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 

Abstract— This paper presents the OPF formulation of a 

recent power flow STATCOM model [1]. The new model puts 

forward an alternative, insightful interpretation of the 

fundamental frequency operation of the PWM-controlled Voltage 

Source Converter (VSC), in an optimal fashion. The new model 

makes provisions for the explicit representation of the 

converter’s internal ohmic and switching losses which in the 

context of an OPF formulation, yields an optimum operating 

point at which these power losses are at a minimum. The 

STATCOM model possesses unparalleled control capabilities in 

the operational parameters of both the AC and DC sides of the 

converter. Such control modeling flexibility is at its best when 

expressed in the context of an OPF solution using Newton’s 

method. The STATCOM equations are incorporated into the 

OPF formulation using Lagrangian functions in quite a natural 

manner for efficient optimal solutions using a single frame-of-

reference. The inequality constraint set of variables is handled 

equally well using the multipliers method. The prowess of the 

new model is demonstrated using two sample systems.  

 
Index Terms-- FACTS, STATCOM, Voltage Source 

Converter, Optimal Power Flows, Newton’s method 

I.  INTRODUCTION 

IKE the Static VAR Compensator (SVC), the primary 

function of the STATCOM is to provide flexible reactive 

power support at key points of the transmission system but at a 

faster speed of response and with an enhanced performance 

[2]. The STATCOM may take the form of one of the many 

possible converter topologies available today, made up of fully 

controllable power electronic valves and driven by PWM (or 

equivalent) control [3]. The most popular switched-mode 

converter topologies fulfilling the requirements of providing 

fast voltage support are the two-level and the three-level 

PWM-driven VSCs, together with the newer Modular 

Multilevel Converter (MMC) VSCs. They are normally 

connected to a point of the power grid using a step-up 

transformer with tap-changing facilities [4]-[7]. The 

fundamental frequency operational behavior of the VSC, as 

seen from its AC side, resembles that of a controllable voltage 

source. Such a characteristic has been exploited to good effect 

in power system studies to represent the STATCOM as a 

controllable voltage source behind coupling impedance [8]-

[9].  This is not dissimilar to the way in which synchronous 
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condensers are represented in power flow studies. Such a 

simple concept represents well the fact that at the fundamental 

frequency, the STATCOM converter’s output voltage may be 

adjusted against the AC system’s voltage in the converter to 

achieve very tight control targets, a capability afforded by the 

switched-mode converter technology [1]-[9]. Nevertheless, for 

all its attractiveness this concept fails to explain the operation 

of the STATCOM from its DC side. Some of the most obvious 

shortcomings of the STATCOM model based on the 

equivalent voltage source concept are: (i) there is no easy way 

to ascertain whether or not the converter’s operation is within 

the linear region of operation [10]; (ii) switching losses tend to 

be neglected; (iii) the internal ohmic losses of the converter 

along with the effects of the converter’s magnetics are 

normally lumped together with those of the interfacing 

transformer which, more often than not, is a tap changer. This 

has provided the motivation to develop a more realistic 

STATCOM model for fundamental frequency operation [1]; 

one which overcomes the limitations of the equivalent voltage 

source representation and is suitable for assessing the impact 

of both conventional multi-level and modular multi-level 

converters (MMC) [11]-[12], on large power networks and in 

an optimal manner. 

This paper may be considered a companion paper of [1] 

where the conventional power flow solution of the 

STATCOM model has been put forward.  In the OPF problem 

– which is the subject matter of this paper - a chosen system 

objective function (or a group of functions) is solved towards 

its optimum operating point subject to system’s realistic 

operating boundaries. 

In the OPF formulation presented in this paper, the system 

objective function is chosen to be the cost of generators’ 

active power dispatch [13]. It should be noted that the set of 

results obtained from an OPF solution may not necessarily 

agree with those obtained from a conventional power flow 

solution even when applied to the same system. In an OPF 

solution, the solution space is shaped by the action of different 

controllers in the system that set the boundaries on control 

state variables and functions (i.e. nodal active and reactive 

power flows) [2]. Adhering to the necessary optimality criteria 

will eventually result in convergence towards a different 

operating point (optimum) than the one obtained by the 

conventional power flow calculation. The OPF formulation 

requires creating a Lagrangian function with appropriate 

penalty functions to keep the system operating conditions 

within their acceptable boundaries whilst adhering to the 

necessary optimality criteria. The reason is that the key part of 
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the optimality criteria found in OPF formulations is not 

incorporated in the conventional power flow formulation. For 

instance, and as exemplified by the OPF simulations presented 

in this paper, the converter’s internal switching losses are 

reduced when compared to those obtained with a conventional 

STATCOM power flow algorithm. 

Optimal solutions of the new STATCOM model yield 

considerable reductions in power system losses and in the 

converter’s internal power losses, when compared to the 

solutions furnished by the STATCOM model solved using 

conventional power flows [1]. Furthermore, optimal solutions 

with the new STATCOM model will also yield improved 

solutions compared to the optimal solutions provided by the 

voltage source representation of the STATCOM, and with less 

computational complexity. 

II.  STATCOM NEW MODEL  

The equivalent electric circuit for the STATCOM model is 

shown in Fig.1. 

 
 

Fig. 1: (a) STATCOM schematic representation; (b) voltage source converter 
equivalent circuit; (c) on-load tap-changing transformer equivalent circuit 

 

The STATCOM consists of two main components – a 

voltage source converter (VSC) and a tap-changing coupling 

transformer (LTC), as illustrated in Fig. 1(a). The VSC is 

modeled as an ideal complex tap-changing transformer, shown 

in Fig. 1(b). The reason for using a complex tap changer to 

model the VSC operation stems from the following 

fundamental relationship applicable to the PWM controlled 

operation of the VSC: 
 

DC

j

a EemV '

1   (1) 

 

where tap magnitude m
’
a of the ideal complex tap-changing 

transformer corresponds to the amplitude modulation 

coefficient of an actual two-level, three-phase VSC, defined as 

aa mm )23('  , in which the PWM-controlled VSC 

operates in the linear range with 0<ma<1 [5]. The phase angle 

 is the phase angle of the complex voltage 1V  relative to the 

system phase reference. 

It should be noted that such aggregated relationships are 

also applicable to represent the fundamental frequency 

operation of three-level, three-phase VSCs driven by PWM 

control since in this application the interest is in the 

relationship between EDC and 1V  through ma and . This would 

be regardless of the number of switches and converter levels. 

On the other hand, Modular Multilevel Converters (MMC) 

have a different construction design and operating principles 

than PWM-driven converters. They comprise several small 

DC choppers with bi-directional switches, making up sub-

modules of each leg of the three-phase converter. Assuming 

that the output DC voltage of each sub-module is controlled to 

maintain an average value of 
dc

E then the constant input DC 

voltage in each leg of a three-phase MMC-VSC with N sub-

modules would be 
dcDC

ENE   [11]-[12]. It follows that the 

number of active sub-modules in the multi-level converter 

dictates the value of the voltage magnitude on the AC side of 

the converter. It turns out that  (1) also represents very well the 

aggregated affects of this operation if one thinks of ma as a 

discrete tap as opposed to the continuous tap associated with 

the PWM-driven VSC converters. For numerical efficiency 

within the power flow or the OPF solution a continuous tap is 

assumed and at the end of the convergent solution, the nearest 

physical tap is selected and one further iteration is carried out 

to fine tune the overall power flow solution. This would not be 

different to schemes adopted elsewhere for the tap selection of 

LTC transformers where discrete taps are considered as 

opposed to continuous ones [14]. 

As shown in Fig. 1 (b), the complex tap-changing 

transformer represents the internal operation of the converter 

under PWM control. The converter’s input DC voltage, EDC is 

provided by the capacitor bank CDC, which is connected in 

parallel with a resistor (conductance) of value Gsw representing 

the converter’s internal switching losses at a constant DC 

input voltage. The reactive power control feature of the VSC 

is, on the other hand, represented in the valve set modeled by a 

notional variable shunt susceptance in the AC side of the ideal, 

complex, tap-changing transformer. The VSC model is 

completed by adding a series impedance to the AC side of the 

complex-tap transformer in which the series resistor R1 is 

associated with the ohmic losses which are proportional to the 

AC terminal current squared and the series inductance X1 
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represents the converter’s interface magnetics.  

The converter’s switching losses are modeled by the 

following quadratic expression [1], 
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where G0 is the converter switching losses under constant DC 

voltage and nominal load current conditions. To incorporate 

the effects of actual converter operation this term is corrected 

by the squared ration of actual-to-nominal current – with the 

quadratic exponent chosen to reflect the power behavior of the 

switching resistance (conductance).  

The reactive power property of the converter is modeled 

using a variable shunt branch susceptance to account for the 

calculated reactive power (either generation or absorption) in 

the converter depending on its control requirements, which 

may be set to either direct nodal voltage regulation or reactive 

power control [1].  

The VSC’s operation at fundamental frequency is defined 

by the following nodal admittance matrix which is developed 

in more detail in Appendix A: 
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Furthermore, the coupling transformer is taken to be a 

conventional tap-changing transformer with discrete tap steps, 

as shown in Fig. 1(c). The nodal matrix representation of the 

classical tap-changing transformer, represented by the 

equivalent circuit of Fig. 1(c), is [2]: 
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Notice that in (4) the tap is real as opposed to complex and 

that it is taken to be on the transformer’s primary side. It 

should be noted that in the course of the OPF solution process 

the OLTC tap is treated as a continuous variable but in 

practice this is a discrete variable. Therefore, at the end of 

each internal iterative loop, T is rounded off to its nearest 

integer. 

A.  STATCOM nodal power equations 

The nodal power equations of the full STATCOM model 

within the OPF is calculated by combining the nodal power 

equations of the VSC and the OLTC modules. 
 

    1)  VSC Module: 

The VSC nodal power injections are derived from the 

product of its nodal voltages and current injections, in 

complex conjugate forms: 
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Carrying out straightforward complex algebra, the nodal 

active and reactive power equations for the VSC model are 

derived: 
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    2)  OLTC module: 

Similarly, the nodal power injections of the OLTC module 

are derived from the nodal voltage and current relationships at 

both ends of the OLTC: 
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This expression yields the following explicit nodal power 

injections for the OLTC model: 
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where )/(1 lllll jXRjBGY  . 

Suitable combination of the two set of equations, (6) and 

(8), yields the required nodal power injections at the three 

nodes of interest, namely, k, vR and 0: 
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where Pk and Qk in the summation symbol in (9)-(10) are the 

contributions of all branches connected to node k other than 

the OLTC transformer. These calculated nodal powers are 

required by the Optimal Power Flow formulation. 

B.  Practical Implications  
 

    1)  STATCOM Design Requirements: 

As illustrated in Fig. 1(b), the VSC is assumed to be 

connected between a sending bus, vR, and a receiving bus, 0, 

with the former taken to be the VSC’s AC bus and the latter 

taken to be the VSC’s DC bus. The voltage input at the DC 

bus is provided by the DC capacitor bank, of value CDC, and 

kept constant at a value EDC. The voltage magnitude VvR is 

regulated within system-dependent maximum and minimum 
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values afforded by the following basic relationships: 
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The PWM-controlled VSC is taken to operate within the linear 

region [6]. Hence, the PWM amplitude modulation coefficient 

is within the bounds: 10  am  and for a two-level, three-

phase VSC, 
aa

mm  23'
. 

 

    2)  Simplifying assumptions: 

It should be noted that the ideal phase shifter decouples, 

angle-wise, the circuits to the left and to the right of the ideal 

transformer, i.e., the phase angle value at node 0 is 

independent of circuit parameters or network complexity to 

the left of the ideal phase shifting transformer. From the 

numerical perspective, the phase angle voltage at bus 0 keeps 

its value given at the point of initialization, which in this 

STATCOM application will be taken to be zero - when looked 

at it from the vantage of rectangular coordinates, its imaginary 

part does not exist [1]. In the course of the OPF solution 

process the variations of the DC bus angle are kept to zero by 

penalizing this angle throughout the solution process, hence,

00  . Alternatively, the entries corresponding to this 

state variable in the OPF formulation may be removed 

altogether, resulting in a more compact formulation that would 

yield identical results. 

III.  STATCOM NEW MODEL FORMULATION IN OPTIMAL 

POWER FLOW (OPF) USING NEWTON’S METHOD  

A.  Augmented Lagrangian Functions 

The constrained OPF problem is formulated using the 

Lagrangian function given in (13) for the STATCOM model 

by applying explicit multipliers to system equality constraints 

given in (9)-(11) and penalizing the resultant Lagrangian 

function for any state variable violations [2]: 
 

),()()(),,( uxPxHPFuxL t

G    (13) 

 

where H(x) corresponds to the set of functional equality 

constraints for the system including the STATCOM device. 

F(PG) corresponds to the summation of the values of the 

problem’s objective functions which are taken to be the 

generators’ quadratic cost functions as given in [13]. And, 

P(x,u) is an explicit quadratic penalty function for penalizing 

the Lagrangian function for any state variable violations.  

The explicit state variables pertaining to the STATCOM 

new model comprise the variables for both the converter and 

the OLTC modules. This is shown in (14):  
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It should be noted that apart from these explicit expressions, 

solving the OPF requires defining a Lagrangian function for 

the whole system which would include the nodal voltages and 

phase angles of all buses (except for the Slack bus for which 

only the nodal voltage magnitude is required), transformer tap 

ratios, as well as any other variables associated with a given 

power controlling equipment such as the STATCOM. As 

mentioned in Section I this is done by combining the effects of 

all the system Lagrangian functions.  

The OPF problem to be solved in this paper is on the cost of 

generators’ active power dispatch, each possessing a quadratic 

cost function with an expression similar to the one presented 

in [11].  

PG in (13) then corresponds to the generators’ scheduled 

active power dispatch which is subject to the system’s 

operating conditions (i.e. H(x)). In such circumstances the 

OPF problem is concerned with minimizing the overall cost of 

active power dispatch subject to realistic operational 

conditions and control settings. The controls are set by the 

STATCOM explicit state variables in the system. The problem 

constraints essentially represent the network actual operating 

conditions. Voltage magnitudes and phase angles in buses, 

generators’ active powers, nodal power injections and 

mismatches in each bus are among the most important 

operating constraints in OPF-related studies. Applying 

Newton’s method [15]-[18] to the Lagrangian function (13) 

and assuming that no penalty function terms exist at the start 

of the OPF iterative process – the system is assumed to work 

under normal operating conditions and all the variables are 

initialized within their respective limits – the linearized system 

of equations for the OPF is defined as: 
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where vector 
Tuxz ],,[  is the vector of primal-dual 

variables (dual variables are the Lagrange multipliers for both 

equality and inequality constraints, λ and u, respectively) [15]-

[18]. 

The matrix of coefficients, )(2 zLzz , is a combination of 

Hessian and Jacobian terms obtained from second order 

derivatives of the Lagrangian function in (13) with respect to 

the entries of vector z. This results in a formulation which 

yields a quadratic rate of convergence. Commensurate with 

the power flow Newton-Raphson application, the Jacobian 

sub-matrix in (15) keeps the same level of sparsity as the 

nodal admittance matrix and so does its Hessian sub-matrix. 

This contrasts with an earlier formulation based solely on the 

use of an alternative Hessian matrix [20], which contains little 

sparsity. The gradient vector, Lz , which comprises the first 

order derivatives of the Lagrangian function with respect to 

the entries of vector z ought to maintain a decreasing pace 

throughout the course of the iterative solution [2], [18]-[20], to 

ensure a reliable solution towards the optimum.  

The linearized system of equations may be written down 

more explicitly as: 
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It should be noted that the gradient term, g , actually 

corresponds to the mismatch of nodal power calculations. It 

should also be noted that the second order derivatives of the 

Lagrangian function with respect to the Lagrange multipliers 
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are zero, i.e.,
 

0),,(2  yxLH  . 

B.  STATCOM New Model Equality Constraints  

For the STATCOM model in Fig. 1, the set of functional 

constraints comprise the nodal active and reactive power 

mismatch equations at nodes: k, vR and 0,  
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where calc

kP  and calc

kQ  are the calculated injected powers at 

node k; 
kgP  and 

kgQ  are active and reactive powers generated 

at node k; 
kdP  and 

kdQ  are active and reactive powers 

consumed at node k; calc

vRP  and calc

vRQ  are the calculated 

injected powers at node vR; 
vRgP , 

gvRQ  , 
vRdP  and 

vRdQ  will 

be zero for any practical purpose; calcP0
 and calcQ0

 are the 

calculated injected powers at node 0; 
0gP , 

0gQ  , 
0dP  and 

0dQ  

are the active and reactive power generated and consumed at 

node 0, respectively. The above expressions have to be 

satisfied for an optimum solution to be acceptable, otherwise it 

is said that the solution is infeasible.  

C.  STATCOM New Model Control in OPF 

Two control modes are available in the STATCOM new 

model introduced in this paper, namely, active power flow 

control (if applicable) and nodal voltage regulation - control 

constraints given in (23) and (24) are used to this end.  

 

    1)  Nodal Voltage Regulation - Constraint on State 

Variables 

The voltage regulation constraint is a variable equality 

constraint which is added to the OPF formulation by means of 

a quadratic penalty function of the form (23) [12]. 
 

2)(
2

1 reg

iiV VVSP
i

  (23) 

where i is either k or 0 and 



Vi
reg  is the target nodal voltage 

magnitude which must remain within operational limits and 

S  is a non-zero integer termed the penalty factor.  

Eq. (23) is used by default to enforce the STATCOM’s 

nodal voltage regulation at the AC bus using the OLTC 

transformer in Fig. 1(c). It should be noted that within the OPF 

formulation, the nodal voltages at both nodes k (AC system 

voltage) and vR (VSC AC output voltage) may be controlled 

by the combined action of the OLTC and VSC. However, the 

VSC AC system voltage is rather set free to vary within its 

permitted boundaries; as a result of this, nodal voltage 

regulation is not imposed on this node. The VSC DC input 

voltage is provided by the DC capacitor bank which is 

initialized as a PV-type bus in the OPF solution process. The 

VSC explicit nodal voltage control is therefore on the DC bus 

not on the AC bus. The AC side voltage is regulated by the 

action of the OLTC transformer, whereas the DC side voltage 

is determined by the DC capacitor’s design requirements - as 

discussed in Section II.B. Hence, the DC voltage is set to a 

pre-determined level (corresponding to the VSC input DC 

voltage) throughout the solution process. 

The value of the penalty factor, S, dictates the hardness of 

the voltage regulation boundaries. However, choosing the 

initial value of the penalty factor is a highly empirical 

exercise, which is rooted in experience and trial and error [2]. 

Choosing too large a value may lead to inaccurate and 

unfeasible results whereas small values may lead to a poor rate 

of convergence and possible stagnation. For the test cases 

presented in this paper a value of 10
10

 has been used for the 

penalty factor S. 

 

    2)  Active Power Flow Regulation – Constraint on 

Functions 

Active power flow through the VSC converter is controlled 

by varying the phase shift that exists in the converter’s ideal 

transformer model (i.e. the angle  ).  

For explicit active power flow control inside the converter, 

an additional functional equality constraint is introduced in 

form of (24):  
 

0 spe

convconv PP  (24) 

 

where normally calc

conv PP 0  is the calculated nodal active 

power at the DC bus, which is set to zero or ±Pdc , as detailed 

above.  For the purposes of modeling the VSC’s DC bus, this 

is a PV-type bus with active power set to either zero or to a 

pre-specified value, say, 
dcP .  

Notice that the latter option is only possible if any form of 

energy storage is available in the STATCOM’s DC bus. 

However, reactive power in the DC node is always set to zero. 

In contrast to the model of the VSC based on the concept of a 

controllable voltage source, in the new STATCOM model the 

OPF algorithm modifies the phase angle φ in such a way that 

the amount of the active power flowing through the converter 

corresponds to the target active power flow upon convergence. 

This is a distinguished feature of the new model which is 

completely absent from the controllable voltage source model. 

The explicit Jacobian and Hessian terms associated with the 

active power flow control constraint in the STATCOM model 

are given in Appendix B. 
 

D.  STATCOM’s explicit Lagrangian function 

The STATCOM’s Lagrangian function is given by (25).  
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The Lagrangian in (25) contains no quadratic penalty 

function for inequality constraints at the start of the OPF 

process, i.e. these are not activated at the outset. A full 

iterative solution of (15) requires the convergence of an inner 

loop by solving (16) in a true Newton-Raphson fashion. Once 

the process converges to a specified tolerance in the inner loop 

then all the variable limits are checked against their respective 

boundaries and the active binding set is identified [17]-[18]. 

Variables that have violated their limits make up the active 

set; they are forced to their ceilings and incorporated in (15) 

using the penalty function P(x,u) in which the term u is 

defined as the Lagrangian multiplier for its corresponding 

active set. Inclusion of the active set upon convergence of the 

first inner loop completes the first iteration of the outer loop – 

referred to as a one global iteration. Hence, a second outer 

loop is initiated, which now incorporates both equality and 

inequality constraints [15], [18], and [21]-[22]. In principle, 

convergence for the local iterations is achieved in true 

quadratic fashion – a hall-mark of the Newton-Raphson 

method. However, the active set is updated outside the 

Newton-Raphson solution, a procedure that impairs the overall 

convergence of the Newton-Raphson OPF solution, which is 

termed Newton’s OPF method. Furthermore, experience has 

shown that the inner loops’ convergence may be better assured 

by employing a decelerating factor (0<α<1) at the point of 

updating the state variables and Lagrange multipliers at the 

end of each local iteration. This is particularly the case during 

the local iterations of the first two global iterations [2]. The 

use of such deceleration factors impairs further the quadratic 

convergence characteristics of the Newton-Raphson method, 

i.e., the number of local iterations will increase. However, 

experience has shown that this is a very powerful resource 

owing to the highly non-linear nature of the problem at hand. 

The active power flow constrain at the converter, (23), is 

normally enforced by default at the start of the solution 

process – its Lagrangian is included in (25). It is either set to 

zero DC power or to a pre-specified DC positive/negative 

power injection if the STATCOM is provided with any form 

of energy storage. Of course, it is always possible in Newton’s 

OPF solution not to wish to enforce this constrain, something 

that is done by enforcing its associated Lagrange multiplier to 

zero using a suitable quadratic penalty function of the form 

given in (26). 
 



P 
1

2
S

2  (26) 

 

where the term 



  is the Lagrangian multiplier pertaining to 

the converter’s active power flow constraint. It is noted that all 

the multipliers in (25) have been initialized at zero values. 

E.  STATCOM linearized system of equations 

Application of Newton’s method to the STATCOM 

Lagrangian function (25), taking due account of the state 

variable vector (15) and the Lagrange multipliers for the active 

equality constraints set, is given in (27). 
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F.  The inequality constraints set 

The inequality constraint set includes the following limits: 

the converter’s PWM amplitude modulation coefficient, ma
’
, 

the OLTC transformer’s tap ratio, T, and the nodal voltage 

magnitudes. The control variables are the STATCOM’s nodal 

voltages at both nodes (AC and DC), the ideal transformer’s 

complex tap, '

am , which is allowed to vary between 0 and 

23 and the OLTC’s tap ratio, T which is allowed to vary 

between 0.6 and 1.2. No limits are imposed in the phase 

angles of the nodal voltages or in the VSC’s complex tap 

angle. 

IV.  TEST CASES 

To assess the accuracy, flexibility and robustness of the 

proposed STATCOM model, two test cases are presented in 

this section. The first case is a rather contrived system where 

the STATCOM is fed from a synchronous generator through a 

transmission line, as shown in Fig. 2. The second case 

comprises a modified version of the IEEE 30-node system 

[23] in which a STATCOM is assumed connected at node 24 

to maintain voltage magnitude at 1 p.u. at that node. An 

existing OPF program using Newton’s method written in 

MATLAB


 [2] has been extended to implement the new 

STATCOM model and to carry out quite comprehensive tests, 

two of which are presented below.  

A.  Radial System – New Model 

The three-node system in Fig. 2 comprises one generator, 

one transmission line, one load and one STATCOM which is 

used to regulate voltage magnitude at its AC node at 1.02 p.u. 

whereas its DC bus voltage is kept at 2  p.u.. The following 

parameters are used in the contrived test system - (i) 
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transmission line: RLT=0.05 p.u. and XLT=0.10 p.u.; (ii) LTC 

transformer: RTR=0.01 and XTR=0.10 p.u.; (iii) VSC: 

RVSC=0.01 p.u., XVSC=0.10 p.u., G0=0.0100 and Beq=0.50 p.u.; 

(iv) Load: PL=0.25 p.u. and QL=0.20 p.u. 

The generator node is taken to be the slack bus. The 

objective function to be minimized is shown below: 

 

GGG PPPf 004.04.360)(   (28)   

 

 
Fig. 2: Fictitious three-node Radial System – STATCOM New Model 

Representation 

 

The optimal power flow solution for the radial system is 

given in table I. The voltage at the slack bus is also penalized 

to keep it at 1 p.u.. The VSC DC voltage is fixed at 1.4142 

p.u. and the voltage at bus 2 is controlled using the LTC 

transformer. The final value of the variable tap changer at the 

optimum is 1.02 which is rounded off to 1.0 for a discrete 

mechanical tap. The nodes STATCOM-AC and STATCOM-DC 

in table I, correspond to the AC and DC nodes of the 

STATCOM, respectively; Gen corresponds to the generator 

bus; and VSC-AC and VSC-DC correspond to the AC and DC 

nodes of the Voltage Source Converter as given by the new 

model shown in Fig.1. The final value of the objective 

function in (28) is calculated according to the generator’s 

optimum active power dispatch, with values given in table II. 

The values of the penalty factors S for all the quadratic penalty 

functions are initiated at 10
10

.  

The OPF for the radial system in Fig. 2 converges in three 

global iterations to a tolerance of 10
-9

. Table III gives the 

number of local iterations incurred at each global iteration, 

with a deceleration factor α=0.025. The converter’s AC 

terminal voltage is free to vary within its allowable boundaries 

and arrives at the final value of 1.05 p.u. with the angle of -

2.96. The voltage angle at the DC bus is kept constant at the 

point of initialization using a quadratic penalty function to 

nullify its corresponding increments throughout the OPF 

process. The STATCOM consumes 0.0260 p.u of active 

power and the converter switching losses are Gsw=0.59%. 

The converter valve set generates 0.6120 p.u. of reactive 

power to maintain the voltage at bus 2 at 1.02 p.u. 

Furthermore, minimum transmission line losses stand at 

Ploss=0.0096 p.u. and Qloss=0.0192 p.u. The generator’s active 

and reactive powers limits are set at: 0.1Pgen2 and -

5Qgen5 p. u. respectively. 

 

 

TABLE I 

OPTIMAL POWER FLOW SOLUTION FOR THE FICTITIOUS RADIAL THREE-NODE 

SYSTEM – NEW MODEL 

Bus Active Power (p.u.) Reactive Power (p.u.) 

Gen 0.2856 -0.3328 

STATCOM-AC -0.0260 0.5520 

STATCOM-DC 0.00 0.00 
VSC-AC 0.0231 -0.5814 

 
TABLE II 

OBJECTIVE FUNCTION VALUE AT THE OPTIMUM 

Generator Objective Function Value 

1 160.3726 $/hr 

 

TABLE III 

GLOBAL ITERATIONS AND LOCAL ITERATIONS 

Global Local 

1 20 

2 15 

3 7 

B.  Radial System – Controllable Voltage Source Model 

For the sake of completeness and in order to contrast the 

results provided by the new model with those provided by the 

STATCOM model based on the controllable voltage source 

concept [2]–[3], the contrived radial system of Fig. 2 is solved 

again but this time using the latter model. The voltage source 

is connected behind a coupling impedance (representing the 

VSC internal magnetic and ohmic losses). A shunt 

conductance of value 1% is connected between the coupling 

impedance and the voltage source in order to represent the 

ohmic losses inside the converter. 

The three-node system with the STATCOM modeled as a 

controllable voltage source is shown in Fig. 3. 

 

 
 
Figure 3 – Fictitious Three-node Radial System – STATCOM Controllable 
Voltage Source Model Representation  

 

The network parameters for this system remain very much 

the same as in the test case of Fig. 2. The OPF solution 

converges in 3 global iterations. These results are compared to 

those produced by the new STATCOM model in tables IV-V. 

As expected both models yield similar results. The 

STATCOM controllable voltage source model generates 

0.6110 p.u. of reactive power to maintain the voltage at node 2 

at 1.02 p.u.  

0.0263 

0.5522 

 54.202.12V
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0
V
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ma=0.903 =-3.36 
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The converter voltage (VvR) stands at 1.0510 p.u. The 

converter voltages behind the converter impedance for both 

models are compared in tables IV-V.  

 
TABLE IV 

CONVERTER VOLTAGE MAGNITUDES FOR DIFFERENT STATCOM MODELS   

Voltage 
Magnitude 

New Model 
Controllable Voltage Source 

Model 

Vconv 1.1062 1.1062 

V2 1.02 1.02 

 
TABLE V 

CALCULATED VOLTAGE PHASE ANGLES FOR DIFFERENT STATCOM MODELS 

Voltage Phase 

Angle 
New Model 

Controllable Voltage Source 

Model 

Φ -3.360 -3.358 

θ2 -2.96 -2.96 

 

The powers calculated by both models are presented in 

table VI. The switching losses in this test case are modeled by 

connecting a shunt conductance of 1% between the coupling 

impedance and the variable voltage source. In fact, this shunt 

resistive branch should be connected at the DC bus of the VSC 

as opposed to its AC side but is precluded because the voltage 

source converter model does not have such a bus and the 

results concerning switching losses will be inaccurate and 

optimistic. 

 
TABLE VI 

OPTIMAL POWER FLOW SOLUTION FOR DIFFERENT STATCOM MODELS  

New Model Active Power (p.u.) Reactive Power (p.u.) 

Gen 0.2856 -0.3328 

STATCOM-AC -0.0260 0.5520 

STATCOM-DC 0.00 0.00 

Controllable 
Voltage Source 

Active Power (p.u.) Reactive Power (p.u.) 

Gen 0.2859 -0.3329 

STATCOM-AC -0.0263 0.5522 
STATCOM-DC N/A N/A 

 

By comparing the results given by the OPF solution of the 

three-node radial system with the STATCOM modeled using 

the new model and a controllable voltage source model 

respectively, the following limitations are clearly observed, (i) 

lack of explicit DC bus representation which means that the 

converter voltage is represented by only one state variable 

pertaining to the controllable voltage source. Therefore there 

is no direct means of controlling the AC output voltage of the 

converter by varying the DC input voltage. (ii) In the 

controllable voltage source model there is no way of limiting 

the operation of the PWM modulation coefficient within the 

linear region, therefore the results obtained from a controllable 

voltage source model do not provide sufficient information to 

distinguish the regions of operation of the converter. This may 

be done by only introducing a new explicit state variable in the 

OPF formulation, further complicating the overall formulation 

of the problem, whereas, with the new model, this is already 

included in form of the complex tap ratio of the transformer 

modeling the PWM-control of the VSC. (iii) Lack of the 

capability of appropriate modeling of energy storage in the DC 

side of the converter due to the inability for explicit 

representation of the DC-side bus. This may be remedied by 

adding an additional equality constraint in form of an active 

power flow, however with the new model; this is included 

inherently within the converter model. All is needed to add the 

energy storage is to change the value of the converter active 

power flow control to a non-zero negative value. (iv) 

Inaccurate and optimistic calculation of the converter’s 

internal switching losses. 

Carrying out the OPF solution with this a priori detected 

modeling inaccuracy will yield a different optimum operating 

point (i.e. 157.07 $/hr), which is optimistic.  

C.  Modified IEEE 30-node System 

In order to test the performance of the new STATCOM 

model in a larger network, the IEEE 30-node system [23] is 

selected. The fixed bank of capacitors at node 24 is replaced 

with a STATCOM, which is used to regulate voltage 

magnitude at that node at 1.02 p.u.. The modified portion of 

the 30-node system is shown in Fig. 4. The nodal voltage 

magnitudes are allowed to vary between 0.9 and 1.1 p.u. at all 

24 load buses and between 0.9 and 1.05 p.u. at all six 

generator buses. Node 1 is taken to be the slack bus.  

 

 

 
 

Fig. 4: STATCOM supplying reactive power at node 24 of the modified IEEE 

30-node system to regulate voltage magnitude at 1.02 p.u.  

 

All the STATCOM parameters and limits are taken to be 

the same as in Test Case A except for the transformer leakage 

reactance, which takes a value of 0.3690 p.u. (the tap changing 

transformer is not shown in Fig. 4). The penalty factor S for 

each quadratic penalty function is initiated at 10
10

.  

The generators’ fuel cost functions given in Table VII are 

used for the six generators available in the 30-node test 

system.  

The Newton’s OPF arrives to the solution in eight global 

iterations. The slow convergence rate is the result of enforcing 

inequality constraints in voltage magnitudes for violated 

nodes. A summary of the most relevant results are shown in 

tables VIII-X. The STATCOM consumes 0.0245 p.u. of active 

power of which 0.81% is for VSC internal switching losses, 

whilst 1.64% accounts for OLTC ohmic losses. The 

STATCOM generates 0.3432 p.u. of reactive power to 

maintain the voltage magnitude at node 24 to 1.02 p.u. The 

OLTC final tap is rounded off to 0.7. Notice that the powers 

 node 22 

 node 23 

 node 25 

 

 0.0559 

 0.0705 

 0.1462 
 0.0321 

 0.0741 
 0.0089 

 0.0245 

 0.3432 

ma=0.7733 

=-11.13 

 node 24 

 0.0870+j0.0670 

4142.10 V  
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shown are the output powers at the OLTC transformer 

terminals as opposed to the VSC terminals. Table X shows the 

final values of generator cost functions at the optimum after 

eight global iterations to a tolerance of 10
-9

. The increased 

number of iterations was due to a voltage limit violation in 

node 24 which has been fixed to its lower boundary by the 

action of its inequality constraint multiplier. The total value of 

the objective function is the sum of all six generators’ costs 

obtained with the generators’ outputs at the optimum, which 

stands at 972.8759 $/hr.  

 
TABLE VII 

FUEL COST FUNCTIONS OF THE SIX GENERATORS IN THE IEEE 30-NODE TEST 

SYSTEM  

Generator Objective Function 

1 2

11
02.02

GG
PP   

2 2

11
0175.075.1

GG
PP   

3 2

11
0625.01

GG
PP   

4 2

11
083.025.3

GG
PP   

5 2

11
025.03

GG
PP   

6 2

11
025.03

GG
PP   

 
 

TABLE VIII 
ACTIVE AND REACTIVE POWER INJECTIONS AT THE GENERATOR AND STATCOM 

NODES  

Bus 
Active Power  

(p.u.) 
Reactive Power  

(p.u.) 

Gen 1_ node 1 0.5784 -0.1268 

Gen 2_ node 2 0.7490 0.1230 
Gen 3_node 5 0.2894 0.2660 

Gen 4_node 8 0.7095 0.3797 

Gen 5_node 11 0.2935 -0.2209 
Gen 6_node 13 0.2837 0.2140 

STAT_AC -0.0245 0.3432 

STAT_DC 0 0 

 
TABLE IX 

CONVERTER OPERATING PARAMETERS AT THE OPTIMUM 

ma  

0.7733 -11.13 

 

TABLE X 

OBJECTIVE FUNCTIONS VALUES AT THE OPTIMUM 

Generator Objective Function Value 

1 182.5997 $/hr 

2 229.2370 $/hr 

3 81.26670 $/hr 

4 272.3566 $/hr 

5 109.5990 $/hr 

6 105.2440 $/hr 

V.  CONVERTER SWITCHING LOSSES 

One of the advantages of the proposed new model is that it 

gives provisions for explicit representation of the converter’s 

internal switching losses under converter’s operating 

conditions. This is done by applying (2) to the converter’s 

otherwise constant switching losses under constant input DC 

voltage and rated current (i.e. 1 p.u).  

It is observed that applying the OPF formulation as 

outlined in this paper will result in a further reduction of the 

converter’s switching losses even under similar operating 

conditions as for when a conventional power flow (CPF) 

algorithm is applied to the same model. This is evident in table 

XI when the new model is used in a fictitious three-node 

system similar to the one shown in Fig. 1 and the STATCOM 

is tasked with maintaining the voltage at node 2 to 1.05 p.u.  

It is seen that applying the OPF under the same operating 

criteria will result in an approximate 30% reduction in the 

value calculated for the converter’s switching losses. The 

STATCOM current magnitude in the case of OPF solution 

algorithm is 0.7095 p.u. whereas in the case of applying CPF 

the STATCOM current magnitude comes at 0.8421 p.u. 
 

 TABLE XI 

SWITCHING LOSSES AS GIVEN BY OPF AND CPF SOLUTIONS –  
FICTITIOUS THREE-NODE SYSTEM 

Solution Algorithm 
STATCOM Switching Loss (%) – 

New Model 

OPF 1.0068 

CPF 1.42 

VI.  CONCLUSIONS 

A new STATCOM model suitable for optimal power flow 

solutions using Newton’s method has been introduced in this 

paper. The new model departs from the idealized controllable 

voltage source concept that has been used so far for 

representing the fundamental frequency operation of the 

STATCOM in OPF formulations. Instead, it treats the DC-to-

AC converter of the STATCOM as a transformer device with 

a variable complex tap – just as DC-to-DC converters have 

been linked, conceptually speaking, to step-up and step-down 

transformers [6]. The PWM control of the VSC is modeled 

explicitly by means of the complex tap of the ideal 

transformer whose magnitude represents the PWM amplitude 

modulation coefficient and its phase angle corresponds to the 

phase shift that would exist between the fundamental 

frequency voltage and current wave forms. Moreover, the 

phase angle of the complex tap in the new VSC model 

coincides with the phase angle of the conventional, equivalent 

voltage source model of the VSC. The converter’s DC bus is 

modeled as a type-PV bus with constant DC voltage 

magnitude and zero phase angle, i.e., when expressed in 

rectangular coordinates, the imaginary part of this voltage 

does not exist. The STATCOM-OPF model is tested in a 

radial system configuration to showcase the regulating 

properties of the new model. A larger system comprising 

several generators has been selected to show that the new 

STATCOM model performs equally well within Newton’s 
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OPF solution.  

APPENDIX A: VSC MODEL DESCRIPTION 

The VSC is modeled as an ideal complex tap-changing 

transformer, as shown in Fig. 1(b). The following relationship 

defines the complex tap ratio in the ideal complex tap-

changing transformer: 
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The nodal matrix equation is quite straightforwardly derived 

by performing basic nodal analysis on the VSC’s equivalent 

circuit model in Fig. 1 (b). The current through the admittance 

connected to nodes vR and 1 is defined as: 

 

  vRavRvR IVYmVYVVYI  01
'

1111   (A.2)  

where )/(1 111 jXRY  .  

At node 0 the following relationship applies to the current 

flowing in this node: 
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Combining (A.2) and (A.3) will ultimately yield the VSC’s 

nodal admittance matrix shown in (3).  

APPENDIX B: EXPLICIT JACOBIAN AND HESSIAN TERMS FOR 

ACTIVE POWER FLOW REGULATION 

In order to enforce the active power flow control capability 

of the VSC in the OPF solution a new explicit Lagrangian 

function may be defined as below: 

 

)( spe

convconv PPL     (B.1) 

 

In which convP  is the amount of VSC active power exchange 

with the grid and 
spe

convP is the specified target active power 

flow in the converter. The Hessian terms with respect to state 

variable x is given in (B.2) below: 
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  (B.2) 

It is noted that normally Pconv corresponds to the DC side 

bus active power flow which is under normal circumstances 

set to zero unless an energy storage device is present in which 

case it is set to a pre-specified target value. The contribution 

of additional energy storage device will be extensively 

discussed in Appendix C. 

The Hessian terms of (B.1) with respect to Lagrange 

multipliers are obviously zero, hence: 
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APPENDIX C: EFFECTS OF ENERGY STORAGE  

The simplest of possible energy storage representations 

within the OPF formulation is done by applying an active 

power flow constraint in the converter and setting a target 

value for the DC power. The fictitious three-node system 

introduced in Fig. 2 is modified to include a small bank of 

batteries which inject 0.05 p.u. of active power into the 

system. The effects that the additional storage has in reducing 

the final value of the objective function are evident from table 

C.I. The final values of the converter’s operational parameters 

are presented in table C.II. In this case the converter has a 

wider phase shift to allow for a larger active power flow from 

the converter to the grid. 
 

TABLE C.I 
EFFECTS OF ENERGY STORAGE ADDITION IN THE FICTITIOUS THREE-NODE 

RADIAL SYSTEM 

Energy Storage 

(p.u.)  

Slack Bus Active 

Power (p.u.) 
Objective Function Final Value  

N/A 0.2856 160.3726 $/hr 

0.05  0.2330 141.4088 $/hr 

 
TABLE C.II 

CONVERTER PWM OPERATIONAL PARAMETERS AT OPTIMUM 

Energy Storage 

(p.u.)  

Final Tap Changer  

Magnitude  

(p.u.) 

Phase Shift  

(deg) 

N/A 0.9032 -3.36 

0.05  0.8790 -2.47 

APPENDIX D: THE IDEAL PHASE SHIFTER CIRCUIT  

One salient characteristic of the new VSC model is that no 

special provisions within a conventional AC power flow 

solution algorithm is required to represent the DC circuit, 

since the complex tap-changing transformer of the VSC may 

be used with ease to give rise to the customary AC circuit and 

a notional DC circuit. However, some further explanation is 

required since the modelling development involves the 

conflation of AC and DC circuit concepts at an equivalent 

node, brought about by the use of the ideal tap-changing 

transformer concept. 

In order to elaborate the explanation from the vantage of 

electronic circuits, we are going to assume that the 

conductance associated with switching losses, Gsw, in Fig. 

1(b), may be referred to the primary side of the ideal 

transformer. The relevant part of the circuit illustrating such a 

situation but with capacitor representation, as opposed to its 

equivalent battery representation, is shown in Fig. D.1, 
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Figure D.1: Equivalent circuit showing the ideal phase-shifting 

transformer of Fig. 1(b) and neighboring elements, where 
eqsweq BGY j .  

 

By invoking (A.1), 
 

 0'')'(' 211
-j

2  IIIemI a

                   (D.1) 

 

DC

a

j

a

j

j

a

E
m

V

em

eV

em

V
V 








 111

0 




 (D.2)   

          

In steady-state, a charged DC capacitor draws zero current 

and it is well-accepted that it may be represented as a charged 

battery [24] and, by extension, as a DC voltage source feeding 

no current. These facts are reflected by (D.1) and (D.2) and 

give the opportunity to interpret the circuit in Fig. D.1 in terms 

of electronic circuits concepts. Hence, it may be argued that in 

steady-state this circuit behaves as a nullor operating on a DC 

source representing the DC capacitor. The nullor is made up of 

a nullator and a norator [25], represented in this case by the 

ideal phase-shifting transformer and the equivalent 

admittance,
 eqY , respectively. The circuit in Fig. D.1 may be 

re-drawn as follows, 

 

 

 

 

 

 

 

 

 
Figure D.2: Interpretation of the equivalent circuit of Fig. A.1 in terms of 

electronic circuit elements 
 

The nullator and the norator are said to be linear, time-

invariant one-port elements. The former is defined as having 

zero current through it and zero voltage across it. The latter, 

on the other hand, can have an arbitrary current through it and 

an arbitrary voltage across its terminals. Nullators have 

properties of both short-circuit (zero voltage) and open-circuit 

(zero current) connections. They are current and voltage 

sources at the same time. A norator is a voltage or current 

source with infinite gain. It takes whatever current and voltage 

is required by the external circuit to meet Kirchhoff’s circuit 

laws. A norator is always paired with a nulator [25]. 

Either, by careful examination of (D.1) and (D.2) or by 

analysis of the electronic equivalent circuit in Fig. D.2, it can 

be seen that the ideal, complex tap-changing transformer of 

the VSC gives raise to the customary AC circuit and a notional 

DC circuit where the DC capacitor yields voltage EDC but 

draws no current. 

In a more general sense and from the viewpoint of the AC 

power flow solution, if resistive elements or DC power loads 

are connected to the notional DC bus then currents do pass 

through the ideal phase-shifting transformer but it would be a 

component of current that yields a nodal voltage V0 with zero 

phase angle and, as one would expect, yields power with no 

imaginary component, hence, no reactive power exists in this 

part of the notional DC circuit. 
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