1	The signature and mechanics of earthquake ruptures along
2	shallow creeping faults in poorly lithified sediments
3	Fabrizio Balsamo ¹ , Luca Aldega ² , Nicola De Paola ³ , Igor Faoro ³ , and Fabrizio
4	Storti ¹
5	¹ NEXT—Natural and Experimental Tectonics Research Group, Department of Physics
6	and Earth Sciences, Parma University, Parco Area delle Scienze 157A, 43124 Parma,
7	Italy
8	² Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5,
9	00185 Rome, Italy
10	³ Rock Mechanics Laboratory, Earth Sciences Department, Durham University, South
11	Road, Durham DH1 3LE, UK
12	ABSTRACT
13	Seismic slip episodically occurring along shallow creeping faults in poorly
14	lithified sediments represents an unsolved paradox, largely due to our poor understanding
15	of the mechanics governing creeping faults and the lack of documented geological
16	evidence showing how coseismic rupturing overprints creep in near-surface conditions.
17	Here we describe the signature of seismic ruptures propagating along shallow creeping
18	faults affecting unconsolidated forearc sediments. Field observations of deformation
19	band-dominated fault zones show widespread foliated cataclasites in fault cores, locally
20	overprinted by sharp slip surfaces decorated by thin $(0.5-1.5 \text{ cm})$ black gouge layers
21	(herein, black gouge). [[SU: Ok as noun, as variant of "fault gouge"?]] Compared to
22	foliated cataclasites, black gouges have much lower grain size, porosity, and

23	permeability. Moreover, they are characterized by distinct mineralogical assemblages
24	compatible with high temperatures (180–200 $^{\circ}$ C) due to frictional heating during seismic
25	slip. Foliated cataclasites were also produced by laboratory experiments performed on
26	host sediments at subseismic slip rates (≤ 0.1 m/s), displaying high friction ($\mu_f = 0.65$)
27	[[SU: friction coefficient is just μ in text; μ_f in Fig. 4 is defined as "residual" friction
28	coefficient?]] and strain-hardening behavior. Black gouges were produced during
29	experiments performed at seismic (1 m/s) slip rates, displaying low friction ($\mu_f = 0.3$) due
30	to dynamic weakening. Our results show that black gouges represent a potential
31	diagnostic marker for seismic faulting in shallow creeping faults. These findings can help
32	understanding the time-space partitioning between aseismic and seismic behavior of
33	faults at shallow crustal levels.

34 INTRODUCTION

35 Most popular synoptic models of tectonic earthquakes assume that crustal faults 36 compose a stable and aseismic region located at shallow depths (Marone and Scholz, 37 1988) up to the surface, and an unstable and seismic region extending at greater depths 38 (Perfettini et al., 2010), down to the brittle-plastic transition. It is widely accepted that 39 earthquakes can only nucleate within unstable, velocity-weakening regions (Kaneko et 40 al., 2008). Seismic ruptures should not nucleate within the shallower portions of the crust 41 (Scholz, 1998), due to the presence of stable, velocity-strengthening incohesive fault 42 gouges for temperatures <100 °C (Marone et al., 1990; Saffer and Marone, 2003). 43 However, the 2011 M_w 9.0 Tohoku-Oki earthquake (Japan) (Sato et al., 2011) 44 demonstrated that large coseismic ruptures can propagate to the surface through shallow

45 sediments of subduction zones (Ozawa et al., 2011), causing vast damage and destructive
46 tsunamis (Avouac, 2011).
47 The discrepancy between the behavior of real earthquakes and model predictions

is due to the lack of direct observations constraining the structure, rock physical
properties, deformation patterns, and frictional behavior of fault zones in the shallow part
of the crust.

51 Compelling numerical (Boatwright and Cocco, 1996), geophysical (Kodaira et al., 52 2012), experimental (Faulkner et al., 2011), and mineralogical (Yamaguchi et al., 2011; 53 Sakaguchi et al., 2011) evidence has been presented to support possible scenarios and 54 mechanisms that may lead a fault segment to host a seismic rupture in the shallow part of 55 the crust. However, there is little documented geological evidence showing how seismic 56 rupturing of shallow faults in unconsolidated sediments occurs in nature (Noda and 57 Lapusta, 2013). Here we report field, petrophysical, mineralogical, and experimental 58 evidence of past coseismic ruptures propagating along creeping extensional fault zones in 59 the seismically active Crotone forearc basin in Calabria, southern Italy (Fig. 1A).

60 METHODS

61 Analytical procedures and graphics for laser diffraction particle size analysis,

62 mercury-injection porosimetry, X-ray diffraction analyses, in situ permeability

63 measurements, microstructural characterization, temperature rise calculations, and

64 friction experiments are provided in the GSA Data Repository¹.

65 GEOLOGICAL BACKGROUND AND FAULT ZONE STRUCTURE

66 Calabria exposes the southern segment of the Apennines fold-and-thrust belt (Fig.
67 1), characterized by ongoing northwestward subduction of the Ionian crust and backarc

68	Tyrrhenian rifting and regional uplift (e.g., Faccenna et al., 2004). The Crotone Basin
69	(Fig. 1A) is a portion of the Ionian forearc region, filled by Miocene–Pleistocene
70	continental to shallow-marine unconsolidated syntectonic sediments (e.g., Zecchin et al.,
71	2004). Extensional fault zones in the study area developed in middle Pliocene-
72	Pleistocene quartz-feldspathic unconsolidated sediments, which were exhumed from
73	maximum burial depths of ≤ 1 km (Balsamo et al., 2012). Historical seismic records (Galli
74	et al., 2008) and recent low-magnitude shallow seismicity (Italian Seismological
75	Instrumental and Parametric Data-Base, http://iside.rm.ingv.it/iside/standard/index.jsp;
76	Figs. 1A and 1B) make the studied fault zones an excellent field analogue of active
77	deformation in shallow sediments. Fault zone structure in the Crotone Basin typically
78	consists of deformation band-dominated damage zones encompassing narrow fault cores
79	made of foliated cataclasites and gouges (Fig. 2A) (Balsamo and Storti, 2011). In three
80	fault cores made of foliated cataclasites, 8-22 cm thick, we found sharp, localized
81	principal slip surfaces decorated by a 0.5–1.5-cm-thick layer of black gouge (Fig. 2B).
82	These fault zones have extensional displacements of 13.6, 21.3, and 41.7 m. Although it
83	was not possible to discriminate where most slip was accommodated, we envisage that it
84	was accommodated in the volumetrically more significant foliated cataclasites. Foliated
85	cataclasites consist of subangular, coarse- to fine-grained granular material in which
86	foliation is imparted by preferential clast orientation parallel to the principal slip direction
87	(Fig. 2C). Black gouges consist of very fine grained matrix encompassing subrounded
88	survivor quartz grains (Fig. 2D).

89 PETROPHYSICAL AND MINERALOGICAL DATA

90	Mean grain size ranges between 200 and 600 μ m in the host sediments and
91	between 100 and 450 μ m in deformation bands and foliated cataclasites sands, and
92	decreases to 70–80 μ m within black gouges, independent of the cumulative displacement
93	accommodated by each fault zone (Fig. 3A; Item DR1 in the Data Repository). The mean
94	permeability of undeformed sediments is $\sim 10^{-11}$ m ² , which reduces by 1–3 orders of
95	magnitude in damage zones and foliated cataclasites, and to 10^{-15} m ² in the black gouges
96	(Fig. 3B). The undeformed sediments have a porosity of $\sim 25\%$ that reduces to 0.1%–
97	4.5% in the foliated fault core and to 0.1% – 0.9% in the black gouges. Mean pore size
98	decreases from 20–50 μ m in the undeformed sediments to 0.3 μ m in the foliated
99	cataclasites, and to 0.01–0.02 μ m in the black gouges (Fig. 3; Item DR1).
100	X-ray diffraction (XRD) determined the bulk mineralogy of undeformed sands to
101	consist of quartz, plagioclase, K-feldspar, clay minerals, chlorite, mica, and calcite. The
102	relative abundance of mineral phases does not change significantly among fault structural
103	domains, except for a slight increase in clay minerals in the black gouges (Table DR2 and
104	Fig. DR4 in the Data Repository). Clay size fractions of undeformed sands show the
105	presence of illite, kaolinite, chlorite, and random ordered (R0) mixed-layer illite-smectite
106	(I-S; Fig. 3C; Table DR3; Fig. DR4D). Deformation bands in damage zones and foliated
107	cataclasites in fault cores do not show significant variations of clay mineral assemblages
108	with respect to the protolith in terms of relative abundances and mixed-layer I-S
109	composition (Fig. 3C; Table DR3). Only samples located in the fault core next to the
110	black gouge layer display short-range ordered (R1) mixed-layer I-S and the neoformation
111	of palygorskite and mixed-layer chlorite-smectite (Table DR3). However, black gouges

112 are characterized by the occurrence of long-range ordered (R3) mixed-layer I-S,

accompanied by the formation of authigenic pyrophyllite (Fig. 3C; Fig. DR4F).

114 FRICTION EXPERIMENTS

115 Details of friction experiments performed on the undeformed medium-sized sands 116 are provided in Item DR4. Experimental conditions range from seismic (to 1 m/s) to 117 subseismic slip rates (to 0.1 m/s), normal stresses at 7 MPa and 14 MPa, displacements of 118 ~1.3 m, and room temperature and humidity (Table DR5). The displacement of 1.3 m 119 was chosen because it is the slip accommodated by a black gouge developed in the 120 Crotone Basin (Balsamo and Storti, 2011). During experiments performed at subseismic 121 slip rates, the friction coefficient (u) **[[SU: correct?]]** increased with slip from initial 122 values, $\mu_i = 0.59-0.65$, to peak values, $\mu_p = 0.69-0.73$, overall showing slip-hardening 123 behavior (Fig. 4A). Samples sheared at seismic slip rates showed initial slip hardening 124 (Fig. 4B), with μ increasing from $\mu_i = 0.63 - 0.69$ to $\mu_p = 0.72 - 0.74$, before weakening began and friction reduced to steady-state values $u_f = 0.32 - 0.47$, for displacements $d_w = 0.32 - 0.47$. 125 126 0.2-0.88 m [[SU: friction coefficient is just μ in text; μ_f in Fig. 4 defined as 127 "residual" friction coefficient? In Abstract, µ_f introduced as friction; use of 128 variables should be consistent. What is subscript w in d_w?]] (Table DR5). Cataclasites 129 produced at subseismic slip rates ($\leq 0.1 \text{ m/s}$) show overall slip-hardening behavior over 130 the range of velocities tested (Fig. 4C), as opposed to black gouges, only produced at 131 seismic slip rates (≥ 0.5 m/s), that showed dynamic weakening behavior. 132 Samples recovered after the experiments at subseismic slip rates show the 133 development of a thin gray slip zone overlaying moderately comminuted cataclasite (Fig. 134 4A), as opposed to samples recovered after the tests at seismic slip rates that showed the

135	development of black polished slip surfaces overlaying very fine grained gray gouge
136	(Fig. 4B). At subseismic slip rates, the sheared sand consists of coarse-grained, very
137	angular quartz and feldspar grains with jigsaw-fit geometry surrounded by a fine-grained
138	matrix (Fig. 4D). The mean grain angularity value is 21.6 ± 3.7 (inset in Fig. 4D). Such
139	an immature texture is similar to that observed within natural foliated cataclasites (Fig.
140	2C). At seismic slip rates, sheared sand is very fine grained, indicating higher grain
141	comminution. Black gouge consists of subrounded quartz and feldspar grains floating
142	within a fine-grained matrix. The mean grain angularity value is 18.7 ± 2.1 (Fig. 4E); i.e.,
143	grains sheared at seismic slip rates are more rounded than subseismic counterparts. The
144	experimental black gouge layer [[SU: correct "latter fabric"?]] is similar to the fabric
145	described for the natural black gouges (Fig. 2D).
146	XRD analyses performed on the experimental black gouges show the presence of
147	amorphous phases as a result of extreme comminution (Fig. DR5A) and quartz, albite, K-
148	feldspar, calcite, and ankerite minerals (Table DR4). In addition, in the <2 μ m grain-size
149	fraction, R3 mixed-layer I-S (Fig. DR5B) was recognized, as opposed to R0 I-S identified
150	in the host sediments (Fig. 3C), similar to what was observed in the natural black gouges.
151	DISCUSSION
152	Our data show that creeping extensional fault zones can be overprinted by
153	episodic seismic ruptures at very shallow depths, producing decoration of slip surfaces by
154	black gouges. Creep faulting is inferred by the widespread occurrence of strain-hardening
155	cataclastic deformation bands in damage zones (e.g., Fossen et al., 2007) and by the
156	moderate reduction in grain size and pore size in foliated cataclasites (Fig. 3A; Item

157 DR1). However, it is not possible to discriminate whether the studied faults have been

158	partially or totally unlocked. We interpret the localized dramatic reduction of mean grain
159	size, permeability, porosity, and pore size in black gouges as the evidence for transient
160	fast slip during coseismic rupture propagation through creeping fault segments. This
161	interpretation is further supported by recent field studies of high-strain-rate faulting in
162	porous sandstones, where pervasive comminution of quartz grains, to ~10–100 μ m,
163	occurs without development of deformation bands (Key and Schultz, 2011; Balsamo and
164	Storti, 2011). Coseismic slip-rate-dependent cataclasis inferred in the studied black
165	gouges is also in agreement with numerical analyses on rock dynamic fragmentation
166	processes showing that the average fragment size decreases with increasing strain rate
167	(Zhou et al., 2005).
168	The R0 illite-smectite mixed layers in high-porosity, permeable, and
169	unconsolidated undeformed sediments indicate shallow burial depths (<2 km) and
170	temperatures <70 °C (Środoń, 1999). The absence of significant variations of clay
171	mineral assemblages with respect to the protolith in deformation bands and foliated
172	cataclasites (Fig. 3C; Table DR3) indicates that such deformational structures formed
173	without significant frictional heating, likely at subseismic slip rates. However, an
174	energetic rupture could propagate through the poorly lithified sediments, using the
175	distributed fault pattern. In this case, the rupture would quickly dissipate its energy and
176	some sliding at low slip rates would occur before the rupture stopped. [[SU: ok?]] We
177	believe that this scenario, although possible, should only have a local impact rather than
178	affecting the entire fault population in the unconsolidated sediments. We think that it
179	would be much more likely and plausible that the distributed fault pattern would have
180	developed as a consequence of strain-hardening behavior of the sediments, and that most

181	of the sliding along the studied faults would have been aseismic. However, the
182	occurrence of R1 mixed-layer I-S and the neoformation of palygorskite in the foliated
183	cataclasites next to the black gouges, and of R3 mixed-layer I-S in the black gouges,
184	accompanied by the formation of authigenic pyrophyllite, indicate the attainment of
185	higher temperatures during faulting (>180 °C for the black gouges; Fig. 3C) (Wang et al.,
186	1996; Środoń, 1999). In this view, heat diffusion from the black gouge-decorated slip
187	zones caused the temperature rise in the adjacent foliated cataclasites. These temperatures
188	are comparable with the calculated temperature rise (to 211 °C) produced by moderate
189	earthquakes ($M_w > 5$; Fig. DR6) that propagate under dry and fluid-saturated (hydrostatic
190	fluid pore pressure) conditions [[SU: not "respectively"]] along localized slip zones with
191	same physical properties and thickness as the black gouge layers observed in the field
192	(gray shaded area in Fig. 3C). The lack of widespread mineralogical evidence supporting
193	hydrothermal fluid circulation in the fault zones indicates that the inferred increase in
194	temperature within the black gouges was attained by localized frictional heating during
195	coseismic sliding (Fig. 3C).
196	When extrapolated to natural earthquake conditions, our experimental results
197	suggest that M > 5 earthquakes (e.g., $\frac{d}{d} \ge 0.1$ m) [[SU: not d_w , as in discussion of
198	Friction Experiments?]] nucleated at depth within velocity-weakening rocks (Niemeijer
199	et al., 2012) would attain slip that is large enough to trigger dynamic weakening
200	processes and facilitate rupture propagation along fault zones within unconsolidated, slip-
201	hardening sands. This is consistent with temperatures inferred from the mineralogical
202	assemblages observed in the natural black gouges and with temperature calculations for
203	M > 5 earthquakes (Fig. DR6). The observed R0 to R3 I-S conversion in experimental

204	black gouges is similar to the mineralogical assemblage of natural gouges and can be
205	explained by localized temperature rise due to frictional heating (Fig. DR7).
206	We argue that, in nature, the progressive grain size and pore size reduction,
207	porosity collapse, and permeability drop in foliated cataclasites reaches a threshold fabric
208	that favors coseismic slip, black gouge development, and fault weakening. The different
209	grain angularity values obtained from experimentally sheared gouges at different slip
210	rates, and the resulting different friction coefficient, suggest that the wear and rounding
211	of particles during coseismic slip may play an important role in dynamic weakening.
212	CONCLUSIONS
213	Discriminating between creeping and seismic faulting in poorly consolidated
214	sediments strongly affects seismic hazard evaluation, especially for active fault segments
215	in the shallow crust, where aseismic creeping behavior can episodically be overprinted by
216	seismic slip during upward rupture propagation. Based on our data, we conclude that
217	episodic seismic shear failure of creeping shallow fault segments is supported by field
218	and laboratory evidence. The peculiar petrophysical and mineralogical signature of
219	narrow black gouges described in this work makes them a potential new diagnostic
220	marker for discriminating between aseismic and seismic faulting in shallow
221	unconsolidated sediments. Our results can be applied, and improve our ability to estimate
222	risks and hazards in many seismically active areas and tectonic settings, where fault
223	segments cut across unconsolidated sediments in outcrop exposures, in cores retrieved
224	from boreholes, and in paleoseismological trenches.

225 ACKNOWLEDGMENTS

Publisher: GSA ournal: GEOL: Geolog

226	Journal: GEOL: Geology Article ID: G35272 This study was supported by the Accademia Nazionale dei Lincei (Royal
227	Society of Edinburgh grant to Balsamo) [[SU: correct?]] and the Natural
228	Environment Research Council (NERC standard grant NE/H021744/1 to De Paola).
229	L. Bowen (G.J. Russell Microscopy Facility, Durham University, UK) provided
230	assistance during scanning electron microscope analyses. Roma Tre University is
231	kindly acknowledged for providing facilities for X-ray diffraction.
232	REFERENCES CITED
233	Avouac, J.P., 2011, Earthquakes: The lessons of Tohoku-Oki: Nature, v. 475, p. 300-301,
234	doi:10.1038/nature10265.
235	Balsamo, F., and Storti, F., 2011, Size-dependent comminution, tectonic mixing, and
236	sealing behavior of a "structurally oversimplified" fault zone in poorly lithified
237	sands: Evidence for a coseismic rupture?: Geological Society of America Bulletin,
238	v. 123, p. 601–619, doi:10.1130/B30099.1.
239	Balsamo, F., Storti, F., and Grocke, D., 2012, Fault-related fluid flow history in shallow
240	marine sediments from carbonate concretions, Crotone Basin, south Italy: Geological
241	Society of London Journal, v. 169, p. 613–626, doi:10.1144/0016-76492011-109.
242	Boatwright, J., and Cocco, M., 1996, Frictional constraints on crustal faulting: Journal of
243	Geophysical Research, v. 101, p. 13895–13909, doi:10.1029/96JB00405.
244	Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., and Rossetti, F., 2004, Lateral
245	slab deformation and the origin of the western Mediterranean arcs: Tectonics, v. 23,
246	TC1012, doi:10.1029/2002TC001488.

- 247 Faulkner, D.R., Mitchell, T.M., Behnsen, J., Hirose, T., and Shimamoto, T., 2011, Stuck
- in the mud? Earthquake nucleation and propagation through accretionary forearcs:
- 249 Geophysical Research Letters, v. 38, L18303, doi:10.1029/2011GL048552.
- 250 Fossen, H., Schultz, R.A., Shipton, Z.K., and Mair, K., 2007, Deformation bands in
- 251 sandstone: A review: Geological Society of London Journal, v. 164, p. 755–769,
- doi:10.1144/0016-76492006-036.
- 253 Galli, P., Galadini, F., and Pantosti, D., 2008, Twenty years of paleoseismology in Italy:
- Earth-Science Reviews, v. 88, p. 89–117, doi:10.1016/j.earscirev.2008.01.001.
- 255 Kaneko, Y., Lapusta, N., and Ampuero, J.P., 2008, Spectral element modeling of

spontaneous earthquake rupture on rate and state faults: Effect of velocity-

- 257 strengthening friction at shallow depths: Journal of Geophysical Research,
- v. 113, B09317, doi:10.1029/2007JB005553.
- 259 Key, W.R.O., and Schultz, R.A., 2011, Fault formation in porous rocks at high strain
- 260 rates: First results from the Upheaval Dome impact crater, Utah, USA: Geological
- 261 Society of America Bulletin, v. 123, p. 1161–1170, doi:10.1130/B30087.1.
- 262 Kodaira, S., No, T., Nakamura, Y., Fujiwara, T., Kaiho, Y., Miura, S., Takahashi, N.,
- 263 Kaneda, Y., and Taira, A., 2012, Coseismic fault rupture at the trench axis during the
- 264 2011 Tohoku-oki earthquake: Nature Geoscience, v. 5, p. 646–650,
- doi:10.1038/ngeo1547.
- 266 Marone, C., and Scholz, C.H., 1988, The depth of seismic faulting and the upper
- transition from stable to unstable slip regimes: Geophysical Research Letters, v. 15,
- 268 p. 621–624, doi:10.1029/GL015i006p00621.

- Marone, C., Raleigh, C.B., and Scholz, C.H., 1990, Frictional behavior and constitutive
- 270 modeling of simulated fault gouge: Journal of Geophysical Research, v. 95, p. 7007–
- 271 7025, doi:10.1029/JB095iB05p07007.

269

- 272 Niemeijer, A., Di Toro, G., Griffith, A.W., Bistacchi, A., Smith, S.A.F., and Nielsen, S.,
- 273 2012, Inferring earthquake physics and chemistry using an integrated field and
- laboratory approach: Journal of Structural Geology, v. 39, p. 2–36,
- doi:10.1016/j.jsg.2012.02.018.
- 276 Noda, H., and Lapusta, N., 2013, Stable creeping fault segments can become destructive
- as a result of dynamic weakening: Nature, v. 493, p. 518–521,
- doi:10.1038/nature11703.
- 279 Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., and Imakiire, T., 2011,
- 280 Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake:
- 281 Nature, v. 475, p. 373–376, doi:10.1038/nature10227.
- 282 Perfettini, H., Avouac, J.-P., Tavera, H., Kositsky, A., Nocquet, J.-M., Bondoux, F.,
- 283 Chlieh, M., Sladen, A., Audin, L., Farber, D.L., and Soler, P., 2010, Seismic and
- aseismic slip on the Central Peru megathrust: Nature, v. 465, p. 78–81,
- 285 doi:10.1038/nature09062.
- 286 Saffer, D.M., and Marone, C., 2003, Comparison of smectite- and illite-rich gouge
- 287 frictional properties: Application to the updip limit of the seismogenic zone along
- subduction megathrusts: Earth and Planetary Science Letters, v. 215, p. 219–235,
- doi:10.1016/S0012-821X(03)00424-2.
- 290 Sakaguchi, A., Chester, F., Curewitz, D., Fabbri, O., Goldsby, D., Kimura, G., Li, C.F.,
- 291 Masaki, Y., Screaton, E.J., Tsutsumi, A., Ujiie, K., and Yamaguchi, A., 2011,

- 292 Seismic slip propagation to the updip end of plate boundary subduction interface
- 293 faults: Vitrinite reflectance geothermometry on Integrated Ocean Drilling Program
- 294 NanTro SEIZE cores: Geology, v. 39, p. 395–398, doi:10.1130/G31642.1.
- 295 Sato, M., Ishikawa, T., Ujihara, N., Yoshida, S., Fujita, M., Mochizuki, M., and Asada,
- A., 2011, Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake:
- 297 Science, v. 332, p. 1395, doi:10.1126/science.1207401.
- 298 Scholz, C.H., 1998, Earthquakes and friction laws: Nature, v. 391, p. 37–42,
- doi:10.1038/34097.
- 300 Środoń, J., 1999, Nature of mixed layer clays and mechanisms of their formation and
- 301 alteration: Annual Review of Earth and Planetary Sciences, v. 27, p. 19–53,
- 302 doi:10.1146/annurev.earth.27.1.19.
- 303 Wang, H., Frey, M., and Stern, W.B., 1996, Diagenesis and metamorphism of clay
- 304 minerals in the Helvetic Alps of eastern Switzerland: Clays and Clay Minerals, v. 44,
- 305 p. 96–112, doi:10.1346/CCMN.1996.0440109.
- 306 Yamaguchi, A., and 13 others, 2011, Progressive illitization in fault gouge caused by
- 307 seismic slip propagation along a megasplay fault in the Nankai Trough: Geology,
- 308 v. 39, p. 995–998, doi:10.1130/G32038.1.
- 309 Zecchin, M., Massari, F., Mellere, D., and Prosser, G., 2004, Anatomy and evolution of a
- 310 Mediterranean-type fault bounded basin: The lower Pliocene of the northern Crotone
- 311 Basin (Southern Italy): Basin Research, v. 16, p. 117–143, doi:10.1111/j.1365-
- 312 2117.2004.00225.x.

Publisher: GSA Journal: GEOL: Geology

Article ID: G35272

- 313 Zhou, F., Molinari, J.F., and Ramesh, K.T., 2005, A cohesive model based fragmentation
- analysis: Effects of strain rate and initial defects distribution: International Journal of
- 315 Solids and Structures, v. 42, p. 5181–5207, doi:10.1016/j.ijsolstr.2005.02.009.

316 FIGURE CAPTIONS

- 317 Figure 1. A: Calabria region with late Pleistocene faults (red lines) and historical
- 318 earthquakes (A.D. 1630–1908) (white circles) (modified from Galli et al., 2008). **[[SU:**
- 319 what is KR in figure? Should spell out in caption.]] B: Magnitude-depth distribution of
- 320 small to moderate shallow (0–5 km) earthquakes (1983–2013) in Crotone area (from
- 321 Italian Seismological Instrumental and Parametric Data-base,
- 322 http://iside.rm.ingv.it/iside/standard/index.jsp). C: Schematic geological cross section of
- 323 Calabrian subduction zone.
- 324 [[SU: need uppercase A–C labels in figure; no lat, long given. In Fig. A, Crotone
- 325 Basin, not basin; "Plio-" should be Pliocene-; in Fig. C, "Undertrusted" should be
- 326 underthrusted.]]
- 327
- 328 Figure 2. A: Structural domains in fault zone with 13.6 m displacement (FC—fault core;
- 329 FWDZ—footwall damage zone; HWDZ—hanging-wall damage zone); red star shows
- 330 location of fault rocks in B. B: Black gouge layer developed in foliated cataclastic sand.
- 331 Diameter of coin used for scale is 24.25 mm. [[SU: 50 cent Euro, correct?]] C:
- 332 Scanning electronic microscope (SEM) photomicrograph showing immature cataclastic
- texture in foliated sand. D: **SEM** photomicrograph of very fine grained fabric in black
- 334 gouges. [[SU: need uppercase A–D labels in figure; in Fig. A, reference to "Fig. 2b"
- **335 should be "B"]]**

336

337	Figure 3. A: Progressive grain-size reduction from host sediments to foliated cataclastic
338	sand to black gouges. B: Air-permeability data, plotted along idealized fault zone
339	transect, show permeability decrease of as much as four orders of magnitude within black
340	gouges. C: Clay-mineral association from undeformed and faulted samples, plotted
341	versus estimated stability temperatures (Środoń, 1999), showing attainment of highest
342	temperature within black gouges. Shaded gray area shows calculated range of
343	temperatures produced by earthquakes up to $M_w > 5$, propagating under dry and fluid
344	saturated (hydrostatic fluid pore pressure) conditions (Item DR4 and Fig. DR6 [see
345	footnote 1]). R0 I-S-random ordered mixed-layer illite-smectite; C-S-mixed-layer
346	chlorite-smectite; R1 I-S-short-range ordered mixed-layer illite-smectite; R3 I-S-long-
347	range ordered mixed-layer illite-smectite. [[SU: need uppercase A–D labels in figure;
348	<pre>need space around = signs]]</pre>
349	
350	Figure 4. A: Slip-hardening behavior at subseismic slip rate (v) of 100 μ m/s. B: Slip-
351	hardening followed by slip-weakening behavior at coseismic slip rate of 1 m/s. C: Peak
352	(μ_p) and residual (μ_f) friction coefficients plotted versus slip rate. D: Scanning electronic
353	microscope photomicrograph showing microstructural features of sand sheared at 1
354	mm/s. Inset shows calculated mean angularity value of grains. Double arrows indicate
355	sense of shear. E: Sand sheared at 1 m/s. [[SU: Are Du206, Du207, Du210, Du211
356	sample numbers, experiment runs, or other? Should define in caption. Need
357	uppercase A–E labels in figure.]]
358	

- ¹GSA Data Repository items 2014, Item DR1 (petrophysical properties of natural
- 360 undeformed and faulted sediments), Item DR2 (mineralogical composition of natural and
- 361 experimentally sheared gouges), Item DR3 (temperature calculations within black
- 362 gouges), and Item DR4 (experimental apparatus, sample assembly, and mechanical data),
- is available online at www.geosociety.org/pubs/ft2014.htm, or on request from
- diting@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO
- 365 80301, USA.