construct a wavepacket

consisting purely of annihilation operators

Φ+
ω0,m0

(t0, r, φ0) =

∫
dt dφ ξ?ω0t0(t) η?m0,φ0(φ) Φ+(t, r, φ), (4.14)

where Φ+ contains only the first term in (4.1). At the end, we shall add to (4.14) its

hermitean conjugate. The resulting hermitean operator is localized in position space around

the bulk point (t0, r, x0) with width of order 2πε−1, and is box normalized in momentum

space11 around (ω0,m0), with width of order ε.

10In [37, 39], it is required that ω0 = (p + 1
2
)ε and t0 = 2πq/ε with p, q ∈ Z; this integrality property is

necessary for proving orthonormality and completeness of the set of wavepackets. Since we will not make

explicit use of these properties here, we have settled for the more physically transparent notation above.
11Note that our smearing differs slightly from that of [37], who considered instead the wavefunctions

ϕ̄ω0,t0;m0,φ0(t, r, φ) =
∑
m

1

(2π)2

∫
dω ξ̃ω0,t0(ω) η̃m0,φ0(m)ϕω,m(t, r, φ),

which were then convolved with the smeared creation-annihilation operators. While this method also yields

a bulk field operator that is localized in position space, its bulk localization is under less control than that

defined above. The difference is that our procedure fixes the amount of smearing around the bulk point

(t0, r, φ0), and lets the spread on the boundary to be determined by the Fourier transform of fω,m(r); the

smearing used in [37] fixes instead the spread of the operator on the boundary, and lets the one in the bulk

be determined by the Fourier transform of fω,m(r).
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Note that this smearing has relatively strong tails in the wave packets; our smeared

operators are analytic functions in position space, so the solution in the interior can be

reconstructed given its values in an open neighbourhood of the boundary. However, for the

physics we plan to analyse, this is just a technical issue. We expect qualitatively similar

conclusions would be obtained if we used some other smearing (e.g. Gaussian).

Plugging in the expression (4.1) into (4.14) and replacingOω,m by its Fourier transform,

one finds

ΦI
ω0,m0

(t0, r, φ0) =

∫
dtdφKI

ω0,m0
(t0 − t, r, φ0 − φ)O(t, φ), (4.15)

where we have defined the smeared kernel in region I, KI
ω0,m0

via

KI
ω0,m0

(t0 − t, r, φ0 − φ) =
∑
m

1

(2π)2

∫
dω
[
eiωt−imφξ̃?ω0,t0(ω)η̃?m0,φ0(m) + h.c.

]
fω,m(r)

=

m0+ 1
2
ε∑

m=m0− 1
2
ε

2

(2π)2ε

∫ ω0+ 1
2
ε

ω0− 1
2
ε
dω cos [ω(t0 − t)−m(φ0 − φ)] fω,m(r). (4.16)

We can understand the relation between the bulk and boundary operators in this wave

packet very simply if we consider the case of high-frequency wave packets, where the central

frequency ω0 is taken to be large compared to the spacetime curvature scale `−1 and the

mass M (if any) of the bulk field Φ. Then, in the radial direction the effective scattering

potential is unimportant away from the boundary (for r < `2ω0) and the mode solutions

fω,m(r) for ω ≈ ω0 take a wavelike form fω,m(r) ∼ r−
1
2 cos(ωr∗ + δω,m) (B.14), where r∗ is

the tortoise coordinate in the BTZ black hole defined in (4.8). As shown in appendix C,

the momentum integral in (4.16) gives a result concentrated around t = t0 ± r∗. This can

be understood as the result of the propagation at these high frequencies being described

by geometric optics (ray tracing), as illustrated in figure 6.

Within this wave packet picture, it is easy to understand what happens as we approach

the horizons. If we approach the future horizon, then t0 → ∞, r∗ → −∞ with t0 + r?
approximately constant. In this limit, the contribution localised on the boundary at t0 +r∗
remains at a finite position, while the contribution localised at t0− r∗ is sent off to infinity.

That is, the operator in the field theory corresponding to a bulk mode near the horizon

has a contribution from arbitrarily late times.

We can consider the same wave packet construction for the operators inside the horizon,

yielding

ΦII
0 (t0, r, φ0) =

∫
dtdφ

[
K

(+)
0 (t0 − t, r, φ0 − φ)O(t, φ) +K

(−)
0 (t0 − t, r, φ0 − φ) Õ(t, φ)

]
(4.17)

where, for simplicity, we have replaced the subscript “ω0,m0” by just “0” and have defined

K
(±)
0 (t0 − t, r, φ0 − φ) =

∑
m

1

(2π)2

∫
dω
[
eiωt−imφ ξ̃?ω0,t0(ω) η̃?m0,φ0(m) g(∓)

ω,m(r) + h.c.
]

=

m0+ 1
2
ε∑

m=m0− 1
2
ε

1

(2π)2ε

∫ ω0+ 1
2
ε

ω0− 1
2
ε
dω
[
e−iω(t0−t)+im(φ0−φ)g(∓)

ω,m(r) + h.c.
]
. (4.18)
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Figure 6: Support of high-frequency modes on the boundary of the eternal BTZ spacetime

for a mode outside the horizon (left) and one behind the horizon (right). The entanglement

of the modes on the left and right boundaries in the thermofield double state ensures the

smoothness of the bulk field operator as we cross the horizon.

For high frequencies, g
(±)
ω,m(r) ∼ e±iωr∗ , so that K

(+)
0 , which multiplies the operator O on

the right boundary, has support at t = t0 +r∗, while K
(−)
0 , which accompanies the operator

Õ on the left boundary, is supported at t = t0− r∗, as illustrated in figure 6. Hence, again,

if we approach the horizon on the right, the contribution from the right boundary remains

at finite position, but the contribution on the left boundary is going off to the infinite past.

4.2 Local and smeared bulk operators in the geon geometry

We now consider the reconstruction of bulk field operators in the geon geometry. In the

region outside the black hole, the mode solutions are the same as in BTZ, so the expression

for the bulk field ΦI(t, r, φ) in terms of boundary operators is still given by (4.1).

Inside the horizon, region II in the geon can be described by the same coordinates as

region II in BTZ, but with the time coordinate restricted to t > 0. The solutions of the

equations of motion in this region should be invariant under (t, φ)→ (−t, φ+ π), and can

be constructed from the solution in region II of BTZ by the method of images. There will

then not be independent left- and right-moving solutions, but a single one, determined by

this boundary condition. Thus, in region II we have

ΦII
g (t, r, φ) =

∑
m

1

(2π)2

∫
ω>0

dω[Oω,m(e−iωt+imφ + (−1)meiωt+imφ)g(−)
ω,m(r) + h.c.], (4.19)

where g
(−)
ω,m(r) is the same function as in the BTZ case. This expression for ΦII

g can be

obtained directly from the one in BTZ, (4.5), by making the formal replacement

Õω,m −→ (−1)mOω,−m (4.20)

at the level of the Fourier modes. Note that even though (4.19) is only defined for t > 0, the

analytic continuation of this expression to t < 0 yields a bulk field satisfying the boundary

condition ΦII(t, r, φ) = ΦII(−t, r, φ+ π). This point of view will be useful in section 5.

We can pass to wave-packets as in BTZ, with the result that the CFT operator corre-

sponding to a smeared bulk field outside the horizon is given by (4.15), just as before. For
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Figure 7: The support of a high-frequency mode behind the horizon in the geon, as under-

stood from the quotient construction from BTZ.

a point behind the horizon, the CFT operator corresponding to the wave packet is

ΦII
ω0,m0

(t0, r, φ0) =

∫
dtdφ

[
K

(+)
0 (t0 − t, r, φ0 − φ) +K

(−)
0 (t0 + t, r, φ0 − φ− π)

]
O(t, φ).

(4.21)

If we consider high frequencies, the operator wavepacket for a point outside the horizon

has boundary support concentrated at t = t0 ± r∗, as in BTZ, but for a point inside the

horizon, its boundary support is concentrated at t = t0 + r∗, t = −t0 + r∗. This can again

be understood in terms of geometric optics: the right-moving part of the wave packet inside

the horizon reflects off the geon identification and intersects the boundary at r? − t0, as

illustrated in figure 7.

4.3 Identification of the mirror operators

The mirror operators are defined to be the solutions of (1.2), (1.3) for the geon state in the

dual CFT. They can also be found by comparing the expression for the bulk field Φ inside

the horizon of the geon at large t with the corresponding expression in BTZ. Comparing

(4.19) to (4.5), we can identify the second term with the contribution from the mirror

operators, and thus

Õgω,m = (−1)mOω,−m ⇒ Õg(t, φ) = O(−t, φ+ π). (4.22)

Thus, the mirror of an operator at late times is the same operator, acting at early times.

We emphasize that this derivation of Õg is only expected to hold for large t. Having made

this identification, we would like to verify as far as possible that these mirror operators

satisfy (1.2), (1.3).

The first condition (1.2) is simply that Õg is maximally entangled with O in the geon

state. This condition was verified from the CFT point of view in section 3.1. Nevertheless,

since we did not have a complete proof of (3.9) in a general CFT, we will now review an

alternative bulk argument for its validity at leading order in 1/N for generalised free field

operators in a large N CFT.

The geon state is analogous to the Hartle-Hawking vacuum in BTZ, and can be con-

structed as usual by demanding that it be annihilated by all modes dgω,m of positive fre-
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quency with respect to an infalling observer’s time [37]

dgω,m|Ψg〉 =
eβω/4√

2 sinh βω
2 Gβ(ω,m)(1− e−βω)

(
Oω,m − e−βω/2(−1)mO†ω,−m

)
|Ψg〉 = 0,

(4.23)

where we have used the appropriate Bogoliubov transformation to rewrite this condition

in terms of the asymptotic (Rindler/Schwarzschild) creation-annihilation operators O(†)
ω,m.

Note that this is the same equation as we would have obtained by starting with the equation

for the Hartle-Hawking state for BTZ and making the replacement (4.20). Passing to

position space, we find that the geon state satisfies

e−βH/2O†(t, φ)eβH/2|Ψg〉 =
∑
m

1

(2π)2

∫
ω>0

dω
(
eiωt−imφe−βω/2O†ω,m + e−iωt+imφeβω/2Oω,m

)
|Ψg〉

=
∑
m

1

(2π)2

∫
ω>0

dω
(
eiωt−imφ(−1)mOω,−m + h.c.

)
|Ψg〉

= O(−t, φ+ π)|Ψg〉, (4.24)

which is exactly the same relation that we argued in section 3 should hold from the CFT

point of view.12 This entanglement is inherited, via the quotient construction, from that

between the degrees of freedom on the right and on the left in the eternal BTZ black hole.

It can be understood pictorially by considering the geodesics connecting points on the two

boundaries of BTZ, as illustrated in figure 8. The BTZ time-translation invariance implies

that the length of these geodesics depends only on t− t′, so the corresponding contribution

to correlators is large for t′ ≈ t. By the method of images, the same is true in the geon.

t

-t't'

Figure 8: Contributing geodesics to the two-point function of O(t) and O(−t′) in the geon

using the method of images. The geodesic between the two boundaries in BTZ represents a

contribution to the correlator which depends only on t− t′, signalling the entanglement of

these modes. By contrast, the contribution to the correlator from geodesics linking points

in the same boundary in BTZ is exponentially small as t+ t′ becomes large.

The second condition (1.3) is only expected to be satisfied for sufficiently large t. It

is clear that the two operators O(t), O(−t′) are timelike separated, so their commutator

12Assuming the validity of the CFT derivation, the relation (4.24) does not receive any correction in

1/N , perturbative or non-perturbative. Thus, it may provide an interesting departure point for studying

the effect of such corrections to the PR proposal.
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does not vanish as an operator statement (unlike in the BTZ case, where the commutator

of operators on the different boundaries vanishes identically). We have not been able to

calculate it directly from the CFT side, but we can easily calculate its expectation value

holographically, using the method of images formula (2.8). As noted above, the contribution

from the second term in (2.8) is independent of t + t′. However, this part makes no

contribution to the commutator in the bulk, as it corresponds to spacelike separated points

in BTZ. The contribution from the first term comes from points on a single boundary

in BTZ, as illustrated in figure 8. So it does contribute to the commutator, but this

contribution becomes exponentially small at large t+ t′ because of the quasinormal decay

of bulk fields.13 This argument can easily be extended to the expectation value of the

commutator inside all low-point correlation functions, as in section 2.2.14

Thus, we argue that the formula (4.22) for the CFT operator corresponding to a field

mode inside the horizon of the geon provides an interesting explicit example of the PR

construction, where the mirror operators of local single-trace operators at late times are

simply local single-trace operators at early times.

Remarks

• Note that if we picture the geon as a state defined on the t = 0 surface by analytic

continuation from the Euclidean path integral, the simplicity of the mirror operators

is only apparent. The operators O(−t) are actually precursors in the sense of [20,21],

defined by evolving the state backwards in time to −t, acting with this local operator

and then evolving forward in time to t. This folded time prescription defines a

complicated non-local operator acting at t = 0 (or t > 0 if we apply further evolution).

• The simple picture of the mirror operators as early-time local operators is very special

to the RP2 geon. For the more general geons of [25], because of the shadow region

behind the horizon, ray-tracing back the right-moving part of the interior mode we

reach the past singularity, rather than the asymptotic boundary. One way of under-

standing what makes the RP2 geon so special is that in this case, any solution of

the wave equation on the geon descends from an even solution of the wave equation

on BTZ. While more complicated single-exterior geons can also be understood as

quotients of BTZ, due to fixed points of the quotients on the BTZ boundary, there

will be solutions to the wave equation on the geons which do not lift to solutions on

BTZ that satisfy the boundary conditions everywhere15.

13Note that PR require that the mirror operator satisfy (1.3) exactly, whereas our proposed mirror

operator only satisfies it inside correlation functions in the state |Ψ〉 and only up to terms exponentially

supressed in the black hole entropy. To obtain a mirror operator satisfying (1.3) exactly might require us

to add exponentially small corrections to these simple single-trace operators.
14There is an important exception to this general argument, when we take the operator O(t) to be the

Hamiltonian (or any other conserved charge, if the dual CFT contains any). Because it is conserved, the

commutator of mirror operators with the Hamiltonian will not vanish. This is a general exception, however,

which applies to the mirror operator construction in any state and is discussed in [8].
15We thank Ian Morrison for this comment.
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• For more general smooth collapse situations, ray-tracing will fail (as has been em-

phasised recently in e.g. [2]), because one encounters a trans-Planckian problem if he

tries to follow a mode inside the black hole at t > t∗ backwards in this way. This

issue is evaded in the geon case because the blueshift as we follow the mode back

along the future horizon is balanced out by a redshift as we follow it out along the

past horizon to the asymptotic boundary, so that the description in terms of oper-

ators in the boundaries involves the same coordinate frequency as we started with.

This cancellation is clearly delicate, as it requires the mode to re-emerge from the

black hole exponentially close to the past horizon, and it will not generalise to other

collapse scenarios.

• Let us note however that another simple example in which the ray-tracing argument

is applicable is the J quotient of BTZ, which has an orbifold singularity inside the

horizon. In this case, the analogue of the Hartle-Hawking like state satisfies

Oω,−m|ΨB〉 = e−βω/2O†ω,m|ΨB〉, (4.25)

which, via arguments identical to those we used in the geon, leads to an identification

of the mirror operators as ÕB(t, φ) = O(−t, φ). This can again be understood as ray-

tracing a right-moving mode behind the horizon backwards towards the singularity

at X2 = 0, off which it reflects just like in the geon, but without the shift by π.

5. Modifications of the geon state

The central assumption of the PR construction is that the bulk geometry contains a black

hole with a smooth, empty interior that looks like a patch of the eternal black hole at late

times. However, should such a prescription be applied indiscriminately to all states,the

procedure would always construct operators behaving like local fields in an empty interior,

even though there exist states whose holographic dual does not have an empty interior.16

PR have argued that the equilibrium condition (1.1) will identify the states to which their

prescription can be applied. Non-equilibrium states generated by acting on the equilibrium

state |Ψ〉 with operators in A will not satisfy (1.1), and would then be identified by their

prescription as excitations falling into the black hole. States obtained by acting on |Ψ〉
with a mirror operator can also be detected as out of equilibrium, since the Hamiltonian

(and possibly other conserved charges) does not commute with ÕΨ [41].

A more challenging example was proposed in [18]. Consider a unitary operator built

out of the mirror operators, which commutes with the Hamiltonian, for example

|Ψ′〉 = eiθ(ω)Õ†ωÕω |Ψ〉. (5.1)

The operator in the exponential is the number operator for a right-moving mode behind

the horizon at late times. Acting with the above deformation is applying a phase rotation

16This issue was first identified in an asymptotically flat context as part of the “frozen vacuum” argument

of [40], which also argues that the entanglement involved in constructing a smooth horizon can be disrupted

by interactions of the Hawking radiation with other systems.
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which disrupts the entanglement between modes just inside and just outside the horizon.

The action of such a unitary operator is not detectable by observables in A, now including

the Hamiltonian17. Thus, if |Ψ〉 is an equilibrium state satisfying (1.1), |Ψ′〉 will be as well.

Using the relation (1.2) between the operators O in A and their mirrors, [18] argued

that (5.1) could be rewritten, to arbitrarily good precision, as a unitary rotation constructed

from the operators in A,

|Ψ′〉 = eiθ(ω)O†ωOω |Ψ〉. (5.2)

Such a state has been previously considered by [2] and poses an important challenge to

the PR construction, because now |Ψ′〉 can be viewed either as an equilibrium state in

itself, or as an excitation of the equilibrium state |Ψ〉. The two interpretations lead to

different predictions for the mirror operators and, more importantly, for the experience of

an infalling observer, indicating an ambiguity in the PR proposal.

Since the unitary phase rotation in (5.1), (5.2) changes the entanglement between

modes inside and outside the horizon, it can be argued, by analogy with the Minkowski

vacuum in Rindler quantization, that such states should not have a smooth horizon (see

e.g. [5]). There, changing the relative phase between the left- and right-moving Rindler

mode pairs does not change the density matrix (and thus the entanglement entropies) in

either the left or right Rindler wedges, but it does lead to a state that is no longer the

global Minkowski vacuum, but an excited state. This is easy to see, as the new state is

no longer annihilated by the Minkowski annihilation operators. Moreover, this state is

not smooth across the Rindler horizon if the modes whose relative phase we change are of

high frequency. A similar argument can be applied near any Killing horizon, in particular

that of a black hole. Of course, in the case of an emergent space-time (rather than a fixed

background such as Minkowski space), the geometry can readjust itself in the new state so

that the horizon is still smooth.

In the following, we would like to see whether we can shed light on the issues raised

by [2, 18] by applying unitary rotations of the type (5.1),(5.2) to the geon state |Ψg〉. We

consider two different examples.

5.1 A special unitary rotation

We have discussed two pure CFT states that are expected to correspond to single-sided

black holes in the bulk: the geon state, which we argued should satisfy property (3.9), and

the state (3.19) dual to the J quotient of BTZ, expected to satisfy (3.22). At large N ,

and as far as observations involving the generalized free field operators O are concerned,

these two states are related by a unitary rotation. This can easily be seen by solving the

conditions (3.9), (3.22) to write these states as

|Ψg〉 ∼
∏
ω,m

eαω,m(−1)mO†ω,mO†ω,−m |0〉 , |ΨB〉 ∼
∏
ω,m

eαω,mO
†
ω,mO†ω,−m |0〉. (5.3)

17This statement holds at strictly infinite N . The operator appearing in (5.1) can be corrected order by

order in 1/N , such that it commutes with the Hamiltonian to arbitrarily good precision.
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While it is not clear whether these states are related by a unitary rotation at the level of

the full Hilbert space,18 the fact that they are related by a unitary rotation at large N is

sufficient for us to treat this as an example of the general issues discussed above.

The state |ΨB〉 is not annihilated by the “Unruh” annihilation operators (4.23) in the

geon so, according to the arguments of [2], its horizon is not smooth. This is not what we

find: the spacetimes dual to both |ΨB〉 and |Ψg〉 have a smooth horizon and an identical

geometry in region I. The difference between the two states is encoded only in the geometry

behind the horizon, which is smooth in the geon case but has an orbifold singularity for

the J quotient of BTZ. Also, the global properties of the two space-times are different, as

the J quotient of BTZ is orientable, while the RP2 geon is not.

The unitary rotation between these states has a special character: the change in the

entanglement pattern between |ΨB〉 and |Ψg〉 corresponds to a relative rotation by π in the φ

direction of the entangled modes outside and inside the horizon. Changes in entanglement

generated by similar symmetry transformations have been previously discussed in [11],

where they were also argued to preserve the smoothness of the horizon. Our example has the

advantage that unlike in [11], where the background geometry was fixed (Minkowski space)

and there simply existed a choice of quantization in which the horizon looked smooth, in

our case we have a dynamical space-time, and we can explicitly see that the saddle-point

geometry in the path integral re-adjusts itself to produce a smooth horizon.

Thus, we provided an example where the correct geometry dual to a unitarily rotated

state has a smooth horizon. The leading-order effect of the unitary rotation is to change

the geometry in the deep interior, on the X2 = 0 line.

5.2 Infinitesimal mode rotations

The unitary transformation considered in the previous section acts on all modes of all

fields simultaneously - it corresponds to a geometrical rotation. We will now consider

states constructed by a rotation acting only on certain modes of the operators, as in (5.1)-

(5.2). These provide a more typical set of examples, where the unitary transformation can

no longer be given a simple geometrical interpretation.

We will consider a rotation acting on the following smeared operators

Oω0,t0 =

∫
dω ξ̃?ω0,t0(ω)Oω, (5.4)

where ξ̃ω0,t0(ω) has been defined in (4.11). One can easily check that Oω0,t0 is localized in

momentum space around ω0 with width ε, and in time around t0, with width 2π/ε.19 Note

that, in order to simplify the notation, we have completely suppressed the coordinate φ

and its associate momentum. In terms of these smeared operators, the geon state reads,

18In the free boson CFT, the crosscap state |C〉 and the boundary state |B〉 are related by a unitary

rotation, as can be easily checked by comparing (3.5) and (3.21). This implies that |Ψg〉 and |ΨB〉 are also

related by it. For rational CFTs, the crosscap and boundary Ishibashi states are also related by a unitary

rotation [36]; nevertheless, the expressions for |C〉 and |B〉 as linear combinations of Ishibashi states involve

also certain reflection coefficients, which do not appear to be simply related.
19Unlike before, here we may consider a large spread in time, so ε can be small.
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schematically20 [37]

|Ψg〉 ∼
∏
ω0,t0

exp
(
αω0O

†
ω0,t0
O†ω0,−t0

)
|0〉. (5.5)

Since the modes Oω0,t0 behave like free field modes at large N , the effect of a unitary

rotation of the form (5.1) or (5.2), to leading order, is just to change the phase of the αω0

coefficients in the exponent. For simplicity, we consider an example where αω0 → eiεαω0

just for one particular ω0, t0. The new state |Ψ′g〉 will then satisfy a relation of the form

e−βω/2O†ω|Ψ′g〉 = (Oω + iε ξ̃ω0t0(ω)Oω0,−t0)|Ψ′g〉 (5.6)

where we take ε� 1.

Unlike for the geon or the J quotient of BTZ, we do not have a direct construction of

the dual geometry for this case. However, we expect the geometry to be a small deviation

from the geon. There are two possible perspectives on this modification.

The first option is to apply the PR prescription treating |Ψ′g〉 as an equilibrium state.

Translating the mirror relation (5.6) to position space (using an computation analogous

to (4.24)), we find that for t 6= t0, the mirror of O(t) is still O(−t), but for t ≈ t0, the

mirror is an operator smeared around −t0 with width 2π/ε, and thus it has become slightly

non-local. Next, using the PR prescription (4.5), we can compute the field ΦII(t, r) behind

the horizon. By construction, the bulk field operator we obtain will perceive the late-time

region as vacuum [6]. Analytically continuing the expression (4.5) to t < 0, we find that

ΦII(t, r) no longer equals ΦII(−t, r) for ±t − r? ≈ t0, but that the relation between the

two has been “smeared”. Consequently, the reflection condition at X2 = 0 (t = 0) becomes

“fuzzy” for |r?| ≈ t0, with a width of order 2π/ε. This is illustrated in figure 9. Due to this

“fuzziness”, a ray that traces back through this point will be scattered to yield a boundary

operator that is smeared over a range 2π/ε, in agreement with the PR prediction that the

mirror operator is now slightly non-local.

-t  0

Figure 9: If we assume |Ψ′g〉 is an equilibrium state, the change in the geometry can be

described as a modified boundary condition on the left. Rays that trace back through this

point produce the indicated smeared image of the bulk mode, in agreement with the PR

prediction that the locality of the mirror operator starts breaking down.

The other option is to view |Ψ′g〉 as an excitation of the geon state |Ψg〉. In this

case, the field operator ΦII(t, r, φ) in the late-time region would be obtained from the PR

20For a more careful treatment of the zero modes and the suppressed indices, see [37].
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prescription for the geon, i.e. it would be given by (4.19). |Ψ′g〉 itself can be interpreted as

applying a unitary rotation between the field modes inside and outside the horizon. This

has no effect on observations confined to one of the two regions, but it implies that |Ψ′g〉 is

not annihilated by the annihilation operators (4.23) associated with infalling observers, so

they will see an excitation as they cross the horizon.

Unlike in the previous example, we do not know what the correct geometry dual to

|Ψ′g〉 is. It would be very interesting to find a way to distinguish the two scenarios above

by a computation in the dual CFT. In the case where |Ψ′g〉 is interpreted as an equilibrium

state, the change in the dual geometry - just as in our previous example - is at the level of

the boundary conditions on the identification surface X2 = 0 inside the geon black hole. It

would be interesting to find out how general this picture is. Within the same framework,

it would also be interesting to explore the continuation of the expression for Φ to the

entire space-time. We expect that the full analytic continuation is no longer possible in

the modified state, which might shed some light on how the analyticity properties of the

spacetime start breaking down under increasingly general unitary rotations.
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A. Structure of the crosscap state

In this appendix, we would like to argue that the cross-cap state satisfies (3.8). Mapping

this relation to the plane via z = etE+iφ, it becomes

φ̄†
h̄,h

(z, z̄)|C〉 = φh,h̄(−z,−z̄)|C〉. (A.1)

Let us start by working out some examples in the free boson CFT, in which the crosscap

state satisfies (3.3). One can easily check that

J(z)|C〉 =
∑
n

jn
zn+1

|C〉 =
∑
n

(−1)n+1j̄−n
zn+1

|C〉 =
1

z2

∑
n

j̄n
(−z−1)n+1

|C〉 =
1

z2
J̄(−1

z
)|C〉 = (J̄(−z̄))†|C〉.

(A.2)

For chiral vertex operators Vα(z) =: eiαX(z) :, we have

Vα(z)|C〉 = eα
∑
n>0

1
n
j−nzne−α

∑
n>0

1
n
jnz−n |C〉 = V̄α(−1

z
)|C〉 = (V̄−α(−z̄))†|C〉. (A.3)
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Let us now try to extend the validity of this formula to more general situations. In a rational

CFT, but perhaps also more generally, primary fields in the CFT can be decomposed in

terms of chiral vertex operators21 [44]

φh,h̄(z, z̄) =
∑
i,̄i,f,f̄

Vh
f
i(z)V̄h̄

f̄
ī(z̄)αīi

f f̄ , (A.4)

where the sum runs over the Virasoro primaries (assuming, for simplicity, that no extended

symmetries are present). The identification (t, φ) ∼ (−t, φ + π) that defines the crosscap

translates into z ∼ −1/z̄ on the plane. A priori, the theory is only defined for |z| > 1, but

one can extend it to the entire complex plane by defining

T (z) =


T (z) for |z| > 1,

1
z4
T̄
(
−1
z

)
for |z| < 1.

(A.5)

One can then use the arguments of [45] to show that n-point correlation functions of

primary fields in presence of a crosscap behave as 2n-point correlation functions of purely

chiral operators. Effectively, the antichiral vertex operator V̄h̄
f̄
ī(z̄) in (A.4) can be replaced

by a chiral vertex operator Vh̄
f̄
ī(−1/z̄). Introducing the spin-reversed field

φ̄h̄,h(z, z̄) ≡
∑
i,̄i,f,f̄

Vh̄
f̄
ī(z)V̄h

f
i(z̄)αīi

f f̄ (A.6)

and using the above-stated property of anti-chiral operators in front of the crosscap, we

have that

〈C| . . . φ̄†
h̄,h

(z, z̄)|C〉 = 〈C| . . . φh,h̄(−z,−z̄)|C〉. (A.7)

Given that this relation holds inside any correlation function, we effectively derived the

Euclidean counterpart of the Lorentzian condition (3.8). Similar arguments can be made

when the field φ is not primary, as the chiral vertex operators can also be defined for

descendants. To the extent that the decomposition (A.4) holds (at least formally) in a

general CFT, then our arguments would show that (3.8), and consequently (3.9), also hold

in the general case.

B. Solutions of the wave equation in BTZ

Let us denote the two linearly independent solutions to the wave equation (4.3) as

f (±)
ω,m =

(
r

r+

)2a( r2

r2
+

− 1

)±b
2F1

(
1 + a± b− 1

2
∆,

1

2
∆ + a± b, 1± 2b, 1− r2

r2
+

)
, (B.1)

where

a =
i`m

2r+
, b =

i`2ω

2r+
, ∆ = 1 +

√
1 + `2M2. (B.2)

21This argument follows closely the one in [42,43].
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Using the hypergeometric identity

2F1(a, b; c; z) = (1− z)c−a−b 2F1 (c− a, c− b; c; z) , (B.3)

one can easily show that (f
(+)
ω,m)? = f

(−)
ω,m. This set of solutions is convenient because near

the horizon r → r+, f
(±)
ω,m have the expansion

f (+)
ω,m ∼ 22b eiωr? , f (−)

ω,m ∼ 2−2b e−iωr? , (B.4)

where r? is the tortoise coordinate introduced in (4.8). The combination of the two wave-

functions (B.1) that is normalizable at infinity is

f (norm.)
ω,m ∝ f (+)

ω,m + 24be−2iδω,m f (−)
ω,m, (B.5)

where for future convenience we have defined

e2iδω,m ≡ 24b Γ(−2b)Γ(1
2∆− a+ b)Γ(1

2∆ + a+ b)

Γ(2b)Γ(1
2∆ + a− b)Γ(1

2∆− a− b)
. (B.6)

Using the hypergeometric identities [46]

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a2F1(a, 1− c+ a; 1− b+ a; z−1) +

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b2F1(b, 1− c+ b; 1− a+ b; z−1) (B.7)

2F1(a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

z − 1

)
(B.8)

we can rewrite the normalizable solution as

fω,m = cn

(
r

r+

)−2b−∆( r2

r2
+

− 1

)b
2F1

(
1

2
∆ + a+ b,

1

2
∆− a+ b; ∆;

r2
+

r2

)
, (B.9)

where cn = r−∆
+ is fixed by the condition that the commutatior of Φ and its conjugate

momentum take the standard form. It is easy to check that f?ω,m = fω,m and, using the

identity (B.8), that this wavefunction is the same as that of [6].

As the horizon at r → r+ is approached

fω,m → Cn (eiωr?+iδω,m + e−iωr?−iδω,m), (B.10)

where Cn is given by

Cn = cn Γ(∆)

[
Γ(2b)Γ(−2b)

Γ(a− b+ 1
2∆)Γ(−a+ b+ 1

2∆)Γ(a+ b+ 1
2∆)Γ(−a− b+ 1

2∆)

] 1
2

, (B.11)

and δω,m has been defined in (B.6).

We can also find an expression for fω,m(r) close to, but not exactly at the horizon, in

the limit of large frequency. Letting fω,m(r) = r−1/2u(r), then it can be shown that u(r)

satisfies [38]
d2u

dr2
?

+ (ω2 − V (r))u = 0, (B.12)
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where the effective potential V (r) reads

V (r) =
r2 − r2

+

`4

(
3

4
+M2`2 +

4m2`2 + r2
+

4r2

)
. (B.13)

For ω >> r+/`
2, ω >> M and r < ω`2, then this potential is negligible compared to the

ω2 term in (B.12), and thus the solution for u is u ∝∼ cos(ωr? + δω,m), yielding

fω,m ∝ r−
1
2 cos(ωr? + δω,m). (B.14)

The ω dependence of the proportionality constant is important in computing the smeared

kernel. We show in the next appendix that for a massless field, the appropriate propor-

tionality constant is ω−
3
2 .

C. The smearing function

Here we will evaluate the smearing kernels (4.16) defined in section 4.1. It will be useful

to evaluate the integrals

1

ε

∫ ω0+ 1
2
ε

ω0− 1
2
ε
dω cos(aω + b) = cos(aω0 + b)

sin(1
2εa)

1
2εa

. (C.1)

and similarly for cosine replaced by sine. As r → ∞, we have fω,m(r) → r−∆. Taking

ε ≈ 1, the sum over m reduces to a single term m0, and the integral yields

KI
ω0,t0(t0 − t, ε, φ0 − φ) =

1

2π2r∆
cos [ω0(t0 − t)−m0(φ0 − φ)] sinc

(
1

2
ε(t0 − t)

)
. (C.2)

Thus, the operator is localized on the boundary around t0, with width 2π/ε. As we ap-

proach the horizon, the function fω,m is instead given by (B.10). Taking ∆ = 2 (massless

field), we have

fω,m →
2

r2
+

∣∣∣∣ Γ(2b)

Γ(a+ b+ 1)Γ(a− b+ 1)

∣∣∣∣ cos(ωr? + δω,m). (C.3)

Using the fact that a, b are purely imaginary, the identity |Γ(iη)|2 = π/(η sinhπη) and the

approximation |b| >> |a| >> 1 (βω >> |m| >> 1), we find

fω,m ∼
2

`3
√

2πr+ ω3/2
cos(ωr? + δω,m). (C.4)

We also need to understand the large ω,m behaviour of δω,m. Using the fact that, at large

η ∈ R

−i ln

(
Γ(iη)

Γ(−iη)

)
= 2η(ln η − 1)− π

2
+O(η−1), (C.5)

we can approximate the expression (B.6) as

δω,m ∼ −
π

4
+O(m2/ω2)ω (C.6)
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yielding

KI
0 ∼

∫ ω0+ 1
2
ε

ω0− 1
2
ε

dω

ω3/2

(
cos[ω(t0 − t+ r?)−m0(φ0 − φ)− π

4
] + cos[ω(t0 − t− r?)−m0(φ0 − φ) +

π

4
]
)

(C.7)

The ω integral can be performed using Mathematica. The shape of the function we obtain

is plotted in figure 10. There are two main contributions, localized at t = t0 ± r?. The

spread on the boundary is comparable to the spread in the bulk. Adding the r−
1
2 factor

to fω,m as in (B.14) does not change this conclusion.

-20 -10 10 20

-0.004

-0.002

0.002

0.004

Figure 10: The smeared Fourier transform of ω−
3
2 cosωx for ω0 = 40, ε = 1.
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