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Force fluctuations on a solid body are associated with unsteadiness in the wake, e.g. vortex shedding.
Therefore the control of force fluctuations can be realised by suppressing the flow unsteadiness. A
NACA0024 aerofoil closed with a round trailing edge is chosen to represent the solid body through-
out this investigation, with the Reynolds number fixed at Re = 1000 and angle of attack α ≤ 15o, at
which the uncontrolled flow is two-dimensional. A linear optimal control is calculated by analysing the
distribution of sensitivity of unsteadiness to control around the entire surface of the body. The nonlin-
ear effects of the calculated control, which can be actuated through surface-normal suction and blowing
across the surface of the aerofoil, are tested through two-dimensional direct numerical simulations. It
is observed that a surface-normal velocity control with a maximum magnitude less than 8% of the free
stream velocity completely suppresses unsteadiness at α = 10◦ with an overall drag reduction of 14%
and a 138% increase of lift.
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1. Introduction

Wind turbine blades along with other structures such as bridges and multi-storey buildings can be
subject to resonant wind conditions, leading to unexpected structure responses and in some cases,
permanent deformations. When flow passes a turbine blade at large angles of attack, vortices shed
periodically off the body, which alters the pressure distribution and causes the blade to experience
a time-varying force at the same frequency as the vortex shedding (King 1977). Although the
persistent periodic nature and excellent mixing qualities of vortex streets can be useful for certain
applications (Ahlborna, Setob and Noackc 2002), the adverse effects of vortex shedding are amplified
when the frequency of shedding is close to the frequency of the structural oscillation, otherwise
known as the "lock-in" effect; a phenomena that could lead to catastrophic structural behaviors.
Visualization techniques have been used extensively to investigate the flow patterns and effects

associated with vortex shedding since the days of Leonardo Da Vinci (Bearman and Graham 1980;
Perry, Chong and Lim 1982). The research into the control of vortex shedding has largely been split
up into two categories: passive control and active control. Passive controls such as splitter plates
(Bearman 1965; Kwon and Choi 1995), shrouds (Zdravkovich 1981), riblets (Chamorro, Arndt,
and Sotiropoulos 2013) and secondary control cylinders (Mittal and Raghuvanshi 2001) rely on
geometric adaptations to modify the flow, e.g. the boundary layer, separation and vortex shedding.
Active controls involve injecting energy into the boundary layer via mechanisms such as moving
surfaces (Skote 2013; Ricco and Hahn 2013) or suction and blowing (Raju, Mittal and Cattafesta
2008). For the two-dimensional flow considered in this work, two types of control can be defined
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Figure 1.: Sketch showing the direction of two surface velocity controls.

depending on the direction of the control velocity with respect to the body surface: normal control
and tangential control, as illustrated in figure 1.
Tangential control has been known to be effective in suppressing vortex shedding and drag reduc-

tions. The technique involves injecting momentum into the boundary layer through the application
of moving surfaces. This concept was discussed by Modi and Yokomizo (1994) in a study that
focused on moving surface boundary layer control (MSBC) which reduced drag by 75% on a flat
plate. For aerofoil flow, this technique can be implemented by placing rotating cylinders at the
leading edge of an aerofoil (Ongoren and Rockwell 1988; Tokumaru and Dimotakis 1991). It has
been shown that rolling cylinders generate effective control irrespective of the wind direction, speed
or the structural frequencies involved (Kubo et al. 1992).
For the normal control, it has been shown that a steady blowing control around the trailing edge of

a circular cylinder can stabilise the wake and is energetically more efficient than suction (Delaunay
and Kaiktsis 2001). Other studies have shown that periodic normal control can suppress wake
disturbances with significantly less energy injection than steady normal control (Raju, Mittal and
Cattafesta 2008; Seifert, Darabi and Wygnanski 1996). This frequency dependence of the control
effects is studied in the current work in the linear regime.
In the rest of this work, the methodology associated with calculating the control is discussed in

section 2, followed by a description of the discretisation in section 3. Then the uncontrolled flow,
distributions of the optimal control and the control effects are discussed in section 4.

2. Methodology

2.1. Governing equations

The controlled flow can be regarded as the sum of the uncontrolled flow (U , P ) and control induced
flow (u, p):

(û, p̂) = (U , P ) + (u, p)

where û,U and u are total, uncontrolled and control induced velocities respectively and p̂, P and
p are the total, uncontrolled and control induced pressures respectively. The control induced veloc-
ity and pressure with small enough magnitude are governed by the linearised Navier-Stokes (NS)
equation:

∂tu + U · ∇u + u · ∇U +∇p−Re−1∇2u = 0 with ∇ · u = 0.

The control induced velocity is assumed to be zero at the beginning of the simulation and there-
fore u is initialized to be zero. For the boundary conditions, zero Dirichlet (velocity) and computed
Neumann (pressure) conditions are adopted on the inflow and far field boundaries whereas zero Neu-
mann (velocity) and zero Dirichlet (pressure) conditions are implemented on the outflow boundary.
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(a) (b)

Figure 2.: Computational mesh around the modified NACA0024 aerofoil for (a) the entire domain
(b) the sub-domain around the aerofoil.

Dirichlet (velocity) and Neumann (pressure) conditions are used on the controlled boundary which
refers to the surface of the body and is denoted as C in the following.

2.2. Control modeling

For the two-dimensional geometry considered in this work, the control can be in form of surface
velocity normal or tangential to the aerofoil. The normal control can be physically implemented
by steady jets or synthetic jets (driven by oscillating membranes in a cavity) while the tangential
control can be generated by rolling cylinders or electromagnetic devices. Since a distributed normal
control with different magnitude along the aerofoil is much easier to generate than a tangential
control, only the normal control is considered here, even though the tangential control can be
calculated in a similar manner. For the surface normal control, a decomposition of the temporal
and spatial dependence is necessary to reduce the dimension of the body-surface velocity after
spatial-temporal discretisation

u (C, t) = G (t)un (C)n (1)

where un(C) is the spatial dependence of the surface velocity, n denotes the unit outward normal
vector and G(t) is a temporal dependence function defined as

G(t) = Real
(

(1− e−σt2)eiωt
)

where σ acts as a relaxation factor and σ = 100 is adopted throughout this work; ω is the frequency
of the surface velocity control. This temporal function results in a zero control at t = 0, which is
consistent with the zero initial condition for the control induced velocity u.
The optimal distribution of un(C) is referred to as the optimal control (with frequency ω) in

this study. The magnitude of this optimal control is calculated as the square root of the square
integration of the control along the surface of the body and is denoted as the control-boundary
norm throughout this work,

||un||c =

(∫
u2
n dC

)1/2

.
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2.3. Sensitivity of unsteadiness to surface control

The main idea of this work involves developing a control to suppress unsteadiness in the flow and
therefore eliminate the force fluctuations. Unsteadiness can be calculated in terms of the fluctuation
energy which is the difference between the total and average kinetic energy in the system. This is
defined on the temporal interval [0,τ ] and spatial domain Ω and can be written as

A (u) =
1

τ

∫ τ

0

∫
Ω
û · ûdV dt−

∫
Ω
ûa · ûadV.

The first term on the right side is the total kinetic energy and the second is the energy of the time-
averaged flow, whose velocity is denoted as ûa. This fluctuation energy A is the objective function
that will be minimised under the optimal control. It is noticed that the unsteadiness far away from
the body has limited influence to the fluctuation of the force acting on the body and therefore can
be filtered. The gradient of the unsteadiness A is evaluated with respect to the control,

∇un
A = τ−1n ·

∫ τ

0

(
p∗n−Re−1∇nu

∗)G(−t)dt,

where u∗ and p∗ are the adjoint velocity and pressure variables respectively obtained by integrating
the adjoint equation

∂tu
∗ + U · ∇u∗ −∇U · u∗ −∇p∗ +Re−1∇2u∗ + 2 (U −Ua) = 0 and ∇ · u∗ = 0, (2)

with Ua denoting the average of the uncontrolled flow. It is noticed that this gradient ∇un
A

represents the sensitivity of the unsteadiness with respect to the boundary control. The algorithm
to calculate the sensitivity via integrating the adjoint equation is documented in Mao, Blackburn
and Sherwin (2015) and will not be elaborated here.

3. Discretisation

In this study, a NACA0024 aerofoil is adopted as an example of a solid body. This relatively thick
aerofoil is closed with a round trailing edge so as to reduce the maximum curvature of the geometry
and facilitate the numerical calculations of the distribution of the optimal control, which requires
a smooth controlled boundary. This modification of the trailing edge reduces the chord length to
0.95. As shown in figure 2, the leading edge is positioned at (x, y) = (0, 0) and the entire surface
of the aerofoil is considered to be the controlled boundary C. Throughout this work, the Reynolds
number is fixed at Re = 1000, at which the uncontrolled flow is two-dimensional over the range of
angles of attack considered, i.e. 0◦ ≤ α ≤ 15◦, even when the computational domain is extended in
the spanwise direction to be three-dimensional. It has been observed that at Re = 2000 and α = 10o

(the dominant angle of attack considered here) the uncontrolled flow becomes unstable to three-
dimensional disturbance and develops into spanwise varying flow. The sensitivity calculation based
on a three-dimensional uncontrolled flow requires much larger memory to save the uncontrolled flow
than the two-dimensional cases. Therefore the three-dimensional flow at higher Reynolds number
is not investigated in this work. However, as most of the stability and DNS work, we assume that
the result of the low Reynolds number flow could shed light on the understanding of large Reynolds
number flow.
A well-tested code, i.e. SEMTEX, based on a spectral h/p element method, is used to solve the

governing equations, e.g. the NS and the adjoint equations. Figure 2(a) shows the entire domain
containing 5815 spectral elements while figure 2(b) gives a close up view of the spectral element
decomposition around the aerofoil. In each element, a fifth-order polynomial expansion, at which
the magnitude of the sensitivity converges to three significant figures, is adopted.
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(a) (b)

(c) (d)

Figure 3.: Contours of uncontrolled spanwise vorticity at angle of attack (a) α = 0◦, (b) α = 5◦,
(c) α = 10◦ and (d) α = 15◦. Solid and dashed lines represent positive and negative vorticity
respectively and the contour levels used are [-10 -6 -1 1 6 10], which will be adopted for all further
vorticity plots. The Reynolds number is fixed at Re = 1000 in this and all following figures.

4. Results and Discussions

4.1. Uncontrolled flow

The uncontrolled flow around the aerofoil can be obtained using two-dimensional direct numerical
simulations (2D DNS) until a periodic state is reached. This uncontrolled velocity is saved and used
to solve the adjoint variables via an integration of the adjoint equation (2). Figure 3 shows the
vorticity contours of the uncontrolled (base) flow at α = 0◦, α = 5◦, α = 10◦, and α = 15◦. It can
be seen from figure 3(a) that at α = 0◦, weak vortex shedding resides downstream of the body and
therefore has negligible effects on the forces acting on the surface. As the angle of attack increases,
the amplitude of the shedding increases and appears closer to the trailing edge of the body. By
α = 10◦ as shown in figure 3(c), the flow separation induces strong shedding propagating from the
upper surface of the aerofoil. It is clear from the analysis of the base flow that at α = 0◦ and α = 5◦

the velocity fluctuations are small and consequently the force fluctuations are also small, as will be
verified later in figure 9. Therefore the α = 10◦ case is adopted as the defaulted case to study the
force fluctuation associated with vortex shedding in the following if not otherwise stated.

4.2. Sensitivity of unsteadiness to control

From the magnitude of the sensitivity of unsteadiness with respect to surface-normal control, or
the control-boundary norm of the sensitivity as shown in figure 4, it is seen that the sensitivity
at α = 10o reaches local maxima at three frequencies, i.e. ω = 0, ω = 4.4, which is the vortex
shedding frequency of the uncontrolled flow, and ω = 8.8. The linear optimal control can be obtained
by scaling (and reversing) the sensitivity (Mao and Pearson 2015). Therefore these frequencies
correspond to steady control, periodic control at the dominant frequency of the uncontrolled flow
and periodic control at a higher harmonic of the dominant frequency respectively. For the steady
case with ω = 0 the corresponding control is robust as it is effective irrespective of when the control
is imposed on the shedding cycle. On the other hand, the periodic controls are sensitive to the start
time and could increase or decrease the unsteadiness depending on the time at which the control is
imposed, since these controls reverse every half of the period. Therefore ω = 0 will be used as the
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Figure 4.: Control-boundary norm of the sensitivity of unsteadiness with respect to surface-normal
control.
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Figure 5.: Distributions of the sensitivity with respect to normal control for (a) ω = 0 and various
angles of attack, (b) α = 10o and various control frequencies.

defaulted frequency in the following investigations.
Figure 5(a) and 5(b) provide a visual representation of the distribution of the sensitivity or the

linear optimal control. This visualization is obtained by adding to the body surface the normalized
sensitivity with a control-boundary norm of 0.02 so that the sensitivity curves can be expressed
as C + 0.02∇un

A/||∇un
A||c. Deviation from the aerofoil surface C corresponds to the magnitude

and distribution of the sensitivity; lines outside the surface represent a negative sensitivity which is
associated with blowing, whereas lines inside the surface represent positive sensitivity corresponding
to suction. Figure 5(a) shows the variation of sensitivities with respect to the angle of attack for
the steady control case. As α increases, the sensitivity becomes more localized around the upper
leading and lower trailing edges of the aerofoil. This would suggest that for a greater angle of attack
such as α = 15◦, the control could be confined to these regions of high sensitivity and requires fewer
actuators to practically implement.
Figure 5(b) presents the variation of sensitivities at a fixed angle of attack α = 10◦ and three of

the frequencies identified earlier. For the steady case, there is a smooth distribution with positive
sensitivity at the upper leading and lower trailing edges. Around the upper trailing edge, a weak
positive sensitivity can be seen however the lower leading edge shows no sensitivity to unsteadiness
and therefore could be excluded from the control. The non-zero frequency cases show much greater
variance between positive and negative sensitivity, especially around the upper leading edge. This
would correspond to a sharp change from blowing to suction over the surface of the aerofoil.

4.3. Nonlinear control effects of the scaled sensitivity

From the calculation of the sensitivity (or gradient) of unsteadiness with respect to the control, the
linear optimal control to reduce unsteadiness can be obtained from equation (1) by adopting
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un = b∇un
A/||∇un

A||c

where b is a negative scaling factor that reverses and scales the normalized sensitivity as a control. If
the value of b, which acts as the control-boundary norm of un, is small enough, the control-induced
flow is small and can be governed by the linearized NS equation. In this condition, the control
induced unsteadiness becomes (Mao and Pearson 2015),

∆A =

∫
un∇un

A dC = b||∇un
A||c,

which is a linear function of the scale factor b. However if |b| exceeds the linear range, the control
effects become nonlinear with resect to the magnitude of the control. This nonlinear saturation is
verified by varying the value of b and testing the control effects in 2D DNS. Figure 6 presents the
results of this study where the change in unsteadiness is plotted as a function of b. Observations
show that for −0.02 ≤ b ≤ 0.02 the change of unsteadiness calculated in 2D DNS agrees well with
the linear predictions. However beyond this range, the change in unsteadiness begins to follow a
nonlinear pattern until the control approaches a saturated state at |b| ≥ 0.05.

−0.04 −0.02 0 0.02 0.04

−0.05

0

0.05

b

∆
A

 

 

nonlinear

linear

Figure 6.: Change in unsteadiness, denoted as ∆A, due to the linear optimal control with scaling
factor b at ω = 0 and α = 10◦. "linear" denotes the linear predictions ∆A = b||∇un

A||c and
"nonlinear" represents results extracted from 2D DNS.

The control effects on vortex shedding are shown in figure 7. From figure 7(a) and (b), it is seen
that for b = 0.05 and b = 0.02, where the control is parallel with the sensitivity and tends to
increase unsteadiness, the shear layer above the upper surface is forced away from the boundary
surface due to the blowing effect and the enlargement of the separation zone results in stronger
vortex shedding. Figure 7(c) and (d) represent controlled flow at negative values of b, where the
control is in the opposite direction with the sensitivity and tends to reduce unsteadiness. It is seen
that at b = −0.05, the control completely suppresses the vortex shedding and generates a pair of
elongated shear layers downstream of the aerofoil. This result is a product of the applied suction
on the fore section of the upper surface (see figure 5), which keeps the shear layers attaching on the
body surface and eliminates the recirculation bubble.

4.4. Control effects to lift and drag

As shown in figure 6, the control is effective to reduce the unsteadiness and therefore is expected to
modify the lift and drag forces to be more steady. The development of controlled and uncontrolled
(b = 0) forces acting on the aerofoil is shown in figure 8. The controlled forces are calculated as
the sum of three parts, i.e. pressure, viscous and thrust forces, where the last one is much smaller
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(a) (b)

(c) (d)

Figure 7.: Contours of controlled spanwise vorticity at α = 10◦, ω = 0 and scaling factor (a) b = 0.05
(b) b = 0.02 (c) b = −0.02 and (d) −0.05.
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Figure 8.: Optimally controlled (a) drag (b) lift forces at ω = 0 and α = 10◦.

than the first two and takes less than 2% of the total force over the cases considered. It is clear
that the controlled drag/lift force settles to a periodic state with smaller oscillation magnitudes
than the uncontrolled ones after an initial transient period. From figure 8(a), it is noticed that as
the oscillation of drag is reduced, the mean value also reduces. Comparing against the uncontrolled
flow, a drag reduction of 14% is achieved at control scaling factor b = −0.05. This improvement
in drag can be associated with a decreased pressure on the upper leading edge and an increase in
pressure around the trailing edge of the aerofoil. Figure 8(b) presents the relation between the lift
force and the increasingly negative control. The increase of mean lift is due to both an increase
in pressure on the low surface and a reduction of pressure on the upper surface of the aerofoil.
However from this figure, it is clear that the increase in lift due to the control is much greater than
the reduction in drag; the lift increases by 138% at a control level of b = −0.05. This observation
suggests that the lift component of the force is more sensitive to the control than the drag.
The control effects of the linear optimal control obtained at α = 10o are tested on the out-of-

design conditions, as shown in figure 9. It is seen that at α = 15o, the control effect is as clear as
in the designed condition α = 10o, in terms of suppression of force fluctuations, drag reduction and
lift enhancement. However at α = 5o, the control suppresses the oscillation and increases the mean
lift but increases the mean drag slightly. This is because at α = 5o, the vortex shedding and force
fluctuations are weak and there is only a tiny recirculation bubble above the upper surface making
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Figure 9.: Controlled (a) drag (b) lift forces at ω = 0 and b = −0.05. The control is calculated
based on the uncontrolled flow at α = 10o.

the control, in the form of suction around the upper leading edge and targeting at eliminating
separation, less effective. This observation suggests that the control calculated at α = 10o has
robust control effects to the operation conditions where boundary layers separate from the surface
to form recirculation bubbles, and can be switched off at small angles of attack where the force is
almost steady.

5. Conclusions

The aim of this study is to calculate the linear optimal control that suppresses unsteadiness in
flow around a solid body and subsequently oscillations of forces acting on the body via suction and
blowing normal to the surface. A modified NACA0024 aerofoil is adopted and the Reynolds number
(Re = 1000) and angles of attack (0o ≤ α ≤ 15) considered in this work ensure that the flow is
two-dimensional.
The sensitivity of flow unsteadiness with respect to the control is calculated by integrating an

adjoint equation, as has been used in explorations of control of hydrodynamic stabilities (Giannetti
and Luchini 2007). Then this sensitivity is reversed and scaled to obtain the linear optimal control.
By implementing the linear optimal control on the surface of the aerofoil, the control effects on
unsteadiness are studied in 2D DNS and the linear range of the magnitude of the control is identified.
It is observed that at scaling factor b = −0.05, where the maximum control velocity is less

than 8% of the free stream velocity, the separation on the upper surface of the aerofoil and vortex
shedding in the domain are completely suppressed at angle of attack α = 10o and control frequency
ω = 0. Extracting forces acting on the aerofoil, it is seen that as the unsteadiness is suppressed,
both the lift and drag forces are more steady. As the oscillation of forces is reduced, the mean value
of drag (lift) is observed to reduce (increase) simultaneously. At b = −0.05, where the unsteadiness
is suppressed, a drag reduction of 14% and a lift increase of 138% are observed, suggesting that
controlling the unsteadiness significantly improves the aerodynamic performance of the aerofoil.
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