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Abstract—Compressive sensing (CS) technologies present many
advantages over other existing approaches for implementing
wideband spectrum sensing in cognitive radios (CRs), such as
reduced sampling rate and computational complexity. However,
there are two significant challenges: 1) choosing an appropriate
number of sub-Nyquist measurements, and 2) deciding when
to terminate the greedy recovery algorithm that reconstructs
wideband spectrum. In this paper, an autonomous compressive
spectrum sensing (ACSS) framework is presented that enables
a CR to automatically choose the number of measurements
while guaranteeing the wideband spectrum recovery with a small
predictable recovery error. This is realized by the proposed
measurement infrastructure and the validation technique. The
proposed ACSS can find a good spectral estimate with high
confidence by using only a small testing subset in both noiseless
and noisy environments. Furthermore, a sparsity-aware spectral
recovery algorithm is proposed to recover the wideband spectrum
without requiring knowledge of the instantaneous spectral spar-
sity level. Such an algorithm bridges the gap between CS theory
and practical spectrum sensing. Simulation results show that
ACSS can not only recover the spectrum using an appropriate
number of measurements, but can also considerably improve
the spectral recovery performance compared with existing CS
approaches. The proposed recovery algorithm can autonomously
adopt a proper number of iterations, therefore solving the
problems of under-fitting or over-fitting which commonly exist
in most greedy recovery algorithms.

Index Terms—Cognitive radio, Spectrum sensing, Compressive
sensing, Sub-Nyquist sampling.

I. INTRODUCTION

The radio frequency (RF) spectrum is a finite natural

resource, currently regulated by government agencies. Accord-

ing to current policy, primary user (PU) on a particular spec-

trum band has exclusive right to the licensed spectrum. With

the explosive growth of wireless applications, the demands for

RF spectrum are constantly increasing. On the other hand, it

has been reported that localized temporal and geographic spec-

trum utilization efficiency is extremely low [1], [2]. Cognitive
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radio (CR) [3] has emerged as one of the most promising

solutions that address the spectral under-utilization problem.

A crucial requirement of CRs is that they must rapidly exploit

spectrum holes (i.e., portions of the licensed spectrum that are

not being used by PUs) without causing harmful interference

to PUs. This task is achieved by spectrum sensing, which can

be defined as a technique for achieving awareness about the

spectral usage and existence of PUs in a given geographical

area [4], [5].

CR with a wide spectral awareness (e.g., a few GHz

rather than MHz) could potentially exploit more spectral

opportunities and achieve larger capacity. Wideband spectrum

sensing techniques (categorized into Nyquist wideband sensing

and sub-Nyquist wideband sensing) therefore have attracted

considerable attention in research on CR networks [2]. In [6],

Tian and Giannakis proposed a wavelet based approach using

Nyquist sampling rate for wideband spectrum sensing. Quan

et al. [7], [8] presented a multiband joint detection (MJD) ap-

proach to detect the primary signal from Nyquist samples over

multiple frequency bands. Note that according to the Nyquist

sampling theory, the received signal at CR should be sampled

at a sampling rate of at least twice the maximum signal

frequency [4]. Thus, to achieve a “wider” spectral awareness at

CRs (i.e., a larger signal frequency range), a high sampling rate

is needed, leading to excessive memory requirements and high

energy cost. This motivates the development of sub-Nyquist

technologies (using sampling rates lower than the Nyquist rate)

for reducing the operational sampling rate while retaining the

spectral information [9], [10].

The compressive sensing (CS) theory was first introduced to

implement the sub-Nyquist spectrum sensing in CR networks

in [11]. This technique used a number of samples closer to the

information rate and reconstructed the wideband spectrum us-

ing these partial measurements. Note that using CS techniques,

the wideband signal to be sampled is required to be sparse in

a suitable basis [12], [13]; this requirement can typically be

met in CR networks due to the low spectral occupancy [2].

Several sub-Nyquist wideband spectrum sensing algorithms

were proposed to mitigate the effects of multipath fading

in cooperative CR networks in [14]–[17]. After sub-Nyquist

sampling, the wideband signal can be recovered from these

sub-Nyquist samples by using one of several possible recovery

algorithms, e.g., orthogonal matching pursuit (OMP) [18], [19]

or compressive sampling matching pursuit (CoSaMP) [20],

[21]. Given a known sparsity level such as k, an appropriate

number of measurements (samples) M = C0k log(N/k) can

be chosen such that the quality of recovery can be secured,

where C0 denotes a constant and N denotes the number of
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measurements if the Nyquist rate is utilized. Consequently,

such CS-based algorithms can take advantage of using sub-

Nyquist sampling rates for signal acquisition, instead of the

Nyquist rate, leading to reduced energy consumption, com-

plexity, and memory requirements.

It is worthwhile to emphasize that directly applying CS

theory to CR networks may lose its inherent advantages

in practice. This is because to guarantee a high successful

recovery rate, CS approaches tend to pessimistically choose

the number of measurements M larger than that is necessary:

For example, as depicted in Fig. 1, when k = 10, M = 33%N
can be used for guaranteeing a very high successful recovery

rate; but this is not always necessary because by using fewer

measurements we may still recover the spectrum with an

appropriate or predefined probability. Most importantly, the

number of measurements M is always linked to the spectrum

sparsity level k, which means the knowledge of k will be

required for determining an appropriate value of M in CR

networks. However, the sparsity level of the radio spectrum

is often unknown due to either the dynamic activities of PUs

or the time-varying fading channels between PUs and CRs

[2]. Because of this sparsity level uncertainty in practical

CR networks, most CS approaches intend to further increase

measurements to ensure a high successful recovery rate,

thereby leading to more unnecessary energy consumption. For

example, in Fig. 1, for the uncertainty range 10 ≤ k ≤ 20,

M = 50%N (rather than M = 33%N ) will be selected, which

does not fully exploit the inherent advantages of using CS

techniques for implementing wideband spectrum sensing in

CR networks.

Against the aforementioned background, this paper aims

to bridge the gap between CS theory and practical spectrum

sensing. In particular, the novel contributions of this paper can

be summarized as follows:

• An autonomous compressive spectrum sensing (ACSS)

framework is proposed for recovering the wideband spec-

trum by using an appropriate number of compressive

measurements. This framework does not require prior

knowledge of the instantaneous spectral sparsity level, re-

sulting in reduced system complexity. Performance anal-

ysis is given to show that the proposed ACSS framework

can inherently avoid excessive or insufficient numbers of

compressive measurements, and help improve CR system

throughputs.

• A novel validation approach is proposed to accurately

estimate the actual spectral recovery error with high

confidence by using only a small amount of testing data.

Note that the actual spectral recovery error is typically

unknown as the actual wideband spectrum is not acces-

sible under sub-Nyquist rate. This validation approach

applied in the ACSS framework enables compressive

measurement acquisition halted at an earliest appropriate

time1.

• To extend the use of ACSS to noisy measurement en-

vironments, another validation method is proposed. The-

1Please note that Bayesian compressive sensing [22], [23] can also simulta-
neously perform reconstruction and validation, and determine the confidence
level of estimation results.

oretical analysis shows that, if a good spectral estimate

exists, the proposed validation method can find it with a

very high probability by using a small testing subset.

• A sparsity-aware spectral recovery algorithm is designed

for spectral recovery without requiring knowledge of

the instantaneous spectral sparsity level. Iterations of the

recovery algorithm are analyzed and shown to be able to

terminate at the correct iteration index, which therefore

reduces the possibilities of under-/over-fitting.
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Fig. 1. In a traditional CS system, the successful recovery rate varies when
the number of measurements and the sparsity level vary [5]. In simulations,
we assumed N = 200 and varied the number of measurements M from 20
to 180 in eight equal-length steps. Additionally, we chose the sparsity level
k ∈ [1,M ] and adopted Gaussian measurement matrices. After 5000 trials of
each parameter setting, we obtained this figure.

The rest of the paper is organized as follows. Section II

introduces compressive spectrum sensing problems and the

system model. Section III presents the ACSS framework

and analyzes its halting criterion. ACSS is then applied and

analyzed in noisy environments in Section IV, and the sparsity-

aware recovery algorithm is proposed in Section V. Simulation

results are presented in Section VI, with conclusions in Section

VII. We note that, throughout this paper, letters with horizontal

arrows above them are used to represent vectors, e.g., ~x and
~X where the lowercase letter denotes the time-domain and

the uppercase letter denotes the Fourier domain. Uppercase

boldface letters are used to denote matrices, e.g., Φ. And an

N×N discrete Fourier transform (DFT) matrix is denoted by

FN , where F
−1
N denotes the inverse of the matrix FN .

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider that a CR node receives an analog signal x(t)
from PUs, which has the frequency range 0 ∼ W Hz. Based

on the Nyquist sampling theory, such an analog signal should

be sampled at the sampling rate f ≥ 2W Hz. After a small

time step τ (seconds) of Nyquist sampling, we will obtain

a full signal vector ~x ∈ CN×1, where N = fτ (an integer

number by properly choosing the sampling rate) denotes the

number of samples.

CS theory indicates that a sparse signal can be acquired

by using a sub-Nyquist sampling rate fs (fs < 2W ), which

results in fewer samples than predicted on the basis of Nyquist

sampling theory. The value of fs is determined by the potential

under-sampling fraction multiplying f . Since the spectrum is

often sparse in CR networks due to the low spectral occupancy

[11], CS theory has been applied for signal acquisition at CRs
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[14], [15], [24]. Here, the use of a sub-Nyquist sampler, such

as the random demodulator [25], will generate a compressive

measurement vector ~y ∈ CM×1 (M = fsτ < N ). Mathemati-

cally, the compressive measurement vector ~y can be written as

~y = Φ~x, where ~x denotes the signal vector if the Nyquist rate

is employed, and Φ denotes an M ×N measurement matrix

that can be implemented using a sub-Nyquist sampler. If the

signal ~x is k-sparse (k < M < N ) in some basis and the

measurement matrix is appropriate, we can recover ~x from

~y using recovery algorithms. This actually means that, using

CS theory, we can obtain ~x by merely using the sub-Nyquist

sampling rate fs, instead of the Nyquist sampling rate f .

The basic structure of CS-based spectrum sensing (also

called compressive spectrum sensing) used in this paper is

shown in Fig. 2. The aim is to recover ~x and its DFT

spectrum ~X = FN~x from compressive measurements ~y, and

then perform spectrum sensing using the recovered signal x̂
or its DFT spectrum X̂ . For an overview of state-of-the-

art compressive spectrum sensing techniques, the reader is

referred to [2]. Spectral domain energy detection [26] is a

typical spectrum sensing approach, and thus is adopted in this

paper. As shown in Fig. 2, using this approach, we can extract

the recovered spectrum within the frequency range of interest

(e.g., ∆f ) and calculate its signal energy. A detection threshold

(denoted by λ) is then chosen and compared with the signal

energy to decide whether this frequency band is occupied or

not, i.e., choosing between binary hypotheses H1 (occupied)

and H0 (not occupied).

 

Signal 

Recovery 

Calculate 

Energy of       

Hypothesis 

Test Tes
Sub-Nyquist 

Sampler 

H1 or H0 

Compressive Sensing 

Xorx ˆˆ  
)(tx  

Compressive Spectrum Sensing 

X̂  

Fig. 2. Diagram of compressive spectrum sensing: The spectral domain energy
detection approach is used for spectrum sensing.

According to the structure of compressive spectrum sens-

ing, we know that the recovery quality will have significant

impact on the performance of compressive spectrum sensing.

The recovery quality depends on the following factors: the

sparsity level, the choice of measurement matrix, the recovery

algorithm, and the number of compressive measurements.

The sparsity level of spectrum in CR networks is mainly

determined by the PUs’ activities within a frequency range

and the medium access control (MAC) of the CRs. To evaluate

the suitability of a chosen measurement matrix, we adopt an

elegant metric: the restricted isometry property (RIP) [10]. In

[25] and [27], sub-Nyquist samplers with controllable mea-

surement matrices have been proposed to realize CS. Using

such samplers, the primary signal received at CRs is first mod-

ulated by pseudo-random sequences (which are determined by

pseudo-random seeds), and then sampled by standard low-rate

samplers. Since these pseudo-random sequences are known

and controllable, we can easily construct known measurement

matrices subject to satisfactory RIP. For a comprehensive

understanding of RIP and measurement matrix design, the

reader is referred to [28], [29] and [30], [31], respectively.

In the rest of this paper, we will thus focus on discussing the

following two factors: the number of measurements and the

recovery algorithm.

III. AUTONOMOUS COMPRESSIVE SPECTRUM SENSING

(ACSS)

In this section, we will propose the ACSS framework

enabling us to gradually acquire compressive measurements

using the sub-Nyquist sampling rate, recover the DFT spec-

trum, and halt the compressive measurements at the correct

time. The halting criterion and performance analysis will be

provided to show that ACSS can avoid excessive or insufficient

numbers of compressive measurements.

A. Model and Framework of ACSS

Consider that CR networks utilize a periodic spectrum

sensing structure and each time frame has a fixed length

L (seconds) which consists of a spectrum sensing time slot

and a data transmission time slot, as depicted in Fig. 3. The

spectrum sensing duration T (0 < T < L) is adjustable

and equals p (a positive integer) times as long as the small

time step τ , i.e., T = pτ . To guarantee the bit rate at CRs,

at least Tmin (seconds) should be reserved for data trans-

mission; thus, the spectrum sensing duration T will satisfy

L − T = L − pτ ≥ Tmin, equivalently, p ≤ L−Tmin

τ
. Here,

we assume that the spectrum sensing duration T is smaller

than the channel coherence time, such that the magnitude of

the channel response remains constant within T . In addition,

we assume that, within T , the primary signals are wide-sense

stationarity and all CRs can keep quiet as enforced by proto-

cols (e.g., at the MAC layer [7]). This means that the spectral

components of the DFT spectrum ~X = FN~x arise only from

PUs and background noise. Due to the low spectral occupancy

in CR networks [11], the DFT spectrum ~X can be assumed to

be k-sparse, which means the spectrum consists only of the k
largest values that cannot be ignored. This sparsity level k is

typically unknown but has a known upper bound kmax. This is

because, in practice, the instantaneous spectral occupancy may

be difficult to obtain, but the maximal spectral occupancy can

be easily estimated by long-term spectral usage measurements.

For example, the maximal spectral occupancy within 30 MHz

- 3 GHz in New York City has been reported to be only

13.1% [1]. In such a scenario, kmax can be calculated by

kmax = 13.1%×N .

Frame 1 Frame 2 Frame 3 

L 

Compressive  
Spectrum sensing Data transmission tatatatatatatatata t

min

=  

mimin

Fig. 3. Frame infrastructure of periodic spectrum sensing in cognitive radio
networks.
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Using ACSS, we perform compressive measurements using

the sub-Nyquist sampling rate fs (fs < 2W ). The same sub-

Nyquist sampler is adopted throughout the spectrum sensing

duration T , and the corresponding measurement matrices

follow the same distribution, e.g., the standard normal dis-

tribution, or the Bernoulli distribution2 with equal probability

on ±1 [9], [10]. Furthermore, the set of compressive samples

within T is denoted by ~yp (~yp ∈ CMp×1), where Mp = fsT =
fspτ is the number of compressive measurements. The set

of compressive samples ~yp is then divided into two subsets

including the training subset ~Rp (~Rp ∈ Crp×1) to recover the

spectrum, and the testing subset ~Vp (~Vp ∈ Cvp×1) to validate

the recovered spectrum, where Mp = rp + vp and there is a

trade-off3 between vp and rp. Based on CS theory, the two

subsets can be expressed as

~Rp = Φp~xp = ΦpF
−1
pN

~Xp, (1)

and
~Vp = Ψp~xp = ΨpF

−1
pN

~Xp, (2)

respectively, where Φp is an rp × pN measurement matrix,

~xp ∈ CpN×1 denotes the signal vector if the Nyquist sampling

rate is used within T , ~Xp denotes the DFT spectrum of ~xp

such that ~Xp = FpN~xp, and Ψp is a vp × pN testing matrix.

Using the OMP recovery algorithm in [18], [19], we could

obtain a spectral estimate X̂p from ~Rp. When we adjust the

spectrum sensing duration T = pτ step by step (via increasing

p), a sequence of spectral estimates, i.e., X̂1, X̂2, · · · , X̂p, will

be obtained. The compressive sampling will be halted once a

satisfactory spectral estimate is found that meets the halting

criterion, or the satisfactory spectral estimate cannot be found

within the given time.

The work flow of ACSS is shown in Table I. The halting

criterion will be analyzed in Section III-B. We emphasize that

unlike traditional CS approaches, the proposed ACSS divides

the spectrum sensing duration into several mini time slots,

performs compressive sampling step by step, and halts the

sampling at an earliest appropriate time (once an appropriate

spectral estimate is found). In this case, some spectrum sensing

time slots can be saved and then used for data transmission,

which will not only improve the CR system throughput (by

using longer transmission time) but also save energy used for

spectrum sensing. Furthermore, unlike other CS approaches,

the proposed ACSS does not require the knowledge of the

spectral sparsity level because of the introduction of a val-

idation procedure, where the compressive samples obtained

during one time step are divided into two subsets and a

small testing subset is used for validation. The proposed

halting criterion enables the sampling to be terminated at

the earliest appropriate time while guaranteeing wideband

spectrum recovery with a small predictable recovery error.

2It has been proved in [9] and [10] that, if the number of measurements
is appropriate, the measurement matrix with either Gaussian or Bernoulli
distribution can secure the RIP condition with an overwhelming probability.

3Given a fixed value of Mp, a larger value of vp could result in higher
probability of finding the best spectral approximation; while on the other hand,
it leads to worse spectral recovery since rp = Mp − vp becomes less.

TABLE I
WORK FLOW OF THE ACSS FRAMEWORK

Inputs
Frame length L, minimum data transmission duration
Tmin, sampling rate fs, time step τ , size of testing
measurements vp, recovery error threshold ̟,
confidence factor η, energy detection threshold λ.

1. Initialize the time step index p = 1.
2. Repeat

a). perform compressive sampling using fs, obtaining
the measurement set ~yp;

b). partition ~yp into the training subset ~Rp and the

testing subset ~Vp
4;

c). use a spectral recovery algorithm to estimate the

spectrum from ~Rp, and obtain the spectral estimate

X̂p;
d). calculate and update the validation parameter

ρp =
‖~Vp−ΨpF

−1

pN
X̂p‖1

vp
;

e). update the time step index p = p+ 1.

3. Until the halting criterion ρp ≤ ̟(1− η)
√

2
πpN

is

true, or p > L−Tmin

τ
.

4. Stop sub-Nyquist compressive sampling.

5. If the halting criterion is true,

a) perform energy detection ‖X̂p‖
2

H1

≷
H0

λ;

b) for H0, transmit data via un-occupied bands.
for H1, return and report the spectrum is occupied.

Else
Increase fs and wait for next spectrum sensing frame.
End

B. Halting Criterion and Performance Analysis

As shown in Table I, the halting criterion plays a crucial

role in determining the performance of the ACSS framework.

To improve the energy efficiency of CRs, we hope that the

compressive sampling can be halted at the earliest appropriate

time such that the current spectral estimate X̂p is a good

estimate to ~Xp (i.e., the spectral recovery error ‖ ~Xp − X̂p‖2
is sufficiently small). However, the spectral recovery error

‖ ~Xp − X̂p‖2 is typically not known because the real DFT
~Xp is unknown under the sub-Nyquist sampling rate. Thus,

using traditional CS approaches, we do not know when we

should halt the compressive sampling. To solve this problem,

we define the validation parameter ρp to serve as a proxy for

the actual recovery error:

ρp
△
=

‖~Vp −ΨpF
−1
pN X̂p‖1

vp
, (3)

In the following lemma, we give a result on the relationship

between the validation parameter ρp and the actual spectral

recovery error ‖ ~Xp − X̂p‖2:

4The size of the testing subset vp is given as an input, which is chosen
according to the following Lemma 1 in the noiseless case or Theorem 2 in
the noisy case. We then have the size of the training subset rp = Mp − vp.
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Lemma 15: For a given confidence factor η ∈ (0, 12 ), ξ ∈
(0, 1), vp = Cη−2 log 4

ξ
where C denotes a positive constant,

the confidence interval

[√
πpN

2
ρp

1+η
,

√
πpN

2
ρp

1−η

]

can act as a good

estimate of the unknown parameter ‖ ~Xp − X̂p‖2 such that

Pr





√

πpN
2 ρp

1 + η
≤ ‖ ~Xp − X̂p‖2 ≤

√

πpN
2 ρp

1− η



 ≥ 1− ξ, (4)

where the minimum confidence level 1−ξ can also be written

as 1− 4 exp(− vpη
2

C
) when vp is given.

See Appendix A for the proof of Lemma 1.

Remark III.1: We see that the actual spectral recovery error

‖ ~Xp−X̂p‖2 can be directly linked to the validation parameter

ρp in (4). Even though the actual spectral recovery error

‖ ~Xp−X̂p‖2 is not known, we can predict that it lies in a known

confidence interval

[√
πpN

2
ρp

1+η
,

√
πpN

2
ρp

1−η

]

with a confidence

level higher than 1 − 4 exp(− vpη
2

C
). The confidence factor η

determines the width of the confidence interval how uncertain

we know about the unknown spectral recovery. For a given

η, increasing the value of vp (i.e., using more measurements

for validation) will help to improve the confidence level.

Additionally, we note that the choice of the parameter C
depends on the concentration property of random variables

in the matrix Ψ [32]. Given a good Ψ, e.g., the testing

matrix with random variables following either the Gaussian

or Bernoulli distribution as used in this paper, C can be a

small positive constant. The benefit of the proposed algorithm

will change with different testing matrices: This is because,

given the confidence factor η and the size of the testing set

vp, different testing matrices will lead to different values of

C, and thus result in different confidence levels.

Theorem 1: Using the proposed ACSS, for a given confi-

dence factor η ∈ (0, 1
2 ) and spectral recovery error threshold

̟, if the halting criterion ρp ≤ ̟(1− η)
√

2
πpN

is met, we

can find a good spectral estimate such that ‖ ~Xp − X̂p‖2 ≤ ̟

with a probability higher than 1− 4 exp(− vpη
2

C
).

See Appendix B for the proof of Theorem 1.

Remark III.2: We can see that, using ACSS, the probability

of finding a good spectral estimate exponentially grows as vp
increases, i.e., as more compressive measurements are used

for validation. Once the halting criterion has been met, the

compressive sampling will be immediately halted as shown in

Table I. Furthermore, we note that Theorem 1 can be reshaped

when the minimum confidence level is given. That is, to find

a good spectral estimate such that ‖ ~Xp − X̂p‖2 ≤ ̟ with a

confidence level higher than 1−ξ, we use the halting criterion

ρp ≤ ̟

(

1−
√

C

vp
log

4

ξ

)

√

2

πpN
. (5)

5In CS, an estimate x̂ can be obtained by using an ℓ1 or mixed ℓ1/ℓ2-
based recovery algorithm. However, the similarity/difference between x̂ and
the actual signal ~x is not known because the actual signal cannot be directly
obtained under the sub-Nyquist rate. This lemma aims to find how far x̂ is

from ~x (equivalently X̂ from ~X ) by considering the ℓ2 metric ‖x̂− ~x‖2, in
order to halt compressive sampling for saving energy at CRs.

From the relationship between the halting criterion and the

ACSS performance as given in Theorem 1, we can see that this

ACSS framework can decrease the probabilities of excessive

or insufficient numbers of compressive measurements.

IV. ACSS IN NOISY ENVIRONMENTS

When performing compressive spectrum sensing, there may

exist measurement noise due to the quantization error of

analog-to-digital converters or the imperfect design of sub-

Nyquist samplers. In this section, we extend the use of ACSS

to such noisy environments, and will analyze the validation

approach to fit the proposed framework.

Given the noisy compressive measurements, the training

subset ~Rp and the testing subset ~Vp can be written as

~Rp = ΦpF
−1
pN

~Xp + ~nR, (6)

and
~Vp = ΨpF

−1
pN

~Xp + ~nV , (7)

respectively, where ~nR and ~nV denote the measurement noise

introduced during the compressive measurement (e.g. gener-

ated by signal quantization). Without loss of generality, we

model both ~nR and ~nV as circular complex additive white

Gaussian noise (AWGN) with their components obeying a

distribution CN (0, δ2).
We expect that compressive sampling can be halted if

the current spectral estimate X̂p is very close to the actual

spectrum ~Xp. To find this good spectral estimate, we adopt

the halting criterion |ρp −
√

π
2 δ| ≤ θ due to the following:

Theorem 2: Using ACSS in noisy environments, for any

accuracy parameter θ > 0, δ > 0, ̺ ∈ (0, 1), and vp =

ln
(

2
̺

)

(4−π)δ2+2θδ
θ2 , to find a good spectral estimate such that

X̂p is sufficiently close to the actual spectrum ~Xp, the halting

criterion satisfies

Pr

[

|ρp −
√

π

2
δ| ≤ θ

]

> 1− ̺, (8)

where the minimum probability 1 − ̺ can also be written as

1− ̺ = 1− 2 exp
(

− vpθ
2

(4−π)δ2+2θδ

)

.

The proof of Theorem 2 is given in Appendix C.

Remark IV.1: Theorem 2 addresses the issue of finding a

good approximation of ~Xp in the noisy case by using the

halting criterion |ρp −
√

π
2 δ| ≤ θ. The accuracy parameter θ

in Theorem 2 has a known relationship with the parameters

vp, δ, and ̺. Given a fixed confidence level 1 − ̺, there

is a trade-off between θ and the size of the testing set vp:

at the expense of accuracy (i.e., a large value of θ), vp
can be small. Additionally, we find that the probability of

|ρp −
√

π
2 δ| ≤ θ rapidly increases as vp increases. That is,

using more measurements for validation, we have a higher

probability of finding the good spectral estimate.

Taking advantage of Theorem 2, we extend the use of

ACSS (based on Table I) to noisy environments. The inputs

in Table I will be adjusted to ‘frame length L, minimum

data transmission duration Tmin, sampling rate fs, time step

τ , size of testing measurements vp, accuracy parameter θ,

noise variance δ, and energy detection threshold λ.’ The
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whole work flow of ACSS in noisy environments remains

the same as in Table I except that the halting criterion is

changed to |ρp −
√

π
2 δ| ≤ θ. Using the proposed ACSS

under the condition that the spectral sparsity level is unknown

and the effects of measurements noise are not negligible,

compressive sampling can still be halted in the correct time

and the problems of excessive or insufficient numbers of

measurements can be avoided.

V. SPARSITY-AWARE SPECTRAL RECOVERY (SASR)

ALGORITHM

Traditionally, greedy recovery algorithms, e.g., OMP, will

iteratively generate a sequence of estimates X̂1
p , X̂

2
p , · · · , X̂t

p

which can lead to a good spectral estimate under certain

system parameter choices. Using t = k iterations in OMP, we

can obtain a k-sparse vector X̂k
p as an estimate of the actual

spectrum ~Xp [18]. That is, the sparsity level k is required to be

an input for OMP, and this input is usually required in most

other greedy recovery algorithms. However, in CR systems,

the spectral sparsity level k is often unknown or difficult to

estimate, which can result in early or late termination of that

traditional greedy algorithms (i.e. underfitting and overfitting

problems). On the other hand, we note that the proposed

Theorem 1 and Theorem 2 are used to identify a satisfactory

spectral approximation of the actual spectrum from an estimate

sequence by using appropriate halting criteria. The theorems

thus can be applied in recovery algorithms to solve the

underfitting and overfitting problems: The halting criteria can

help terminate the iterations at an appropriate time without

requiring the knowledge of k, and an estimate of the spectrum

(i.e. the recovered spectrum) will be obtained. To this end, we

propose a so-called sparsity-aware spectral recovery (SASR)

algorithm to handle the spectrum recovery problem given

unknown instantaneous spectral sparsity level k, as shown in

Table II.

Using recovery algorithms, we aim to obtain an estimate of

~xp or its spectrum ~Xp from ~Rp. Since ~xp is k-sparse (i.e. ~xp

has k non-zero components), the vector ~Rp = Φp~xp is a linear

combination of k columns from Φp. We thus need to identify

which column of Φp is involved in ~Rp, by choosing the

column of Φp that is mostly correlated to the residual of ~Rp at

each iteration. As shown in Table II, using the proposed SASR

algorithm, we find the support index ϕt that can maximize

the correlation between the remaining part of ~Rp and the

measurement matrix at each iteration. A new support index

set Ωt is then formed by merging the previously computed

support index set with the current support index ϕt. In the step

2-d) of Table II, we note that Φp(Ω
t) denotes a sub-matrix

of Φp that is obtained by selecting only those columns whose

indices are within Ωt and setting the remaining columns to

zeros. We use the Moore-Penrose pseudoinverse to solve the

least squares problem, and then obtain a new spectral estimate

X̂t
p. To verify whether X̂t

p is a good spectral estimate, we

calculate the parameter ρtp using the testing subset ~Vp and the

spectral estimate X̂t
p. After that, the residual ~γt

p is updated

and the algorithm iterates on the residual. Finally, the spectral

TABLE II
SPARSITY-AWARE SPECTRAL RECOVERY (SASR) ALGORITHM

Inputs:

Training subset ~Rp, testing subset ~Vp, testing matrix
Ψp, measurement matrix Φp, recovery error threshold
̟ (noiseless case), confidence factor η (noiseless case),

noise variance δ2 (noisy case), accuracy parameter θ
(noisy case), max sparsity kmax.

1. Initialize: t = 0, Ω0 = ∅, ~γ0
p = ~Rp, and ρ0p = 0.

2. While |ρtp −
√

π
2
δ| > θ and t < kmax, do

a). Update the iteration index t = t+ 1.
b). Identify the support index

ϕt = arg maxj∈[1,pN] | < ~γt−1
p ,Φj

p > |.
c). Update the support index set Ωt = Ωt−1 ∪ {ϕt}.
d). Solve the following least squares problem and

obtain a new spectral estimate:

X̂t
p = arg min ~Xp

‖~Rp −Φp(Ω
t)F−1

pN
~Xp‖2.

e). Calculate the validation parameter

ρtp =
‖~Vp−ΨpF

−1

pN
X̂t

p‖1

vp
.

f). Update the residual ~γt
p = ~Rp −ΦpF

−1
pNX̂t

p.

3. Return the spectral estimate: X̂p = X̂t
p.

Halting Criterion:
{

ρtp ≤ ̟(1− η)
√

2
πpN

, For noiseless measurements.

|ρtp −
√

π
2
δ| ≤ θ, For noisy measurements.

estimate that breaks the loop of step 2 is returned as the output

of SASR algorithm.

In the SASR algorithm, the halting criterion can be adjusted

when different inputs are given. For example, for noisy mea-

surements, if the key parameter θ is of interest, we could set

up θ by using an expected minimum confidence level 1− ̺:

θ =









ln
(

2
̺

)

δ ± δ

√

ln2
(

2
̺

)

+ 16(4− π) ln
(

2
̺

)

vp

4vp









+

,

(9)

where [x]+ denotes max(x, 0). We can then halt the iteration

in the correct iteration index with a confidence level greater

than 1−̺. The proof of (9) is similar to the proof of Theorem

2: To find the accuracy parameter θ, we use the following

quadratic equation regarding θ from (24):

vp · θ2 −
1

2
ln

(

2

̺

)

δ · θ − (4− π) ln

(

2

̺

)

δ2 = 0. (10)

It can be easily determined that the discriminant of the above

quadratic equation is positive, and we obtain the distinct real

root as given by (9).

We note that one important advantage of the proposed

SASR algorithm is that it does not require the knowledge of

instantaneous spectral sparsity k; Instead, it only requires the

sparsity upper bound kmax which can be easily estimated by

long-term spectral usage observations. Additionally, traditional

greedy algorithms employ the residual ‖γt
p‖2 smaller than

a threshold as a halting criterion, where the residual ‖γt
p‖2

decreases or remains as the number of iterations increases.

An inappropriate threshold in greedy algorithms could lead
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to either under-fitting or over-fitting. By contrast, using the

proposed algorithm, we monitor the validation parameter ρtp
instead of the residual ‖γt

p‖2; We can terminate the iteration

in the correct iteration index with a high probability which

exponentially increases with vp increasing or δ decreasing.

More measurements for validation can significantly reduce the

risk of data under-/over-fitting. Furthermore, compared with

traditional recovery algorithms, the proposed SASR algorithm

reduces the number of iterations and thus the complexity. The

running time of the proposed SASR algorithm is dominated

by the step 2-b) as shown in Table II, whose cost is O(rppN)
for one iteration. At iteration t, the least squares problem

can be solved with marginal cost O(t rp). As the iteration

can be terminated at the correct index t = k with a high

probability, the total running time of the proposed SASR

algorithm is thus O(krppN). By contrast, as discussed in

[33], the total running time of the traditional OMP algorithm

is O(kmaxMppN), as kmax iterations are likely needed (i.e.

an overrun occurs) when the instantaneous spectral sparsity

is unknown. The computational complexity of the proposed

SASR algorithm is thus lower than that of the OMP algorithm.

VI. SIMULATION RESULTS

In our simulations, the wideband analog signal model in

[27] was adopted; Thus, at a CR the wideband signal of

interest can be written as

x(t) =

Nb
∑

l=1

√

ElBl · sinc (Bl(t− α)) · cos (2πfl(t− α)) ,

(11)

where x(t) consists of Nb non-overlapping subbands, and El,

Bl, and fl denote the received power, the bandwidth, and the

centre frequency of subband l at the CR, respectively. The

function sinc(x) denotes the normalized sinc function, i.e.,

sinc(x) = sin(πx)
πx

, and α denotes a small random time offset.

The major simulation parameters are listed in Table III unless

otherwise stated. The overall bandwidth of the signal x(t) is W
(Hz). The frequency range of subband l is [fl − Bl

2 , fl +
Bl

2 ],
where fl is randomly located within [Bl

2 ∼ W − Bl

2 ]. We

note that in our simulations, we have the spectral occupancy

(
∑Nb

l=1 Bl)/W calculated as 0% ∼ 8% according to the set

up in Table III, which is particularly relevant to practical

CR networks. The sparsity level k thus exists in the range

of 0%N ∼ 8%N ; Given a fixed value of k, the selection

of Bl will be conditional. In addition, during the spectrum

sensing duration, we assume the signal from primary users and

the channel conditions are quasi-stationary. We adopt the sub-

Nyquist rate fs (fs < 2W ) for sampling the wideband signal

throughout simulations and employ compressive measurement

matrices with standard normal distribution. Please also note

that, the size of compressive measurements is closely related

to the choice of τ because Mp = fspτ . A smaller τ will not

provide a satisfactory spectral recovery rate due to insufficient

training data. On the other hand, a larger τ will require more

memory space to store the compressive measurements. Here,

we assume τ = 0.2 µs considering both the spectral recovery

requirement and memory requirement. Using the settings in

Table III, instead of N = 2Wτ = 1000 Nyquist samples, we

have fsτ = 200 measurements in each time slot, among which

vp measurements are used for validation and the residual is

used for recovering the spectrum.

TABLE III
SIMULATION PARAMETERS FOR ACSS

ACSS System Parameters

Symbol Description Settings

W Signal bandwidth of interest 2.5 GHz
Nb Number of subbands 4
k Spectral sparsity level 32
Bl Bandwidth of subband l 0 ∼ 50 MHz

fl Center frequency of subband l
Bl

2
∼ W − Bl

2
El

δ2
Received SNR of subband l 7 ∼ 25 dB

α Small random time offset 0 ∼ 0.1 µs
L Frame length 4 µs

Tmin Min data transmission time 2.4 µs
τ Small time step 0.2 µs
fs Sub-Nyquist sampling rate 1 GHz

Firstly, in Fig. 4 we verify the validity and accuracy of the

confidence interval shown in Lemma 1 using the settings in

Table III. Effects of the confidence factor η and the number

of testing measurements vp on the confidence level are also

demonstrated. The value of C in Lemma 1 depends on the

concentration property of random normal distributed variables

in the matrix Ψ, and without loss of generality we choose

C = 1 to obtain a theoretical minimum confidence level in

this figure. The confidence level shown in Fig. 4 represents

how often the actual spectral recovery error lies within the

confidence interval. We can see that the wider the confidence

interval we are willing to accept (with using a larger η), the

more certain we can be that the actual recovery error would be

within that estimated range (i.e., a higher confidence level ob-

tained). It can also be seen that the confidence level improves

with vp increasing; That is, with more testing data, validation

results are more trustworthy. The minimum confidence level

shown in Fig. 4 indicates a theoretical lower bound of how

sure the estimation range can be for given settings of η and

vp. With either η or vp increasing, the lower bound is more

close to the simulated confidence level.

Using the above settings in Table III, in Fig. 5 we present the

proposed validation parameter

√

πpN
2 ρp, the actual recovery

error ‖ ~Xp − X̂p‖2, and the proposed confidence interval
[√

πpN

2
ρp

1+η
,

√
πpN

2
ρp

1−η

]

when the number of time steps increases.

To make the confidence interval narrower and more precise,

we consider η = 0.2, and show the effects of changing the

number of testing measurements vp by using two sub-figs.

We can see that the proposed validation parameter is very

close to the simulated recovery error regardless the number of

time steps or the value of vp varying, and can therefore be

used to predict the actual recovery error. With p increasing,

the sensing duration is increased step by step, and the sensing

will be halted if the recovery error is sufficiently small, for

example we need p = 6 in Fig. 5 (a) and p = 3 Fig. 5 (b).

It is also illustrated that the more testing measurements, the
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Fig. 4. Confidence level in Lemma 1 and the effects of the confidence factor
η and the number of testing measurements vp.

fewer time slots are required to recover the spectrum. The

remaining time slots can then be used for data transmission to

improve system throughput.
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Fig. 5. The comparison of the proposed validation parameter

√

πpN
2

ρp in

Lemma 1 and the actual recovery error ‖ ~Xp − X̂p‖2 when the number of
time steps increases. The blue bars give the confidence interval in Lemma
1 when the confidence factor η = 0.2. (We consider the number of testing
measurements vp = 40 in (a), and vp = 60 in (b).)

Applying the halting criterion in Theorem 1, we now

demonstrate the performance of the proposed ACSS compared

to a traditional CS system in Fig. 6 when the spectral sparsity

level k varies. We consider two cases of the sub-Nyquist

sampling rate, fs = 750 MHz and 1GHz respectively, and

η = 0.2. We define the successful spectral recovery as the

case with the mean squared error not larger than 0.001. It is

evident that the proposed ACSS can not only automatically

adapt the number of measurements to the unknown sparsity

level k, but also considerably improve the spectral recovery

performance compared with the traditional CS approach no

matter for either value of fs. The lower the spectral level,

the higher the successful recovery rate obtained. It is also

illustrated that a larger number of validation measurements vp
does not always guarantee a better recovery performance: The

two red curves crossover with k increasing. It is because that

for a fixed set of compressive measurements, a larger value of

vp means a smaller training subset used for recovery which

may lead to worse spectral recovery performance especially

for a higher sparsity level.
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Fig. 6. The performance comparison of the proposed ACSS system and the
traditional CS system [11] when the spectral sparsity level k and the sub-
Nyquist sampling rate fs vary. Successful spectral recovery is defined as the
spectral recovery with the mean squared error not larger than 0.001.

We now extend the use of ACSS in noisy measurement

environments. Fig. 7 shows the comparison between the sim-

ulated probability of the halting criterion |ρp −
√

π
2 δ| ≤ θ

holding true and the theoretical probability lower bound 1−̺
in Theorem 2 when the number of testing measurements

vp and the accuracy parameter θ vary. To guarantee a high

confidence level, we consider θ = 0.6δ, 0.65δ, and 0.7δ. It is

shown that the lower bound is very tight and thus can be used

to predict the actual probability. With a high probability of

the halting criterion holding true, we can expect that a good

estimation of the spectrum is found. Fig. 7 also shows that

given a fixed confidence level of the halting criterion, at the

expense of accuracy (i.e. a larger value of θ), we can use

fewer testing measurements. In addition, the confidence level

exponentially increases with vp increasing. That is, using more

testing measurements, we have a better chance of finding a

good spectral estimation.

Fig. 8 shows the performance comparison of the proposed

SASR algorithm and the traditional OMP algorithm when

the actual spectral sparsity level k and the noise variance δ2

vary in noisy environments. We assume the sparsity level k
is unknown when performing recovery, but we know that k
exists in the range of 0%N ∼ 8%N , i.e., kmax = 8%N = 80
according to the settings in Table III. The received signal-

to-measurement-noise (SNR) ratios of these subbands are set

to be randomly distributed between 7 ∼ 25 dB as listed

in Table III. We consider δ2 = 1 and 4, respectively, and

vp =40. The recovery mean squared error in the noisy case

is defined as E
[

( ~Xp,i − X̂p,i)
2/ ~X2

p,i

]

where ~Xp,i denotes the

i-th component of the vector ~Xp. We can see that compared to

the traditional OMP algorithm, the proposed SASR provides

much better spectral estimation and recovery performance,
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Fig. 7. The comparison between the simulated probability of the halting

criterion |ρp −
√

π
2
δ| ≤ θ holding true and the theoretical probability lower

bound 1− ̺ in Theorem 2 when the number of testing measurements vp and
the accuracy parameter θ vary.

regardless the values of δ2 or k. It is because that the OMP

algorithm tends to use more number of iterations to avoid

under-fitting problems and to prevent missed detection leading

to harmful interference to PUs in CR networks. However, on

the other hand, using more number of iterations will cause

over-fitting problems and exaggerate minor fluctuations in the

data which will finally result in poor recovery performance.

We would like to emphasize that the proposed SASR algorithm

will obtain a more significant performance improvement in

practice, as there always exists a larger uncertainty of k in

realistic wideband CR networks.
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Fig. 8. Performance comparison of the proposed SASR algorithm and the
traditional OMP algorithm when the spectral sparsity level and the noise
variance δ2 vary in noisy environments. The recovery mean squared error is

defined as E
[

( ~Xp,i − X̂p,i)2/ ~X2
p,i

]

where ~Xp,i denotes the i-th component

of the vector ~Xp.

VII. CONCLUSIONS

In this paper, we have proposed a novel framework, i.e.

ACSS, for compressive spectrum sensing in wideband CR

networks. ACSS enables a CR to automatically adopt an

appropriate number of compressive measurements without

knowledge of the instantaneous spectral sparsity level, while

guaranteeing the wideband spectrum recovery with a small

predictable recovery error. This is realized by the proposed

measurement procedure and the validation approach. The

validation approach can accurately estimate the actual spectral

recovery error with high confidence by using only a small

amount of testing data. The proposed ACSS thus avoids exces-

sive or insufficient numbers of compressive measurements, and

helps enhance the recovery performance and improve the en-

ergy efficiency of CR networks. In addition, we extend the use

of ACSS to noisy environments and propose another validation

approach: If a good spectral estimate exists, the validation

approach will find it with a high probability. Furthermore, we

have proposed the SASR algorithm to recover the wideband

spectrum without requiring the knowledge of the instantaneous

spectral sparsity level. The SASR algorithm can autonomously

adopt a proper number of iterations, and thus solve the under-

fitting or over-fitting problems which commonly exist in most

other greedy recovery algorithms.

Simulation results have shown that the proposed ACSS

framework can correctly stop the signal acquisition that saves

both spectrum sensing time and signal acquisition energy in

both noiseless and noisy environments. Compared to tradi-

tional CS, ACSS can not only provide better spectral recovery

performance, but also help improve system throughput and

energy efficiency of CR networks. In addition, the proposed

SASR algorithm can achieve lower recovery mean squared

error and better spectrum sensing performance compared to the

OMP algorithm. We emphasize that the ACSS framework is

not limited to CR networks; The proposed validation approach

could be extended to other CS applications, e.g., a CS enabled

communication system where the approach could be used

to terminate signal detection at an appropriate time. Since

RF spectrum is essential to wireless communications and the

wideband techniques could potentially provide higher capacity,

the proposed framework in this paper is thus particularly

valuable and can have a wide range of applications, e.g., in

broadband spectral analyzers and ultra wideband radars.

APPENDIX A

PROOF OF LEMMA 1

The Johnson-Lindenstrauss Lemma [33] states that a set

of N points in a high-dimensional Euclidean space can be

mapped (with low distortion) into a Euclidean space of much

lower dimension vp, and all distance are preserved up to a

multiplicative confidence factor between 1−η and 1+η. With

the aid of the Johnson-Lindenstrauss Lemma in Theorem 5.1

of [33], we get vp = Cη−2 log 4
ξ

where C denotes a positive

constant, and

Pr

[

(1−η)‖~x‖2≤
‖Ψp~x‖1
√

2/πvp
≤ (1+η)‖~x‖2

]

≥ 1− ξ. (12)

Replacing ~x in (12) by F
−1
pN ( ~Xp−X̂p), we have the inequality

(13). Jointly using (2) and (3), we simplify (13) to (14).

Applying Parseval’s relation to (14), we then get (15). The

equations (13-15) are shown on the top of the next page. And
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Pr

[

(1−η)‖F−1
pN( ~Xp−X̂p)‖2≤

‖ΨpF
−1
pN ( ~Xp−X̂p)‖1
√

2/π vp
≤(1+η)‖F−1

pN( ~Xp−X̂p)‖2
]

≥ 1− ξ. (13)

Pr

[

(1−η)‖F−1
pN( ~Xp−X̂p)‖2≤

√

π

2
ρp ≤ (1+η)‖F−1

pN( ~Xp−X̂p)‖2
]

≥ 1− ξ. (14)

Pr

[

(1 − η)‖ ~Xp − X̂p‖2 ≤
√

πpN

2
ρp ≤ (1 + η)‖ ~Xp − X̂p‖2

]

≥ 1− ξ. (15)

finally, we obtain

Pr





√

πpN
2 ρp

1 + η
≤ ‖ ~Xp − X̂p‖2 ≤

√

πpN
2 ρp

1− η



 ≥ 1− ξ. (16)

This completes the proof.

APPENDIX B

PROOF OF THEOREM 1

Using the probabilistic inequality Pr(B) ≥ Pr(A ∩B), we

can obtain the following inequality:

Pr

[

‖ ~Xp − X̂p‖2 ≤
√

πpN
2

ρp

1−η

]

≥

Pr

[√
πpN

2
ρp

1+η
≤ ‖ ~Xp − X̂p‖2 ≤

√
πpN

2
ρp

1−η

]

.
(17)

If the halting criterion ρp ≤ ̟(1− η)
√

2
πpN

is met, we have√
πpN

2
ρp

1−η
≤ ̟, then the following inequality holds:

Pr
[

‖ ~Xp − X̂p‖2 ≤ ̟
]

≥ Pr



‖ ~Xp − X̂p‖2 ≤

√

πpN
2 ρp

1− η



 .

(18)

With the aid of Lemma 1, jointly using (4), (17), and (18), we

have

Pr
[

‖ ~Xp − X̂p‖2 ≤ ̟
]

≥ 1− ξ = 1− 4 exp(−vpη
2

C
). (19)

This completes the proof.

APPENDIX C

PROOF OF THEOREM 2

Suppose that X̂p is a good spectral estimate such that X̂p =
~Xp, we can write the validation parameter by using (3) and

(7)

ρp =
‖~Vp −ΨpF

−1
pN X̂p‖1

vp
=

‖~nV ‖1
vp

=

∑vp
i=1 |ni

V |
vp

. (20)

Define a new variable Di = |ni
V | −

√

π
2 δ. Since the

measurement noise ni
V ∼ CN (0, δ2), we have Di following

the Rayleigh distribution with zero mean and variance 4−π
2 δ2.

Additionally, we can find that |Di| ≤ 3δ with 99.7% confi-

dence (according to the three-sigma rule) which is like being

almost sure. Using the Bernstein’s inequality [34], we obtain

the following inequality:

Pr
[∣

∣

∑vp
i=1 Di

∣

∣ > ζ
]

= Pr
[∣

∣

∑vp
i=1 |ni

V | − vp
√

π
2 δ
∣

∣ > ζ
]

≤ 2 exp

(

− ζ2/2
∑vp

i=1 E[D
2
i ] + max(|Di|)ζ/3

)

= 2 exp

(

− ζ2

(4− π)vpδ2 + 2ζδ

)

.

(21)

Letting ζ = vpθ and using (20), we can rewrite the above

inequality

Pr

[∣

∣

∣

∣

ρp −
√

π

2
δ

∣

∣

∣

∣

> θ

]

≤ 2 exp

(

− vpθ
2

(4 − π)δ2 + 2θδ

)

.

(22)

Equivalently, (22) can be written as

Pr

[
∣

∣

∣

∣

ρp −
√

π

2
δ

∣

∣

∣

∣

≤ θ

]

> 1− 2 exp

(

− vpθ
2

(4− π)δ2 + 2θδ

)

.

(23)

Aligning the right item of (23) with the lower bound 1 − ̺,

after manipulation we obtain

vp = ln

(

2

̺

)

(4− π)δ2 + 2θδ

θ2
. (24)

This completes the proof of Theorem 2.
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