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Bimetallic nanoparticles (~11 nm diameter) of CuNi and CuCo were 

prepared by a new synthetic route and the 1:1 atomic ratio of their 10 

constituent elements confirmed using STEM-EDS at a single particle level. 

These nanoparticles, supported on the native oxide layer of a silicon wafer, 

were studied in situ in a series of reactive gas atmospheres (H2  CO or 

CO/H2   O2   H2) using ambient pressure x-ray photoelectron 

spectroscopy (AP-XPS). Despite the deliberate similarity of nickel and 15 

cobalt with respect to copper, their restructuring behaviour is different. 

CuNi nanoparticles were found to surface segregate nickel in H2, but 

copper in O2 reversibly, while CuCo nanoparticles were found to surface 

segregate copper irreversibly when exposed to O2, such that the surface 

remains copper rich when re-exposed to H2. Both systems also restructure 20 

in opposition the behaviour predicted by the surface free energies and 

enthalpies of oxide formation of the elements from which they are 

comprised – factors that are seen to control restructuring and surface 

segregation in many similar systems.  

Introduction  25 

Bimetallic heterogeneous catalysts have long been known to exhibit interesting or 

useful properties not found in their individual constituent metals. For this reason, 

they find extensive use in many important chemical processes. Obvious examples 

include the use of bimetallic catalysts containing either Pt or Pd for isomerisation, 

olefin hydrogenation and alcohol synthesis, or PtSn in hydrocarbon reforming and 30 

dehydrogenation reactions.1 Increasingly, there are numerous reports in the literature 

of new bimetallic combinations being used as heterogeneous catalysts for a large 

variety of chemical transformations. A current example of this is the pressure to 

develop or improve catalytic transformations to tackle dwindling fossil fuel reserves  

- this has led to a huge interest in syngas conversion chemistry. In this field many 35 

bimetallic systems have been considered,2 but also some very systematic theoretical 

efforts have been employed to consider all plausible combinations of bimetallic 

surfaces.3 Another merit of bimetallics has been the possibility of lowering cost 

while maintaining performance through the use of a precious metal in combination 

with a more abundant, cheaper metal, the properties of the former still being 40 

retained. An example of this is the suggested use of Pt skin – Ni core nanoparticles 



CREATED USING THE RSC REPORT TEMPLATE (VER. 3.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS 

 

2  |  [journal], [year], [vol], 00–00 

This journal is © The Royal Society of Chemistry [year] 

as PEM fuel cell catalysts.4  

 Early research in the use of heterogeneous bimetallic catalysts began by 

developing the well known theories of ‘ensemble’ vs. ‘electronic’ effect,5 often 

responsible for the enhanced properties conferred upon a catalyst by surface 

alloying. The advent of ultra high vacuum science in the latter half of the 20 th 5 

century allowed surface systems to be studied in detail and much work was done to 

explore and understand the surface segregation of metals.6 For bulk materials their 

behaviours in vacuum can be understood as a thermodynamic competition of 

entropy, cohesive and surface energies.7 Lattice strain and relaxation effects were 

generally considered too small to be important.6 In the present paper we focus on 10 

exploring the changes on going from a bulk material to bimetallic metal 

nanoparticles, of which heterogeneous catalysts are normally comprised. This 

changes a number of important factors by essentially diminishing the importance of 

bulk energy terms relative to surface energy terms on the thermodynamic 

equilibrium structure of the particle. These are likely to include: 15 

 The greater importance of surface free energy (It is also noteworthy that the 

surface energy itself will be particle size dependant,8 as has been shown 

experimentally for PtRh nanoparticles.9) 

 Surface-adsorbate interactions becoming a significant energetic term when 

balanced by very little ‘bulk.’ Furthermore, surface oxide or hydride formation a 20 

few atomic layers deep may account for a large fraction of the particle (as there 

are many more surface atoms) and thus be a major energetic term. 

 Diminished importance of kinetic limitations; in many bulk systems it is valid to 

assume only the top layer or layers of an alloy are restructured at moderate 

temperature,6 whereas for nanoparticles complete restructuring of the material to 25 

reach thermodynamic equilibrium has been seen on the 15 minute timescale of 

an ambient pressure XPS experiment.10  

 Entropy of mixing is less important as partial surface segregation represents a 

much higher fraction of the possible configurations available to the atoms within 

the nanoparticle (in contrast to a bulk material where entropy strongly promotes 30 

mixing into the bulk). 

 The low co-ordination of many surface sites means relaxation and strain effects 

can be expected to also differ from those in a bulk material, as seen for RuPt 

core-shell nanoparticles.11     

 The first two of these points concerning the increased importance of surface 35 

energy and adsorbate-surface interactions are particularly significant in catalysis, 

where very reactive, high pressure gases (or liquids) are usually present. In 2004 

Lang et al. reported apparently anomalous results in the infrared characterisation of 

AuPt clusters on SiO2, using CO as a probe molecule.12 They observed the Au signal 

decrease and the Pt signal grow under exposure to CO at moderate temperature (140 40 

°C). This was attributed to surface segregation resulting from the strong interaction 

of Pt with CO (while Au has the lower surface free energy in vacuum).  

 As indicated in Table 1, in the last decade the phenomena of bimetallic 

nanoparticle restructuring has been the focus of considerable work by our group and 

others, in particular utilising new in situ techniques, such as ambient pressure XPS. 45 

Indeed, bimetallic nanoparticle catalysts have been the focus of a variety of in situ 

studies and the details of these are well reviewed elsewhere.13 The ambient pressure 

XPS technique is particularly powerful for addressing the question of how and when 

nanoparticles undergo restructuring. It enables element and oxidation state specific 
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information to be collected in the 0.1 – 10 torr range – where there are already ~ 106 

collisions per second per surface atom making mass transfer of adsorbates in the gas 

phase prior to adsorption cease to be rate limiting in most cases.14 This technique, 

described elsewhere,15 circumvents the usual limitation that emitted photoelectrons 

have too short a mean free path in ambient gas to be measured. This is achieved by 5 

bringing a small, differentially pumped aperture cone very close to the sample 

surface. This allows gas pressure at the sample to be maintained, while 

photoelectrons emitted from the sample quickly escape through the aperture to near 

vacuum conditions, enabling them to be collected and analysed. In combination with 

synchrotron radiation, AP-XPS is especially powerful, allowing highly surface 10 

sensitive measurements and depth profiling by varying the incident photon energy.16 

(This utilises the fact the incident photon energy can be tuned to limit the possible 

mean free path of photoelectrons produced from a given core level, thus controlling 

the depth from within the sample that the spectra obtained represent.)17   

Table 1: Reported bimetallic nanoparticles systems studied under reactive gas conditions and the 15 

resulting structural effects observed. (aNO+CO is reducing.)        

System 

studied 
Technique used Conditions and segregation effect 

Factors 

controlling 

structure 

AuCu18 in situ XANES 
500 °C H2 

Cu migrates to core 

3-400 °C  O2/CO 

CuOx surface patches n/a 

AuPd19 
in situ XAFS, PDF 

& DRIFTS 

Vac; RT 

No surface enrichment 

350 °C CO 

Pd rich surface 

CO-Pd bond 

formation 

AuPd20 AP-XPS 
Vac; RT 

Pd rich surface 

200 °C O2/CO 

Au-rich particles, 

restructure to Au surfaces, 

others remain Pd rich 

surface/ cohesive 

energy; adsorption 

enthalpies 

AuPt12 

 

infrared of CO 

stretching 

Vac; RT 

Au migrates to surface 

140 °C CO 

Pt enriched on surface 

workfunction 

vs.M-CO bond 

SnPt21 
in situ 

XAFS/QXAFS 

400 °C O2 

SnO2 on surface 

400 °C H2 

Returns to Pt3Sn 

structural 

oxidation 

PtRh10 AP-XPS 
300 °C NO 

Rh surface segregation 

300 °C H2 

Pt enriched surface 

ΔHo
f{oxide) vs. 

surface free energy 

PdRh22,10 AP-XPS 
300 °C NO 

Rh surface segregation 

300 °C NO+COa or H2 

Pd surface segregation 

Rh oxide 

formation 

PtPd10,22 AP-XPS 
300 °C NO 

Pd remains on surface 

300 °C NO+COa or H2 

Pd remains on surface 

ΔHo
f{oxide) vs. 

surface free energy 

PtCu19 
in situ XAFS, PDF 

& DRIFTS 

Vac; RT 

Cu rich surface 

350 °C CO 

Pt rich surface 

CO - Pt surface 

adsorption 

PtCo23 electro-chemistry 
200 °C CO 

Pt surface segregation 

segregation vs 

surface mixing; Pt-

CO vs Co-CO  

PtCo24 
AP-XPS, in situ 

NEXAFS 

247 °C O2 

Co enriched at surface 

247 °C H2 

Pt segregates to surface 

kinetically 

controlled 

PtCo25 AP-XPS & ETEM 
Vac; RT 

Both metals on surface 

250 °C in H2 

Pt forms surface shell n/a 

PtCo26 
AP-XPS, in situ 

NEXAFS 

125 °C H2 

Pt surface segregation 

125 °C in CO/O2 

Co segregates to surface, 

not oxidised 

adsorbate induced 

restructuring 

AgCu27 AP-XPS 
247 ° O2 & O2/C2H4 

Cu enriched at surface 

247 °C H2 

Less Cu at surface 

surface energies 

and CuO formation 
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 Table 1 illustrates many examples in which oxidation or formation of surface 

oxides is suggested to be the dominant factor in their restructuring. This has either 

been for systems such as PtRh where neither has a strong propensity to form oxides 

(it is their relative difference) or for systems such as PtCo where the size mismatch 5 

of the atoms is very large and may be contributory to restructuring effects. All these 

examples involve at least one heavy element (4d or 5d) and to our knowledge these 

types of studies haven’t been conducted on any combinations of 3d metals. These 

have much higher propensities to form oxides and very similar sizes. Owing to their 

abundance, and thus lower cost, they are also a very common choice as possible 10 

elements to involve in forming new bimetallic catalysts. Accordingly, we have 

chosen to consider Cu in combination with Co and Ni. These three all have similar 

metallic radii (128, 125 and 125 pm respectively) and much greater enthalpies of 

oxide formation per metal atom than the precious metals studied previously.28  

 Here, CuCo and CuNi nanoparticles of 1:1 atomic composition of the two metals 15 

and of similar sizes (~11 nm) were prepared using a new colloidal synthesis. These 

have then been supported on a planar SiO2 surface and characterised in oxidising 

and reducing environments using ambient pressure XPS. With this new data, we aim 

to inform a discussion of how such bimetallic nanoparticles behave under catalytic 

conditions and the importance of addressing this issue experimentally and 20 

theoretically in the preparation of new heterogeneous bimetallic catalysts.  

Experimental Methods 

A Synthesis of Cu50Co50 and Cu50Ni50 nanoparticles 

All chemicals were used as obtained from the supplier. Ni(acac)2 was stored in 

darkness.  25 

11 nm Cu50Co50 nanoparticles: The metal precursor salts were dissolved in a 

reducing, coordinating solvent (oleylamine) at 80 °C. Typically, Cu(acac)2 (27.1 mg, 

Aldrich, ≥99.99% pure) and Co(acac)2 (26.7 mg, Aldrich, ≥99.0% pure) were 

dissolved in oleylamine (5 mL) in a 50 mL round bottom flask. The flask was 

evacuated and subsequently flushed with Ar. The evacuation/purging cycle  was 30 

repeated several times before the solution was purged by bubbling Ar through it for 

15 minutes. Finally, the reaction flask was submerged in an oil bath preheated to 230  

°C. The solution turned black, indicating the formation of colloidal particles after 

approximately 2 minutes. This colloidal suspension was then aged at 230  °C for 10 

minutes prior to terminating the reaction by rapid cooling by removing it from the 35 

oil bath. After reaching room temperature the nanoparticles were precipitated from 

the colloidal solution with acetone, centrifuged and re-dispersed in toluene. As 

synthesized nanoparticles were then stored in toluene until further use.  

11 nm Cu50Ni50 nanoparticles: The synthetic procedure was identical to that of the 

Cu50Co50 nanoparticles, except that Ni(acac)2 (27.3 mg, Aldrich, 95.0% pure) was 40 

used in place of Co(acac)2. 

B Ambient pressure XPS 

AP-XPS experiments were conducted at Beamline 9.3.2 at the Advanced Light 

Source, Lawrence Berkeley National Laboratory. Samples were prepared as dipcoat 

films of nanoparticles to yield 2D films on 275 μm thick Si wafers. The choice of Si 45 

wafers to anchor the nanoparticles to was selected to mimic a typical heterogeneous  
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Fig. 1 (a) Representative HR-TEM images of the as prepared CuNi nanoparticles, with the sample 

size distribution obtained by counting a large number of nanoparticles from different regions of the 

TEM grid superimposed above the image.  (b) High Angle Annular Dark Field (HAADF) image of a 

CuNi nanoparticle, the grey line indicating the line along which scanning TEM (STEM) linescans 5 

using Energy Dispersive X-ray Spectra (EDS) were acquired for Cu K and Ni K edges as shown on 

right.  

catalyst oxide support and avoid any risk of alloying with a gold surface, often used 

as the support when preparing 2-D films of nanoparticles. Ambient Pressure XPS 

was conducted using an apparatus described elsewhere.29 The instrument also takes 10 

advantage of the tunable incident photon energy of synchrotron-generated X-rays to 

enable acquisition of both very surface sensitive measurements as well as near-

surface depth profiles of both oxidation state and elemental composition of the 

samples.  Owing to the range of accessible energies with this instrument, spectra 

were collected using electrons excited from the Cu 3p, Co 3p and Ni 3p levels 15 

(rather than the 2p levels usually used in a conventional laboratory XPS when using 

an Al K source). The photoionisation cross section for these elements with a 380 
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eV source energy is comparable to that of the 2p levels when using an Al K source. 

All energies are corrected with respect to the Fermi edge (recorded immediately 

prior to or following the spectrum of interest, without changing the incident photon 

energy). Relative concentrations in the region of the particle probed by the XPS 

were calculated and plotted by fitting a Shirley background using XPSPeak and then 5 

integrating. The obtained results were also corrected for the relevant photo-

ionization cross sections30 in the calculation of the relative composition of the two 

metals. Maximum temperatures for heating in each gas were selected based on SEM 

characterisation with ex situ thermal treatments to minimise the chance of any 

agglomeration occurring due to thermal activation. Probing depths are estimated 10 

using the method of Seah and Dench as described in the ESI.† The possibility of 

beam damage or heating causing agglomeration was examined using SEM before 

and after AP-XPS experiments for both samples and the results are provided in the 

ESI.†  

C Additional Characterization 15 

TEM and HR-TEM images, and STEM/EDS phase spectra were obtained using Jeol 

2100F (scanning) transmission electron microscope. Samples were prepared by drop 

casting the nanoparticles (in toluene) on to an ultra thin carbon coated copper TEM 

grid. A Zeiss Ultra55 scanning electron microscope was then used for imaging and 

confirming the integrity of the dipcoated films of nanoparticles on Si wafers before 20 

and after the AP-XPS studies. 

Results  

CuNi bimetallic nanoparticles 

Figure 1(a) shows representative TEM images of the as prepared, unsupported 10.6 

± 1.3 nm CuNi nanoparticles, prepared using an oleylamine capping agent as 25 

described above. Their corresponding size distribution is indicated above the image. 

Figure 1(b) shows a High Angle Annular Dark Field (HAADF) image of a 

nanoparticle in the same sample in which TEM (STEM) linescans using Energy 

Dispersive X-ray Spectra (EDS) were acquired for Cu K- and Ni K-edges as shown. 

These linescans confirm the presence of both metals within the individual particle 30 

and show that the as prepared particle contains a copper enriched core and a more 

nickel rich shell, when measured under the vacuum conditions of the TEM. (The Cu 

signal is strong only near the middle of the linescan, whereas the Ni is strongest at 

the edges, where a greater amount of the near surface region of the sphere is 

probed.) Additionally, this technique was used to confirm the relative metal content 35 

for 10 individual particles and it was found that they contained 53.7 ± 9.6 at. % Cu, 

which compares favourably to an average Cu content recorded over an area 

enclosing many particles of 57.2 at. % Cu. These values are also consistent with the 

50 at. % Cu content targeted from the synthesis. This control over particle size and 

composition is crucial for enabling us to study reconstruction effects, because the 40 

spectral signals originate from a material in which all particles are near identical, 

rather being the average of many different systems, which would mask the effects 

we are seeking to probe.  

 The as prepared nanoparticles, supported on the silicon oxide surface of a silicon  



CREATED USING THE RSC REPORT TEMPLATE (VER. 3.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS 

 

[journal], [year], [vol], 00–00  |  7 

This journal is © The Royal Society of Chemistry [year] 

 
Fig. 2 (a) Ambient pressure Cu (red) and Ni (purple) 3p XP Spectra of CuNi nanoparticles 

supported on the native oxide layer of a silicon wafer during exposure to a series of gases as 

indicated (0.1 torr) using an incident photon energy of 380 eV,  corresponding to a mean free path of 

escaping electrons of 0.8 nm. (b) Graph showing the corresponding % of Cu (red)  and Ni (purple) 5 

in this top 0.8 nm surface layer of the nanoparticles for each condition in (a) (after  correction for the 

relevant photon energy photoelectron cross sections and removal of a Shirley background).  

 
Fig. 3 Ambient pressure O 1s XP Spectra of CuNi nanoparticles supported on the native oxide layer 

of a silicon wafer during exposure to a series of gases as indicated (0.1 torr) using incident photon 10 

energy of 630 eV  The data was acquired in the same series of numbered experiments as shown in 

Fig. 2. 

wafer, were then investigated using ambient pressure XPS. The start-point of the 

XPS data is directly comparable to the TEM data above as they are both recorded on 

the as prepared sample, at room temperature and after evacuation in a vacuum 15 

chamber. Spectra were acquired in vacuum and during the heating steps and 

introduction of 100 mtorr of H2. (See supplementary information – as these initial 

steps prior to heat and gas treatments are likely still dominated by the as synthesized  
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Fig. 4 (a) Representative HR-TEM images of the as prepared CuCo nanoparticles, with the sample 

size distribution obtained by counting a large number of nanoparticles from different regions of the 

TEM grid superimposed above the image.  (b) High Angle Annular Dark Field (HAADF) image of 

CuCo nanoparticles, the grey line indicating the line along which scanning TEM (STEM) linescans 5 

using Energy Dispersive X-ray Spectra (EDS) were acquired for Cu K and Co K edges as shown on 

right. 

structure and may not be the result of thermally activated rearrangements they will 

not be discussed in detail).† Heating in H2 results in an enhancement of the Ni/Cu 

ratio in the near surface region (~ 1 nm probing depth). The major changes of 10 

interest occur on switching from reducing (H2 or CO) to oxidising atmospheres and 

back again as shown in Figure 2. The spectra shown represent the top ~0.8 nm of the 

10 nm diameter nanoparticles and so correspond mostly to the top 2-3 atomic layers. 

It is clear that nickel is dominant on the surface in H2 (~60/40), but O2 brings copper 

to the surface to produce a slightly copper rich surface. However, on re-exposure to 15 

H2 this effect is immediately and fully reversed. In H2 and O2 within the accessible 

energy range, the sample was also probed using a higher incident photon energy  
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Fig. 5 (a) Ambient pressure Cu (red) and Co (blue) 3p XP Spectra of CuCo nanoparticles supported 

on the native oxide layer of a silicon wafer during exposure to a series of gases as indicated (0.1 

torr) using an incident photon energy of 380 eV,  corresponding to a mean free path of escaping 

electrons of 0.8 nm. (b) Graph showing the corresponding % of Cu (red)  and Co (blue) in this top 5 

0.8 nm surface layer of the nanoparticles for each condition in (a) (after  correction for the relevant 

photon energy photoelectron cross sections and removal of a Shirley background). 

sampling the top 4-5 atomic layers (~1.2 nm) to address the question of whether this 

effect occurs purely on the surface layer of the particles or whether it involves the 

top several layers of the particles. Comparison of these spectra (see supplementary 10 

information)† does not show any significant change between probing 2-3 layers and 

4-5 layers deep, indicating this is not an effect dominated by a single surface layer.    

 As the presence of oxygen allows the formation of metal  oxide it is also 

instructive to consider the O 1s spectra in Figure 3, acquired during the same 

experiment as the Cu and Ni 3p spectra shown in Figure 2 (steps are numbered in 15 

both figures). Since some Si 2p signal can be seen (suggesting a nanoparticle 

coverage of 95%), it should be remembered that some of the oxygen seen originates 

from the surface oxide layer of the silicon wafer and not from the nanoparticles 

themselves – and this is likely to be the origin of the peak at around 532.5 eV that 

remains even in the presence of H2 at 450 °C. In the presence of O2 or CO, gas phase 20 

peaks (marked in Figure 3) are seen to the higher binding energy side of the 532.5 

eV peak as a significant number of gas molecules will inherently be samples (in 

contrast to an ultra high vacuum experiment).31 However, the key feature to note is 

the sudden appearance in O2 of the lower binding energy features centred at 531.0 

and 528.4 eV, which is likely indicative of the formation of metal oxides.32 Re-25 

examination of the Cu and Ni 3p spectra in Figure 2(b) indicate that only the Cu 

appears to have been significantly oxidised (inferred from a higher binding energy 

contribution to the Cu 3p) while the Ni 3p peak width appears unchanged.       

CuCo bimetallic nanoparticles 

Figure 4(a) shows representative TEM images of the unsupported 11.2 ± 1.4 nm 30 

CuCo nanoparticles prepared in an analogous way to the CuNi particles discussed 

above, along with their corresponding size distribution. Again, STEM-EDS  
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Fig. 6 Relative % of Cu found in surface layers corresponding to 1.2 nm (circles) and 0.8 nm 

(triangles) mean free paths of escaping electrons during the same series of experiments as shown in 

Fig. 5, obtained from Cu and Co 3p intensities using incident photon energies of 800 eV and 380 eV 

respectively (after accounting for the relevant photon energy photoelectron cross sections and the 5 

removal of a Shirley background)..  

 
Fig. 7 Ambient pressure O 1s XP Spectra of CuCo nanoparticles supported on the native oxide layer 

of a silicon wafer during exposure to a series of gases as indicated (0.1 torr) using incident photon 

energy of 800 eV  The data was acquired in the same series of numbered experiments as shown in 10 

Fig. 5. 

linescans as shown in Figure 4(b) were also acquired to investigate the  structure of 

prepared particles (under the vacuum conditions of the microscope). This time the 

core-shell type segregation is visibly more marked than in the CuNi case, with the 

shell nearer the surface appearing to contain most of the cobalt. Overall the  expected 15 

1:1 Cu:Co atomic ratio is obtained – for 10 individual particles, on average each 
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individual particle was found to comprise 55 ± 7 % Cu, in good agreement with the 

average of 54 % Cu content obtained sampling over a region of many nanoparticles. 

This is important as it confirms good control of the individual particle compositions, 

necessary for the interpretation of the AP-XPS spectra that follow – for instance, 

formation of stray monometallic nanoparticles is unlikely.  5 

 As before, these CuCo nanoparticles, after supporting on the oxide surface of a 

silicon wafer, were then investigated using ambient pressure XPS. Spectra were 

acquired in vacuum and during the heating steps and introduction of 100 mtorr of H 2 

with very little change seen (see supplementary information);† the particles initially 

appear Co rich at the surface, consistent with the large segregation that was seen in 10 

the STEM-EDS experiment.33 The samples were then exposed to a series of reactive 

gas mixtures (atmospheres (H2  1:2 CO/H2   O2   H2) and the spectra obtained 

in the Cu and Co 3p region that correspond to a probing depth of 0.8 nm are shown 

in Figure 5 (a), along with the calculated surface compositions for each set of 

conditions. Again, in the presence of oxygen copper is clearly brought to the surface, 15 

however the ratio of Cu:Co does not change reversibly back once re-exposed to H2 

and heated to 450 °C. The spectra obtained using different probing depths (Figure 6) 

indicate that although initially the high surface concentration of Co is likely to be 

only the very surface layer, the segregation of Cu that occurs in oxygen is a number 

of layers deep (since spectra probing 1.2 nm and 0.8 nm produce very similar % Cu 20 

compositions after exposure to oxygen).  

 O 1s spectra corresponding to the H2 and O2 conditions in the experiment above 

are shown in Figure 7. As before, there is the sudden appearance of a large low 

binding energy feature around 529 eV in the presence of oxygen, attributable to 

metal oxide,32 which is almost totally removed again on re-exposure to H2. This 25 

time, however, comparison to the spectra in Figures 5 and 6 suggests that both 

metals are oxidised, as the peaks are shifted to higher binding energy by over 1 eV 

and have a rounder shape. This latter effect results from the convolution of more 

than one asymmetric p1/2-p3/2 doublet (expected intensity ratio of 1:2). For the 

quality of data acquired from these materials under ambient pressure conditions it is 30 

not appropriate to mathematically fit these by de-convolution, however, it is clear by 

comparison to the asymmetric p1/2-p3/2 doublet features upon re-exposure to H2 that 

these have a significant, higher binding energy contribution – both metals are at 

least partially oxidised. In contrast to the CuNi case, the CuCo already appears to 

have a small low binding energy contribution under H2 before exposure to O2. This 35 

may be the result of stable cobalt oxides being present, which cannot be efficiently 

reduced under these conditions. There is also a feature remaining on re-exposure to 

H2, although from its position (~533 eV) it is likely this may be the result of 

irreversible further oxidation of the silicon support (in addition to the original native 

oxide layer), rather than oxidation of the nanoparticles, since the Cu and Co signals 40 

appear to indicate limited oxide remains. 

Discussion 

In the previous section it has been identified that in both cases Cu is segregated to 

the surface on exposure to O2. For CuNi the surface returns reversibly to being Ni 

rich upon exposure to H2, whereas for CuCo the Cu remains at the surface. In both 45 

cases metal oxide formation is observed in oxygen and disappears again on heating 

in H2. For CuNi it appears the oxidation occurs predominantly for Cu and not Ni, 
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whereas for CuCo both metals are oxidised.  

 It is well known that for bulk materials Cu is expected to surface segregate (in the 

absence of reactive gases) and has been reported to do so in many experimental 

studies.34 This is generally true for both CuCo and CuNi,34 except at very high Ni 

contents not relevant to the present study.35 In the case of bulk alloys (both 5 

experimental and theoretical studies have largely been performed on single crystal 

surfaces), the restructuring is understood for the CuNi case as a balance of cohesive 

energy (lattice bonding), entropy and surface free energy and surface layer 

relaxations.36 Fewer, studies have been performed on CuCo, perhaps because of the 

large miscibility gap in their phase diagram.37 In our case copper is never seen to be 10 

significantly enriched above the overall bulk composition of 50 % at the surface for 

the CuNi case, although is enriched further on exposure to oxygen in the case of 

CuCo. For CuCo it could be argued that heating allowed it to overcome kinetic 

barriers to diffusion or restructuring, however this occurs on lowering the 

temperature from 450 to 350 °C ruling out the possibility that the gas is not involved 15 

in this transformation. Accordingly, it appears neither case behaves as expected for 

the bulk materials.  

 The balance of cohesive energies favours Cu segregation38 (the higher cohesive 

energy element being expected to be favourably located in the core, where more 

bonds with like atoms are possible), but this is not dependant on which gases are 20 

present. As outlined in the introduction, for many bimetallic nanoparticles it has 

been found that they restructure on exposure to reactive gases, such as O2, as a result 

of competition between oxide formation enthalpy and surface free energy. However, 

in here copper has the lowest surface free energy (1.9 Jm-2 vs. Co at 2.7 Jm-2
 and Ni 

at 2.4 Jm-2) and so in vacuum or H2 would be expected to be on the surface. For 25 

CuCo, in which segregation is mostly confined only to the surface layer, this may 

explain why Cu remains on the surface after oxygen has caused the segregation to 

occur. For CuNi, however, it does not explain why nickel segregates to the surface 

in H2. It is well known that H2 can dissociate on nickel surfaces (whereas on copper 

this requires significant thermal activation). Efficient chemisorption of H2 is 30 

therefore a plausible candidate for this nickel segregation effect, but much more 

work is needed to fully understand this phenomenon. Similarly, on exposure to 

oxygen the formation of metal oxides occurs, however this is not to the 

thermodynamically preferred oxide as seen in previously studied systems 

(ΔHo
f{CuO} = –157.3 kJmol-1 is significantly less than either ΔHo

f{CoO} = –237.9 35 

kJmol-1 or ΔHo
f{NiO} = –244.4 kJmol-1). This therefore cannot act as the driving 

force to surface segregate copper – but as it only occurs on exposure to oxygen it 

seems likely that kinetics or strain effects related to oxide formation must also 

participate. If kinetics on timescales longer than the ~40 mins of repeat XPS 

measurements (that suggest stability on this timeframe) are important this could 40 

result from diffusion issues or the kinetics of oxide formation and reduction.   (In 

relation to the former, it is interesting to note that interdiffusion  in bulk materials is 

known to be at least 5 times slower for Cu into Ni or CuNi alloys compared to the 

reverse case of Ni into Cu or CuNi alloys at relevant temperatures.39) Given that the 

oxide formed is in contact with a layer of silicon oxide it is not clear if this 45 

interaction is strong enough to also influence the stability of the oxides; it would be 

very valuable to address this question in future work, but silica was picked for initial 

use as it is a good mimic for a heterogeneous metal-metal oxide catalyst. Another 

interesting possibility comes from the case of PtCu in CO gas, which restructures to 
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give a Cu rich surface alloy on a single crystal both observed experimentally and on 

the basis of DFT calculations.40 This is attributed to a uniquely stable surface 

structure that is preferentially formed in place of the expected strong Pt -CO bonding 

seen elsewhere, and such effects could also be at work with the copper present in 

both systems studied here. Another potential issue in addressing the issue of why 5 

restructuring can occur in some cases would be the presence of defects or stacking 

faults altering the kinetics of restructuring – although this doesn’t appear to have 

been reported in the above cases.   

  Although more detailed investigation is required to understand the nuances of 

these two systems, in situ ambient pressure XPS demonstrates unambiguously the 10 

importance of evaluating the surface structure under real reaction conditions in order 

to understand the surface composition of the actual catalytic surface at work. For 

instance, although in conditions not directly replicated here, CuNi catalysts for solid 

oxide fuel cells containing only 10% Ni were still found to cause significant 

hydrocarbon dissociation (cracking is typically associated with nickel not copper) at 15 

temperatures below 800 °C.41 Although electronic effects have been invoked to 

explain this involving sub-surface nickel altering the properties of the copper, the 

present results offer an alternative explanation – nickel rather than copper may be 

segregated to the surface under the conditions of the reaction. CuNi has also recently 

been identified by theory and experiment to be an active and highly selective 20 

catalyst for methanol synthesis from syngas.3 Given the strong likelihood of nickel 

segregation in such catalysts under reducing conditions, their optimisation and 

development for use as practical catalysts would considerably benefit from an 

improved understanding of this behaviour. These are just two examples, but given 

the prevalence of bimetallic catalytic systems, increasing our knowledge of these 25 

dramatic restructuring effects is undoubtedly important in understanding their 

surface chemistry and enabling the rational development of improved catalytic 

systems.  

Conclusions 

Bimetallic nanoparticles of 1:1 atomic composition Cu:Ni and Cu:Co (as confirmed 30 

by STEM-EDS) and ~11 nm diameter were prepared using a new synthetic method. 

This has provided two new bimetallic nanoparticle systems, substantially different to 

those studied previously in the context of surface segregation and restructuring. In 

vacuum, the as prepared nanoparticles have Ni and Co enriched shells, respectively, 

and a Cu rich core. Exposure of these nanoparticles supported on planar SiO2 to a 35 

reactive gases results in surface segregation determined in situ using ambient 

pressure XPS. Exposure to O2 results in a relative increase in the percentage of Cu at 

the surface as compared to H2 at 450 °C. For CuNi change is reversible on re-

exposure of the nanoparticles to H2, while the CuCo remains Cu rich at the surface 

on re-exposure to H2 at 450 °C. These observations are different to those 40 

theoretically and experimentally seen for bulk single crystals in vacuum and clearly 

not dominated by factors such as surface free energy and the enthalpy of oxide 

formation as seen in previous studies of bimetallic nanoparticles. Further studies of 

different sizes and compositions are likely to improve our understanding of the 

important balance of factors that control these bimetallic systems and others. 45 

However, the unexpected results of the present study serve to underline the 

importance of accounting for these as yet, not fully understood, restructuring effects. 
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This is especially so for heterogeneous catalysis, where surface composition is 

crucial and high temperature and pressure reactive gases are usually present . 
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